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Abstract

JavaScript has been widely adopted for the development of Web applications, being used for both

client and server-side code. Client-side JavaScript programs commonly interact with Web APIs, for

instance, to capture the user interaction with the Web page via events. The use of such APIs increases

the complexity of JavaScript programs. In fact, most errors in these programs are caused by the misuse

of Web APIs. There are several approaches for detecting errors in client-side JavaScript programs, but

they either assume the use of a single API or do not model APIs faithfully, giving rise to inconsistent

behaviour and lack of trust.

We address the problem by developing a trustworthy infrastructure for the static analysis of Web

APIs. We focus on two aspects of JavaScript programs: event-driven and message-passing program-

ming, as these paradigms are common sources of confusion among developers. We choose to target the

DOM event model and the JavaScript Promises and JavaScript async/await, which facilitate event-

driven programming. Additionally, we target the message-passing model of the WebMessaging and

WebWorkers APIs.

We design formal semantics for events and message-passing to capture fundamental operations

required by those APIs, and API reference implementations which are trustworthy in that they follow

the respective standards and have been thoroughly tested against their official test suites. Using our

formal semantics and reference implementations, we develop JaVerT.Click, the first static symbolic

execution tool for JavaScript supporting both event-based and message-passing APIs.

We evaluated both the reference implementations and the symbolic execution engine of JaVerT.Click.

By testing the reference implementations against their official test suites, we found coverage gaps and

issues in the test suites, most of which have been since fixed. By testing the symbolic execution engine

against three open-source libraries, we established the bounded correctness of functional properties

and found real bugs.
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‘Nothing in life is to be feared; it is only to be understood. Now is the time to

understand more, so that we may fear less.’

Marie Curie
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1. Introduction

JavaScript is the de facto language of the Web, being widely used for the development of both client-

and server-side applications [143]. These applications are a fundamental part of the Internet of today,

being increasingly used to facilitate all sorts of tasks that we perform in our every-day lives, including

e-mailing, text editing, online banking, and shopping. Establishing the correctness of JavaScript

applications is therefore of the utmost importance, as their bugs can have severe economic and even

social consequences.

The JavaScript language was created in 1995 and was soon specified in the ECMAScript standard,1

which has significantly grown over the years. Client-side JavaScript programs execute in the browser

and have access to an ever-increasing number of Web APIs. Among such APIs, the DOM [136] and

HTML5 [138] are arguably the most relevant as they support the interaction between JavaScript

programs and the browser as well as the HTML page displayed to the user. These APIs effectively

extend the expressivity and scope of the JavaScript language by introducing, for instance, events and

concurrency facilities.

The complexity of the JavaScript standard, which is now about 900 hundred pages long, renders

the design of program analyses for JavaScript an extremely challenging task. When it comes to client-

side JavaScript applications, this task is made even more difficult by the continuous emergence and

evolution of client-side Web APIs as these APIs are implemented using a mix of different technologies

and programming languages that go beyond the perimeter of JavaScript, with their source code often

being neither available nor suitable for program analyses. Moreover, Web APIs commonly rely on

event-driven and message-passing models, augmenting the expressiveness of the JavaScript language

and therefore requiring specialised analysis techniques.

Events are at the core of client-side Web programming as they are used to model the interaction

between the user and the Web page. Client-side JavaScript programs manage events with the help

of various event-driven Web APIs, of which the DOM is of special importance as it provides the

foundation upon which other Web APIs are built. In particular, it defines various interfaces capturing

the core event-related behaviour of Web page objects, which are then used by the other APIs. Even

though most Web APIs rely on the DOM event model, these APIs come with their own events and

idiosyncrasies. The complexity and interconnectedness of these events complicate the control-flow

structure of Web programs, rendering their analysis extremely challenging.

JavaScript programs were originally constrained to running in a single thread. Later, with the goal

of improving user experience, the WHATWG group [141] introduced the WebMessaging [140] and

WebWorkers [133] APIs, which extend the language with support for message-passing concurrency [19,

65, 69]. These APIs are event-driven and rely on the DOM event model, allowing for JavaScript

programs to execute in a multithreaded environment with their own memories and to communicate

with each other via messages. The combination of the concurrent and asynchronous natures of the

1http://ecma-international.org
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WebMessaging and WebWorkers APIs adds yet another layer of complexity to the analysis of client-side

JavaScript applications.

Our challenge is to design a new symbolic analysis for event-driven JavaScript applications, fo-

cussing on the symbolic testing of such applications. With symbolic testing, developers write tests

with symbolic inputs and annotate them with assumptions and assertions, respectively expressing

constraints over the given inputs and the properties that the computed outputs must satisfy. Im-

portantly, symbolic testing can be used to establish bounded correctness of functional properties of

the tested applications and also to find bugs by exploring all execution paths up to a pre-established

bound [76, 126]. To this end, we implement the first static symbolic execution tool for JavaScript

supporting both event-based and message-passing APIs.

Although there is a number of symbolic execution tools for analysing JavaScript programs [97,

32, 114, 33, 72, 84, 3], they either do not support any client-side Web APIs [97, 32, 114, 33], being

only applicable to pure JavaScript code, or are restricted to a single event-based API [72, 84, 3].

Furthermore, to the best of our knowledge, there is no static symbolic execution tool with support

for reasoning over event-based or message-passing Web applications. All the existing tools are purely

dynamic and designed only for bug-finding purposes. For this reason, they do not systematically

explore the program execution space and therefore cannot be used to establish bounded correctness

guarantees for the analysed code.

In order to build our symbolic execution tool, JaVerT.Click, we design an event semantics, which

captures the essence of event-based Web APIs, and a message-passing semantics, which models core

operations of client-side message-passing APIs. Additionally, we provide JavaScript reference imple-

mentations of the DOM, JS Promises, JS async/await, WebMessaging and WebWorkers APIs. Our

reference implementations faithfully model their respective Web standards and are built on top of our

event semantics and message-passing semantics. We tested our reference implementations against their

official test suites, making sure that they pass all applicable tests. During this process, we discovered

and reported coverage gaps [52] and issues [49, 55, 48, 53, 50, 54, 51, 56] in the official test suites.

We develop JaVerT.Click on top of JaVerT 2.0 [35], our verification and testing tool for JavaScript

that follows the language semantics without simplifications. We evaluate JaVerT.Click by using it to

symbolically test three highly-used open-source libraries that call all the targeted APIs: cash [142],

p−map [120] and webworker-promise [105], demonstrating that it can scale to real-world code. Im-

portantly, this symbolic testing process allowed us to: (1) establish the bounded correctness of several

functional properties; (2) find coverage gaps in the libraries’ concrete test suites; and (3) find 6 previ-

ously unknown bugs. All discovered bugs have been reported to the corresponding development teams

and have since been acknowledge and, for the most part, fixed, showing that they were found to be

relevant by the developers of the corresponding projects.

1.1. The Chosen APIs

Given our choice to focus on event-driven and message-passing programming, we naturally choose Web

APIs relying on either an event or message-passing model. The DOM is a natural first choice consid-

ering its popularity [94] and its underlying event model. We also consider two APIs for asynchronous

programming: JS Promises and JS async/await. These two APIs are tightly connected to each other

and were introduced to the JavaScript language to support the development and comprehension of
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asynchronous code. Importantly, JS Promises and JS async/await facilitate the structuring and organ-

isation of JavaScript code that manages events. Hence, they are interesting targets for JaVerT.Click.

Finally, we also model the WebMessaging and WebWorkers APIs due to their message-passing and

event-driven nature and the nonexistence of static analysis tools to analyse them. In the following,

we describe each chosen API.

DOM API. The Document Object Model (DOM) is an API through which the code executing

in the browser can interact with the webpage displayed to the user. Initially designed as a simple

XML/HTML inspect-update library, the DOM has been substantially extended over the last twenty

years and now includes a wide variety of features, such as specialised traversals, events, abstract views,

and cascading style sheets. Recently, the most relevant of these APIs, Core Levels 1-3 [130, 131], have

been unified in a single all-encompassing DOM API, called the DOM Living Standard [136], which

is currently being maintained by the WHATWG group [141] and defines a “platform-neutral model

for events, aborting activities, and node-trees”. From the DOM Living Standard, we choose to focus

on: (1) the DOM Core Level 1, in order to provide key functionalities related to dynamic access and

update of webpages; and (2) DOM Events, as event programming is of special interest to us.

JS Promises. Before the introduction of JS Promises, JavaScript developers would write asyn-

chronous code through the use of asynchronous callbacks, which were often linked to bad programming

practices. A recurring problem was the callback hell [37] anti-pattern consisting of the nesting of asyn-

chronous callbacks. Additionally, due to the lack of a proper error handling mechanism when writing

asynchronous callbacks, developers could informally use the error-first convention, which establishes

that the first argument of the callback should be used for error-handling. However, developers would

not necessarily use this convention. JS Promises were introduced in the 6th version of the ECMAScript

(ES) standard, avoiding callback hell and also providing a proper error-handling mechanism.

JS async/await. The async and await operators were introduced in the 8th version of the ES

standard to facilitate the development and comprehension of asynchronous code. If a JavaScript

function is declared with the async keyword, its return value is always implicitly wrapped in a Promise

object. The await operator can be used inside async functions and allows the current execution to

be suspended until the given promise is fulfilled or rejected.

WebMessaging. To allow multiple scripts included in different windows to communicate via mes-

sages, the WHATWG group provides the WebMessaging API, which is part of the HTML5 stan-

dard [138]. The communication model defined by the WebMessaging API is an important basis for

the WebWorkers API, establishing the way that workers exchange messages with one another. Mes-

sages between workers are sent asynchronously according to the message-passing paradigm [19, 65, 69].

So, if the main thread sends a message to a worker thread, the former does not block, waiting for the

reply. Instead, it can still handle the user interaction and process events.

WebWorkers. Before the introduction of the WebWorkers API, JavaScript execution happened in

a single thread. In order to allow scripts to run in multiple threads, the WHATWG group published

the WebWorkers API as part of the HTML5 standard. Workers can handle computationally intensive

tasks without blocking other scripts. This is possible because each worker runs in a separate thread,

has its own memory and its own event loop. Note that both the WebMessaging and the WebWorkers
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APIs rely on the DOM API, and, more specifically, on its event-related interfaces. Whenever a message

arrives at a worker thread, a message event is triggered on that thread.

The main challenge of this thesis is the design of a new symbolic execution tool for analysing client-side

JavaScript programs that interact with the DOM, JS Promises, JS async/await, WebMessaging and

WebWorkers APIs. In the following, we detail our solution.

1.2. Solution

We introduce JaVerT.Click, the first static symbolic execution tool for JavaScript supporting both

event-based and message-passing APIs. In contrast to existing tools supporting the analysis of event-

related APIs, which focus on a particular API, JaVerT.Click can reason about JavaScript programs

that use multiple event-related APIs within a unified formal semantics. Moreover, our tool enables,

for the first time, static analysis of the WebMessaging and WebWorkers APIs.

In order to build our analysis, we design: (1) an event semantics, which identifies the fundamental

building blocks underpinning the event models of the DOM Events, JS Promises and JS async/await

APIs; (2) a message-passing semantics, which captures the essence of the message-passing model

underneath the WebMessaging and WebWorkers APIs; and (3) trusted JavaScript reference imple-

mentations of DOM Core Level 1, DOM Events, JS Promises, JS async/await, WebMessaging and Web-

Workers, the APIs that we target in this thesis. These implementations are trusted in that all except

that of JS async/await follow their respective API standards line-by-line and are thoroughly tested

against the official test suites, passing all the applicable2 tests, and actually uncovering coverage gaps

and issues in the official test suites. Our approach was inspired on the JSCert project [11], which

proposed a formal semantics for JavaScript that closely follows the 5th version of the ECMAScript

standard. The authors introduced the concept of eyeball closeness to establish such correspondence.

Our formal semantics for events and message-passing APIs abstract away implementation details

that would be cumbersome to model at the analysis level. This is important to (1) guarantee that

our formal semantics are compatible with multiple APIs and (2) avoid that they become obsolete over

time given that Web standards are in constant evolution. We then leave API-specific details to our

JavaScript reference implementations, which rely on our formal semantics for events and message-

passing.

The key insight on the design of our formal semantics for events and message-passing is that they

are fully parametric. Our event semantics is parametric on an underlying language, so that it can

focus only on event-related details and filter out any clutter potentially introduced by the semantics

of the language. Our message-passing semantics is designed parametrically on an underlying language

semantics with support for events, as the message-passing model of client-side Web APIs relies on the

DOM event model. The HTML5 standard does not define a scheduling policy to regulate the allowed

interleavings between concurrent threads. Hence, browsers are free to implement the scheduling policy

that they see fit. Accordingly, we make our message-passing semantics also parametric on a scheduler

that chooses the thread to be executed at each computation step. For instance, one may use a

scheduling policy that simulates the behaviour of a specific browser, or, alternatively, one that follows

a highly interleaving strategy in order to detect concurrency-related bugs.

2We filter out tests that depend on JavaScript features not supported by our infrastructure.

21



Figure 1.1.: Fragment of JaVerT 2.0 Infrastructure

We implement JaVerT.Click on top of JaVerT 2.0, our trustworthy verification and testing tool for

JavaScript. In the following, we detail the infrastructure of JaVerT 2.0 and JaVerT.Click.

JaVerT 2.0 infrastructure. JaVerT 2.0 supports three kinds of analysis: (1) whole-program sym-

bolic testing, which allows to establish the bounded correctness of functional properties [76, 127]; (2)

verification, which provides full functional correctness guarantees for a given program and its specifi-

cation written in separation logic [103, 18], and (3) bi-abduction, which is a compositional bug finding

technique based on the automatic inference of specification summaries [16]. From the three types

of analysis provided by JaVerT 2.0, symbolic testing was a natural choice for JaVerT.Click given its

purpose: analysing real-world JavaScript code interacting with multiple Web APIs. We now describe

the modules of JaVerT 2.0 that are related to its symbolic testing engine.

JS-2-JSIL Compiler: Compiles a JavaScript program written in ES5 Strict [27] to JSIL, the interme-

diate language for JavaScript of JaVerT 2.0. The JS-2-JSIL Compiler closely follows ES5 Strict

and was tested against the official ES test suite;

JS-2-JSIL Runtime: JaVerT 2.0 does not rely on external JavaScript runtime; instead, it comes with

its own implementation of the ES5 built-in functions and internal functions;

JSIL Interpreter: Provides a symbolic execution engine for the JSIL language. The JSIL interpreter

is parametric and can be instantiated either with a concrete or a symbolic JavaScript memory

model, yielding a concrete or a symbolic JSIL interpreter. JaVerT 2.0 also provides a correctness

result linking symbolic and concrete JSIL executions to guarantee, for instance, the absence of

false positive bug reports.

In Figure 1.1, we introduce a fragment of the infrastructure of JaVerT 2.0 that is relevant for

symbolic testing purposes. Given a JavaScript program written in ES5 strict, it performs the following

steps. First, the given program is compiled to JSIL using the JS-2-JSIL compiler [34, 35]. The resulting

JSIL code is then executed by the JSIL interpreter, which can be instantiated with either a concrete

(for testing) or a symbolic (for analysis) JavaScript (JS) memory model. JaVerT 2.0 provides a

correctness result that states that its symbolic testing has no false positives.

JaVerT.Click infrastructure. JaVerT 2.0 enables the symbolic testing of JavaScript programs.

Developers can write symbolic tests with the use of symbolic inputs instead of concrete ones, and
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include assumptions and assertions over these inputs. In order to achieve our goal, which is the

analysis of client-side JavaScript programs interacting with event-driven and message-passing Web

APIs, we add new modules on top of JaVerT 2.0. Figure 1.2 shows the infrastructure of JaVerT.Click,

including the preexisting modules provided by JaVerT 2.0 that are relevant for symbolic testing.

Events Module: Comprises the implementation of our event semantics and is designed parametrically

on an underlying language interpreter. We instantiate the Events Module of JaVerT.Click with

JSIL, our intermediate language for JavaScript. Analogously to our JSIL interpreter, the Events

Module can be instantiated with either a concrete or a symbolic language interpreter, and we

lift the correctness result of the symbolic testing of JaVerT 2.0 up to the Events Module. If an

error is reported by the Events Module symbolically, it must also happen concretely.

Message-passing Module: Comprises the implementation of our message-passing semantics and is

designed parametrically on an underlying language semantics with built-in support for events

and a scheduler. We instantiate our Message-passing Module with our Events Module, which is

itself instantiated with the JSIL interpreter, and a scheduler that mimics the scheduling policy

used by most browsers. The Message-passing Module can also be instantiated either concretely

or symbolically, and comes with a correctness result which is analogous to the one provided by

the Events Module.

API Reference Implementations: We also add to JaVerT 2.0 JavaScript reference implementations

of our chosen APIs: DOM Core Level 1, DOM Events, JS Promises, JS async/await, WebMessag-

ing and WebWorkers. Our reference implementations faithfully model their respective standards

and were thoroughly tested against their official test suites. During the testing process, we dis-

covered and reported [52] coverage gaps in the DOM Events official test suite. Additionally, we

reported [49, 48, 50, 51] and fixed [55, 53, 54, 56] issues in the official test suites of WebMes-

saging and WebWorkers. The implementations of DOM Events, JS Promises and JS async/await

interact with the Events Module to support core event-related features; analogously, the imple-

mentations of WebMessaging WebWorkers interact with the Message-passing Module to support

core message-passing features.

ES6+ Transpiler: JaVerT 2.0 analyses JavaScript code written in ES5 strict. In order to support

ES6+ features, such as the JavaScript operators async and await, we implement an ES6+

Transpiler that translates some features of ES6+ to ES5 strict.

Given a JavaScript program, JaVerT.Click performs the steps shown in Figure 1.2. First, the given

program is transpiled to ES5 using the ES6+ transpiler. Then, the transpiled program, together with

the reference implementations of the chosen APIs, is compiled to JSIL using the JS-2-JSIL compiler of

JaVerT 2.0. The resulting JSIL code is then executed by the Message-passing Module instantiated with

either a concrete or a symbolic Events Module, which is itself instantiated with the JSIL interpreter

in JaVerT.Click. We also instantiate our Message-passing Module with a scheduler S that implements

a scheduling policy which is analogous to the one observed in most browsers.

23



Figure 1.2.: Infrastructure of JaVerT.Click

1.3. JaVerT.Click in Practice

The evaluation of JaVerT.Click is two-fold: (1) we test our reference implementations of the chosen

APIs against their official test suites [26, 57], guaranteeing that they pass all applicable tests, and (2)

we use JaVerT.Click to symbolically test three real-world open-source libraries.

1.3.1. Testing Reference Implementations of the Chosen APIs

To ensure that our JavaScript reference implementations are trustworthy and follow their respective

standards, we tested them against their test suites making sure that they pass all applicable tests. The

number of applicable tests is 527 for the DOM Core Level 1, 56 for DOM Events, 344 for JS Promises, 68

for JS async/await, 91 for WebMessaging and 158 for WebWorkers. During this process, we discovered

coverage gaps in the test suites of the DOM Core Level 1 and DOM Events APIs and wrote additional

tests [52] to achieve 100% line coverage. Additionally, we found, reported [49, 48, 50, 51] and fixed [55,

53, 54, 56] four bugs in the official HTML5 test suite [57] when testing our reference implementations

of the WebMessaging and WebWorkers APIs.

1.3.2. Symbolic Testing of Open-source Libraries

To evaluate the symbolic execution engine of JaVerT.Click, we symbolically tested three real-world

open-source libraries: cash [142], p−map [120] and webworker-promise [105], which together cover all

the targeted APIs. The cash library calls the DOM Core Level 1 and DOM Events API; the p−map
library calls the JS Promises and JS async/await APIs; and webworker-promise calls both WebMes-

saging and WebWorkers. For each library, we wrote a symbolic test suite mostly by adapting the

existing concrete test suite available in the library repository. By symbolically testing the three li-

braries libraries, we were able to (1) establish the bounded correctness of several functional properties,

(2) achieve better coverage than concrete testing, and (3) uncover 6 previously unknown bugs. In the
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following, we summarise the symbolic testing results for cash, p−map and webworker-promise.

The cash library [142] aims at providing similar functionality to jQuery3 while remaining as small

as possible. In order to implement jQuery features, the library heavily relies on the DOM API. It has

a growing community of users, with more than 21K weekly downloads on NPM4, and more than 3M

overall downloads5, and more than 5.7K stars on GitHub [142]. By running symbolic tests for cash

in JaVerT.Click, we established the bounded correctness of several event-related properties, achieving

100% of line coverage. Additionally, we found and reported 2 bugs to the developers [43, 42], who

fixed one of them [41]. The other bug was acknowledged, but the developers argued that it would be

unlikely to happen.

The p−map library [120] provides a tiny layer on top of JavaScript promises, allowing to apply a

mapper function concurrently over an array of promises. Although being small, the p−map library is

largely used, having more than 18M weekly downloads on NPM6, almost 3B overall downloads7 and

808 stars on GitHub [120]. It calls both the JS Promises and JS async/await APIs. We developed a

symbolic test suite for p−map and were able to establish the bounded correctness of important func-

tional properties and to achieve 98.76% of line coverage. Additionally, we found a bug in p−map [46],

which has been fixed by the developers [44].

The webworker-promise library [105] is a highly-used promise-wrapper over the WebMessaging

and WebWorkers APIs with 2,190 weekly downloads on NPM8 and a total of 413,794 downloads.9 By

symbolically testing webworker-promise, we established the bounded correctness of several functional

properties related to message-passing programming and found three bugs [59, 58, 60] and fixed two

by submitting pull requests [61, 62]. The developer has agreed to fix the remaining bug.

1.4. Contributions

We design JaVerT 2.0, a symbolic execution tool for JavaScript with support for both verification and

testing. JaVerT 2.0 follows the language semantics without simplifications. In order to achieve the

main goal of this thesis, which is the analysis of client-side JavaScript applications calling multiple

event-driven and message-passing APIs, we make the following contributions on top of JaVerT 2.0:

1. A unified event semantics that, for the first time, captures fundamental event-related operations

required by the DOM Events, JS Promises and JS async/await APIs. Such operations include,

for instance, event handler registration and event dispatch.

2. The first message-passing semantics that has, in its core, a message-passing model compatible

with both the WebMessaging and WebWorkers APIs. The message-passing features provided

include sending a message between two running threads and creating a new thread.

3. JaVerT.Click, which is the first static symbolic execution tool for JavaScript supporting both

event-based and message-passing APIs. JaVerT.Click is also the first symbolic execution tool to

3https://jquery.com/
4https://www.npmjs.com/package/cash-dom
5https://npm-stat.com/charts.html?package=cash-dom&from=2016-01-04&to=2022-01-04
6https://www.npmjs.com/package/p-map
7https://npm-stat.com/charts.html?package=p-map&from=2016-01-04&to=2022-01-04
8https://www.npmjs.com/package/webworker-promise
9https://npm-stat.com/charts.html?package=webworker-promise&from=2017-01-04&to=2022-01-04
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support symbolic reasoning over the WebMessaging and WebWorkers APIs.

4. Trustworthy JavaScript reference implementations of the DOM Core Level 1, DOM Events,

JS Promises, JS async/await, WebMessaging and WebWorkers APIs that, except of

JS async/await, follow their respective standards line-by-line and were thoroughly tested against

their respective test suites. We believe that our reference implementations could be used by

other static analysis tools and serve multiple purposes, such as fine-grained debugging.

5. Symbolic test suites10 for the cash, p−map and webworker-promise open-source libraries, that

successfully (1) established the bounded correctness of several functional properties, (2) found

coverage gaps in the original concrete tests, and (3) uncovered 6 previously unknown bugs.

This work has been done in collaboration with my supervisors. In addition, the concrete testing of

the Promises and async/await APIs, and the symbolic testing of the cash library including the exten-

sion of the first-order solver of JaVerT 2.0 with bounded string reasoning were done in collaboration

with Petar Maksimović.

1.5. Thesis Outline

We detail the structure of the main body of this thesis. Chapter 2 covers the research literature that

is relevant for the development of this work. We focus on formal semantics and a variety of program

analysis techniques which target either any of our chosen APIs or the JavaScript language in general.

Then, in Chapter 3, we introduce the JaVerT 2.0 tool, which is the technical background of this thesis.

The remaining chapters are as follows:

• In Chapter 4, we introduce our event semantics. We start with a motivating example to illus-

trate the complexity of event-driven Web APIs. We then present our solution discussing: the

parametric construction of the event semantics; our syntax for events; how the symbolic engine

of JaVerT.Click can find bugs in the motivating example; and the rules for our event seman-

tics, instantiated with either a concrete or a symbolic language semantics. Finally, we prove a

correctness theorem relating the concrete and symbolic event semantics.

• In Chapter 5, we introduce our message-passing semantics. We start with a simple motivating

example that was taken from the webworker-promise library and contains a real bug. The struc-

ture then follows analogously to Chapter 4. We present our solution discussing: the parametric

construction of the message-passing semantics; our message-passing syntax; how the symbolic

engine of JaVerT.Click can find bugs in the motivating example; and the rules for our message-

passing semantics, instantiated with either a concrete or a symbolic language semantics with

support for events. Finally, we prove a correctness theorem relating the concrete and symbolic

message-passing semantics.

• In Chapter 6, we introduce our reference implementations of the chosen APIs: DOM Core Level 1,

DOM Events, JS Promises, JS async/await, WebMessaging and WebWorkers. For each API, we

give an overview by explaining its main interfaces, and present our reference implementation by

10We do not include the test suites developed for the industrial code inside Amazon because they need to remain
confidential.
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showing its design, the line-by-line closeness with its respective standard and how it interacts

with the event semantics and the message-passing semantics.

• In Chapter 7, we discuss the evaluation of JaVerT.Click by addressing two aspects: the testing

of our reference implementations against their respective test suites; and the symbolic testing

of the cash, p−map and webworker-promise libraries. Our reference implementations pass all

applicable tests from their respective official test suites and, during their testing process, we

found coverage gaps and issues in the official tests. The symbolic test suites developed for the

cash, p−map and webworker-promise libraries allows us to establish the bounded correctness of

several functional properties, find coverage gaps in their concrete tests, and discover previously

unknown bugs.

1.6. Publications

During the first year of my PhD, I worked on the JaVerT 2.0 tool. More concretely, I designed the

formal model underpinning JaVerT 2.0 bi-abductive analysis. Afterwards, I focused on the main

goal of my thesis, which is the analysis of client-side JavaScript programs that interact with multiple

event-based APIs. The publications are listed below.

• José Fragoso Santos, Petar Maksimović, Gabriela Sampaio and Philippa Gardner. JaVerT 2.0:

Compositional symbolic execution for JavaScript. POPL, 2019.

• Gabriela Sampaio, José Fragoso Santos, Petar Maksimović and Philippa Gardner. A Trusted

Infrastructure for Symbolic Analysis of Event-driven Web Applications. ECOOP, 2020.

• Gabriela Sampaio, José Fragoso Santos and Philippa Gardner. Symbolic Analysis of Message-

passing JavaScript Client-side Programs. To be submitted.
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2. Related Work

A key challenge of this work is the static analysis of JavaScript programs calling Web APIs, focussing

on events and message passing. In this chapter, we first give an overview of previous works tackling

the design of formal semantics and analysis of Web standards (§2.1), focusing on the APIs supported

by JaVerT.Click. Then, we discuss the existing formal semantics and static analysis techniques for

JavaScript (§2.2).

2.1. Formal Semantics and Program Analysis for Web Standards

Most client-side Web programs rely on the ECMAScript, DOM and HTML5 standards and developers

commonly introduce bugs that are caused by the misuse or misunderstanding of such standards [94].

For this reason, there are several works which focus on the design of rigorous semantics and program

analyses for Web standards. To the best of our knowledge, JaVerT.Click is the first tool to support

the analysis of Web programs that rely on multiple client-side Web APIs. Previous works focus

on analysing programs using a specific Web standard instead of taking into consideration multiple

standards. In the following, we discuss such initiatives for the APIs supported by JaVerT.Click:

DOM Core Level 1 [130], DOM Events [136], JS Promises [28], JS async/await [29], WebMessaging [140]

and WebWorkers [133].

Formal Semantics of DOM Core. Based on context logic [17], Smith et al. introduced an

axiomatic semantics [39] for a small fragment of DOM Core Level 1, proving it sound with respect

to their operational semantics. In his PhD thesis [118], Smith later extended this axiomatic semantics

to all fundamental interfaces of DOM Core Level 1, including live collections and fine-grained reasoning

about various types of DOM nodes, omitting only a minor part of the extended interfaces, which are:

CDATASection, DocumentType, Notation, Entity, EntityReference and ProcessingInstruction.

Later, Raad et al. [100] used structural separation logic [144] to give a new axiomatic semantics for a

small fragment of DOM Core Level 1, improving on [39] and [118] by allowing for more compositional

reasoning about DOM clients. This axiomatic semantics follows the DOM standard closely, but has

not been implemented, and there has been no work on using this semantics to reason about real-world

JavaScript programs that interact with the DOM; only pen-and-paper proofs for small examples are

provided.

Brucker et al. defined an extensible and executable formal semantics [13] for the Core DOM 41

in Isabelle/HOL. Their model allows to prove properties about the DOM, for example: “Insert-

ing a node in the DOM tree using insert before never leads to duplicates in the node’s children

list.”. The theory covers the following core datatypes of the DOM specification: Document, Node,

Element and CharacterData, as well as a subset of the methods exposed by these interfaces, such as

1DOM Level 4: https://www.w3.org/TR/2015/WD-dom-20150428/
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get element by id and create element. Other types of nodes, such as Text and EntityReference,

and event handling features defined by the EventTarget interface are not supported. Although the

formalisation is executable, it was not tested against the official test suite. In contrast, our DOM

reference implementation follows the standard line-by-line and passes all applicable tests of the official

test suite.

Several operational semantics for different fragments and adaptations of DOM Core Level 1 were

proposed for various types of analyses, such as information flow control [92, 106], type systems [124]

and abstract interpretation [73], targeting JS programs that interact with the DOM. These papers,

however, do not aim to establish a trusted formal representation of the DOM using which others can

build their own program analyses; instead, they provide a DOM representation specific to their kind

of analyses. In contrast, our DOM Core Level 1 JS reference implementation has been designed to be

trusted in that it follows the text of the standard line-by-line and passes all tests of the official test

suite [129]. This, combined with its extensive use in the symbolic testing of the cash library, gives us

confidence that others will be able to use it for their analysis of JS programs calling the DOM.

Symbolic Analyses for the DOM Core. Symbolic reasoning about the DOM in the literature is

mostly focussed on bug-finding and/or automatic concrete test generation. For example, ConFix [30]

uses concolic execution to automatically generate DOM fixtures2 that allow high-coverage testing of

JavaScript functions that use the DOM. More concretely, ConFix deduces DOM-dependent path

constraints based on a given trace of the program under test, and then obtains a DOM-based fixture

by calling a XML constraint solver with the deduced constraints. Although the approach has shown

to increase coverage of DOM-dependent functions, it does not support DOM events and dynamically

generated code using eval that interacts with the DOM. It is not our goal with JaVerT.Click to

generate DOM fixtures; instead, we aim at using static symbolic execution to prove the bounded

correctness of functional properties. Furthermore, our DOM reference implementation supports both

DOM Core Level 1 and DOM Events.

Zou et al. introduced the notion of Virtual DOM (V-DOM) coverage [147], a novel criterion for test-

ing dynamic Web applications which aims at increasing code coverage. By using control-flow and data-

flow analysis techniques, the tool computes a virtual DOM tree, which consists of a logical representa-

tion of all possible DOM trees that could be generated by different execution paths of server scripts.

The V-DOM construction enables a more effective testing of Web applications calling the DOM. One of

the limitations of this approach is that although it can support DOM events, it only considers handlers

that were registered statically (via HTML code, e.g. <button onclick="myFunction()"/>), meaning

that it does not support dynamic handler registration (via the DOM function addEventListener()).

JaVerT.Click aims at analysing client-side code and relies on a semantics for events that captures the

essence of multiple Web event-driven APIs. Additionally, our analysis supports dynamic event handler

registration/deregistration and event dispatching.

When it comes to research on securing client-side Web applications, various symbolic analyses have

been proposed with the goal of finding DOM-based XSS vulnerabilities [82, 95, 110]. This type of

vulnerability was first described by Amit Klein in 2005 [78] and has affected big tech companies such

2A test fixture refers to the fixed state required for testing a system. For instance, ConFix uses DOM trees as test
fixtures.
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as Google3, Yahoo4 and Twitter.5 A DOM-based XSS attack is caused by unsafe data flows during

the DOM manipulation in client-side code. For instance, one could have the value of document.url,

which is susceptible to attacks, being printed to the webpage through the use of the DOM function

document.write(). In order to find such attacks automatically, Saxena et al. [110] developed FLAX, a

framework which finds DOM-based XSS attacks by using taint enhanced blackbox fuzzing [63], a hybrid

approach that combines fuzz testing and taint analysis. Then, Lekies et al. [82] adapted a browser

engine to achieve support for dynamic taint-tracking. Later, Parameshwaran et al. [95] introduced

DexterJS, a browser-independent tool which also applies taint tracking to find and validate DOM-

based XSS vulnerabilities. All three tools have successfully found DOM-based XSS vulnerabilities in

real-world programs. The purpose of JaVerT.Click, in contrast to these tools, is not to find security

vulnerabilities, but to verify functional properties related to the use of several Web APIs. We believe

that the symbolic execution engine at the core of JaVerT.Click can be adapted to find DOM injection

attacks by instrumenting with a security monitor in the style of [111].

Formal Semantics of DOM Events. There are very few formal semantics for DOM Events. In this

context, the work closest to ours is [83], which presents the first operational model for reasoning about

DOM events. This model consists of a Scheme6 reference implementation of DOM UI events and is

used to prove meta-properties of the DOM semantics, such as the immutability of the propagation path

during the execution of the Dispatch algorithm. The authors justify their reference implementation

by annotating the paragraphs of the standard with links to the relevant definitions and reduction rules

in their implementation, and by comparing its behaviour with various browser implementations using

randomly generated test cases. The implementation, in contrast to JaVerT.Click, is not tested against

the official DOM Events test suite and does not have a line-by-line correspondence with the text of

the DOM standard.

Rajani et al. [101] propose a simplified DOM event semantics instrumented with a sound information-

flow monitor, and implement the monitor instrumentation on top of Webkit,7 the browser engine used

by Safari. The proposed semantics is, however, only intended for illustrative purposes as it does

not include a number of event-related features, such as interaction with shadow trees, slotables, and

touch/related targets. In contrast, our reference implementation of DOM Events does not simplify

the standard and passes 100% of the appropriate tests, given our current coverage (56 tests in total).

Static and Dynamic Analyses for DOM Events We discuss several program analysis tools for

DOM events grouping them into three categories: (1) tools based on static analysis [96, 72, 123], (2)

tools based on dynamic analysis [135, 4], and (3) tools that combine the advantages of static and

dynamic analysis [3, 98, 84].

In 2011, Jensen et al. [72] introduced the first static analysis tool that provide a detailed model of

the DOM on top of TAJS [74, 75]. The goal was to identify programming errors such as unreachable

code and function calls with the wrong number of arguments. Their DOM model is not complete,

only supporting the DOM features that the authors believe are mostly used. Additionally, it only

3https://blog.mindedsecurity.com/2012/11/dom-xss-on-google-plus-one-button.html
4https://www.exploit-db.com/docs/english/24109-domsday---analyzing-a-dom-based-xss-in-yahoo!.pdf
5https://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
6https://schemers.org/Documents/Standards/R5RS/r5rs.pdf
7https://webkit.org
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supports ES3. Then, Park et al. introduced SAFEWApp [96], a static analysis framework built on top

of SAFE [81] to find bugs in client-side Web programs. The authors performed an empirical study in

order to guide the modeling process of the DOM. Because not all DOM features are supported, the

analysis can be unsound and imprecise. JSdep [123] implements the first constraint-based declarative

program analysis for computing dependencies between event handlers. This approach is shown to

be effective, but no soundness guarantees are provided. JaVerT.Click, despite being a static analysis

tool, provides a complete and trustworthy reference implementation of the DOM, which has been

tested against the official test suite and could be reused in different settings. Moreover, the symbolic

execution engine of JaVerT.Click can prove the bounded correctness of functional properties.

Sahand [4] and EvMin [135] use dynamic analysis for collecting traces of event-driven JavaScript

applications with different purposes. Sahand is a browser-independent tool that computes a temporal

and context-sensitive model of the JavaScript execution, including both the client and server sides,

in order to facilitate the understanding of JavaScript asynchronous code. EvMin tries to find the

minimal event traces to reproduce a given failure. This is achieved by removing events from the trace

that do not affect the failure. However, their DOM model is not fully precise and it can generate

infeasible event traces. JaVerT.Click, in contrast, does not compute event traces but provides a

complete DOM model. Additionally, because JaVerT.Click relies on static symbolic execution, it can

have more scalability issues than tools based on dynamic approaches such as Sahand and EvMin.

On the other hand, JaVerT.Click does not give false positive bug reports.

Finally, there are tools which combine static and dynamic analysis techniques to compute event-

handler dependencies, such as SymJS [84], Tochal [3] and EHA [98]. SymJS [84] performs a

dynamic write-read analysis and uses this information to automatically generate tests in the form of

event triggering sequences. However, its representation of the DOM is not entirely consistent with the

standard: e.g., text inputs and radio boxes are represented symbolically either as strings or numbers,

rather than objects. Tochal [3] provides a hybrid DOM-sensitive change impact analysis. Its hybrid

model aims at combining the benefits of static and dynamic analysis. Although the tool seems to be

effective in supporting developers on their tasks, it is not necessarily sound. EHA [98] is a bug-finding

framework and introduces a novel mechanism which, in contrast to whole-program analysis, deals with

partial execution flows triggered by events. EHA is parametric on a generator of event sequences and

a static analyser, and it has been instantiated with a manual event generation and the SAFE analyser.

It also does not provide soundness guarantees.

While the goals of these tools are different from ours, there is room for comparison. In particular,

some of them do not follow the DOM standard (e.g., SymJS relies on HTMLUnit [40], which provides

its own implementation of the DOM event dispatch algorithm) and do not provide a proper justifica-

tion with respect to their representation of the DOM. In contrast, we provide trustworthy reference

implementations of DOM Core Level 1 and UI Events that follow the standard line-by-line and pass

all of the applicable official tests. Importantly, these tools do not appear to be able to reason about

events whose type is symbolic. We believe that this is one of the advantages of our work, as it allows

us to write few symbolic tests to achieve code coverage. It also enables us to provide bounded correct-

ness guarantees of library properties, which, to our knowledge, has not been done before, and which

is certainly beyond the reach of either manually- or automatically-generated concrete test suites. On

the other hand, JaVerT.Click does not generate tests automatically - the developers have to write
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symbolic tests themselves.

Formal Semantics of JS Promises. Madsen et al. [87] were the first to propose a formal core

calculus for reasoning about JavaScript (JS) promises. Concretely, they introduce λp, an extension of

the small core JavaScript calculus, λJS [68], with dedicated syntactic constructs for promise creation

and manipulation. The authors give the formal semantics of λp and show how it can be used to

encode promise operations not directly supported in the syntax (e.g. catch and then). The paper

further introduces the concept of promise graphs, a program artifact used by the authors to explain

promise-related errors.

Loring et al. [86] proposed λasync, another extension of λJS that models the semantics of JS Promises,

as well as NodeJS event loops. The authors define a Priority Semantics for λasync which guarantees

that different groups of asynchronous computations have different priorities. For instance, that call-

backs scheduled for the setTimeout and setInterval have a different priority of I/O callbacks. One

could use different scheduling policies based on the notion of priority. The authors do not guarantee,

however, that the proposed schedulers strictly follow the NodeJS event loop specification.8

Later, Alimadadi et al. [5] extended promise graphs to take into account previously unmodelled ES6

features, such as default reactions, exceptions, race and all. Using the extended promise graphs, the

authors develop PromiseKeeper, a dynamic analysis tool built on top of Jalangi [115] for finding

and explaining promise-related bugs in JS code.

While the λJS -calculus [68] was justified by a desugaring function from ES5 that was tested against

the official Test262 test suite [26], λp and λasync do not come with a desugaring function from ES6

to λp and hence have not been tested against the promises-related part of Test262. In contrast to

λp, which is mainly used to explain buggy behaviours related to the misuse of JS promises, our goal

was to create a trusted reference implementation of JS promises that models their semantics precisely

in order to enable various types of analysis for JS programs that use promises, including symbolic

testing. For this reason, we took great care in justifying its correctness.

Static Analyses for JS Promises and JS async/await. Most of the static analysis tools [12, 36,

9, 66] in this domain perform program transformations to introduce or improve the use of JS Promises

and JS async/await.

Before the introduction of JS Promises in ES6, asynchronous programming in JavaScript was pos-

sible through the use of asynchronous callbacks, which are commonly associated to bad programming

practices, such as callback hell9 and the error-first10 convention. JS Promises are an alternative to

asynchronous callbacks and help to deal both with the callback nesting and error-handling problems.

Brodu et al. [12] and Gallaba et al [36] proposed different mechanisms to facilitate the migration

of asynchronous callbacks to JS Promises. The compiler introduced by [12] transforms nested call-

backs into a sequence of Dues, which are a simplified version of promises. PromiseLand [36] can

automatically detect asynchronous callbacks and refactor them into promises.

After the introduction of the async and await operators in ES8, refactoring tools emerged to sup-

port the handling of IO-related operations. Arteca et al. [9] developed ReSynchronizer, a tool for

8https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
9Callback hell is an anti-pattern which consists of the nesting of complex callbacks.

10According to the error-first convention, the first argument of the callback is reserved for error-handling and the other
parameters for passing data. Although this is a widely known convention, developers may not use it.
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static interprocedural side-effect analysis that increases asynchrony in JavaScript programs, conse-

quently improving their performance. The tool automatically detects IO-related await expressions

that causes oversynchronisation, and refactors such expressions so that the IO-operation is computed

asynchronously as early as possible and the awaiting for that operation happens as late as possible.

Gokhale et al. [66] developed Desynchronizer, a JavaScript refactoring tool that replaces synchronous

calls to IO-related APIs with asynchronous calls through the use of the async and await operators.

Both tools do not provide behaviour preservation guarantees. It is the job of the developer to make

sure that behaviour is preserved after each transformation.

All the aforementioned tools have different goals than JaVerT.Click. While their focus is to per-

form automatic code transformations to increase asynchrony and improve performance, JaVerT.Click

provides a trusted infrastructure for reasoning about client-side JavaScript programs calling multiple

Web APIs. Our infrastructure includes (1) formal models for events and message-passing that capture

the essence of the DOM, JS Promises, JS async/await, WebMessaging and WebWorkers APIs and (2)

trustworthy reference implementations of the targeted APIs that can be used for various purposes.

Formal Semantics and Analysis tools for WebMessaging and WebWorkers. To the best

of our knowledge, there is no previous work that provides a formal semantics for WebMessaging and

WebWorkers yet. Hence, our message-passing semantics is the first formal model for these two Web

APIs. Furthermore, we were not able to find analysis tools targeting the WebWorkers API. There

are a few tools [119, 121], however, to analyse programs calling the WebMessaging API that are

focused on finding security vulnerabilities in onmessage handlers. Since the postMessage function

defined by the WebMessaging API allows for cross-origin communication, onmessage handlers must

check the integrity and confidentiality of messages. In fact, according to the results obtained by

Son and Shmatikov [119], there is a substantial amount of insecure handlers. The authors proposed

the RvScope framework, which is a Chrome extension that collects information about onmessage

handlers via code injection to detect potential vulnerabilities. Later, Steffens and Stock [121] developed

PMForce, a dynamic execution framework based on forced execution [77] and taint tracking that

reports vulnerabilities in onmessage handlers.

In contrast to JaVerT.Click, both these tools run in the browser engine and are not based on

a formal model of the WebMessaging API. Moreover, they do not provide reference implementa-

tions of WebMessaging and do not reason symbolically about web-messaging APIs. As discussed

in §6.5.2, JaVerT.Click does not support the cross-origin communication feature and it is not our

goal to find security violations in onmessage handlers. However, JaVerT.Click comes with reference

implementations of WebMessaging and WebWorkers that can be used for several purposes, such as

fine-grained debugging. Moreover, JaVerT.Click introduces the first symbolic execution engine tar-

geting the WebMessaging and WebWorkers APIs, being able to establish the bounded correctness of

functional properties and find bugs in real-world code.

2.2. Formal Semantics and Program Analyses for JavaScript

In the following, we describe initiatives on the design of rigorous semantics and analysis tools for

JavaScript.
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Formal Semantics for JavaScript. The first formal specification of the JavaScript language was

proposed by Maffeis et al. [89] and closely follows the 3rd version11 of the ECMAScript standard. The

authors defined a small step operational semantics which is not mechanised yet. The authors also

report inconsistencies between existing implementations and the standard.12

Two years later, Guha et al. [68] introduced λJS , a core language that captures essential features

of the 3rd version of the ECMAScript standard, such as prototype inheritance and the instanceof

operator. However, λJS does not support the eval function, which allows to dynamically evaluate

JavaScript code given as a string argument. To validate the semantics, the authors mechanise λJS

using PLT Redex [31]. Politz et al. [99] build a semantics named S5 on top of λJS by including

features of the ES5 strict standard, such as getters and setters, and also the eval function. S5 was

tested against the official Test262 test suite from the ECMAScript standard.

Bodin et al. [11] then introduced JSCert,13 a pretty-big-step semantics of ES5 which was mechanised

in the Coq14 proof assistant. JSCert was the first project that emphasised the importance of having

formal semantics closely following Web standards - what the authors named eyeball closeness. This is a

well accepted methodology to establish trust in reference implementations. In fact, we follow the same

methodology in JaVerT.Click. The authors introduce the term to indicate that JSCert strictly follows

the ES5 standard. The authors also provide JSRef, an executable reference interpreter implemented

in Coq and extracted to OCaml, and give a soundness proof that JSRef programs have the behaviour

specified by JSCert. Additionally, JSRef was tested against the Test262 test suite. In this process,

the authors found bugs in all browser implementations.

JSCert was later extended by Gardner et al. [38] to include the Google’s V8 Array library.15 During

this process, the authors improved the JSRef interpreter and fixed errors related to the interpretation

of the ES5 standard both in JSCert and JSRef. Additionally, a more detailed analysis of the testing

process was provided.

Park et al. [97] developed KJS by formalising the ES5 standard as a small-step semantics in the K

framework [104]. KJS was tested against the test suite of ES5, passing all 2,782 tests. The authors also

assessed the coverage of the official ES5 test suite, finding uncovered semantic rules. The additional

tests uncovered bugs in industrial reference implementations, such as V8 and Safari. One of the

advantages of KJS with respect to other formal semantics is that it also provides a symbolic execution

engine for JavaScript programs.

Finally, Charguéraud et al. [20] proposed JSExplain, which provides a formal semantics for JavaScript

using a tailor-made language to ease readability for developers. JSExplain also comes with an inter-

active debugger that supports the step-by-step execution of the ECMAScript specification given a

JavaScript program. Although JaVerT.Click does not include an interactive debugger, its reference

implementations of the various Web APIs could also be used for debugging purposes.

All these aforementioned approaches do not support formal reasoning about event-driven/message-

passing Web APIs like JaVerT.Click. Our tool is built on top of JaVerT [34, 35], which provides a

formal semantics for JSIL (its intermediate language for JavaScript) and has been thoroughly tested

against the ECMAScript5 official test suite. Additionally, all reference implementations provided by

11https://www.ecma-international.org/wp-content/uploads/ECMA-327_1st_edition_june_2001.pdf
12http://jssec.net
13http://jscert.org
14https://coq.inria.fr/
15https://v8.dev
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JaVerT.Click have been thoroughly tested against their respective official test suites.

Symbolic Execution for JavaScript. As JavaScript Web programs commonly call external APIs/li-

braries, there are a few general-purpose symbolic execution tools for JavaScript. Kudzu [109] was the

first framework to implement symbolic execution for client-side JavaScript code. The tool comes with

an automatic test generator that aims at obtaining high coverage, but it is limited to finding code in-

jection vulnerabilities. Jalangi [114] is a framework that enables the development of dynamic analyses

and combines the record-replay and shadow execution techniques to find errors due to, for instance,

the presence of JS null or undefined. The use of shadow values and shadow execution allows, for

instance, the development of a symbolic execution technique. For scalability reasons, the tool does

not follow the semantics of the language precisely.

Later, at least two other approaches [23, 7] were developed using Jalangi. Dhok et al. [23] added type

awareness to the concolic testing engine of Jalangi in order to reduce the number of generated inputs for

JavaScript programs. More concretely, the approach is inter-procedural and includes a type inference

mechanism. The results showed that only 5% of the original inputs generated by Jalangi were needed.

Amadini et al. [7] applied constraint programming (CP) techniques to Jalangi, obtaining the Aratha

tool. Instead of using standard SMT solvers, Aratha uses the CP solver G-Strings [8], which is

an extension of Gecode.16 Results showed that CP-based approaches can compete with SMT. The

authors do not guarantee correctness or completeness of their JavaScript model with respect to the

ECMAScript standard.

There are also symbolic execution and static analysis tools [88, 122] for JavaScript targeting NodeJS

applications. Madsen et al. [88] developed Radar, a static analysis tool for event-driven NodeJS ap-

plications to detect event-related bugs, such as dead events.17 The tool computes an event-based

call graph, which is a variation of the standard call-graph to handle event-driven flow of control in

JavaScript applications. The authors defined λε, a core calculus for event-driven JavaScript appli-

cations which extends λJS with new operators such as listen and emit in order to respectively

model event handler registration and event dispatch. These event-based operators are also supported

by JaVerT.Click. However, we focus on establishing bounded correctness of functional properties.

Additionally, while Radar was designed for NodeJS applications, JaVerT.Click primarily aimed at

client-side applications.

Sun et al. [122] developed NodeProf on top of Graal.js [145], a dynamic analysis framework for

JavaScript targeting NodeJS applications. One of the key ideas behind NodeProf is the possibility to

activate or deactivate an analysis with zero overhead when no analysis is active. The authors claim

that NodeProf can be up to three orders of magnitude faster than its main competitor, Jalangi.

In contrast to most of these tools, which perform dynamic analysis and do not model the behaviour

of Web APIs, JaVerT.Click relies on static symbolic execution and models the DOM, JS Promises,

JS async/await, WebMessaging and WebWorkers APIs. JaVerT.Click is built on top of JaVerT [34, 35],

which faithfully models the strict version of the ES5 standard. Recently, the JaVerT tool evolved to

Gillian [32, 91] a multi-language platform which was instantiated with JavaScript and C. We intend

to integrate JaVerT.Click and Gillian in future by adding, on top of the framework, our semantics for

event-driven and message-passing Web programs, as well as our reference implementations of all APIs

16Gecode: Generic constraint development environment; http://gecode.org.
17An event is dead when it triggers no handlers.
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supported by JaVerT.Click. This could eventually allow us to instantiate both our event semantics

and message-passing semantics with further programming languages.

Finally, concolic execution has been applied to other languages in addition to JavaScript. For

instance, DART [64, 112] provides concolic execution for C programs. The tool provides a static

analysis component, which can automatically extract an interface for a given program, and a dynamic

analysis component, which aims at automatic test generation using random testing. CUTE and

jCUTE [113] implement concolic execution techniques for C and Java to reduce redundant test cases

and false warnings. JaVerT.Click, in contrast, is a static analysis tool. Static analysis techniques may

not be the best when it comes to scalability, but they cover all possible execution paths. Given the

purpose of JaVerT.Click, we believe that static symbolic execution is the most appropriate technique.

Dynamic Analyses for Detecting Event Races. Although JavaScript event-driven applications

often run in a single thread, they are susceptible to concurrency errors typically found in multithreaded

applications. Client-side JavaScript programs allow for event handlers to run non-deterministically,

potentially leading to event races. In order to detect such event races, one needs to explore multiple

scheduling policies of event handlers. There are a few techniques for identifying event races based on

different types of dynamic analyses [102, 71, 2].

Raychev et al [102] defined the notion of race coverage to avoid reporting races that would never

occur, consequently reducing significantly the number of false positives. The authors proposed a new

dynamic analysis algorithm based on vector clocks [117] that computes races in event-driven programs.

The algorithm was implemented in the Event Racer tool, which exposed 75 harmful races in a public

web sites.

Later, Jensen et al [71] developed a new stateless model checker, R4, which is based in Partial Order

Reduction [6]. The technique allows for eliminating paths during the analysis that lead to the same

state, consequently reducing redundant sequences of event handlers. The authors applied R4 to 32

popular websites, in which it reported 275 warnings about potentially harmful races.

Finally, Adamsen et al [2] developed a technique based on dynamic analysis that combines approxi-

mate [70] and adverse [1] execution. The technique was implemented in a tool, InitRacer, that aims

at three types of event races: form input overwritten, late event handler registration and access before

definition. Empirical results showed that InitRacer could identify 1085 event races on 100 popular

websites.

All the aforementioned tools are solely focussed on detecting event races. JaVerT.Click has a

different goal: finding native JavaScript errors in client-side event-driven applications. However, we

could adapt JaVerT.Click to also detect event races. This would require exploring multiple scheduling

policies of event handlers and threads and is part of our future work.
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3. An Overview of JaVerT 2.0

In order to achieve our main goal, which is the analysis of client-side Web programs calling multiple

event-driven APIs, we design a new symbolic execution tool, JaVerT.Click. This tool is built on top of

JaVerT 2.0 [35], our verification and testing tool for JavaScript which follows the language semantics

without simplifications. JaVerT 2.0 supports three types of analysis: whole-program symbolic test-

ing [76, 127], verification based on separation logic (SL) [103, 18], and automatic compositional testing

based on bi-abduction [16]. In this thesis, we focus only on the symbolic testing aspect of JaVerT 2.0.

Symbolic testing was the natural first choice. While verification allows us to prove that a program

satisfies a given specification, it requires writing pre- and post-conditions. In the case of JaVerT 2.0,

developers need to be experts in SL in order to write such specifications. This becomes critical with

the use of multiple event-driven APIs such as the DOM [136], as verifying a program would require

writing specifications for the entire DOM structure of a webpage. Bi-abduction [16] is a compositional

program analysis technique which tries to automatically infer a program specification in order to

find bugs. Bi-abduction is less scalable than standard symbolic execution techniques given that it

has to explore a much greater number of possible execution paths. In the following, we explain the

usage of JaVerT 2.0 by giving a motivating example (§3.1), and introduce its symbolic execution

mechanism (§3.2), which is relevant for symbolic testing testing purposes. This chapter provides an

overview of JaVerT 2.0. More details can be found in [35].

3.1. Using JaVerT 2.0 for Symbolic Testing

JaVerT 2.0 is a tool for JavaScript developers, designed to assist them in the testing and verification

of their programs. It is not meant for analysing JavaScript code in the wild. Although JaVerT 2.0

supports three kinds of analysis, we demonstrate only how JaVerT 2.0 can be used by developers for

whole-program symbolic testing which is the type of analysis supported by JaVerT.Click.

In this section, we illustrate the usage of JaVerT 2.0 using the example of an expression evaluator,

given in Figure 3.1 (left). It contains three functions: evalExpr, for evaluating a given expression

under a given store; evalUnop, for applying a given unary operator to a given value; and evalBinop,

for applying a given binary operator to two given values. Expressions are evaluated with respect

to a store, which is assumed to be a key-value map exposing a method get for recovering the value

associated with a given key (we re-use the key-value map implementation of [108]). For brevity, we

omit the store initialisation in the symbolic tests of Fig. 3.1 (right). Expressions are represented in

memory as AST objects. For instance, the expression x + 1 corresponds to the object:

{ type: "binop", op: "+", left: { type: "var", name: "x"}, right: { type: "lit", val: 1} }.
Developers commonly write unit tests to check that, given some concrete inputs, their code produces

the desired outputs. With JaVerT 2.0, developers can write unit tests with symbolic inputs and

outputs, and use simple assertions to describe the properties that the outputs must satisfy. JaVerT 2.0
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1 function evalExpr (store, e) {
2 if (typeof e !== "object") throw new Error ("E:Type");
3 switch (e.type) {
4 case "lit" : return e.val
5 case "var" : return store.get(e.name)
6 case "unop" :
7 var arg_v = evalExpr(store, e.arg);
8 return evalUnop (e.op, arg_v)
9 case "binop" :

10 var left_v = evalExpr(store, e.left);
11 var right_v = evalExpr(store, e.right);
12 return evalBinop (e.op, left_v, right_v)
13 default : throw new Error("Expr") }
14 }
15

16 function evalUnop (op, v) {
17 switch (op) {
18 case "-" : return -v
19 case "not" : return !v
20 case "abs" : return v < 0 ? -v : v
21 default : throw new Error ("UnOp") }
22 }
23

24 function evalBinop (op, v1, v2) {
25 switch (op) {
26 case "+" : return v1 + v2
27 case "-" : return v1 - v2
28 case "or" : return v1 || v2
29 case "and" : return v1 && v2
30 default : throw new Error("BinOp") }
31 }

Symbolic test 1:
1 var x = symb();
2 assume(typeof x !== "object");
3 try { evalExpr(store, x) } catch (e) {
4 assert(e.message === "E:Type")
5 }

Symbolic test 2:
1 var x = symb();
2 assume(typeof x === "object");
3 try { evalExpr(store, x) } catch (e) {
4 var msg = e.message;
5 assert (msg === "Expr" || msg === "UnOp" ||
6 msg === "BinOp");
7 }

Symbolic test 3:
1 var n = symb_number(), op = symb_string();
2 var lit = { type: "lit", val: n };
3 var e = { type: "unop", op: op; arg: lit };
4 assume (op !== "not");
5 try {
6 var ret = evalExpr(store, e);
7 var abs_ret = n < 0 ? -n : n;
8 assert (((op === "-") && (ret === -n)) ||
9 ((op === "abs") && (ret === abs_ret)));

10 } catch (e) {
11 assert(e.message === "UnOp")
12 }

Figure 3.1.: Expression Evaluator implementation (left); symbolic tests (right)

allows users to symbolically execute such tests, providing concrete counter models in case of failure

which the developer can potentially use to correct the error.

Symbolic tests are more effective than concrete ones, as one single symbolic test often covers a

range of program executions, each corresponding to a single concrete unit test. For instance, consider

Symbolic test 1 in Figure 3.1 (right), which tests the behaviour of evalExpr on all non-object inputs.

We would need five concrete tests to perform the same check (corresponding to the cases when the

type of the input is equal to "undefined", "boolean", "number", "string", or "function").

Despite its simplicity, the code of the expression evaluator exposes a common JavaScript bug. To

understand the bug, consider Symbolic test 2, which states that, when given an input of type

"object", evalExpr does not throw a JavaScript native error. This is tested in lines 7-9, by asserting

that if an error is thrown, it must correspond to one of the errors thrown by the code itself. However,

running JaVerT 2.0 on this test returns a concrete counter-example for the input: e = null. Indeed,

if we run evalExpr with e set to null, the JavaScript semantics throws a type error. This happens

because, in JavaScript, typeof null evaluates to "object", meaning that the execution reaches line 3

of evalExpr, causing the program to throw an error when trying to access the property "type" of null.

Finally, Symbolic test 3 covers three different behaviours of the evalExpr and evalUnop functions

at the same time, effectively testing all possible behaviours of evalUnop on numeric inputs.

3.2. JSIL Symbolic Execution

We give an overview of the symbolic execution engine at the core JaVerT 2.0. We first give the syntax

of JSIL and comment on its expressivity (§3.2.1) and then describe its symbolic semantics (3.2.2).
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3.2.1. JSIL Syntax

JSIL is a simple goto language with top-level procedures and commands that operate on object heaps.

Importantly, JSIL retains the dynamic features of JavaScript: extensible objects and dynamic code

evaluation. In JavaScript, dynamic code evaluation is possible with the use of the eval function, which

allows to dynamically execute commands given as a string, including object creation and function

calls. The JSIL language allows for extensible objects and provides a mechanism for dynamic code

evaluation, detailed shortly. In Figure 3.2, we give the JSIL syntax.

λ ∈ Lit ::= n ∈ N | b ∈ B | s ∈ S | undefined | null | e ∈ Exp ::= λ | x ∈ X | x̂ ∈ X̂ | 	 e | e ⊕ e

empty | l ∈ L | τ ∈ T | f ∈ Fid | λ | {λ}
bc ∈ Bcmd ::= skip | x := e | x := new (e) | x := [e, e] | [e, e] := e | delete (e, e) | x := hasProp (e, e) |

x := getProps (e) | x := metaData (e)

c ∈ Cmd ::= bc | goto i | goto [e] i, j | assume (e) | assert (e) | x := arguments | return | throw |
x := e(e) with j | x := extern e(e) with j | x := apply (e, e) with j

proc ∈ Proc ::= proc f (x){c} p ∈ P ::= {proc}

Figure 3.2.: JSIL Syntax

JSIL literals, λ ∈ Lit, include numbers, booleans, strings, the special values undefined, null, and empty,

object locations, types, procedure identifiers, and lists and sets of literals. JSIL expressions, e ∈ Exp,
include literals, program variables x, symbolic variables x̂, and various unary and binary operators.

JSIL basic commands, bc ∈ Bcmd, are used for the manipulation of extensible objects and have

no impact on the control flow of the program. They include: the skip command; variable assign-

ment; object creation; property access, assignment, deletion, membership, and collection; and object

metadata collection.

JSIL commands, c ∈ Cmd, include basic commands, conditional and unconditional gotos, proce-

dure calls, commands for assuming and asserting facts about the execution of the program, and new

commands for argument collection, external procedure calls, procedure application, and procedure

termination. The unconditional goto goto i jumps to the i-th command of the active procedure; the

conditional goto goto [e] i, j jumps to the i-th command if e evaluates to true, and to the j-th other-

wise. The procedure call x := e(e) with j is dynamic: the procedure identifier is obtained by evaluating

the JSIL expression e. If the procedure terminates normally, control proceeds to the next command,

and to the j-th command otherwise. External procedure calls can step outside the execution of a

JSIL program, meaning that the procedures are implemented at the level of the analysis, where we

have access to the JavaScript memory, instead of in JSIL. Such external calls are used to model the

JavaScript eval function. It then becomes simpler to parse and evaluate the program given as string

to the eval function at the analysis level. Procedure application receives the procedure identifier

and a JSIL list containing the procedure parameters. The argument collection command returns the

values of the arguments with which the current procedure was called.

A JSIL procedure, proc ∈ Proc, is of the form proc f (x){c}, where f is its identifier, x are its formal

parameters, and its body c is a sequence of JSIL commands. Procedures can return either normally

or in error mode, using the return and throw commands, respectively. A JSIL program p ∈ P is a set

of top-level procedures, and its entry point is always the special procedure main.

39



proc evalUnop(op, v){
goto [op = "-"] min r1;

min: ret := -v;
return;

r1: goto [op = "not"] not r2;
not: ret := not v;

return;
r2: goto [op = "abs"] abs r3;
abs: ret := abs(v);

return;
r3: ret := "Error" ("UnOp");

throw
};

proc evalBinop(op, v1, v2){
goto [op = "+"] plu r1;

plu: ret := v1 + v2;
return;

r1: goto [op = "-"] min r2;
min: ret := v1 - v2;

return;
r2: goto [op = "or"] orl r3;
orl: ret := v1 or v2;

return;
r3: goto [op = "and"] anl r4;
anl: ret := v1 and v2;

return;
r4: ret := "Error" ("BinOp");

throw
};

Figure 3.3.: Fragment of Expression Evaluator implemented in JSIL

JSIL as an IR for JavaScript Analysis. JSIL has all of the constructs needed to precisely capture

and reason about the entire ES5 standard [27]. In particular: (1) the dynamic features of JavaScript

(extensible objects, dynamic property access, and dynamic procedure calls1) are native in JSIL; (2) the

intricate control flow patterns of JavaScript statements (e.g. switch and try−catch) can be expressed

in the JSIL goto-based control flow; (3) the eval statement and the Function constructor, which

require parsing of JavaScript code, are modelled via external procedure calls; (4) the arguments object

is modelled with the help of the argument collection command; and (5) the internal properties of

JavaScript objects are modelled using object metadata, streamlining the performance of JaVerT 2.0

on compiled JavaScript code.

Example. We illustrate the usage of the JSIL language in Figure 3.3, using the example of the

expression evaluator. To this end, we give a stylised JSIL compilation of the evalUnop (left) and

evalBinop (right) functions, associating each function with its corresponding JSIL procedure. In

JSIL, the control flow is modelled using gotos; hence, the switch statements present in the origi-

nal functions are mapped into a sequence of conditional gotos. For instance, given the command

goto [op = "-"] min r1, the execution jumps to the label min if op is equal to "-", and to the label r1

otherwise. We use the JSIL arithmetic and logical operators to implement operations supported by

the evalUnop and evalBinop. Note that a JSIL procedure must either finish executing successfully (via

the return command) or with an error (via the throw command). In both cases, the value that is

returned is the value of the dedicated variable ret. Note that, in the error case, the returned value is

the error object created with the JSIL Error constructor (via “Error”(...)).

3.2.2. JSIL Semantics

Instead of defining two separate semantics for JSIL, a concrete one for concrete execution and a

symbolic one for symbolic execution, we define a single general semantics that can be instantiated

with either a concrete or a symbolic state signature. This general semantics is the bedrock for both

the formal development and the implementation of JaVerT 2.0, avoiding redundancy in both the

formalism and the implementation.

The general JSIL semantics describes the behaviour of JSIL commands in terms of a general state

1In JavaScript, one can call a function using obj[f](), where f is resolved dynamically.
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Property Access
cmd(i) = x := [e1, e2]

GC(Σ, e1, e2) ; Σ′, (−,−, v) Σ′′ = SS (Σ′, x, v)

〈Σ, cs, i〉 ; 〈Σ′′, cs, i+1〉

Assume
cmd(i) = assume (e)

Σ′ = Asm(Σ, e)

〈Σ, cs, i〉 ; 〈Σ′, cs, i+1〉

Cond. Goto - True
cmd(i) = goto [e] j, k

Σ′ = Asm(Σ, e)

〈Σ, cs, i〉 ; 〈Σ′, cs, j〉

Figure 3.4.: General semantics of commands, non-failing transitions (excerpt): 〈Σ, cs, i〉 ; 〈Σ′, cs′, j〉

signature: that is, a set of state functions, reminiscent of local actions in SL [24, 18], which capture

the fundamental ways in which JSIL programs interact with JSIL states; for example, evaluating an

expression or retrieving the value of an object property. This general state signature can then be

instantiated to obtain a specific JSIL semantics. In JaVerT 2.0, we provide two state instantiations:

concrete and symbolic, respectively obtaining the concrete and symbolic semantics of JSIL.

We require general states to contain a variable store Sto : X ⇀ V, mapping program variables x ∈ X
to general values. Stores have two functions associated with them: a store getter (GetStore), GS (Σ),

which returns the store associated with the state Σ; and a store setter (SetStore), SS (Σ, x, v), which

returns the state obtained from Σ by updating the value of x to v in the store of Σ.

In Figure 3.4, we show a simplified version of three rules of the general JSIL semantics: Prop-

erty Access, Assume and Cond Goto - True. The rules of the JSIL semantics have the form

〈Σ, cs, i〉 ; 〈Σ′, cs′, j〉, where: (1) Σ and Σ′ denote the current and the next JSIL states; (2) cs

and cs′ denote the current and the next JSIL call stacks2; and (3) i and j denote the indexes of the

current and the next commands to be executed.

Below, we describe the rules given in Figure 3.4:

[Property Access] If the current JSIL command is a property access, x := [e1, e2], the general seman-

tics uses the GetCell state function, GC, to obtain the value, v, associated with the property

denoted by e2 in the object at the location denoted by e1. Then, the semantics uses the Set-

Store state function, SS , to set the variable x in the current store to the value v, obtaining

the new state Σ′′. Finally, the control is transferred to the next command at index i+ 1.

[Assume] If the current JSIL command is an assume, assume (e), the general semantics uses the

Assume state function, Asm, to extend the current state with the assumption being provided,

obtaining the new state Σ′. Note that this state function is not total, meaning that it produces no

result when the expression being assumed is inconsistent with the current state Σ. Analogously

to the previous rule, the next index is simply set to i+ 1.

[Cond Goto - True] If the current JSIL command is a conditional goto, goto [e] j, k, the general

semantics performs two transitions, one for the true case and one for the false case. In true

case, the semantics uses the Assume state function, Asm, to extend the current state with the

information that the conditional guard of the goto, e, is true. Accordingly, the index of the next

command to be executed is set to j, corresponding to the then-case of the conditional goto.

2Intuitively, call stacks are used to keep track of the stores of the functions whose execution has not yet terminated, so
that those stores can be reinstated once the control is transferred back to their respective functions.
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GetCell - Found
σ = (s, h) l = Evc(s, e1) p = Evc(s, e2)

h = − ] (l, p) 7→ v r = (l, p, v)

GC(σ, e1, e2) ;c σ, r

SetStore
σ = (s, h) s′ = s[x 7→ v]

σ′ = (s′, h)

SSc(σ, x, v) , σ′

Assumption
Evc(GS (σ), e) = true

Asmc(σ, e) , σ

Figure 3.5.: Concrete JSIL State Rules

Note that our general semantics is non-deterministic, as it allows multiple transitions to take place.

For instance, in the Property Access rule, the GetCell state function can produce several out-

comes, especially in the presence of symbolic states in which there is an excessive amount of branching.

In the following, we detail the concrete and symbolic instantiations of our general JSIL semantics.

JSIL Concrete Semantics. The concrete semantics allows us to run JSIL programs concretely.

This is essential for ensuring that the general semantics captures the intended behaviour of the lan-

guage. Furthermore, it allows us to test our infrastructure against the ECMAScript official test suite,

Test262 [26], by first compiling it to JSIL and then executing it concretely. In this way, we establish

trust in the compilation.

The concrete JSIL state signature defines both the structure of concrete JSIL states as well as the

functions required to interact with those states. JSIL concrete states are of the form (s, h), consisting

of a variable store, s ∈ Sto : X ⇀ V, mapping program variables to their respective concrete values,

which are JSIL literals, and an object heap, h ∈ H : (L×V) ⇀ V, mapping pairs of object locations and

property names to their corresponding values. Figure 3.5 gives the concrete state rules for GetCell,

SetStore, and Assumption, used by the general semantic rules shown in Figure 3.4. We describe

each of these rules below.

[GetCell - Found] Using the concrete expression evaluation function, Evc, the concrete GetCell

function, GC(σ, e1, e2), evaluates the expressions e1 and e2, obtaining the location l and property

p. Then, it looks up the the value of the property p in the object pointed to by l in the heap h,

obtaining the value v. We use the ] operator to split the heap into two disjoint parts. Finally, the

semantics returns a pair consisting of the unchanged concrete state, σ, and a triple, (l, p, v), with

the computed location, property, and value. We omit the GetCell - Not Found transition

for brevity.

[SetStore] The concrete SetStore function, SSc(σ, x, v), simply updates the store of the current

state σ by setting the value of the variable x to v, thus obtaining a new state σ′.

[Assumption] The concrete Assume function, Asmc(σ, e), simply checks whether its argument e

evaluates to true. If it does, it returns the current state σ unchanged. If it does not, no

transition is provided.

JSIL Symbolic Semantics. The symbolic semantics enables the symbolic execution of JSIL pro-

grams. We use the symbolic execution engine of JaVerT 2.0, for instance, for symbolic testing purposes.

Symbolic testing allows us to establish the bounded correctness of important functional properties and

42



GetCell - Found
σ̂ = (ŝ, ĥ, π)

l̂, p̂ = Evs(ŝ, e1), Evs(ŝ, e2)

π ` p̂ = p̂′ ĥ(l̂, p̂′) = v̂

GC(σ̂, e1, e2) ;s (ŝ, ĥ, π), (l̂, p̂′, v̂)

SetStore
σ̂ = (ŝ, ĥ, π)
ŝ′ = ŝ[x̂ 7→ v̂]

σ̂′ = (ŝ′, ĥ, π)

SSs(σ̂, x̂, v̂) , σ̂′

Assumption
σ̂ = (ŝ, ĥ, π)

b̂ = Evs(ŝ, e)

Sats(σ̂, π ∧ b̂)
Asms(σ̂, e) = (ŝ, ĥ, π ∧ b̂)

Figure 3.6.: Symbolic JSIL State Rules

find bugs. A symbolic test contains symbolic inputs instead of concrete ones, and include assertions

to describe functional properties that must be satisfied by the program output.

We instantiate general values to symbolic values, v̂ ∈ V̂ , v | x̂ | 	 v̂ | v̂ ⊕ v̂, and write n̂, b̂,

ŝtr, l̂, and p̂, to denote, respectively, symbolic numbers, booleans, strings, locations, and property

names. A symbolic JSIL state, σ̂ = (ŝ, ĥ, π), consists of a symbolic store ŝ, symbolic heap ĥ, and a

path condition π. Symbolic stores are obtained from their concrete counterparts by allowing symbolic

values in place of concrete ones. Symbolic heaps, ĥ ∈ Ĥ : ((L ] L̂) × V̂) ⇀ V̂, map pairs of object

locations (both symbolic and concrete) and symbolic values to symbolic values. Path conditions [10]

bookkeep the constraints on the symbolic variables that led the execution to the current symbolic state.

Figure 3.6 gives the concrete state rules for GetCell, SetStore, and Assumption, used by the

general semantic rules shown in Figure 3.4. We describe each of these rules in the following.

[GetCell - Found] Using the symbolic expression evaluation function, Evs, the symbolic GetCell

function, GC(σ̂, e1, e2), evaluates the expressions e1 and e2, obtaining the symbolic location l̂

and symbolic property p̂. Then, it tries to find the property p̂ in the object pointed by l̂ in the

heap ĥ. The property is found if we can prove that it is equal to one of the existing properties p̂′,

which has value v̂. In that case, the function returns a pair containing the unchanged symbolic

state, σ̂, and a triple, (l̂, p̂′, v̂), containing the computed location, property and value. We omit

the GetCell - Not Found rule for brevity.

[SetStore] The symbolic SetStore function, SSs(σ̂, x̂, v̂), is analogous to its concrete counterpart.

It simply updates the store of the current symbolic state σ̂ by setting the value of the variable

x̂ to v̂, obtaining a new state σ̂′.

[Assumption] The symbolic Assume function, Asms(σ̂, e), first evaluates the expression e, obtaining

a symbolic boolean b̂. Then, the function conjuncts b̂ with the current path condition π, and, if

the obtained formula is satisfiable, sets it as the path condition of the resulting symbolic state.

Otherwise, no transition is provided. Finally, the function returns the new state with the store

and heap unchanged and the updated path condition.

The symbolic semantics of JaVerT 2.0 comes with two correctness guarantees:

• Directed Soundness: establishes that each symbolic execution trace over-approximates all con-

crete traces that follow its execution path and whose initial concrete states are over-approximated

by the initial symbolic state;

• Directed Completeness: establishes that each symbolic execution trace has at least one concreti-

sation.
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While directed soundness is essential for bounded-verification, directed completeness is required for

guaranteeing the absence of false positive bug reports. The formal results are given in [33, 35]
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4. Event Semantics

We introduce the Event Semantics, a minimal formalism able to capture the essence of three fun-

damental, complex APIs—DOM Events [139], JS Promises [28], and JS async/await [29]. The DOM

API first became available in 1998 and defines an interface for dynamically updating the content of a

webpage through the use of a scripting language such as JavaScript. The API evolved over the years,

eventually introducing DOM Events to model event-related features such as event handler registra-

tion/deregistration and event dispatch. In the meantime, the JavaScript language, which is regulated

by the ECMAScript standard, became the de facto language of the Web. In order to provide better

asynchronous programming features and avoid the so-called callback hell [37], the ECMAScript stan-

dard introduced JS Promises in its 6th version. Later, in the 8th version of the ECMAScript standard,

the async and await operators were introduced to the language to enable a higher level abstraction

over JS Promises.

Most Web applications rely on these three event-driven APIs and, due to their high level of complex-

ity, developers introduce bugs caused by the misuse of such APIs [94]. Previous works [100, 83] design

formal models targeting a specific API. Our challenge is to have a unified Event Semantics (onward:

E-semantics) that is rather general and formalises all event-related features from the DOM Events,

JS Promises and JS async/await APIs.

Outline. We start by giving a motivating example (§4.1) and then explain the parametric con-

struction of the E-semantics (§4.2). Next, we introduce our event syntax (§4.3). We then illustrate

how JaVerT.Click performs symbolic analysis of event-based JavaScript programs using the motivating

example (§4.4). We build JaVerT.Click on top of JaVerT 2.0 [35] (cf. Chapter 3), a symbolic analy-

sis tool for JavaScript which supports whole-program symbolic testing, verification and bi-abduction.

JaVerT.Click adds an E-semantics module to JaVerT 2.0 that can be instantiated either with a con-

crete or a symbolic underlying language semantics. However, for clarity purposes, we choose to present

the concrete (§4.5) and the symbolic (§4.6) E-semantics separately. We conclude by providing a cor-

rectness result for the symbolic E-semantics with respect to the concrete E-semantics.

4.1. Motivating Example

We use a simple example to illustrate the complexity of event-based JavaScript programs. Consider

the client of the DOM API shown in Figure 4.1, including the HTML file (left) and its associated

JavaScript code (right). The HTML file illustrates a simple webpage containing a single element to

which we can associate events. The JavaScript code uses DOM functions to dynamically update the

content of the webpage and trigger events. We write a symbolic test as shown in Figure 4.2 for the

program given in Figure 4.1. In order to distinguish JavaScript and DOM features, we highlight DOM

functions in purple.
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Initialisation code. The HTML file contains, in its body, a div1 element with an id attribute

set to “name”. The JavaScript code, which we assume to run after the HTML file is loaded, enables

two possible types of events on the div element: “init” and “print”. The “init” event aims at

assigning a name to the person object and the “print” event aims at printing the assigned name to

the webpage.

More concretely, in lines 1-2, the JS script declares the variables person and elem, and assigns to

elem the DOM div element which has id equal to “name”. This is possible by using the function

getElementById provided by the DOM Document interface. Next, in lines 4-10, the script declares two

functions: hdlr1, which initialises the variable person, and hdlr2, which changes the inner HTML

of elem to display the value of person.name. Consequently, the value of person.name should appear

inside the div element in the webpage. Finally, in lines 12-13, we add hdlr1 and hdlr2 as handlers

for the “init” and “print” events by using the DOM function addEventListener, which is exposed

by the DOM EventTarget interface.

<!DOCTYPE html>

<html>

<body>

<h1>Simple HTML Document</h1>

<div id="name"></div>

</body>

</html>

1 var person;

2 var elem = document.getElementById("name");

3

4 function hdlr1() {

5 person = {name:"Mary"};

6 }

7

8 function hdlr2() {

9 elem.innerHTML = person.name;

10 }

11

12 elem.addEventListener("init", hdlr1);

13 elem.addEventListener("print", hdlr2);

Figure 4.1.: Event-based client of DOM API, including HTML (left) and JavaScript code (right)

Symbolic test. In Figure 4.2, we show a simple symbolic test for the given initialisation code

introduced in Figure 4.1. The goal of the test is to create two symbolic DOM events and dispatch

both events on the element elem. We make use of the symbStr symbolic execution primitive provided

by JaVerT.Click to create symbolic strings. First, in lines 1-2, we create two symbolic strings et1 and

et2 representing event types. Next, in lines 4-5, we create two DOM events by invoking the Event

constructor passing the event types et1 and et2 as arguments. Finally, in lines 7-9, we first obtain

the DOM element elem by using its id “name”, and dispatch the two events e1 and e2 on the DOM

element elem by invoking the dispatchEvent function exposed by the EventTarget DOM interface.

In summary, during the dispatch, the related handlers (here, any handlers for e1 and e2) are executed

one by one. Because the events e1 and e2 are symbolic, there are multiple possible outcomes.

By running the test in JaVerT.Click, we are able to discover a bug in the initialisation code given

in Figure 4.1. Whenever the handler hdlr2 is executed before handler hdlr1, the execution leads to

a native JavaScript type error, as a result of trying to access the property name of the object person

when person is not yet initialised.

JaVerT.Click gives a failing model as output, which contains, for each symbolic variable, sets of

concrete values that cause the test to fail. For this particular test, JaVerT.Click gives the following

1The HTML div tag is useful to create divisions in the webpage.
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1 var et1 = symbStr();

2 var et2 = symbStr();

3

4 var e1 = new Event(et1);

5 var e2 = new Event(et2);

6

7 var elem = document.getElementById("name");

8 elem.dispatchEvent(e1);

9 elem.dispatchEvent(e2);

Figure 4.2.: Symbolic test for DOM client given in Figure 4.1.

failing model:

{(et1 = “print”, et2 = #et2), (#et1 6∈ {“init”, “print”}, et2 = “print”)}.

This means that, for these two cases, the test fails due to an unhandled JavaScript type error. We

use #et2 to denote any concrete string value. The dispatch of an event of type “print” without a

previous dispatch of an event of type “init” causes the issue, as handler hdlr2 is triggered before

handler hdlr1. The use of a symbolic execution engine such as JaVerT.Click helps to find such bug

that can go unnoticed during the development of real-world Web applications. While there are other

symbolic execution tools focused on event-driven applications [84, 123], we are not aware of any that

supports multiple event-based APIs and allows to represent events symbolically. JaVerT.Click is the

first to provide built-in support for multiple event-based APIs and to allow for the use of symbolic

events.

4.2. Parametric Construction

We define the E-semantics parametrically, as a layer on top of the semantics of a given underlying

language (L), thus focussing only on event-related details and filtering out any clutter potentially

introduced by the L-semantics. In JaVerT.Click, we instantiate the E-semantics with JSIL (JaVerT

intermediate language for JavaScript). The E-semantics interacts with the L-semantics by exposing

a set of event primitives, which correspond to the fundamental operations underpinning the targeted

APIs, such as event handler registration and asynchronous event dispatch. Our parametric construc-

tion also makes the E-semantics easily extensible with support for further event-based APIs. In

Figure 4.3, we show how our E-semantics is parametric on the underlying language both in terms of

configurations (left) and transitions (right).

Parametric Configurations. Every configuration of the E-semantics (onward: E-configuration)

contains a configuration of the underlying language. This means that an E-configuration is parametric

on an L-configuration. Note that the language configuration can be either concrete (lc) or symbolic

(l̂c). Hence, the E-semantics is generic in the sense that it can be instantiated with either a concrete or

a symbolic underlying language semantics, respectively leading to a concrete and symbolic E-semantics.

Parametric Transitions. A transition of the E-semantics has the form εc ;E εc′, where εc

and εc′ are E-configurations. Transitions of the E-semantics are built on top of transitions of the
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underlying language semantics, and they can be either concrete or symbolic. Hence, if the L-semantics

makes a step, the E-semantics follows accordingly. We use lc ;p
L lc′ to denote a transition of the

language semantics. Depending on the primitive p returned by the L-semantics, the E-semantics

knows whether or not the currently processing command is event-related. If so, the E-semantics takes

action accordingly. Otherwise, the E-semantics simply updates its L-configuration lc to lc′.

Figure 4.3.: The parametric construction of the E-semantics

4.3. Event Syntax

The event syntax is given in Figure 4.4. We highlight in blue the elements that are provided by the

E-semantics. The E-semantics inherits its values, v ∈ V, from the corresponding L-semantics: for

example, if the L-semantics is concrete, these values will be concrete; analogously, if it is symbolic,

they will be symbolic. In the meta-theory, we assume that the L-values contain: a distinguished set of

unique event types, e ∈ E , intuitively corresponding to, for example, “init” or “print” in the DOM;

and a distinguished set of unique function identifiers, f ∈ F . In the implementation, we represent

both as strings. For simplicity, we onward refer to event types as events. Our modelling of events

is guided by the DOM, in the sense that each event is associated with a list of handlers: that is,

the functions that should be executed when that event is triggered; this information is kept by the

E-semantics in handler registers, h ∈ H.

The E-semantics, expectedly, needs to be aware of the configurations of the underlying language

(L-configurations), lc ∈ LC, but sees them as a black box and interacts with them only through

an interface, presented shortly. To model correctly the synchronous dispatch of the DOM and the

asynchronous wait of the JS await, we also require boolean predicates on L-configurations, ρ ∈ P.

The L-semantics communicates with the E-semantics via event primitives, p ∈ P. In particular, · is
used to indicate that the current command is not event-related; addHdlr and remHdlr, respectively,

allow us to add and remove handlers for a given event, whereas sDispatch and aDispatch, respec-

tively, allow us to dispatch events either synchronously (corresponding to the DOM programmatic

dispatch) or asynchronously (corresponding to a user event, such as clicking a button on a Web page).

These four primitives are used in the modelling of DOM Events (cf. §6.2). Additionally, we support

asynchronous computation scheduling via the schedule primitive, required for JS Promises (cf. §6.3),

and an asynchronous wait via the await primitive, required for JS await (cf. §6.4). Note that by

defining a set of only 6 primitives we are able to model event-based features from three different APIs:
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Values Event Types Function Ids L-Confs Conf. Preds
v ∈ V e ∈ E ⊂ V f ∈ F ⊂ V lc ∈ LC ρ ∈ P : LC → B

Event Primitives
p ∈ P := · | addHdlr〈e, f〉 | remHdlr〈e, f〉 | sDispatch〈e, vs〉 | aDispatch〈e, vs〉 | schedule〈f, vs〉 | await〈v, ρ〉
Handler Registers Continuations Continuation Queues E-Configurations

h ∈ H : E ⇀ F κ ∈ K := (f, vs) | (c, ρ) q ∈ Q : K εc ∈ EC : LC ×H ×Q

Figure 4.4.: Events Syntax

DOM Events, JS Promises and JS async/await.

All three targeted APIs work with an underlying queue of computations: for the DOM, this queue

is implicitly formed by event dispatch; for JavaScript promises and async/await, this queue is the

job queue of JavaScript. We model these queues as a unified continuation queue, q ∈ Q, which is,

essentially, a list of continuations, κ ∈ K, which describe how the execution of the E-semantics is to

proceed. We consider two types of continuations: handler-continuations and yield-continuations. A

handler-continuation is a pair, (f, vs), essentially stating that the handler f is be to be executed with

arguments vs. When an event is dispatched via sDispatch or aDispatch, the respective handler-

continuations are put in the handler queue. A yield-continuation is a pair, (lc, ρ), stating that the

L-configuration c has been suspended and can be re-activated once the predicate ρ holds.

Finally, the E-semantics configurations, (E-configurations), εc ∈ EC, consist of: an L-configuration;

a handler register; and a continuation queue.

Using the E-semantics in JavaScript. Our JS reference implementations of the event-related

APIs interact with the E-semantics via JS wrapper functions, one per event primitive; we denote, for

example, the wrapper function of the addHdlr primitive by addHdlr, and the others analogously.

Calls to these wrapper functions are intercepted by the underlying JavaScript implementation, which

is then required to construct the corresponding primitive and pass it on to the E-semantics. In

JaVerT.Click, these wrapper functions resolve to JSIL functions with dedicated identifiers, whose

calls are then intercepted appropriately by the JSIL semantics.

4.4. Symbolic Analysis of Motivating Example

In Figure 4.5, we show a subset of the E-configurations computed during the symbolic execution of

our motivating example introduced in §4.1. We distinguish initialisation code (see Figure 4.1) from

symbolic testing code (see Figure 4.2). The initial E-configuration contains: an L-configuration lc, an

empty handler register h and an empty continuation queue q. We omit the details of the L-configuration

and focus our discussion on the changes to the handler register and continuation queue.

We start by analysing the initialisation code given in Figure 4.1. Internally, our implementation of

the DOM function addEventListener calls the addHdlr wrapper function, which in turn generates

the addHdlr event primitive of the E-semantics. The generation of the addHdlr primitive during the

addition of the handlers hdlr1 and hdlr2 via addEventListener (step 1 in Figure 4.5) causes the

handler register h to be updated with two new entries: event “init” is mapped to a list of handlers

containing only hdlr1 and the event “print” is mapped to a list of handlers containing only hdlr2.
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Figure 4.5.: E-configurations for motivating example.

Finally, we run the symbolic test, which dispatches the two events e1 and e2 using the DOM function

dispatchEvent. Internally, our implementation of the dispatchEvent function calls the sDispatch

wrapper function, which generates the sDispatch event primitive. The reason for using sDispatch

instead of aDispatch is that the DOM programatic dispatch (enabled via dispatchEvent) is always

synchronous. No changes are made to the handler register during an event dispatch. The continuation

queue, however, is updated with the respective handlers associated to the events e1 and e2. At this

stage, the execution of JaVerT.Click branches and there are four possible cases which are listed below:

Step 2: et1 = “init” and et2 = “print”. The handler hdlr1 is executed before hdlr2, meaning

that the execution terminates successfully and the string “Mary” becomes visible on the webpage.

Step 3: et1 = “print”. The handler hdlr2 is executed first leading to a native JavaScript type error,

as hdlr2 attempts to read the name property of person, which is not yet initialised.

Step 4: et1 6∈ {“init”, “print” } and et2 = “print”. Same output as above; the variable person

has not been initialised during the execution of the handler hdlr2, leading to a type error.

Step 5: other. Handlers hdlr1 and hdlr2 are not triggered, thus the execution terminates successfully

but with no visible changes on the webpage.

4.5. Concrete E-semantics

A concrete E-semantics is built on top of a concrete L-semantics and requires the L-semantics to

provide an interface in order to update L-configurations. Besides calling the functions provided by

the L-semantics interface, the concrete rules of the E-semantics also call auxiliary functions to handle

event-related operations, such as event handler registration and event dispatch. In the following, we
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introduce first the L-semantics interface (§4.5.1) and then the E-semantics auxiliary functions (§4.5.2).

Finally, we present the rules of the concrete E-semantics (§4.5.3).

4.5.1. Concrete L-semantics Interface

Each configuration of the E-semantics depends on a configuration of the L-semantics, which is required

to have: a store component, describing the variable store of L; and a memory component, describing the

memory on which L-programs operates; and a control flow component, describing how the L-execution

is to proceed. For example, a concrete JSIL configuration, 〈s, h, cs, i〉, consists of: a variable store s

(the store component); a heap h (the memory component); and a call stack cs for capturing nested

function calls and the index of the next command to be executed, i (the control flow component). The

L-semantics also needs to provide an interface the following functions: initialConf, mergeConfs, final,

suspend and splitReturn.

1. initialConf(lc, (f, vs)) = lc′: creates a new configuration lc′ which has the memory of the given

configuration lc and the control flow/store components required for starting the execution of the

handler f with arguments vs. The E-semantics uses this function to set up a new configuration

to execute an event handler.

2. mergeConfs(lc, lc′) = lc′′: merges two configurations lc and lc′ into a new configuration lc′′, which

has the memory component of lc and the control flow/store components of lc′. In particular, in

JSIL, given lc = 〈s, h, cs, i〉 and lc′ = 〈s′, h′, cs′, i′〉, the call to mergeConfs(lc, lc′) would result in

〈s′, h, cs′, i′〉. The E-semantics uses this function to merge the configuration resulting from the

synchronous execution of event handlers (lc) with the caller configuration (lc′).

3. final(lc) = true, if lc cannot be executed further; and = false otherwise. The E-semantics uses

this function to determine if the current computation is complete in order to process the next

continuation in the continuation queue.

4. suspend(lc) = lc′: suspends the given configuration lc by marking it as final, generating the con-

figuration lc′. The E-semantics uses this function to suspend the current language configuration

before handling a synchronous event dispatch.

5. splitReturn(lc, v) = (lcr, lca): splits the current configuration lc into lcr and lca. The configu-

ration lcr is obtained by pausing the execution of the current procedure, and the configuration

lca contains the remainder of the execution of the current procedure. Consider the following

JavaScript code snippet. Function g (left) calls the asynchronous function f (right), which calls

await on an arbitrary value v. Because of the await expression, the execution of function f

needs to pause and function g must continue to execute. To process the call to await, the

E-semantics uses the splitReturn function, which computes: (1) the configuration lcr obtained

from lc by setting up the control flow component as if the function f had returned the value v, so

that function g can continue to execute normally, and (2) the configuration lca is obtained from

lc by setting up the control flow component to only contain the remainder of the execution of f.
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function g(){

...

f()

...

}

async function f(){

...

await v;

... // remainder of f

}

From now on, we use the prefix L. to denote a call to a function provided by the L-semantics

interface.

4.5.2. Auxiliary Functions of the Concrete E-semantics

To improve the modularity and readability of our E-semantics, we implement four event-related op-

erations in auxiliary functions, which are the following:

Add handler: AH(h, e, f) extends the handler register h with the handler f for an event e;

Remove handler: RH(h, e, f) removes the handler f for e from h;

Find handlers: FH(h, e) obtains the handlers associated with e in h; and

Continue with: CWL(lc, κ) updates the L-configuration lc so that the continuation κ can be executed.

We give the formal definitions of these auxiliary functions in Figure 4.6. We write ++ to denote list

concatenation; ho(e) to denote h(e) if it is defined, and the empty list otherwise; and l \ f to denote

the list obtained from the list l by removing all occurrences of f .

Add Handler
AH(h, e, f) ,

h [e 7→ ho(e)++[f ]]

Find Handler
FH(h, e) , ho(e)

CW-Handler-Cont.
CWL(lc, (f, vs)) , L.initialConf(lc, (f, vs))

Remove Handler

RH(h, e, f) ,

{
h [e 7→ h(e) \ f ] , if e ∈ dom(h)

h, otherwise

CW-Yield-Cont.
ρ(lc) = True

CWL(lc, (lc′, ρ)) , L.mergeConfs(lc, lc′)

Figure 4.6.: Concrete E-semantics: Auxiliary Functions

These definitions are straightforward except for CWL, which contains two possible cases; either the

continuation is a handler-continuation or a yield-continuation. When given a handler-continuation,

κ = (f, vs), the CWL function sets up the execution of the handler f with arguments vs by using

the initialConf function of the L-semantics interface. When given a yield-continuation, κ = (lc′, ρ),

the CWL function requires the predicate ρ to hold for the current L-configuration lc, in which case it

merges the two configurations using the mergeConfs(lc, lc′) function of the L-semantics interface.

4.5.3. Concrete E-semantics Rules

We now give the concrete E-semantics transitions in Figure 4.7, which are of the form εc ;εα
E εc′,

where εc and εc′, respectively, are the configurations before and after the computed step, and εα is

an environment action. Environment actions are used to model events triggered by the environment,

such as user UI-events and network events. They have the grammar εα ::= · | fire〈e, vs〉, where ·
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represents no environment action and fire〈e, vs〉 represents the triggering of the event e with values

vs. For clarity, we elide · in the transitions.

Language Transition
lc;·L lc

′

〈lc, h, q〉;E 〈lc′, h, q〉

Add Handler
lc;p

L lc
′ p = addHdlr〈e, f〉

〈lc, h, q〉;E 〈lc′,AH(h, e, f), q〉

Remove Handler
lc;p

L lc
′ p = remHdlr〈e, f〉

〈lc, h, q〉;E 〈lc′,RH(h, e, f), q〉

Synchronous Dispatch
lc;p

L lc
′ p = sDispatch〈e, vs〉 [fi |n0 ] = FH(h, e)

q′ = [(fi, vs) |ni=0] lc′′ = L.suspend(lc′)

〈lc, h, q〉;E 〈lc′′, h, q′ ++[(lc′, (λlc.True))]++q〉

Asynchronous Dispatch
lc;p

L lc
′ p = aDispatch〈e, vs〉

[fi |n0 ] = FH(h, e) q′ = [(fi, vs) |ni=0]

〈lc, h, q〉;E 〈lc′, h, q++q′〉

Schedule
lc;p

L lc
′ p = schedule〈f, vs〉
q′ = q++[(f, vs)]

〈lc, h, q〉;E 〈lc′, h, q′〉

Await
lc;p

L lc
′ p = await〈v, ρ〉

(lcr, ca) = L.splitReturn(lc′, v)

〈lc, h, q〉;E 〈lcr, h, q++[(lca, ρ)]〉

Environment Dispatch
[fi |n0 ] = FH(h, e)
q′ = [(fi, vs) |ni=0]

〈lc, h, q〉;fire〈e,vs〉
E 〈lc, h, q++q′〉

Continuation-Success
L.final(lc) q = κ : q′

〈lc, h, q〉;E 〈CWL(lc, κ), h, q′〉

Continuation-Failure
L.final(lc) q = (lc′, ρ) : q′ ρ(lc) = False

〈lc, h, q〉;E 〈lc, h, q′++[κ]〉

Figure 4.7.: Concrete E-semantics: 〈lc, h, q〉;εα
E 〈lc′, h′, q′〉

[Language Transition] The L-semantics generates the event primitive ·; the E-semantics leaves the

handler register and continuation queue unchanged.

[Add Handler] The L-semantics generates the event primitive addHdlr〈e, f〉; the E-semantics registers

the handler f for the event e in the handler register h.

[Remove Handler] The L-semantics generates the event primitive remHdlr〈e, f〉; the E-semantics de-

registers the handler f for the event e in the handler register h.

[Synchronous Dispatch] When the L-semantics generates the event primitive sDispatch〈e, vs〉, the

E-semantics first creates a handler-continuation for each handler associated with e, together

with a yield continuation, (lc′, (λlc.True)). These continuations are then all added to the front

of the continuation queue, ensuring that the handlers will be executed in order, after which

the current computation will be retaken unconditionally, given [CW-Yield-Cont.]. Lastly, the

E-semantics uses the suspend(lc′) function of the L-semantics, which returns the configuration

that is the same as lc′ but marked as final, to construct a final configuration lc′′, which, given

[Continuation-Success], means that the execution of lc′ will stop and the first handler will be

executed next.

[Asynchronous Dispatch] When the L-semantics generates the event primitive aDispatch〈e, vs〉, the

E-semantics proceeds similarly to [Synchronous Dispatch], but the continuations are added to

the back of the continuation queue rather than to the front, meaning that the handlers will still

be executed in order, but at some point in the future.

[Schedule] The L-semantics generates the event primitive schedule〈f, vs〉; the E-semantics creates a

handler-continuation (f, vs) for the given function with the given arguments and places it at the
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back of the continuation queue.

[Await] When the L-semantics generates the event primitive await〈v, ρ〉, the E-semantics creates the

return configuration, lcr, and the await configuration, lca via the splitReturn function of the

L-semantics interface, which constructs: lcr from lc by setting up the control flow component

as if the currently executing function, f , returned the value v; and lca from lc by setting up the

control flow component to only contain the remainder of the execution of f . It then schedules the

remainder of the computation of the currently executing function to be completed asynchronously

once ρ holds, and continues the current computation as if the currently executing function had

returned the value v.

The remaining three transitions do not rely on the L-semantics. In the [Environment Dispatch]

case, the environment generates the event primitive fire〈e, vs〉, and the E-semantics behaves as for

[Asynchronous Dispatch], except that the resulting L-configuration does not change. If the current

active configuration is final (as checked by the final(lc) function of the L-semantics interface, which

returns true if lc is final, and false otherwise), the E-semantics tries to create a new configuration

for the execution of the continuation at the front of the continuation queue. If this is possible, the

execution proceeds ([Continuation-Success]); otherwise, that continuation is demoted to the back of

the continuation queue ([Continuation-Failure]).

4.6. Symbolic E-semantics

Symbolic execution [10, 14, 15] is a program analysis technique that systematically explores all possible

executions of the given program up to a bound, by executing the program on symbolic values instead

of concrete ones. For each execution path, symbolic execution constructs a first-order quantifier-free

formula, called a path condition, which accumulates the constraints on the symbolic inputs that direct

the execution along that path. Here, we describe a symbolic version of the E-semantics introduced in

§4.5, obtained by lifting the concrete event semantics to the symbolic level, following well-established

approaches [126, 125, 33].

We assume that L has a symbolic semantics with symbolic values, v̂ ∈ V̂, built using symbolic

variables, x̂ ∈ X̂ . The concepts given in Figure 4.4, but for symbolic instead of concrete values,

and are annotated with ˆ to be distinguishable from their concrete counterparts; for example, we

have: symbolic events, ê ∈ Ê ⊂ V̂; symbolic handler registers, ĥ ∈ Ĥ : Ê ⇀ F , mapping symbolic

events to lists of function identifiers; and symbolic E-configurations, ε̂c ∈ ÊC, comprising a symbolic

L-configuration, l̂c ∈ L̂C, a symbolic handler register, and a symbolic continuation queue, q̂ ∈ Q̂, which

is a list of symbolic continuations, κ̂ ∈ K̂. We also assume that every symbolic L-configuration l̂c has

a way to record a boolean symbolic value, π ∈ Π ⊂ V̂, to which we refer as the path condition of l̂c.

The symbolic E-semantics, like the concrete, relies on a L-semantics interface, which is an extended

version of the one defined in §4.5.1 to handle symbolic execution. To allow for the branching during

symbolic execution, we generalise auxiliary functions of the E-semantics. Consequently, they are

defined as relations in the symbolic E-semantics. In the following, we introduce the L-semantics

interface needed by the symbolic E-semantics (§4.6.1) and the auxiliary relations of the symbolic E-

semantics (§4.6.2). Then, we present the rules of our symbolic E-semantics (§4.6.3) and correctness

results (§4.6.4).
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4.6.1. Symbolic L-semantics Interface

In addition to the auxiliary functions provided by the concrete L-semantics, the symbolic E-semantics

relies on the assume and pc() functions in order to compute the path condition during symbolic

execution. We describe the two functions below.

1. assume(l̂c, π) = l̂c
′
, where l̂c

′
is obtained from l̂c by extending its path condition with the

formula π, if such an extension is satisfiable

2. pc(l̂c) = π, where π is the path condition computed in the current branch of configuration l̂c.

We leave the computation of the path condition to the underlying language L, meaning that

pc(〈l̂c, ĥ, q̂〉) = pc(l̂c)

4.6.2. Auxiliary Relations of the Symbolic E-semantics

Analogously to the concrete E-semantics, the symbolic E-semantics relies on auxiliary functions

for modularity and readability purposes. Those auxiliary functions introduced for the concrete E-

semantics that do not operate on handler registers are also applicable for the symbolic E-semantics.

The ones that operate on handler registers (AH, RH, and FH) need to branch as the symbolic E-

semantics assumes that events can be symbolic values. To account for this branching, we pair each

outcome with a constraint describing the conditions under which the outcome is valid. For each

operation, we branch on two possible scenarios: (1) either assuming that the event ê is found on

the domain of the handler register, in which case we generate the constraint ê = ê′ or (2) assuming

that the event ê is not found on the domain of the handler register, in which case we generate the

constraint ê 6∈ dom(ĥ). The auxiliary function Continue With (CW) is defined analogously to its

concrete counterpart, as in the two possible cases of continuations, it simply calls functions provided

by the underlying language interface. In Figure 4.8, we define the auxiliary relations of the symbolic

E-semantics.

Add Handler - Found

ê′ ∈ dom(ĥ) ĥ′ = ĥ
[
ê′ 7→ ĥ(ê′)++[f ]

]
AH(ĥ, ê, f) ; (ĥ′, ê = ê′)

Add Handler - Not Found
ĥ′ = ĥ [ê 7→ [f ]]

AH(ĥ, ê, f) ; (ĥ′, ê 6∈ dom(ĥ))

Remove Handler - Found

ê′ ∈ dom(ĥ) ĥ′ = ĥ
[
ê′ 7→ ĥ(ê′) \ f

]
RH((ĥ, ê, f)) ; ((ĥ′, ê = ê′))

Remove Handler - Not Found
RH(ĥ, ê, f) ; (ĥ, ê 6∈ dom(ĥ))

Find Handler - Found
ê′ ∈ dom(ĥ)

FH(ĥ, ê) ; (ĥ(ê′), ê = ê′)

Find Handler - Not Found
FH(ĥ, ê) ; ([], ê 6∈ dom(ĥ))

CW-Handler-Cont.
CWL(l̂c, (f, v̂s)) , L.initialConf(l̂c, (f, v̂s))

CW-Yield-Cont.
ρ(l̂c) = True

CWL(l̂c, (l̂c
′
, ρ)) , L.mergeConfs(l̂c, l̂c

′
)

Figure 4.8.: Symbolic E-semantics: Auxiliary Relations
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4.6.3. Symbolic E-semantics Rules

An excerpt of the symbolic E-semantics is given in Figure 4.9. We focus on the representative rules that

are different from their concrete counterparts, highlighting the differences in grey . These differences

are introduced by the above-discussed branching of the auxiliary relations. In particular, every time an

auxiliary relation is used, the constraint it generates must be added to the current path condition using

the assume(l̂c, π) function of the L-semantics interface, which returns the symbolic L-configuration

obtained by extending the path condition of l̂c with the formula π if such an extension is satisfiable,

and is undefined otherwise.

Add Handler

l̂c;p̂
L l̂c
′

p̂ = addHdlr〈ê, f〉
AH(ĥ, ê, f) ; (ĥ′, π) l̂c

′′
= L.assume(l̂c

′
, π)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′
, ĥ′, q̂〉

Environment Dispatch

FH(ĥ, ê) ; ([fi |n0 ], π) q̂′ = [(fi, v̂s) |ni=0]

l̂c
′

= L.assume(l̂c, π)

〈l̂c, ĥ, q̂〉;(fire〈ê,v̂s〉
Ê

〈l̂c
′
, ĥ, q̂++q̂′〉

Synchronous Dispatch

l̂c;p̂
L l̂c
′

p̂ = sDispatch〈ê, v̂s〉
FH(ĥ, ê) ; ([fi |n0 ], π) q̂′ = [(fi, v̂s) |ni=0]

l̂c
′′

= L.assume(l̂c
′
, π) l̂c

′′′
= L.suspend(l̂c

′′
)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′′
, ĥ, q̂′ ++[(l̂c

′′
, (λl̂c.True))]++q̂〉

Asynchronous Dispatch

l̂c;p̂
L l̂c
′

p̂ = aDispatch〈ê, v̂s〉
FH(ĥ, ê) ; ([fi |n0 ], π) q̂′ = [(fi, v̂s) |ni=0]

l̂c
′′

= L.assume(l̂c
′
, π)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′
, ĥ, q̂++q̂′〉

Figure 4.9.: Symbolic E-semantics (excerpt): 〈l̂c, ĥ, q̂〉;ε̂α
Ê
〈l̂c
′
, ĥ′, q̂′〉

4.6.4. Correctness

A symbolic E-semantics is correct w.r.t. a concrete E-semantics if it satisfies the following properties:

Directed Soundness, which holds when every symbolic trace over-approximates all concrete traces that

follow its execution path; and Directed Completeness, which holds when every symbolic trace has at

least one valid concretisation. Note that, because the E-semantics relies on an underlying L-semantics,

for the E-semantics to satisfy these two properties, the underlying L-semantics also needs to satisfy

them. If a symbolic E-semantics is correct, we are able to guarantee, for instance, the absence of

false-positive bug-reports: if a bug happens symbolically, then it must also happen concretely.

To establish the correctness of the symbolic E-semantics w.r.t the concrete E-semantics, we first re-

late the corresponding E-configurations using symbolic environments, ε : X̂ ⇀ V, which map symbolic

variables to concrete values, while preserving types. Given a symbolic environment ε, we write Iε(v̂) to

denote the interpretation of v̂ under ε, with the key case being that of symbolic variables: Iε(x̂) = ε(x̂).

We extend Iε to all other concepts defined in Figure 4.4 component-wise, overloading notation, and pro-

vide the corresponding definitions in Figure 4.10. For example, Iε(〈l̂c, ĥ, q̂〉) , 〈Iε(l̂c), Iε(ĥ), Iε(q̂)〉.
We assume that interpretation is preserved by the functions of the L-semantics interface; for example,

that L.final(l̂c)⇔ L.final(Iε(l̂c)).
We define the models of a symbolic L-configuration l̂c under the path condition π as the set of

all concrete configurations obtained via interpretations of l̂c that satisfy π and their accompanying

symbolic environments: Mπ(l̂c) = {(ε, Iε(l̂c)) | Iε(π) = True}. We extend this notion to symbolic

event primitives, environment actions, and E-configurations, overloading notation.
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HR - Empty
Iε(∅) , ∅

HR - Composition
Iε(ĥ1 ] ĥ2) , Iε(ĥ1) ] Iε(ĥ2)

HR - Cell
Iε([ê 7→ f ]) , [Iε(ê) 7→ f ]

CQ - Empty

Iε([]) , []

CQ - Non-Empty

Iε(κ̂ : q̂) , Iε(κ̂) : Iε(q̂)
Cont - Hanlder-Cont
Iε(f, [v̂1, ..., v̂n]) , (f, [Iε(v̂1), ..., Iε(v̂n)])

Cont - Yield-Cont
Iε(l̂c, ρ̂) , (Iε(l̂c), Iε(ρ̂))

Event Primitive - AH/RH

prim ∈ {addHdlr, remHdlr}
Iε(prim〈ê, f〉) , prim〈Iε(ê), f〉

Event Primitive - SD/AD

prim ∈ {sDispatch, aDispatch}
Iε(prim〈ê, v̂s〉) , prim〈Iε(ê), Iε(v̂s)〉

Event Primitive - Schedule
Iε(schedule〈f, [v̂1, ..., v̂n]〉) , schedule〈f, [Iε(v̂1), ..., Iε(v̂n)]〉

Event Primitive - Await
Iε(await〈ρ̂〉) , await〈Iε(ρ̂)〉

EAction - Event
Iε((fire〈ê, [v̂1, ..., v̂n]〉) , (fire〈Iε(ê), [Iε(v̂1), ..., Iε(v̂n)]〉)

EAction - UL
Iε(·) , ·

E-semantics Configuration
Iε(〈l̂c, ĥ, q̂〉) , 〈Iε(l̂c), Iε(ĥ), Iε(q̂)〉

Figure 4.10.: Interpretation of E-semantics Structures

The correctness of the E-semantics relies on the correctness of the L-semantics. The notion of

correctness for the L-semantics is analogous to the E-semantics: as formalised in Definition 4.1, a

given symbolic L-semantics is correct w.r.t. a given concrete L-semantics if every symbolic trace:

(1) over-approximates all concrete traces that follow its execution path and whose initial concrete

L-configuration is over-approximated by the initial symbolic L-configuration (Directed Soundness);

and (2) has at least one concretisation (Directed Completeness).

Definition 4.1 (Correctness Criteria - Symbolic L-Semantics).

L-Directed-Soundness

l̂c;p̂
L l̂c

′
∧ (π ⇒ pc(l̂c

′
))

∧ (ε, lc) ∈Mπ(l̂c) ∧ lc;p
L lc

′

=⇒ (ε, lc′) ∈Mπ(l̂c
′
) ∧ (ε, p) ∈Mπ(p̂)

L-Directed-Completeness

l̂c;p̂
L l̂c

′
∧ (π ⇒ pc(l̂c

′
))

∧ (ε, lc) ∈Mπ(l̂c)

=⇒ ∃p, lc′. lc;p
L lc

′

Because the L-semantics is opaque to the E-semantics, in order to prove the correctness of the E-

semantics, we assume the correctness of the L-semantics. We instantiate our E-semantics with JSIL in

JaVerT.Click. We previously proved [35] a notion correctness which is analogous to the one formalised

by Definition 4.1. Our results guarantee that the symbolic semantics of JSIL is correct with respect

to its concrete counterpart. When instantiating the E-semantics with a different language, one needs

to guarantee that the language semantics satisfy both directed soundness and directed completeness.

Finally, we formalise the correctness of the symbolic E-semantics w.r.t. the concrete E-semantics

in Theorem 4.1, which states that if the symbolic L-semantics is correct, then so is the obtained

E-semantics. To precisely identify the concrete traces that follow the same path as the symbolic

trace, we only pick concretisations of the initial symbolic state that satisfy the final path condition

(π ⇒ pc(ε̂c′)).
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Theorem 4.1 (Correctness of the Symbolic E-semantics).

E-Directed-Soundness

ε̂c;ε̂α
Ê
ε̂c′ ∧ π ⇒ pc(ε̂c′) ∧ (ε, εc) ∈Mπ(ε̂c)

∧ (ε, εα) ∈Mπ(ε̂α) ∧ εc;εα
E εc′

=⇒ (ε, εc′) ∈Mπ(ε̂c′)

E-Directed-Completeness

ε̂c;ε̂α
Ê
ε̂c′ ∧ π ⇒ pc(ε̂c′)

∧ (ε, εc) ∈Mπ(ε̂c)

=⇒ ∃ εα, εc′. εc;εα
E εc′

The proof is done by case analysis on the symbolic rules for the E-semantics, and can be found

integrally in the appendix (§A).
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5. Message-Passing Semantics

The WebWorkers API [133] was added to the HTML5 standard [138] to enable the use of multiple

threads in JavaScript Web programs, which, until their introduction, executed on a single thread. With

this API, client-side JavaScript programs can execute time-consuming operations in the background

without blocking the main browser thread. Web Workers run concurrently, have their own memory,

and communicate via messages through the use of the WebMessaging API [140], which follows the

message-passing concurrency paradigm [19, 65, 69]. Besides introducing their own complex features,

these APIs depend on an underlying event model, as they both make use of DOM Events [139].

To support the symbolic analysis of the WebMessaging and WebWorkers APIs, we design a Message-

passing Semantics which is expressive enough to capture the multi-threaded nature of the WebWorkers

API and, at the same time, the message-passing communication model of the WebMessaging API.

Our message-passing semantics (onward: MP-semantics) formalises the message-passing model of

the WebMessaging and WebWorkers APIs, and, to the best of our knowledge, is the first formal

model targeting the WebMessaging and WebWorkers APIs. There are previous works [119, 121] on

program analyses targeting the WebMessaging API, but they are only focussed on finding security

vulnerabilities and cannot provide bounded correctness guarantees. Furthermore, they do not handle

the multithreaded nature of the WebWorkers API. Our tool is the first to analyse Web programs

calling WebWorkers. Additionally, JaVerT.Click, comes with a symbolic execution engine that allows

us to prove the bounded correctness of functional properties and find bugs in JavaScript programs

calling multiple Web APIs, including the DOM [136], WebMessaging and WebWorkers.

Outline. We first provide a motivating example making use of the WebMessaging and WebWork-

ers APIs (§5.1). As the message-passing model of these two APIs rely on DOM Events, we build

our MP-semantics parametrically on an underlying event semantics. We then explain the parametric

construction of the MP-semantics (§5.2) and introduce our message-passing syntax (§5.3). Next, we

show how JaVerT.Click performs symbolic analysis using the motivating example (§5.4). Although

our MP-semantics is general, for clarity purposes, we introduce the MP-semantics by first assuming its

instantiation with a concrete E-semantics (§5.5) and finally assuming its instantiation with a symbolic

E-semantics (§5.6) MP-semantics.

5.1. Motivating Example

We go through a simple program that uses the WebMessaging and WebWorkers APIs, showing how

JaVerT.Click can be used to identify bugs in real world message-passing Web programs. In particular,

we consider a client program of the webworker-promise library [105], which we later use to evaluate

our tool. This library is an open-source library that functions as a wrapper around the WebMessaging

and WebWorkers APIs, providing extra functionality mainly related to the use of JavaScript promises.
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Web workers communicate via messages through the use of the WebMessaging API. The webworker-

promise library allows developers to create worker-promises, which represent the result of the compu-

tation performed by a worker. Analogously to promises, the computation associated with a worker-

promise is executed asynchronously. When such a computation is completed, the respective worker-

promise transitions from the pending state to either the fulfilled or rejected state. More concretely,

the computation associated with a worker-promise is executed by a new worker created specifically to

that effect. When the computation is completed, the worker thread sends a message with the result

to the main thread, causing the associated promise to be either fulfilled or rejected.

Below, we give a simple symbolic test for the webworker-promise library, which uncovered a bug in

the library code. This test guarantees the bounded correctness of the following functional property:

If the main thread sends a message to the worker thread and the worker thread sends this

same message back to the main thread, the message received in the main thread is equal to

the one that was sent to the worker thread.

The test is composed of a worker script, capturing the asynchronous computation, and a main

script, which is charge of creating the worker-promise and checking its result.

Worker script. The implementation of the worker script is given in Figure 5.1. This worker

receives messages and returns them to the main thread. In line 1, we import the registerWebworker

function from the webworker-promise library. In lines 2-4, we call registerWebworker with a handler

as argument that will be executed whenever a message arrives to the worker. It is the job of the

registerWebworker function to send the value returned by the handler (in this case, the value stored

in the message variable) back to the main thread.

1 const registerWebworker = require('webworker-promise/lib/register');

2 registerWebworker((message) => {

3 return message;

4 });

Figure 5.1.: Worker script (worker.js)

Main script. We give the implementation of the main script in Figure 5.2, highlighting the usage

of the WebWorkers API in brown. In line 1, we import the WebworkerPromise constructor from the

webworker-promise library. In line 2, we declare the worker variable, representing a worker-promise

object created by calling the WebworkerPromise constructor, which takes a worker object as input.

We create the worker by providing worker.js as filename, so that the main script can be executed in

parallel with the worker script given in Figure 5.1. Next, in line 3, we declare the variable msg and

assign it a fresh symbolic value using the symb() primitive provided by JaVerT.Click. In line 4, we

constrain the values that msg can represent by stating that it must be of type object. Next, in line

6, we send the message to the worker by calling postMessage on the worker object, with this call

simply returning a promise object representing the value the worker will eventually send back to the

main thread. In lines 7-9, we define a then handler to be triggered when a message arrives back to

the main thread from the worker. As the worker defined in Figure 5.1 is supposed to only mirror the
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messages it receives, we check, in line 8, that the content of the incoming message, response, is equal

to the content of the outgoing message msg (by calling assertDeepEqual(response, msg)). Finally, in

lines 10-12, we define a catch handler to be triggered if there is an error in the communication process

between the main and worker threads. As this is not expected to happen, we add an assert(false)

to the body of the error handler.

1 const WebworkerPromise = require('webworker-promise');

2 var worker = new WebworkerPromise(new Worker('worker.js'));

3 var msg = symb();

4 assume(typeof msg === 'object')

5

6 worker.postMessage(msg)

7 .then((response) => {

8 assertDeepEqual(response, msg);

9 })

10 .catch(err => {

11 assert(false); // This should not happen!

12 });

Figure 5.2.: Main script

Bug found. By running this test using the symbolic testing engine of JaVerT.Click we identified

a bug in the library. The message msg is sent successfully from the main thread to the worker thread.

However, the message does not arrive successfully back to the main thread. More precisely, there is

at least a concrete value for the symbolic variable msg that triggers the catch clause instead of the

then clause. JaVerT.Click reports the failing model [msg : null], meaning that when msg has value

null, an error occurs during the communication from the worker back to the main thread.

The bug is caused by a type error in the snippet of the library code shown in Figure 5.3. The

function isPromise, defined in line 1, is used to check whether a given object o is a promise. In line

4, isPromise is called with the result given by the worker to be sent back to the main thread. As the

worker just mirrors the messages sent from the main thread, if the message is null, the variable result

will also be null, causing the execution of isPromise to raise a TypeError. In JavaScript, the value

null has type object, causing the first conjunct of isPromise to evaluate to true and, subsequently,

triggering a null-pointer dereference in the evaluation of the second conjunct. Consequently, the

communication fails and so does the test.

1 const isPromise = o => typeof o === 'object' &&

2 typeof o.then === 'function' && typeof o.catch === 'function';

3 ...

4 if(isPromise(result)) {

5 ...

6 }

7 ...

Figure 5.3.: Library code (register.js file)

We found the bug described above while testing the webworker-promise library using JaVerT.Click.
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Figure 5.4.: The parametric construction of the MP-semantics

The bug was reported1 to library’s developers and fixed via a pull request.2 The fix consisted of adding

the o! == null check immediately before the o.then property access in the definition of isPromise.

This kind of bug can be hard to detect without the use of a symbolic execution engine like the

one provided by JaVerT.Click. The webworker-promise library does contain a concrete test suite.

The developers, however, did not test this specific case and the bug went unnoticed. While there are

other symbolic execution tools for JavaScript [109, 116, 84], none of them provides support for the

WebMessaging and WebWorkers APIs. Our tool is the first to implement a symbolic execution engine

that analyses message-passing JavaScript programs calling the WebMessaging and WebWorkers APIs.

5.2. Parametric Construction

Our MP-semantics is parametric on: a scheduler, responsible for choosing which thread executes at

each computation step; and an event semantics (a.k.a. E-semantics, introduced in Chapter 4), which

is itself parametric on a language semantics (a.k.a. L-semantics). The MP-semantics interacts with

the E-semantics via message-passing primitives, p ∈ P, which capture the essence of the fundamental

operations underpinning the targeted APIs such as sending messages and creating workers. In Fig-

ure 5.4, we show how our MP-semantics is parametric on the underlying E-semantics both in terms

of configurations (left) and transitions (right).

Parametric Configurations. Every MP-configuration mc computes a sequence of event config-

urations, each representing an active thread. This means that an MP-configuration mc is parametric

on an E-configuration εc. Each E-configuration εc is parametric on a language configuration, which

can be either concrete (lc) or symbolic (l̂c). Hence, both the E-semantics and the MP-semantics are

generic in the sense that they can be instantiated with either a concrete semantics or a symbolic

semantics.

1Issue: https://github.com/kwolfy/webworker-promise/issues/9
2Pull Request: https://github.com/kwolfy/webworker-promise/pull/11
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Parametric Transitions. An MP-transition has the form mc ;MP mc′, where mc and mc′

are MP-configurations. Because the MP-semantics is parametric on an E-semantics, which is itself

parametric on an L-semantics, if the L-semantics makes a step, the E-semantics follows accordingly, and

so does the MP-semantics. Each E-transition and L-transition have the form εc;pM
E εc′ and lc;pE

L lc′,

respectively, and can be concrete or symbolic. The L-semantics generates an event primitive pE, which

tells the E-semantics if the current command is event-related (meaning that it requires, for instance,

associating an event to a given handler or dispatching an event). The E-semantics may take action

to process the corresponding event-related action and then generates a message-passing primitive

pM which tells the MP-semantics if the current command involves message-passing (meaning that it

requires, for instance, sending a message from one worker to another). Finally, the MP-semantics

processes the message-passing primitive pM.

5.3. Message-Passing Syntax

We introduce our message-passing syntax in Figure 5.5, highlighting in blue the elements provided by

the E-semantics and green the elements provided by the MP-semantics. The MP-semantics inherits

the values v ∈ V and variables x ∈ X of the underlying language semantics. These values can be

either concrete or symbolic. An event configuration (onward: configuration) εc ∈ EC is opaque to

the MP-semantics. An MP-configuration consists of a sequence of event configurations, where each

configuration represents a running thread and is assigned an identifier α ∈ A.

Running threads communicate via ports p ∈ P, which are analogous to those defined in the WebMes-

saging API [140]. A port can be connected to a set of other ports, allowing messages to be sent from

the configuration that owns the port to the configurations of the ports to which it is connected. Ac-

cordingly, a message m ∈M is a pair (vs, ps) consisting of a value list vs and a port list ps, respectively

corresponding to the data being sent and the ports being transferred. The WebMessaging standard

allows for transferable objects3 to be sent from one configuration to another. Hence, configurations

can communicate effectively by transferring, for instance, array buffer objects. MessagePort objects

are also transferable objects, which means that ports can be sent among threads. Effectively, if a

port is transferred, its messages are redirected and it becomes inaccessible from its origin after it is

transferred. For instance, consider that we have a main thread and two worker threads w1 and w2. If

a port is transferred from main to w1, messages previously sent to that port need to be delivered to

w1 instead of the main thread.

The MP-semantics and the E-semantics communicate through primitives p ∈ P, which capture the

essence of the fundamental message-passing operations required to model targeted APIs. We use ·
meaning that no operation is required; the primitive send〈vs, ps, p1, p2〉 is used for sending a message

consisting of the pair containing vs and ps from port p1 to port p2. The primitive create〈x, vs〉 is

used to create a new worker, which is modelled as a configuration to launch a new worker, resulting

in the creation of a new configuration. The variable x is assigned to a freshly generated unique

identifier α that is associated with the newly created configuration. The value list vs should contain

the information necessary to setup the new configuration, which could include, for instance, a path

to the file with the code of the thread to be executed. This behaviour is analogous to the one

3https://html.spec.whatwg.org/multipage/structured-data.html#transferable-objects
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Values Variables E-confs E-conf Ids Ports Messages
v ∈ V x ∈ X εc ∈ EC α ∈ A ⊂ Int p ∈ P ⊂ Int m ∈M := (vs, ps)

Message-passing Primitives
p ∈ P := · | send〈vs, ps, p1, p2〉 | create〈x, vs〉 | terminate〈α〉 | newPort〈〉 | connect〈p1, p2〉 |
disconnect〈p〉 | getConnected〈x, p〉 | notifyAll〈v, vs〉 | fire〈v, vs〉 | beginAtomic | endAtomic

E-Conf Sequences Message Queues Port-confs Map Conn-ports Map
cs ∈ CS : EC × A mq ∈MQ :M×P pcm ∈ PCM : P ⇀ A cpm ∈ CPM : P ⇀ P

Lead Confs MP-Configurations
` ∈ L := · | Conf〈α〉 mc ∈MC : CS ×MQ×PCM× CPM×L

Configuration Actions
ca ∈ CA := · | Add〈εc, α〉 | Rem〈α〉 | Hold〈α〉 | Free〈α〉 | Notify〈v, vs〉

Figure 5.5.: Message-Passing Syntax

described by the WebWorkers API [133]. Configurations can be terminated immediately through

terminate〈α〉. The primitives newPort〈〉, connect〈p1, p2〉, disconnect〈p〉 and getConnected〈x, p〉 are used

to create a fresh port in the current configuration (different from all existing ports), connect two ports,

disconnect all ports connected with a given port, and obtain all ports connected with the one given

as input. The primitive notifyAll〈v, vs〉 allows the currently active configuration to trigger an event

on all configurations. The value v represents the event to be triggered in all configurations and vs the

list of arguments to be given to the event handlers associated with v. The primitive fire〈v, vs〉 is used

for firing an event v with arguments vs using the E-semantics.

The primitives beginAtomic and endAtomic allow the execution of atomic blocks in a specific configu-

ration. This is essential to avoid data races between configurations. In order to prevent the interleaving

between atomic blocks and other code, we make use of lead configurations ` ∈ L. Essentially, if a

configuration enters an atomic block, it becomes a lead configuration and the MP-semantics is forced

to prioritise its instructions until it finishes executing the atomic block. Formally, a lead configuration

is either Conf〈α〉 meaning that the configuration with identifier α should be prioritised or · if no

configuration is executing an atomic block. This is useful to impose a certain scheduling policy at the

code level. For instance, one could always guarantee that there would be no thread interleaving during

the execution of a script. Although most browsers seem to adhere this policy, other implementations

could opt for a highly interleaving approach. This will be detailed in §5.5.

As we deal with multiple executions, the MP-semantics maintains a configuration sequence cs ∈ CS.

Each element of the sequence contains a configuration εc and its respective identifier α. We use εcα to

denote each pair of the configuration sequence. In order to handle pending messages, we make use of

a message queue mq ∈MQ, containing a list of pairs, each consisting of a message and a destination

port. We associate ports with configurations through a port configuration map pcm ∈ PCM, which

maps ports to configuration identifiers. The connected-ports map cpm ∈ CPM keeps track of the

connection between ports; for instance, if cpm(p1) = [p2, p3], then messages sent through port p1 arrive

at both p2 and p3. In summary, an MP-configuration mc ∈ MC is formed by: (1) a configuration

sequence cs; (2) a message queue mq containing all pending messages to be processed; (3) a port-

configurations map pcm; (4) a connected-ports map cpm and (5) a lead configuration `.

Finally, the MP-semantics makes use of configuration actions ca ∈ CA that allow updating configu-
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ration sequences in a two-step fashion. When no action is required, we use the symbol · to signify that

the configuration queue is to be left unchanged. A configuration action ca can represent, for instance,

the addition of a new configuration c with identifier α, Add〈εcα〉, or the removal of the configuration

with identifier α, Rem〈α〉. A configuration action can also denote the beginning, Hold〈α〉, and ending,

Free〈α〉, of atomic blocks. Finally, an action can also denote the notify action Notify〈v, vs〉, which

causes the event represented by the value v to be triggered on all configurations with arguments vs.

Configuration actions are explained in detail in §5.5.

5.4. Symbolic Analysis of Motivating Example

Figure 5.6 shows a fragment of the symbolic execution tree resulting from the execution of the moti-

vating example introduced in §5.1. Each transition is labelled with the command that triggered it as

well as one of the letters M or W to indicate if the command was issued in the main (M) or worker (W)

thread. We also label each MP-configuration with a number. The initial MP-configuration (1) con-

tains: a configuration sequence cs with a single configuration εcM corresponding to the main thread,

an empty message queue mq, an empty port-configurations map pcm and an empty connected-ports

map cpm. We do not represent lead configurations as the example does not make direct use of atomic

blocks, meaning that the lead e-configuration of the illustration configurations is always ·.

After the worker is created by the main thread, the following changes are applied to the MP-

configuration: (1) the E-configuration of the worker thread, εcW, is added to the configuration sequence

cs; (2) the port configuration map pcm is updated with the ports p1 and p2, which are created to allow

for the communication between the main and worker threads. Port p1 belongs to the configuration

εcM and p2 to εcW; (3) the connected-ports map cpm receives two entries so that ports p1 and p2 are

effectively connected with each other. We then obtain MP-configuration 2.

Next, the main thread sends a message to the worker thread via worker.postMessage(msg). As a

consequence, a message containing the pair (#msg, p2) is added to the message queue mq, meaning

that message #msg must be sent to port p2. We then obtain the MP-configuration 3. We use #msg

to denote the symbolic variable associated with the program variable msg. We use −||− to indicate

that the value of the corresponding element in the current state is the same as the one of the previous

state.

The worker thread then processes the message sent from the main thread. As explained before (cf.

§5.1), the worker thread simply sends back the value it receives to the main thread and this is enabled

via return message, leading to the MP-configuration 4. Hence, after the message is processed in

the worker thread, the symbolic value #msg should be sent back to the main thread. However, the

symbolic execution of the function in charge of processing the message branches on the value of the

symbolic variable #msg. If #msg has value null, an error occurs in the code of the webworker-promise

library, as shown in Figure 5.3. In this case, an error is sent back (MP-configuration 5), consequently

triggering the test failure in the main thread captured by assert(false) (MP-configuration 6). In

contrast, if #msg does not have value null, no error occurs during the communication process, and

#msg is sent back to the main thread (MP-configuration 7). In this case, the test passes after the

successful call to assertDeepEqual(response, msg) (MP-configuration 8).
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Figure 5.6.: MP-configurations for motivating example (cf. §5.1)

5.5. Concrete MP-semantics

An MP-configuration mc = 〈cs,mq, pcm, cpm, `〉 contains on a configuration sequence cs, a message

queue mq, a port-configurations map pcm, a connected-ports map cpm, and a lead configuration `.

In Figure 5.7, we provide a diagram to illustrate MP-transitions. We define the MP-semantics in a

small-step fashion, with the semantic transition mc;MP mc
′ representing a single computation step.

The semantic transition mc ;MP mc′ is defined with the help of an auxiliary transition of the form

rc;MP rc
′, referred to as reduced-configuration transition. The idea is that the reduced-configuration

transition acts on a single configuration instead of the whole configuration sequence, and generates an

action ca denoting an operation on configuration sequences delegated to the general MP-transition.

The MP-semantics first checks whether the current MP-configuration is executing a command inside

an atomic block (step 1). If no atomic block is executing, meaning that there is no lead configuration,

then the scheduler is invoked to determine which message or configuration is to be processed next

(step 2). If the scheduler chooses a message from the message queue, the message is processed (step

3) and the MP-semantics computes a new MP-configuration mc′ (step 6). Otherwise, the scheduler

chooses a configuration from the configuration sequence and the MP-semantics makes a step on that

configuration by applying a reduced-configuration transition (step 4). If an atomic is executing, the

reduced-configuration transition is directly applied on the lead configuration with no intervention of

the scheduler. Next, the MP-semantics updates the MP-configuration mc based on the obtained E-

configuration and configuration action, generating a new configuration sequence (step 5). This may

involve adding or removing an E-configuration from the original configuration sequence. The configu-

ration sequence is then updated accordingly and the MP-semantics computes a new MP-configuration
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Figure 5.7.: MP-transitions: high-level diagram

mc′ (step 6).

In order to update E-configurations, the MP-semantics assumes that an interface is provided by

the E-semantics. The concrete rules of the MP-semantics also rely on auxiliary functions to handle

mainly port-related operations, such as connecting or disconnecting ports. In the following, we we

introduce the E-semantics interface (§5.5.1) and the auxiliary functions of the MP-semantics (§5.5.2).

Next, we give the rules of the concrete MP-semantics (§5.5.3) and an example of scheduler (§5.5.4)

that could be used to instantiate our MP-semantics. Finally, we define the rules of the reduced

MP-semantics (§5.5.5).

5.5.1. Concrete E-semantics Interface

Each MP-configuration contains a sequence of E-configurations, which are opaque to the MP-semantics

and are supposed to have their own event loops. Implicitly, we assume that each E-configuration

consists of a language configuration; an event-handlers map, for capturing associations between events

and handlers; and an event queue, keeping track of events to be processed. For instance, an E-

configuration of the E-semantics, 〈lc, h, q〉, contains a language configuration lc (which corresponds to

a JSIL configuration in JaVerT.Click), a handler register h and a continuation queue q. In order to

compute sequences of E-configurations, the MP-semantics assumes an interface of E-semantics with

three functions: newConf, setVar and final.

1. newConf(vs): creates a new configuration based on the arguments vs that could be defined,

for instance, as a tuple 〈lc, h, q〉, as defined by our E-semantics. The MP-semantics uses this

function to set up the memory for a new worker thread. The list of values vs contains, for

instance, the path to the worker script that will run in parallel with the current script.

2. setVar(εc, x, v): updates the value of the variable x to v in the configuration εc. This operation is

not necessarily performed by the E-semantics, but could actually be the role of the L-semantics,

as it consists of a store update. In that case, the E-semantics would just call the respective

function provided by the L-semantics. The MP-semantics uses this function, for instance, to

update a program variable to a newly generated configuration identifier.

3. final(εc): checks wether the event configuration εc is final. Intuitively, a configuration is final if

there is nothing else to execute at the underlying language configuration. The scheduler of the
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MP-semantics uses this function to choose which configuration will make a step.

From now on, we use the prefix ES. to denote a call to a function provided by the E-semantics

interface.

5.5.2. Auxiliary Functions of the Concrete MP-semantics

To improve the readability and modularity of our MP-semantics, we define auxiliary functions for

updating MP-configurations; their corresponding formal definitions are given in Figure 5.8. We write

++ to denote list concatenation; cs \α to denote the configuration sequence obtained by removing the

configuration whose identifier is α from cs; mq \ ps to denote the message queue obtained from mq

by removing all ports of ps; and pcm \ ps and cpm \ ps to denote, respectively, the port-configuration

map and the connected ports map when removing the ports of ps.

Final: final(cs) returns true if all the event configurations in cs are final and false otherwise. To know

whether a configuration is final, we make use of the underlying final(εc) function provided by

the E-semantics;

Delete ports: del ports(ps,mq, pcm, cpm) deletes the ports of ps from mq, pcm and cpm;

Connect ports: connect ports(p1, p2, cpm) connects ports p1 and p2 in cpm;

Disconnect port: disconnect port(p, cpm) disconnects port p in cpm;

Transfer: transfer(α, ps, pcm) transfers each port of ps to configuration α in pcm;

Apply Config Action: applyAction(cs, `, ca) updates the configuration queue cs and the lead configu-

ration ` based on the configuration action ca. For instance, if the action is Add〈εcα〉, the function

adds the newly created configuration at the back of the configuration sequence cs and the lead

configuration remans unchanged. In contrast, if the action is Hold〈α〉, the configuration sequence

remains unchanged and the lead configuration becomes the one with identifier α.

5.5.3. Concrete MP-semantics Rules

We define the main rules of the MP-semantics parametrically on the underlying E-semantics and on

a scheduler. At each semantic step, the scheduler chooses either to make a step using a configuration

from the configuration sequence or to process a message from the message queue. This parametricity

makes it possible to configure the MP-semantics with a specialised scheduling strategy. For instance,

one could choose to use a scheduler that simulates the behaviour of a specific browser, or, alternatively,

to use a scheduler that follows a highly interleaving strategy in order to detect atomicity problems.

While our semantics does support multiple scheduling strategies, it is not our goal to explore such

strategies. Here, we present the general mechanism, leaving the study of effective scheduling strategies

and heuristics [21, 80] to future work. We discuss scheduling strategies in more detail shortly.

The MP-semantics has two sources of non-determinism: the E-semantics and the scheduler. The

E-semantics may be non-deterministic in that event handlers could be processed in an arbitrary order.

The scheduler may be non-deterministic in that it is free to choose either a configuration or a message
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Final Configurations

final(cs) ,

{
true, if cs is empty

ES.final(c) ∧ final(cs′), if cs = c : cs′

Delete Ports

del ports(ps,mq, pcm, cpm) , (mq′, pcm′, cpm′), where


mq′ = mq \ ps
pcm′ = pcm \ ps
cpm = cpm \ ps

Connect Ports

connect ports(p1, p2, cpm) , cpm′, where


ps1 = cpm(p1)

ps2 = cpm(p2)

cpm′ = cpm[p1 7→ ps1 ++ [p2], p2 7→ ps2 ++ [p1]]

Disconnect Port
disconnect port(p, cpm) , cpm′, where cpm′ = cpm \ p

Transfer Ports

transfer(α, ps, pcm) , pcm′, where

{
ps = [pi |ni=0]

pcm′ = pcm[p0 7→ α, ..., pn 7→ α]

Apply Config Action

applyAction(cs, `, ca) ,



(cs, `), if ca is ·
(cs++ [εcα], `), if ca is Add〈εcα〉
(cs \ α, `), if ca is Rem〈α〉
(cs, Conf〈α〉), if ca is Hold〈α〉

(cs, ·), if

{
ca is Free〈α〉
` is Conf〈α〉

(cs′, `), if


ca is Notify〈v, vs〉
cs = [εci |ni=0]

εci ;
fire〈v,vs〉
E εc′i |ni=0

cs′ = [εc′i |ni=0]

Figure 5.8.: Concrete MP-semantics: Auxiliary Functions

Run Conf - Non Atomic
schedule(cs,mq) ; Conf〈cspre, εc, cspost〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉
cs′, `′ = applyAction(cspre ++ [εc′] ++ cspost, ·, ca)

〈cs,mq, pcm, cpm, ·〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉

Run Conf - Atomic
cspre ++ [εcα] ++ cspost = cs ` = Conf〈α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉
cs′, `′ = applyAction(cspre ++ [εc′] ++ cspost, `, ca)

〈cs,mq, pcm, cpm, `〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉

Process Message
schedule(cs,mq) ; Msg〈((vs, ps), p),mq′〉 α = pcm(p)
pcm′ = transfer(α, ps, pcm) cspre ++ [εcα] ++ cspost = cs

εcα ;fire〈ProcessMessage,vs〉
E εc′α cs′ = cspre ++ [εc′α] ++ cspost

〈cs,mq, pcm, cpm, ·〉;MP 〈cs′,mq′, pcm′, cpm, ·〉

Figure 5.9.: Message-passing Semantics: 〈cs,mq, pcm, cpm, `〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉
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to processed. Furthermore, it can choose any of the currently executing configurations, except for the

case of atomic blocks for which the currently executing configuration must always be chosen. The

rules of the MP-semantics are given in Figure 5.9 and are explained in the following.

[Run Configuration - Non Atomic Block] This rule is applied when there is no leading configura-

tion, meaning that the semantics is not executing an atomic block. The scheduler chooses a

configuration to run by returning Conf〈cspre, εc, cspost〉. This indicates that the MP-semantics

must take an E-semantics step on the configuration εc rather than process a pending message.

The scheduler also gives the lists of configurations coming before and after εc, cspre and cspost

respectively. The MP-semantics then applies the reduced-configuration transition to the cho-

sen configuration εc. Finally, the resulting configuration εc′ replaces εc in the configuration

sequence and the configuration action ca is applied to the obtained sequence using the semantic

function applyAction.

[Run Configuration - Atomic Block] In contrast to the previous rule, this rule does not make use

of the scheduler, as it is applied when the MP-semantics is executing an atomic block. In this

case, the MP-semantics starts by obtaining the leading configuration εcα. Then, it applies the

reduced-configuration transition to εcα proceeding analogously to the previous rule.

[Process Message] The scheduler can also choose to process a message from the message queue by

returning Msg〈((vs, ps), p),mq′〉. Intuitively, the processing of a message in the MP-semantics

means that the message is forwarded to the receiver configuration εc. Then, the event loop of εc

takes care of executing the appropriate handlers. The tuple (vs, ps) is the message to be sent, p

is the target port, and mq′ is the resulting message queue. The MP-semantics then: (1) obtains

the configuration εc to which the message is addressed; (2) transfers the ports of ps to that

configuration using the auxiliary function transfer(α, ps, pcm); (3) triggers the ProcessMes-

sage event with the arguments vs supplied in the message on the target configuration εc; and

(4) updates the configuration sequence accordingly.

5.5.4. Scheduler

The MP-semantics is parametric on a scheduler that can choose either a configuration to run or a

message to be processed. Our semantics supports both deterministic and non-deterministic schedulers,

branching on all possible scheduling results. In Figure 5.10 we show an example of a scheduler that

prioritises configuration steps over the processing of messages. In particular, the scheduler always

chooses the first non-final configuration if such a configuration exists, meaning that it chooses the first

configuration that still has code to be executed at the underlying language level. If all configurations

are final, the scheduler re-arranges the message queue so that port-transferring messages appear first

and then chooses the first message of the re-arranged queue to be processed.

In a nutshell, the scheduler first chooses configuration steps, then port-transferring messages, and

finally non-port-transferring messages. Most browsers seem to follow a similar strategy to this sched-

uler [67]. One could, however, instantiate the MP-semantics with other scheduling strategies and

potentially find unexpected behaviours. We explain the rules below.

[Configuration Scheduled] The scheduler chooses a configuration if there is a way of splitting the
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Configuration Scheduled
cspre ++ [εc] ++ cspost = cs
final(cspre) !ES.final(εc)

schedule(cs,mq) ; Conf〈cspre, εc, cspos〉

Message Scheduled
mq′ = mq . (λ(vs, ps) · ps 6= []) ++mq . (λ(vs, ps) · ps = [])

m :: mq′′ = mq′ final(cs)

schedule(cs,mq) ; Msg〈m,mq′′〉

Figure 5.10.: MP-semantics: Scheduler Example

configuration queue cs into three parts: a list of configurations cspre of final configurations, a

non-final configuration εc and a remaining list of configurations cspost.

[Message Scheduled] The scheduler chooses a message only if all configurations in cs are final (given

by final(cs)). Note that this makes the scheduler deterministic. However, if we were to remove

the final(cs) condition from the premise, we would obtain a non-deterministic scheduler. The

scheduler rearranges the message queue mq so that messages with transferred ports are processed

before the ones with no transferred ports. We use mq . f to denote all the elements of mq that

satisfy the predicate f . Finally, the scheduler returns a pair with the first message m of the

resulting queue and the queue with the pending messages mq′′.

Note that the given scheduler does not handle non-termination. Supposing that the scheduler

chooses a configuration to make a step and that step leads to an infinite loop, there would be a lack of

global progress as the scheduler would keep choosing that configuration until it is final, meaning that

there are no more steps to be done. We choose to run each configuration up to completion to model

the concurrency model of JavaScript, which is based on event loop concurrency. One could develop

a sophisticated mechanism in future to guarantee that every thread will eventually make forward

progress even in the presence of infinite loops.

5.5.5. Reduced MP-semantics Rules

The reduced-configuration transitions are given in Figure 5.11. For readability, we omit the con-

figuration identifier α if it is not used. Furthermore, in the rules, we conflate output reduced con-

figuration tuples with the generated configuration action, writing 〈εc,mq, pcm, cpm, ca〉 instead of

(〈εc,mq, pcm, cpm〉, ca). We omit the configuration action ca when it is not present, meaning that it

is equal to ·. The rules of the reduced semantics are explained below; they rely on the E-semantics

interface and on the auxiliary semantic functions, defined in §5.5.1 and §5.5.2.

[E-semantics Transition] If the E-semantics generates the message-passing primitive ·, the reduced

semantics simply updates its inner configuration accordingly.

[Post Message] If the E-semantics generates the primitive send〈vs, ps, p1, p2〉, the reduced semantics

enqueues the message (vs, ps) in the message queue. Messages are added at the back of the

message queue. For the send operation to succeed, p1 must be connected with p2, meaning that

p2 is in the set of ports connected with p1, formally: p2 ∈ cpm(p1).

[New Execution] If the E-semantics generates the primitive create〈x, vs〉, the reduced semantics

makes use of the auxiliary function newConf(vs) for creating a fresh configuration. The value
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E-semantics Transition
εc;·E εc

′

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm〉

Post Message
εc;p

E εc
′ p = send〈vs, ps, p1, p2〉

p2 ∈ cpm(p1) mq′ = mq ++ [((vs, ps), p2)]

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm, cpm〉

New Execution
εc;p

E εc
′ p = create〈x, vs〉

εc′′α = ES.newConf(vs)
εc′′′ = ES.setVar(εc′, x, α) ca = Add〈εc′′α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′′′,mq, pcm, cpm, ca〉

Terminate Execution
εc;p

E εc
′ p = terminate〈α〉 ps = pcm . α

(mq′, pcm′, cpm′) = del ports(ps,mq, pcm, cpm)
ca = Rem〈α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉

New Port
εcα ;p

E εc
′
α p = newPort〈〉 p is fresh
pcm′ = pcm[p 7→ α]

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm′, cpm〉

Get Connected Ports
εc;p

E εc
′ p = getConnected〈x, p〉

ps = cpm(p) εc′′ = ES.setVar(εc′, x, ps)

〈εc,mq, pcm, cpm〉;MP 〈εc′′,mq, pcm, cpm〉

Connect Ports
εc;p

E εc
′ p = connect〈p1, p2〉

cpm′ = connect ports(p1, p2, cpm)

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm′〉

Disconnect Port
εc;p

E εc
′ p = disconnect〈p〉

cpm′ = disconnect port(p, cpm)

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm′〉

Begin Atomic
εcα ;p

E εc
′
α p = beginAtomic ca = Hold〈α〉

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm, cpm, ca〉

End Atomic
εcα ;p

E εc
′
α p = endAtomic ca = Free〈α〉

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm, cpm, ca〉

Notify All
εcα ;p

E εc
′
α p = notifyAll〈v, vs〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm,Notify〈v, vs〉〉

Figure 5.11.: Reduced Semantics: 〈εc,mq, pcm, cpm, ·〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉

list vs contains the parameters required for setting up a new configuration. The MP-semantics

also makes use of the auxiliary function setVar(εc, x, α) to assign the identifier of the newly cre-

ated configuration α to the variable x in the currently executing configuration εc. This reduced

semantic transition generates the configuration action Add〈εc′′α〉 to signal to the MP-semantics

that the newly created configuration is to be added to configuration sequence.

[Terminate Execution] If the E-semantics generates the primitive terminate〈α〉, the reduced semantics

is responsible for immediately terminating the configuration with identifier α. This requires

removing all pending messages addressed to that configuration as well as removing the ports ps

owned by that configuration. We use pcm.α to denote the ports belonging to the configuration

with identifier α and the auxiliary function del ports(ps,mq, pcm, cpm) to update the message

queue, port-configurations map, and connected-ports map, removing all references to α and its

associated ports. Similarly to the previous rule, the sequence of configurations is not updated

at this stage. Instead, the transition generates the configuration action Rem〈α〉 to signal to the

MP-semantics that the configuration with identifier α is to be removed from the configuration

sequence.

[New Port] If the E-semantics generates the primitive newPort〈〉, the reduced semantics creates a fresh

port in the current configuration. The reduced semantics then updates the port-configurations

72



map pcm by adding the entry (p, α).

[Connect Ports] If the E-semantics generates the primitive connect〈p1, p2〉, the reduced semantics

connects the ports p1 and p2 using the auxiliary function connect ports(p1, p2, cpm). Note that

communication is bi-directional, meaning that messages sent from p1 are delivered to p2 and

vice-versa.

[Disconnect Port] If the E-semantics generates the primitive disconnect〈p〉, the reduced semantics

disconnects p from all the ports to which it is currently connected with the help of the auxiliary

function disconnect port(p, cpm).

[Get Connected Ports] If the E-semantics generates the primitive getConnected〈x, p〉, the reduced

semantics obtains the ports ps connected with p by accessing the connected-ports map cpm.

Finally, the reduced semantics calls setVar(c, x, ps) to update the value of the variable x of the

E-semantics configuration with ps.

[Begin Atomic] If the E-semantics generates the primitive beginAtomic, the reduced semantics must

ensure that there is no interleaving of configurations until an endAtomic primitive is found. The

reduced semantics simply generates the configuration action Hold〈α〉 that signals to the MP-

semantics that the configuration with identifier α is to be turned into a leading configuration.

[End Atomic] Works analogously to the previous rule. The reduced semantics generates the config-

uration action Free〈α〉, indicating that the scheduler can run normally and the configuration α

does not need to be chosen.

[Notify All] If the E-semantics generates the primitive notifyAll〈v, vs〉, the reduced semantics generates

the configuration action Notify〈v, vs〉, so that the event v is triggered on all configurations with

arguments vs.

5.6. Symbolic Message-passing Semantics

We instantiate the MP-semantics with a symbolic E-semantics to obtain a symbolic MP-semantics.

We assume that the underlying symbolic E-semantics operates on symbolic configurations ε̂c ∈ ÊC,
and that the underlying language configuration of ε̂c enables the use of symbolic values, v̂ ∈ V̂ and

symbolic variables, x̂ ∈ X̂ .

Accordingly, MP-configurations are composed of sequences of symbolic event configurations, ĉs ∈
ĈS. As the messages handled by the MP-semantics are created from the values provided by the un-

derlying E-semantics, these messages, m̂ ∈ M̂, can hold both symbolic and concrete values. Symbolic

message queues, m̂q ∈ M̂Q, can, therefore, be composed of both concrete and symbolic messages.

In contrast to messages, port and configuration identifiers are restricted to concrete values. Hence,

the port-configurations map pcm ∈ PCM, connected-ports map cpm ∈ CPM, and lead configuration

` ∈ L used by the symbolic MP-semantics are exclusively composed of concrete values. In summary,

symbolic MP-configurations are of the form m̂c = 〈ĉs, m̂q, pcm, cpm, `〉.
The rules of the symbolic MP-semantics, like the concrete ones, also rely on an E-semantics interface

and on a set of auxiliary functions. In the following, we introduce the symbolic E-semantics inter-
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face (§5.6.1) and the auxiliary functions of the symbolic MP-semantics (§5.6.2). Finally, we discuss

the rules of the symbolic MP-semantics (§5.6.3) and correctness results (§5.6.4).

5.6.1. Symbolic E-semantics Interface

The symbolic E-semantics interface includes all functions defined for the concrete one: newConf, setVar

and final. Additionally, the symbolic MP-semantics assumes that each symbolic event configuration

provides a path condition π, which is a first-order quantifier-free formula accumulating the constraints

on the symbolic inputs that direct the execution along that path. In JaVerT.Click, the path condition

is provided by the underlying language configuration. For instance, a JSIL symbolic configuration

〈ŝ, µ̂, ĉs, i, π〉 includes a symbolic store ŝ, a symbolic memory ĥ, a symbolic call stack ĉs, the index

of the current command i, and a path condition π. For the MP-semantics to keep track of the path

condition across multiple E-configurations, the E-semantics needs to provide two additional functions:

assume and pc(). In our implementation of the E-semantics, both the assume and pc() simply call the

respective functions provided by the L-semantics interface (see §4.6.1).

1. assume(ε̂c, π) = ε̂c′, where ε̂c′ is obtained from ε̂c by extending its path condition with the

formula π, if such an extension is satisfiable.

2. pc(ε̂c) = π, where π is the path condition computed in the current branch of configuration ε̂c.

5.6.2. Auxiliary Functions of the Symbolic MP-semantics

The symbolic MP-semantics relies on exactly the same auxiliary functions of the concrete MP-

semantics: final, del ports, connect ports, disconnect port, transfer and applyAction (c.f. §5.5.2).

However, the function applyAction needs to be adapted for symbolic execution in order to support the

Assume〈f〉 configuration action. More specifically, given a symbolic configuration sequence ĉs and a

lead configuration `, the applyAction function propagates the assumption to all configurations by using

the function assume(ε̂c, f) that must be provided by the E-semantics. The lead configuration remains

unchanged, as the configuration action Assume〈f〉 does not affect atomic blocks.

applyAction(ĉs, `,Assume〈f〉) = ([ES.assume(ε̂ci, f) |ni=0], `),where ĉs = [ε̂ci |ni=0]

Note that the path condition of each E-configuration is equal to the others, as all path conditions

are updated together every time a constraint is generated from any existing E-configuration. One

could, alternatively, choose to have a single path condition which would be provided by the symbolic

MP-semantics. We prefer our approach because we believe that it is not the role of the MP-semantics

to manage path conditions; a path condition should be part of the underlying language configuration.

This way, the underlying language semantics is independent of both the E-semantics and the MP-

semantics in terms of the symbolic analysis. This allows us to use JaVerT.Click with or without

the E-semantics and MP-semantics, depending if we need to use events or message-passing-related

features.

74



5.6.3. Symbolic MP-semantics Rules

Besides the rules defined for the concrete MP-semantics, the symbolic MP-semantics provides an

additional rule for maintaining the same path condition in all running configurations. In particular,

every time a new constraint f is added to the path condition of one of the configurations in the

configuration sequence , the MP-semantics is notified so that it can update the other configurations of

the configuration sequence. This is important to avoid inconsistencies between different configurations.

For instance, if we assume that a symbolic variable x̂ is of type object in the main thread, x̂ should

also have type object in the worker threads. In Figure 5.12, we give the Assume rule defined at the

level of the reduced semantics.

Assume
ε̂c;p̂

E ε̂c
′ p̂ = assume〈f〉 ca = Assume〈f〉

〈ε̂c, m̂q, pcm, cpm〉;MP 〈ε̂c
′, m̂q, pcm, cpm, ca〉

Figure 5.12.: Assume Rule of the Symbolic reduced semantics

This rule works analogously to the rules Begin Atomic and End Atomic (§5.5.5). If the E-

semantics generates the primitive assume〈f〉, meaning that the formula f holds for the currently

executing event configuration, the reduced semantics computes a configuration action Assume〈f〉 that

is then processed at the MP-semantics level. The MP-semantics processes the action Assume〈f〉 by

adding the formula f to the path condition of each configuration in the configuration sequence ĉs, as

explained in §5.6.2.

5.6.4. Correctness

We establish the correctness of a symbolic MP-semantics w.r.t. a concrete MP-semantics using

analogous notions of Directed Soundness and Directed Completeness to the ones defined for our

E-semantics (c.f. §4.6.4): Directed Soundness holds when every symbolic trace over-approximates all

concrete traces that follow its execution path, while Directed Completeness holds if every symbolic

trace has at least one valid concretisation. The former property guarantees the absence of false-positive

bug-reports, meaning that if a bug is reported symbolically, it must also be reported concretely. For

the MP-semantics to be correct it must satisfy both properties [33, 35, 107, 32, 91]. Because the E-

semantics is opaque to the MP-semantics, we assume that the E-semantics satisfies directed soundness

and directed completeness. In §4.6.4, we proved this result for the E-semantics of JaVerT.Click.

The MP-semantics, like the E-semantics, also relies on logical environments of the form ε : X̂ ⇀ V to

relate symbolic and concrete MP-configurations. We extend the interpretation function Iε (c.f. §4.6.4)

to all message-passing structures defined in §5.3. The respective definitions are shown in Figure 5.13.

For example, Iε(〈ĉs, m̂q, pcm, cpm, `〉) , 〈Iε(ĉs), Iε(m̂q), pcm, cpm, `〉. We assume that interpretation

is preserved by the functions of the E-semantics interface; for example, that final(ε̂c)⇔ final(Iε(ε̂c)).
We also extend the concretisation function Mπ() defined for L-configurations and E-configurations

to MP-configurations. Hence, given a symbolic MP-configuration m̂c, Mπ(m̂c) denotes the set of

concrete MP-configurations obtained via interpretations of m̂c that satisfy the path condition π. More

formally, mc ∈Mπ(m̂c) if there is a logical environment ε that evaluates m̂c to mc and π to true.
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CS - Empty
Iε(∅) , ∅

CS - Composition
Iε(ĉs1 ] ĉs2) , Iε(ĉs1) ] Iε(ĉs2)

CS - Cell
Iε([(ε̂c, α)]) , [(Iε(ε̂c), α)]

MQ - Empty
Iε([]) , []

MQ - Non-Empty
Iε(([v̂1, ..., v̂n], ps), p) , (([Iε(v̂1), ..., Iε(v̂n), ps), p)]

MP Confs
Iε(〈ĉs, m̂q, pcm, cpm, `〉) , 〈Iε(ĉs), Iε(m̂q), pcm, cpm, `〉

MP primitive - Send
Iε(send〈v̂s, ps, p1, p2〉) , send〈Iε(v̂s), ps, p1, p2〉

MP primitive - Create
Iε(create〈x̂, v̂s〉) , create〈Iε(x̂), Iε(v̂s)〉

Configuration Actions (Add)

Iε(Add〈ε̂c, α〉) , Add〈Iε(ε̂c), α〉

Configuration Actions (Notify)

Iε(Notify〈v̂, v̂s〉) , Notify〈Iε(v̂), Iε(v̂s)〉

Figure 5.13.: Interpretation of MP-semantics Structures

Definition 5.1 formalises the correctness of the underlying E-semantics. In §4.6.4, we proved that

this holds for the E-semantics of JaVerT.Click (Theorem 4.1).

Definition 5.1 (Correctness Criteria - Symbolic E-semantics).

E-Directed-Soundness

ε̂c;p̂
E ε̂c

′ ∧ (π ⇒ pc(ε̂c′))∧
(ε, c) ∈Mπ(ε̂c) ∧ c;p

E c
′

=⇒ (ε, c′) ∈Mπ(ε̂c′) ∧ (ε,p) ∈Mπ(p̂)

E-Directed-Completeness

ε̂c;p̂
E ε̂c

′ ∧ (π ⇒ pc(ε̂c′))∧
(ε, c) ∈Mπ(ε̂c)

=⇒ ∃p, c′. c;p
E c
′

Theorem 5.1 formalises the two properties for the MP-semantics. We use m̂c and mc to denote

symbolic and concrete MP-configurations. Directed Soundness states that, given symbolic and con-

crete MP-transitions, respectively m̂c ;MP m̂c′ and mc ;MP mc′, if we know that (1) the current

path condition satisfies the final path condition of m̂c′ (given by π ⇒ pc(m̂c′)) and (2) the initial

concrete MP-configuration mc is in the models of m̂c filtered by π (given by (ε,mc) ∈ Mπ(m̂c)),

we can guarantee that the final concrete MP-configuration mc′ is in the models of the final symbolic

MP-configuration m̂c′ under path condition π.

Directed Completeness is formalised analogously, but guarantees that there is at least one concrete

MP-transition given that the initial concrete MP-configuration mc is in the set of models of the initial

symbolic MP-configuration m̂c.

Theorem 5.1 (Correctness of the Symbolic MP-semantics).

MP-Directed-Soundness

m̂c;MP m̂c
′ ∧ π ⇒ pc(m̂c′)∧

(ε,mc) ∈Mπ(m̂c) ∧ mc;MP mc
′

=⇒ (ε,mc′) ∈Mπ(m̂c′)

MP-Directed-Completeness

m̂c;MP m̂c
′ ∧ π ⇒ pc(m̂c′)∧

(ε,mc) ∈Mπ(m̂c)

=⇒ ∃mc′. mc;MP mc
′

The proof of Theorem 5.1 is done by case analysis on the rules for the MP-semantics. We assume

that Directed Soundness and Directed Completeness hold for the E-semantics and prove these two

properties for the MP-semantics. All definitions and details of the proof of Theorem 5.1 can be found

in the appendix (§B).
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6. Reference Implementations of Web APIs

The main motivation of this work is to perform symbolic analysis on programs calling APIs that are

either event-based or rely on a concurrent message-passing model. To achieve our goal, we target 5 Web

APIs: DOM [136], JS Promises [28], JS async/await [29], WebMessaging [140] and WebWorkers [133].

Our reference implementations are trustworthy in the sense that they are thoroughly tested against

their respective test suites and they follow their respective standards line-by-line with the exception

of the JS async/await API.

These APIs have become popular inside the JavaScript community and most bugs in client-side appli-

cations are related to their usage [94]. We introduced an E-semantics (Chapter 4) and an MP-semantics

(Chapter 5) to capture the essence of Web APIs relying on events or a message-passing model. The

listed APIs are implemented directly in JavaScript making use of the primitive operations provided

by the E-semantics and the MP-semantics. For each API, we identify the minimal set of primitives

on which it relies.

Outline. We first introduce our reference implementation of the DOM, which covers the DOM Core

Level 1 (§6.1) and DOM Events (§6.2). Next, we introduce our reference implementations of two APIs

from the ECMAScript standard: JS Promises (§6.3) and JS async/await (§6.4). Finally, we present

our implementation of a fragment of the HTML standard covering the WebMessaging (§6.5) and

WebWorkers (§6.6) APIs. For each API, we give an overview by introducing its main interfaces; then,

we detail the structure of our reference implementation focusing on their usage of the E-semantics and

MP-semantics.

6.1. DOM Core Level 1

The DOM Core Level 1 API [130] is the first version of the DOM API. It describes how XML/HTML

documents are internally represented as DOM trees and defines a range of methods for manipulating

these trees. DOM trees comprise several different types of DOM nodes and are subject to a number

of topological constraints restricting the ways in which these nodes can form a valid DOM tree. For

instance, the root node of every DOM tree must have type Document and can have at most one child

of type Element. Elements, on the other hand, can have multiple child nodes of different types, such

as Text and Element.

6.1.1. API Overview

The DOM standard defines interfaces describing the structure of every type of DOM node in an

object-oriented style. For every node type, the standard specifies the fields and methods exposed by

the nodes of that type. Furthermore, as in standard OO languages, each node type might inherit
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from another node type. The Node interface is the parent of all other interfaces, such as Element,

ProcessingInstruction, Comment, EntityReference, Attr and Text.

In Figure 6.1, we show the IDL specification of the Element interface taken from the standard.

Every Element node is also a Node, meaning that it exposes all fields and methods defined in the Node

interface. Additionally, every Element object exposes:

• the field tagName, which represents the name of the element;

• the methods getAttribute, setAttribute and removeAttribute, for retrieving, adding/mod-

ifying and removing an attribute by its name;

• the methods getAttributeNode, setAttributeNode and removeAttributeNode, which are

analogous to the methods listed above but take the Attr object instead of its name;

• the method getElementsByTagName for obtaining a NodeList containing all descendant elements

with a given tag name;

• the method normalize, which converts the subtree of this element into a normal form, where

none of the Text nodes is empty and there are no adjacent Text nodes.

interface Element : Node {

readonly attribute DOMString tagName;

DOMString getAttribute(DOMString name);

void setAttribute(DOMString name, DOMString value) raises (DOMException);

void removeAttribute(DOMString name) raises (DOMException);

Attr getAttributeNode(DOMString name);

Attr setAttributeNode(Attr newAttr) raises (DOMException);

Attr removeAttributeNode(Attr oldAttr) raises (DOMException);

NodeList getElementsByTagName(DOMString name);

void normalize();

};

Figure 6.1.: IDL specification of the Element interface

6.1.2. API Reference Implementation

Our reference implementation of the DOM Core Level 1 covers 100% of the respective standard, mean-

ing that we implement all exposed interfaces, including the Node interface and its subtypes. We

implement the DOM Core Level 1 in JavaScript (ES5 Strict), encoding DOM objects as JS objects. In

particular, each type of DOM node is mapped to the JS constructor function in charge of creating the

nodes of that type. Also, we emulate class-based inheritance, which is used to describe DOM nodes

in the standard, using the prototype inheritance of JS, by storing the methods shared by all nodes of

a given type in their (shared) prototype.

In Figure 6.2, we show a fragment of the object graph from our JavaScript implementation con-

sidering the Element interface. Besides exposing the property tagName, all Element objects directly

define the properties corresponding to the fields of the Node interface (e.g. nodeName, ownerDocument,

etc). The methods of the Element interface are stored in the object ElemProto, the prototype of all

Element objects, and the Node methods are stored in NodeProto, which is the prototype of ElemProto.
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Figure 6.2.: JavaScript object graph for the Element interface

In the following, we describe two technical challenges related to the DOM Core Level 1 reference

implementation: handling live collections and dynamic parsing of XML/HTML documents. Finally,

we show the line-by-line correspondence of our implementation and the DOM Core Level 1 standard.

Live Collections. The NodeList interface describes the so-called DOM live collections. A live

collection is a special data structure defined in the DOM API that automatically reflects changes

that occur in its associated document. For instance, the getElementsByTagName method from the

above-mentioned Element interface returns a live collection containing the DOM nodes that match

the supplied tag name. Working with live collections is error-prone and requires particular attention.

Consider, for example, the following program:

var divs = body.getElementsByTagName("div");

for (var i = 0; i < divs.length; i++)

{ body.appendChild(document.createElement("div")) }

This program iterates over the initial collection of div nodes in the DOM tree rooted at body. On

each iteration, it creates a new div node and inserts it into the original tree. However, this new div

is also inserted into the live collection divs, whose length automatically increases by one, causing the

program to loop forever.

The NodeList interface defines the field length, for obtaining the length of a node list, and the

method item(i) for accessing its i-th element. In JavaScript, we implement node lists lazily in that we

recompute the contents of a given node list every time it is inspected. This we achieve by extending

NodeList objects with an internal compute function, used to compute its contents. We call compute

at every invocation of the item method, and associate the length property of every node list with a

JavaScript getter that also calls compute before checking the the length of the corresponding node list.

As an optimisation, we cache computed live collections by associating each node list with a unique

identifier and maintaining a global array of computed node lists. However, whenever there is any

update to the DOM tree, all cached live collections are invalidated and will be re-computed the next

time they are inspected.

Line-by-Line Closeness. The DOM Core Level 1 standard, unlike the other standards supported

by JaVerT.Click, is written in a more descriptive style, meaning that the functions exposed by the

DOM Core Level 1 are not described in pseudocode style. Hence, we cannot establish a line-by-line

correspondence between the DOM Core Level 1 standard and our reference implementation. However,

we are confident that our reference implementation of the DOM Core Level 1 API follows precisely the
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standard because we pass all available tests from the official test suite, as we will detail in Chapter 7. In

contrast to the DOM Core Level 1 standard, functions exposed by the ECMAScript, HTML5 and DOM

Living standards are defined step-by-step in pseudocode style, allowing us to establish a line-by-line

correspondence.

6.2. DOM UI Events

The DOM Events API [136] describes the DOM event model. In particular, it provides the mechanism

for programmers to register event listeners, and explains how these listeners are collected and executed

every time a DOM event gets triggered either by the environment (for example, via user events and

browser events) or programatically.

6.2.1. API Overview

The DOM Events API is composed of three main interfaces: Event, denoting any DOM event;

EventTarget, denoting a target (e.g.: a DOM node) to which an event can be dispatched when

something has occurred; and CustomEvent, denoting an event with additional data, such as the cur-

rent time. There are further interfaces to denote types of events, such as MouseEvent, KeyboardEvent

and FocusEvent.

Like the DOM Core Level 1 standard, the structure of the DOM Events standard is described in

object-oriented style with each interface exposing a set of fields and methods. In Figure 6.3, we show

the IDL specification of the EventTarget interface as defined by the standard which includes:

• a constructor for creating an object of type EventTarget;

• the methods addEventListener and removeEventListener, for registering and deregistering a

given listener to an event;

• the method dispatchEvent for synchronously dispatching an event. Returns false if either the

event’s cancelable flag is active or if any of the handlers invoked called the preventDefault()

method exposed by the Event interface. Otherwise, returns true.

DOM Event Dispatch. At the core of the UI Events API is the DOM Dispatch algorithm, which

precisely describes the process of collecting and executing event listeners every time a DOM event

gets triggered. The DOM Living standard includes the pseudo-code of the Dispatch algorithm,

detailing all the steps that are performed when dispatching a DOM event, for instance, by calling the

dispatchEvent function. It is a complex algorithm that relies on a number of auxiliary functions,

which, in turn, are also described operationally and often rely on other auxiliary functions themselves.

We explain the DOM Dispatch algorithm via an example given in Figure 6.4, which shows a DOM

tree of an HTML page with an element dv containing two buttons, bt1 and bt2, and illustrates

the steps taken by Dispatch when the user clicks on bt1. Coarsely, Dispatch first determines the

propagation path of the triggered event, i.e. the list of DOM nodes connecting the element on which

the event was triggered to the root of the DOM document, in this case [bt1, dv, bd, htm, doc]. Then, it

executes the handlers registered along that propagation path during three consecutive phases: (1) the
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interface EventTarget {

constructor();

undefined addEventListener(

DOMString type,

EventListener? callback,

optional (AddEventListenerOptions or boolean) options = {}

);

undefined removeEventListener(

DOMString type,

EventListener? callback,

optional (EventListenerOptions or boolean) options = {}

);

boolean dispatchEvent(Event event);

};

Figure 6.3.: IDL specification of the EventTarget interface

Figure 6.4.: DOM Dispatch Phases

capture phase, where the event is propagated from the root of the document, doc, to the target, bt1;

(2) the target phase, where the event is processed at the target, bt1; and (3) the bubble phase, where

the event is propagated back to the root. During each phase, Dispatch executes the handlers attached

to the current node if they were registered for the current event and phase. The DOM API method for

registering handlers, addEventListener(type, handler, options), allows the programmer to specify

if a given handler is to be executed in the capture phase or the bubble phase through the options

parameter; by default, handlers get executed in the target phase. Importantly, the propagation path

is computed only once, before the handlers are executed, meaning that even if their executions alter

the propagation path, those changes will not be taken into account by the Dispatch algorithm.

6.2.2. API Reference Implementation

We implement all the interfaces defined by the DOM Events API in JavaScript following the standard

line-by-line. In Figure 6.5, we show the JavaScript representation of the EventTarget and Event

interfaces. Similarly to the approach used for the implementation of the DOM Core Level 1 API, the

fields exposed by each interface are stored in the corresponding objects. For instance, the fields

type and eventPhase are defined in Event objects. In contrast, methods exposed by each interface

are stored in the respective object prototype. For instance, the methods addEventListener and

dispatchEvent are defined in the ETProto, which is the prototype of EventTarget objects.

Dispatch algorithm implementation. In Figure 6.6, we present our JavaScript (ES5 Strict)

implementation of the Dispatch algorithm. In the standard, Dispatch is presented as a monolithic
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Figure 6.5.: JavaScript object graph for the EventTarget and Event interfaces

56-line function that is difficult to understand. We instead structure it into seven auxiliary functions,

each following the corresponding pseudo-code of the standard line-by-line.

1 function Dispatch(event, target, flags) {

2 var relatedTarget = retarget(event.relatedTarget, target);

3 var touchTargets = getTouchTargets(event, target);

4 var actTarget = isActivationTarget(event);

5 updatePropagationPath(event, target, relatedTarget, touchTargets, actTarget);

6 captureAndTarget(event, flags)

7 if (event.bubbles) { bubble(event, flags) }

8 clear(event);

9 return !event.canceled

10 }

Figure 6.6.: DOM Dispatch implementation

The Dispatch algorithm receives as input: the Event object that represents the triggered event;

the Node object on which the event was triggered; and optional flags used to identify a target/event

requiring special treatment. 1 The algorithm then proceeds as follows:

1. Call retarget to determine the related target of the triggered event. Some events are associated

with two targets: the main target, supplied as the argument of Dispatch; and the related target,

determined by retarget. For instance, mouseout, an event triggered when the user moves the

mouse from one node to another, has two targets: the node at which the mouse originally was

(main), and the node to which it moved (related).

2. Call getTouchTargets to obtain the list of touch targets associated with the triggered event.

Events involving interactions between the user and a touching surface can be associated with a

variable number of targets (e.g., due to the user placing multiple fingers on the surface), called

touch targets.

3. Call isActivationTarget to check if the event has an associated activation behaviour. For

instance, when a click event is triggered on a hyperlink, the browser should open a window

with the corresponding URL.

4. Call updatePropagationPath to the determine the propagation path of the event.

1More concretely, the Dispatch algorithm receives the flag legacyTargetOverrideFlag when the event target is the
Window object and the flag legacyOutputDidListenersThrowFlag when receiving an event originated by the Indexed
Database API.

82



5. Call captureAndTarget to execute the capture and target phases.

6. Call bubble to execute the bubble phase if the result of inspecting the property bubbles of the

event object is true.

7. Call clear to reset some of the properties of the event object to null.

8. Return a boolean indicating if the activation behaviour of the event was not cancelled. When

no activation behaviour is defined, the algorithm returns true.

DOM Event Model and the JavaScript Semantics. The interaction between the DOM

Dispatch algorithm and the JavaScript semantics may trigger unexpected behaviours if not properly

engineered. Consider, for instance, the following function to be used as a handler:

function h(ev) { Object.defineProperty(ev, "bubbles", { get: malicious }) }

If the programmer registers h as an event handler and that event is triggered, the function malicious

will be implicitly called when the Dispatch algorithm tries to resolve the value of the property bubbles

after the execution of the target phase, because bubbles is an accessor property (it does not contain a

value, but instead getter/setter functions that are executed on property access/update) and malicious

is its getter. Although the DOM standard defines the bubbles property as readonly, the DOM engines

of Chrome, Edge, Firefox, and Safari allow it to be re-defined on the event object.2 Our reference

implementation does not suffer from this problem as we define read-only attributes as non-writable

on creation.

Connection with the E-semantics. In related works [83, 101], the DOM Dispatch is either

baked into the formalism, which then becomes complex, and/or not fully faithful to the standard. We

take a novel, substantially different approach that allows us both to keep the E-semantics simple and

to represent rigorously all of the details of the DOM Dispatch. In particular, we store information

about DOM handlers directly in their associated Element nodes in the JavaScript heap, implement

the Dispatch fully in JavaScript, and only use the E-semantics to: (1) register the Dispatch function

as the handler of all DOM events using the addHdlr primitive; and (2) dispatch programmatic DOM

events synchronously using the sDispatch primitive. The former effectively means that any time a DOM

event (e.g. click or focus), is triggered, either synchronously or asynchronously, the DOM Dispatch

function itself is scheduled for execution by the E-semantics. It is then the job of this function,

rather than the E-semantics, to traverse the DOM tree and execute the user-register handlers in the

appropriate order.

In Figure 6.7, we show our implementation of the dispatchEvent function, used to model program-

matic dispatch of DOM events. This function calls the E-semantics synchronous dispatch wrapper,

ESem.sDispatch, in line 4. The behaviour of the sDispatch primitive, as given in Chapter 4, pre-

cisely captures the programmatic DOM event dispatch as per the standard, where the associated event

handlers are meant to be executed immediately.

2We discussed this potential vulnerability with one of the members of the committee and they are aware. They made
the choice of forbid this kind of scenario only for a few properties assuming the absence of untrusted code.
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1 function dispatchEvent(event, flags) {

2 if (event.dispatch || !event.initialized) { throw new DOMException(INVALID_STATE_ERR) };

3 event.isTrusted = false; event.target = this;

4 return ESem.sDispatch(event, this, flags)

5 }

Figure 6.7.: DOM dispatchEvent function

Line-by-Line Closeness. We demonstrate that our JavaScript implementation follows the DOM

UI Events standard line-by-line by appealing to the code of the innerInvoke function, given in Fig-

ure 6.8. The innerInvoke function is one of the auxiliary functions used by the Dispatch algorithm.

It is used to execute the listeners for a given event during all three phases of the Dispatch algorithm.

We illustrate the line-by-line closeness by inlining in comments, for each line of code, its corresponding

line in the standard.

function innerInvoke (event, listeners, phase, legacyOutputDidListenersThrowFlag) {

var found = false; // 1. Let found be false.

for (var i = 0; i < listeners.length; i++) { // 2. For each listener in listeners...

if (listener.removed) continue; // ...whose removed is false:

// 2.1. If event's type attribute value is not listener's type, then continue.

if (event.type !== listener.type) continue;

// 2.2. Set found to true.

found = true;

// 2.3. If phase is "capturing" and listener's capture is false, then continue.

if ((phase === "capturing") && (listener.capture === false)) continue;

// 2.4. If phase is "bubbling" and listener's capture is true, then continue.

if ((phase === "bubbling") && (listener.capture === true)) continue;

// 2.5. If listener's once is true, then remove listener from event's currentTarget attribute

value's event listener list.↪→

if (listener.once === true) event.currentTarget.removeListener(listener);

...

// 2.10. Call a user object's operation with listener's callback, "handleEvent", event, and

event's currentTarget attribute value.↪→

execCallBack(listener.handleEvent, "handleEvent", event, event.currentTarget);

...

// 2.13. If event's stop immediate propagation flag is set, then return found.

if (event.stopImmediatePropagation === true) return found;

}

return found; // 3. Return found

}

Figure 6.8.: JavaScript implementation of the innerInvoke function

6.3. JavaScript Promises API

Promises were introduced into JavaScript (JS) in the 6th version of the standard [28], in response

to the increasing popularity and usefulness of various, often incompatible, custom-made libraries for

asynchronous computation. Their addition provided clarity and security to JS developers; in fact, the

official Promises API has greatly simplified the creation, combination, and chaining of asynchronous

computations, eliminating the so-called callback hell of multiple nested callbacks [37], which is ex-

tremely difficult to understand and reason about.
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6.3.1. API Overview

A JS Promise, in essence, is the reification of an asynchronous computation that was either already

settled in the past or still remains to be settled in the future. A promise can be settled successfully, in

which case we say that it is resolved (the standard also uses the term fulfilled), or unsuccessfully, in

which case we say that it is rejected. If a promise has not been yet settled, we say that it is pending.

At the core of the Promises API is the promise constructor, Promise, which is used for creating new

promises. This constructor receives as input an executor function, which captures the computation to

be performed asynchronously. Executor functions have two arguments: a function resolve for stating

that the corresponding promise has been resolved, and a function reject for stating that it has been

rejected. Until one of these functions is called, the corresponding promise is left pending.

function f(v) { console.log(v) };

var p = new Promise((resolve, reject) => {

document.getElementById("dv").addEventListener("click", () => { resolve(1) })

});

p.then(f); console.log(2)

Figure 6.9.: JavaScript program calling the Promise constructor

Consider the example in Figure 6.9. This program creates a promise p, whose executor function

registers the function that resolves the promise as the handler for the click event on the DOM element

with identifier dv. This means that p will only get resolved after the user clicks on that DOM element.

Afterwards, the program uses the then function of the Promises API to register a fulfill reaction on the

promise p, meaning that when/if p gets resolved, the function f will be scheduled for execution with

the argument with which p was resolved (in this case, 1). Reactions are scheduled in a first-in-first-out

manner every time the current computation terminates or yields control. Hence, the program above

will always output the string 21 to the console, regardless of how quickly the user is able to click on

the DOM element in question.

Note that the example given in Figure 6.9 relies on both DOM and JS Promises. Existing analysis

tools for the DOM [72, 84, 3] and JS Promises [36, 66] would not be able to analyse such example

because they target either one API or another. One of the advantages of JaVerT.Click is that it

enables the analysis of Web programs calling multiple APIs, such as DOM and JS Promises.

Besides the constructor Promise and the method then, the Promises API provides several other

functions for creating, combining, and chaining promises together. The behaviour of these function-

s/methods is thoroughly described in the ECMAScript standard in pseudo-code. This pseudo-code

relies on numerous JavaScript internal functions such as GetValue, PutValue GetOwnProperty and

HasProperty, whose definitions in the ECMAScript standard are also operational, intricate, and in-

tertwined.

6.3.2. API Reference Implementation

We provide a JavaScript reference implementation of the JS Promises API which follows the standard

line-by-line. We illustrate, in Figure 6.10, the object graph associated with the promise p of the

example given in Figure 6.9 after the execution of the then method, but before the promise gets

settled. Each Promise object keeps track of its current state, reactions to be triggered when the
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Figure 6.10.: Promises Object Graph

promise is resolved/rejected, and its result, in its internal properties State, FulfillReactions,

RejectReactions, and Result, respectively. In this case, the promise p is in the “pending” state

and its result is undefined, as it has not been yet resolved. Observe that f is registered to execute

after p using the then function in the example; it is not stored directly as a fulfil reaction. Instead,

there is a promise reaction, r, which, in addition to keeping track of f in its Handler property,

also holds, in its Capability field, a promise capability c, which keeps track of the promise on

whose settlement f should be executed (c. Promise), and the resolve and reject functions given

to the executor function of that promise (c. Resolve and c. Reject). In the example, the promise

capability c contains the promise p and the internal resolve and reject algorithms of the standard.

Connection with the E-semantics. Our reference implementation of JS Promises interacts

with the E-semantics when triggering Promise reactions for a promise that got settled; this is done

by the TriggerPromiseReactions function. This function is given as input an array of promise

reactions and the value with which their corresponding promise was settled (either resolved or rejected).

It then iterates over the elements of the array and, for each element, uses the internal function

PromiseReactionJob to create an anonymous function that will essentially call the handler of the

given reaction with the provided value. This anonymous function is then scheduled for execution

directly using the schedule primitive of the E-semantics, as highlighted in line 5 of the following code.

1 function TriggerPromiseReactions (reactions, argument) {

2 if (!reactions) return undefined;

3 for (var i = 0; i < reactions.length; i++) {

4 var reactionJob = PromiseReactionJob (reactions[i], argument);

5 ESem.schedule(reactionJob);

6 }

7 }

Note that the E-semantics schedule primitive, as defined in Chapter 4, adds the given handler to

the end of the continuation queue. This is consistent with the behaviour of JS Promises described

in the standard, Section 8.4.1 [29], which states that pending jobs (essentially, the fulfil and reject

reactions) are to be added “at the back of the job queue”.

Line-by-Line Closeness. We demonstrate that our implementation follows the ECMAScript

standard line-by-line by appealing to the FulFillPromise function, described in the Section 25.4.1.4
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of the standard; we give its implementation in Figure 6.11, annotated with the corresponding lines

of the standard. The FulFillPromise function is one of the internal functions used by the function

ResolveFun (shown in Figure 6.10), which, in turn, is used by promise executors to fulfil their associ-

ated promises. The function FulFillPromise receives a promise together with the value with which

it is to be resolved and proceeds as follows: (1) sets the internal state of the given promise object

appropriately; and (2) schedules the promise’s fulfil reactions.

function FulfillPromise(promise, value) {

// 1. Assert: The value of promise's [[State]] internal slot is "pending".

Assert(promise.__State === "pending");

// 2. Let reactions be the value of promise's [[FulfillReactions]] internal slot.

var reactions = promise.__FulfillReactions;

// 3. Set the value of promise's [[Result]] internal slot to value.

promise.__Result = value;

// 4. Set the value of promise's [[FulfillReactions]] internal slot to undefined.

promise.__FulfillReactions = undefined;

// 5. Set the value of promise's [[RejectReactions]] internal slot to undefined.

promise.__RejectReactions = undefined;

// 6. Set the value of promise's [[State]] internal slot to "fulfilled".

promise.__State = "fulfilled";

// 7. Return TriggerPromiseReactions(reactions, value).

return TriggerPromiseReactions (reactions, value)

}

Figure 6.11.: FulfillPromise function annotated with the corresponding lines of the standard

6.4. async/await API

Promises are often used together with the JS async/await API. This API introduces asynchronous

functions, inside of which one can await on a promise to be fulfilled before proceeding with the current

computation. The key point of asynchronous functions is that they do not block the execution of their

caller function when their execution gets suspended on an await; instead, the control is immediately

transferred to the caller function, which continues with the execution as if the asynchronous function

had simply returned.

Analogously to the DOM reference implementations, the JS async/await API: is implemented di-

rectly in JavaScript (ES5 Strict), with the Promises implementation; are thoroughly tested against

the latest version of the official ECMAScript test suite [26] (cf. Chapter 7); and make use of their

dedicated E-semantics primitives (cf. Chapter 4).

The async/await API is defined in the 8th version of the ECMAScript standard [29]; it is meant to

be used together, as it is only possible to use await inside an asynchronous function. Furthermore, the

async/await APIs directly build on the Promises API in that they make explicit use of JS Promises

functions and methods.

6.4.1. API Overview

In a nutshell, an asynchronous function is a JavaScript function whose execution can yield, that

is, transfer the control to its calling context without having completed its execution. A call to an
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asynchronous function is evaluated to a promise that is settled once that function terminates executing:

if the function returns, the promise is fulfilled; if the function throws, the promise is rejected. Consider,

for instance, the following program:

async function f () { if (b === true) { return 1 } else { throw 2 } };

f().then((v) => { console.log(v) }, (v) => { console.log(v) })
(CS1)

Recall that the method then receives as input two functions which are registered, respectively, as

a fulfil reaction and a reject reaction on the this object. Hence, the first function is executed if the

promise is fulfilled, whereas the second one is executed if it is rejected. Consequently, in the case of the

example, if the global variable b is equal to true, the program will write 1 to the console, otherwise

it will write 2.

As stated above, an asynchronous function can make use of the await expression to transfer the

control to the calling context. Essentially, the expression (await e) evaluates e to a promise and

suspends the computation of the current function until that promise is settled. Consider, for example,

the following program.

var p = new Promise(function (resolve, reject) { ... });

async function g () { return await p };

g().then((v) => { console.log(v) }, (v) => { console.log(v) });

(CS2)

This time, the asynchronous function g awaits on a promise p. If/when p is settled, g returns

the value with which it was settled. Suppose, for instance, that p is resolved with value 1; in this

case, the function g returns 1, meaning that its associated promise will also be fulfilled with value 1.

Alternatively, suppose that p is rejected with value 1; then, g throws 1, meaning that its associated

promise will also be rejected with value 1. In both cases, the program will simply write 1 to the

console.

6.4.2. API Reference Implementation

Because the async and await operators depend on JS Promises, we build our implementation of the

JS async/await API on top of our reference implementation of JS Promises. Essentially, we compile

both the async and await operators to ES5 Strict (the ECMAScript version supported by JaVerT).

In the following, we introduce the compilation of JS async/await and show how it connects with the

event primitives of the E-semantics.

Compiling async/await to ES5 Strict. As async and await fundamentally change the control

flow behaviour of the language, they cannot be simply implemented as libraries. Hence, we introduce a

pre-compilation step that translates these constructs to ES5 Strict. Expectedly, the compiled programs

use the Promise constructor to create the promise associated with the execution of the asynchronous

function being compiled. The key case of the compiler, given below, corresponds to the default
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If
s = if(e){s′}else{s′′}

Ca〈s〉 , if(e){Ca〈s′〉}else{Ca〈s′′〉}

Throw
s = throw e

Ca〈s〉 , s

Return
s = return e

Ca〈s〉 , resolve(e); return

Await
s′ = { var aux = e;

await(getPredicate( aux));
if( aux. State === “resolved”){

resolve( aux. Result); return
}else{

throw aux. Result
}

}
Ca〈await e〉 , s′

Figure 6.12.: Auxiliary Compiler

translation3 of asynchronous functions:

C〈async function(x̄){s}〉 , function(x̄) {
return new Promise(function(resolve, reject) {

try {Ca〈s〉; resolve(undefined)} catch(e) {reject(e); }
})
}

Essentially, an asynchronous function is compiled to a normal ES5 Strict function that simply creates

a promise p and returns it. The body of the original function is run inside the executor of the promise.

Additionally, we make use of an auxiliary compiler Ca to rewrite return statements inside the body

of the original function so that they are replaced by a call to resolve followed by an empty return.

The auxiliary compiler also compiles the await operator.

In Figure 6.12, we define the auxiliary compiler considering four cases: if, throw, return and

await. For most cases, the auxiliary compiler does not change the original code; it simply keeps the

original structure. This can be observed on the if and throw cases. However, in the presence of async

functions, the auxiliary compiler replaces each return statement by a call to resolve followed by an

empty return. The compilation of the await e expression is more involved. Concretely, the compiled

code first stores the value of e in an auxiliary variable aux. Then, it uses the await primitive of the

E-semantics with the argument getPredicate( aux), which corresponds to a function that evaluates

to true once the promise has been settled. When the await primitive (c.f. Chapter 4) is called,

the current execution is suspended until the given predicate holds, meaning that the current function

resumes when the promise is either resolved or rejected. Then, the compiled code checks if the promise

was fulfilled: if so, it continues with the execution normally; if not, it throws the value with which the

promise was rejected. For clarity, the introduced compiler is a simplified version of the async/await

compilation and it does not follow the standard line-by-line.

In Figures 6.13 and 6.14, we give the compilation of the functions f and g, given in Code Snippets 1

3If an asynchronous function can return from a finally block, the settling of its associated promise must be deferred
to that finally block, making the compilation of return statements more complex.
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and 2 respectively. Note that we omit the call to resolve(undefined) as, in these particular example, it

represents dead code due to the presence of return statements inside the async functions.

function f () {

return new Promise (function (resolve, reject) {

try { if (b === true) { resolve(1); return } else { throw 2 } }

catch (x) { reject(x) }

})

}

Figure 6.13.: Example showing async compilation

var p = new Promise(function (resolve, reject) { ... });

function g () {

return new Promise (function (resolve, reject) {

try {

var __aux = p;

__await(getPredicate(__aux));

if(__aux.__State === "resolved") { resolve(__aux.__Result); return }

else { throw __aux.__Result }

} catch (x) { reject(x); }

})

}

Figure 6.14.: Example showing await compilation

Line-by-line Closeness. For async/await, we depart from our line-by-line closeness approach.

The reason is that this would require JSIL to support first-order execution contexts, which, in turn,

would constitute a considerable engineering effort, including changing the internal representation of

execution contexts and extending JSIL with various primitives for their manipulation. Instead, we

opted for a more lightweight, compilation-based, approach that still correctly models the async/await

behaviour described in the standard.

6.5. The WebMessaging API

In order to allow for the communication between JS programs included in different windows, the

WHATWG group [141] designed the WebMessaging API as part of the HTML5 specification [138]. The

communication mechanisms provided by the WebMessaging API were then extended to account for

the communication between WebWorkers so that workers could exchange messages with one another.

Communication between workers happens mostly asynchronously, following the message-passing

paradigm [19, 65, 69]. Hence, when a worker sends a message to another, it does not get blocked

waiting for the reply. Instead, it registers a handler for processing the message reply (if it ever arrives)

and proceeds with the current computation. Behind the scenes, that message is simply added to the

message queue of the target worker to be processed afterwards.
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interface MessagePort : EventTarget {

undefined postMessage(any message, sequence<object> transfer);

undefined postMessage(any message, optional SerializeOptions options = {});

undefined start();

undefined close();

// event handlers

attribute EventHandler onmessage;

attribute EventHandler onmessageerror;

};

Figure 6.15.: IDL specification of the MessagePort interface

Figure 6.16.: An overview of MessagePort.postMessage

6.5.1. API Overview

The WebMessaging API is composed of three main HTML5 interfaces: (1) the Message Channel

interface, which represents a bidirectional communication channel, (2) the Message Port interface,

which represents an endpoint of a bidirectional communication channel, and (3) the Broadcast Channel

interface, which represents a many-to-many communication channel. Unsurprisingly, every message

channel is composed of two message ports, corresponding to its two endpoints; these ports are internally

connected to each other so that the messages sent through one arrive at the other. In contrast,

a broadcast channel is uniquely composed of the corresponding channel name. Both workers and

window objects can subscribe to a broadcast channel so when a message is sent through that channel,

it gets delivered to all of its subscribers.

Similarly to the DOM Living standard, the structure of all HTML5 interfaces is described in the

standard in object-oriented style. For each interface, the standard specifies its exposed fields and

methods. Methods are then further described in pseudo-code style with all of their operations being

detailed in a step-by-step fashion. As an example, consider the IDL specification of the MessagePort

interface given in Figure 6.15.

The standard states that every MessagePort is also an EventTarget, meaning that all message

ports must expose the methods and fields described in the EventTarget interface. Additionally, every

MessagePort object exposes:
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• the methods postMessage, start and close for sending a message through the channel associ-

ated with the port and activating and deactivating the port; and

• the fields onmessage and onmessageerror for storing the handlers to be executed when a mes-

sage gets delivered to the port and when a communication error occurs.

The postMessage method is of special interest to us as it lies at the core of the WebMessaging

API. In fact, several HTML5 interfaces, such as MessagePort, Window and Worker, include their own

version of postMessage. Here, we only describe the postMessage method of message ports. The

others are analogous. Importantly, the postMessage method is used to transfer both data and ports.

Hence, the execution of p1.postMessage(msg, ps) will cause the message msg to be sent from p1 to its

associated target port and the list of ports ps to be transferred from the execution context of p1 to

that of its target port.

Figure 6.16 describes the main steps that are performed when calling postMessage on a message

port, illustrating both the sender (left) and receiver (right) perspectives. The first step of the algorithm

is to find the target port associated with the provided port p1 (step 1), which we denote by p2. Next,

it checks if the origin port p1 is being transferred (step 2), i.e. if p1 is included in the list of ports ps

to be transferred. If this is the case, a DataCloneError is raised. Otherwise, the algorithm proceeds

to the message serialisation step (step 3). The serialisation mechanism involves several sub-steps that

we do not detail here, simply using msg* to denote the serialisation of the input message msg. For

instance, the JavaScript object {conference: “ECOOP”, year: 2022} is serialised as:

{Type: ”Object”, Properties: [{Key: “conference”, Value: {Type: “primitive”, Value: “ECOOP”},
{Key: “year”, Value: {Type: “primitive”, Value: 2022}}]}

Then, the algorithm validates the target port (step 4). If port p2 has value null or is being transferred

(meaning that it belongs to ps), the algorithm fails silently and no message is sent. Otherwise, if port

p2 is valid, the serialised message is sent from p1 to p2 (step5).

On the receiver side, the initial step is to find the final target port p2’ (step 6). Typically, the

final target port coincides with the one found on the sender side (in our case, p2 = p2’). However,

if the target port has been transferred before the message gets delivered, the message may need to

be re-directed to current execution context of the target port. Next, the message is deserialised (step

7). Finally, if the deserialisation succeeds, a DOM MessageEvent is dispatched on port p2’ with the

de-serialised message as an argument. Otherwise, a MessageErrorEvent is dispatched on p2’. Note that

the WebMessaging API relies on the DOM Events API for notifying message targets, such as message

ports, of their incoming messages. This was one of our motivations for designing the MP-semantics

parametrically on the E-semantics.

6.5.2. API Reference Implementation

Our reference implementation WebMessaging covers the interfaces MessagePort, MessageChannel,

and BroadcastChannel, all specified in Section 9.5 of the HTML5 standard. Additionally, our im-

plementation partially supports cross-document messaging (Section 9.4.3) and message broadcasting

between different browsing contexts (Section 9.6). Cross-document messaging is typically used to
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Figure 6.17.: JavaScript object graph for the MessagePort interface

Figure 6.18.: Fragment of the call graph of our WebMessaging reference implementation

enable communication between different Window objects through the use of the Window dedicated

postMessage method; e.g. Window.postMessage(). Importantly, communication between Window ob-

jects is treated differently depending on whether or not the two Window objects belong to the same

origin [93]. So far, our implementation only supports same-origin communication. We believe that its

extension to allow for cross-origin communication is straightforward, not requiring any modifications

to the underlying MP-semantics.

We implement the WebMessaging API in JavaScript (ES5 Strict), mapping each interface to a

JavaScript constructor function in charge of creating the objects of that interface. In Figure 6.17,

we show a fragment of the object graph corresponding to our implementation of the interfaces

MessageChannel and MessagePort. Analogously to the approach used for the DOM and JS Promises,

we use prototype-based inheritance to emulate standard class-based inheritance, storing the methods

shared by all the objects of a given interface in its associated prototype. Accordingly, the methods of

the MessagePort interface are defined in the object MPProto. Given that the interface MessagePort

is supposed to be an extension of EventTarget, we define the internal prototype of MPProto to be

the ETProto object, that is, the prototype of all event target objects. In this way, all MessagePort

objects have access to the methods exposed by EventTarget objects, most notably the methods

addEventListener and dispatchEvent shown in the figure.

Connection with MP-semantics. Our reference implementation of WebMessaging relies on

the MP-semantics to implement the core message-passing functionality. However, only a few methods

of the WebMessaging API directly interact with the MP-semantics. These are shown in Figure 6.18

together with the MP-semantics primitives that they use. In the following, we go through each of

these methods explaining how they use their corresponding primitives.
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• postMessage: Unsurprisingly, the postMessage method uses the getConnected〈〉 primitive to

obtain the identifier of the destination port (i.e. the port to which the origin port is connected)

and the primitive send〈〉 to send the serialised message to that port. Importantly, the standard

mandates that the internal steps triggered by postMessage on the sender side and on the receiver

side be executed atomically. To achieve this, our implementation makes use of the primitives

beginAtomic and endAtomic, which guarantee that no interleaving occurs during the execution

of the internal postMessage steps.

• MessagPort: Whenever a message port is created, our implementation uses the MP-semantics

primitive newPort〈〉 for creating a new port identifier and assigns this identifier to the property

id of the corresponding MessagPort object.

• MessageChannel: Each message channel is composed of two message ports that must be con-

nected to each other. To this end, the MessageChannel constructor first calls the disconnect〈〉
primitive on the two ports to guarantee that they are unpaired and then connects the two

together using the connect〈〉 primitive.

• BroadcastChannel: Broadcast channels allow for a many-to-many communication between

workers in that each time one of the subscribers of a broadcast channel sends a message on

the channel, that message gets delivered to all of the channel’s subscribers. Whenever a broad-

cast channel is created, we assign it an identifier by calling the newPort〈〉 primitive. Then, the

origin thread notifies all other threads about the creation of a new broadcast channel by call-

ing the notifyAll〈〉 primitive. The broadcast channels with the same name of the newly created

broadcast channel are then connected to it via the connect〈〉 primitive, enabling many-to-many

communication.

Line-by-line closeness. Figure 6.19 illustrates the line-by-line closeness between our reference

implementation and the standard, showing a fragment of the the postMessageSteps function, which

is an auxiliary routine of the postMessage algorithm that describes the steps to be executed on the

sender side, before the message is sent to the target port, as described in Figure 6.16. We include the

steps defined by the standard as comments in the code, so that the line-by-line closeness is clear. We

highlight the last line of code as it make uses of the primitive send〈〉 of the MP-semantics. The MPSem

object stores wrapper JS functions that trigger the corresponding MP-semantics primitives. Thus, the

call to send() will trigger the send〈〉 primitive of the MP-semantics.

6.6. The WebWorkers API

The first version of the WebWorkers API [133] was published in 2009 by W3C [134] and evolved

over the years, eventually being integrated into the HTML5 standard [138]. Web workers represent a

radical change to the single-threaded browser execution model, enabling the multi-threaded execution

of JavaScript programs. Each worker can be thought of as a separate thread with its own mem-

ory. Workers communicate asynchronously using mechanisms described in the WebMessaging API.

In the following, we give an overview of the WebWorkers API (§6.6.1) and introduce our reference

implementation (§6.6.2).
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function postMessageSteps (senderPortId, targetPortId, message, options) {

// 1. Let transfer be options["transfer"].

var transfer = options["transfer"];

// 2. If transfer contains this MessagePort, then throw a "DataCloneError".

if(transfer && transfer.indexOf(senderPortId) !== -1) throw new DataCloneError();

// 3. Let doomed be false.

var doomed = false;

// 4. If targetPort is not null and transfer contains targetPort, set doomed to true.

var transferIds = transfer.map(function(p){return p.__id});

if(targetPortId !== -1 && transfer && transferIds.indexOf(targetPortId) !== -1)

doomed = true;

// 5. Let serialized be StructuredSerializeWithTransfer(message, transfer).

var serialized = StructuredSerializeWithTransfer(message, transfer);

// 6. If targetPort is null, or if doomed is true, then return.

if(targetPortId === -1 || doomed === true) return;

// 7. Add a task that runs these steps to the port message queue of targetPort ...

MPSem.send(serialized, transferIds, senderPortId, targetPortId)

}

Figure 6.19.: Line-by-line closeness of the WebMessaging standard and our reference implementation

6.6.1. API Overview

The WebWorkers API defines four main interfaces: (1) the Worker interface, which represents a

dedicated worker that is accessible by a single script, (2) the SharedWorker interface, which repre-

sents a worker that can be shared among multiple scripts, (3) the DedicatedWorkerGlobalScope

interface, which defines the fields and methods that are accessible by each dedicated worker and (4)

the SharedWorkerGlobalScope interface, which works similarly to DedicatedWorkerGlobalScope for

shared workers.

Analogously to the other supported APIs, the interfaces of the WebWorkers API are described

in object-oriented style. We show the Worker interface as defined by the standard in Figure 6.20.

A worker object represents the worker’s thread inside the thread that created it. Worker objects

implement the interface worker, which inherits from EventTarget, meaning that worker objects expose

the methods defined in the EventTarget interface. In addition to the fields and methods defined by

the EventTarget interface, the Worker interface provides:

• a constructor that takes: (1) an URL indicating the location of the worker script, and (2) an

optional argument of type WorkerOptions including, for instance, the worker name;

• the methods terminate and postMessage for terminating the worker and sending a message to

its associated running thread; and

• the fields onmessage and onmessageerror, representing the handlers for the message and

messageerror events.

Every Worker object has an implicit MessagePort connecting the thread of the script that created

the worker to the worker’s own thread implicit MessagePort. Hence, calling the postMessage method

on a worker object produces the same effect as calling postMessage on its internal MessagePort. In

Figure 6.21, we show a client of the WebWorkers API containing the main script (left) and two worker

scripts: w1 (center) and w2 (right). Each script executes in a separate thread. The main script creates
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interface Worker : EventTarget {

constructor(USVString scriptURL, optional WorkerOptions options = {});

undefined terminate();

undefined postMessage(any message, sequence<object> transfer);

undefined postMessage(any message, optional SerializeOptions options = {});

attribute EventHandler onmessage;

attribute EventHandler onmessageerror;

};

Figure 6.20.: IDL specification of the Worker interface

//Main script

var w1 = new Worker("w1.js");

w1.postMessage("msg1");

//Worker w1

onmessage = () => {

postMessage("msg3");

}

var w2 = new Worker("w2.js");

w2.postMessage("msg2");

w2.terminate();

//Worker w2

onmessage = () => {

console.log("Message received by w2")

}

Figure 6.21.: Example with three scripts: main (left), w1 (center) and w2 (right)

the worker w1 whose script is located in the file w1.js, and sends the message "msg1" to w1. The

worker w1 defines a handler for the MessageEvent by assigning it to the global variable onmessage.

Hence, every message sent from the main thread to w1 triggers the onmessage handler, which sends

the message "msg3" back to the main thread. The worker w1 also performs the following steps: (1)

creates the worker w2, (2) sends the message "msg2" to w2, and (3) terminates w2. The worker w2,

in turn, defines an onmessage handler, which prints the message "Message received by w2" to the

console.

The execution of the program shown in Figure 6.21 depends on the scheduling policy used. The

WebWorkers API does not define a scheduling policy to regulate how the execution of the main thread

is to be interleaved with that of the created workers; browsers are free to implement the scheduling

policy that they see fit. In Figure 6.22, we show two possible thread interleavings I1 (top) and I2

(bottom) based on different scheduling policies: the former prioritises configuration steps over the

processing of messages (Confs > Msgs), while the latter prioritises the processing of messages over

configuration steps (Msgs > Confs). We use different colours to indicate which thread is running at

each point in time.

The thread interleaving I1 includes the following steps:

1. The main thread creates the worker w1 by invoking the Worker constructor. At this stage, the

main thread and the worker thread w1 start executing in parallel;

2. Worker w1 assigns the onmessage handler and creates the worker w2. We then have three

executing threads: the main thread and the two workers w1 and w2;

3. Worker w2 executes up to completion, meaning that the onmessage handler is assigned;

4. The main thread sends the message "msg1" to w1;

5. Worker w1 sends the message "msg2" to w2;
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Figure 6.22.: Different scheduling policies for the example shown in Figure 6.21

6. Worker w1 terminates w2 by calling w2.terminate(). Hence, the worker thread w2 terminates

immediately and its pending message "msg2" is discarded;

7. At this stage, both the main and worker scripts finished to execute, and, according to the

scheduling policy used, messages can now be processed. Then, w1 processes message "msg1",

and consequently sends message "msg3" back to the main thread.

8. Finally, the main thread processes "msg3" and the execution terminates as there is neither

configuration step nor message pending.

The thread interleaving I2 is analogous but follows the opposite scheduling policy: the processing

of messages is prioritised over configuration steps. This avoids the message "msg2" to be discarded.

Instead, it is processed before w1 terminates w2. The scheduling policy implemented by major Web

browsers prioritises configuration steps over the processing of messages, leaving the processing of

messages to be done only if there is no configuration step pending [67, 22]. However, the scheduling

policy could vary depending on the reference implementation used. The message-passing module of

JaVerT.Click is parametric on a scheduler, allowing for the analysis of the same program using different

scheduling policies. The developer just needs to provide the implementation of the corresponding

schedulers without the need to modify JaVerT.Click.

6.6.2. API Reference Implementation

We provide a reference implementation of the WebWorkers API including the interfaces Worker,

SharedWorker, DedicatedWorkerGlobalScope and SharedWorkerGlobalScope, all defined in Section

10.2 of the HTML5 standard. Besides these interfaces, we partially implement various other auxiliar
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Figure 6.23.: Fragment of WebWorkers JavaScript object graph

interfaces, such as the WorkerNavigator and WorkerLocation interfaces defined in Section 10.3 of

the standard.

We design our reference implementation of WebWorkers analogously to the other supported APIs.

Each interface from the WebWorkers standard is mapped to a JavaScript constructor. In Figure 6.23,

we show a fragment of the object graph for WebWorkers. Similarly to the approach used for the

MessagePort interface, we also assign an internal identifier id to each Worker and SharedWorker.

Because the Worker and SharedWorker interfaces inherit from EventTarget, their internal prototype

objects inherit from ETProto, which is the EventTarget prototype. The DedicatedWorkerGlobalScope

and SharedWorkerGlobalScope interfaces are specialisations of WorkerGlobalScope, which exposes

their common fields. The SharedWorkerGlobalScope interface exposes the onconnect handler to

allow multiple scripts to connect to a SharedWorker. The DedicatedWorkerGlobalScope interface,

in contrast, does not expose the onconnect field, simply defining an optional name property that is

mostly used for debugging purposes.

Connection with MP-semantics. The WebWorkers API builds on top of WebMessaging.

Hence, it indirectly uses all primitives of the MP-semantics listed in §6.5.2. Besides all those primi-

tives used by the WebMessaging API, our reference implementation of WebWorkers calls the create〈〉
and terminate〈〉 primitives to create and terminate a Worker thread. The primitive create〈〉 is called

by the constructors of the Worker and SharedWorker interfaces to setup a new thread, and returns

a unique identifier, which is assigned to the internal field id of the respective worker. The primi-

tive terminate〈〉 is called by the terminate method exposed in both the Worker and SharedWorker

interfaces.

Line-by-line Closeness. Our reference implementation of WebWorkers follows the API standard

line-by-line. In Figure 6.24, we show a fragment of the runWorker function, which implements the

required setup steps for a newly created worker thread. We include the steps defined by the standard

as comments in the code, so that the line-by-line closeness is clear. One of the steps consists of

establishing bi-directional communication between the new thread and the origin thread, which is
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function runWorker(worker, workerURL, outsideSettings, outsidePort, options) {

...

//15. Let inside port be a new MessagePort object in inside settings's Realm.

var insidePort = new MessagePort();

//16. Associate inside port with worker global scope.

global.__port = insidePort;

//17. Entangle outside port and inside port.

MPSem.disconnect(outsidePort.__id);

MPSem.disconnect(insidePort.__id);

MPSem.connect(outsidePort.__id, insidePort.__id);

...

}

Figure 6.24.: Fragment of runWorker function

done through the use of message ports. Given an outsidePort, which denotes the port from the

origin thread, we need to create an insidePort, which denotes the port that is the communication

entry point of the new worker thread. We pair the two ports by calling the corresponding primitives

of the MP-semantics (highlighted in blue). Finally, after the connection between ports is established,

the worker script can start running in parallel with the main thread. The standard does not define

a specific scheduling strategy for WebWorkers, but most browser implementations seem to run the

newly created worker script up to completion [67, 22].
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7. Evaluation

We evaluate JaVerT.Click from two different perspectives. First, we test our reference implementa-

tions of DOM Core Level 1, DOM Events, JS Promises, JS async/await, WebMessaging and WebWork-

ers against their official test suites [57, 26] to make sure that they pass all applicable tests. Second, we

evaluate our symbolic execution engine against three open-source libraries: cash [142], p−map [120]

and webworker-promise [105].

During the testing process of our reference implementations, we discovered coverage gaps in the

DOM Core Level 1 and DOM Events test suites and create additional tests to complete their coverage.

Additionally, there were tests of the WebMessaging and WebWorkers test suites that were not consis-

tent with the behaviour described in the HTML5 standard; we reported and fixed these inconsistencies

via pull requests to the official test suite repository. All submitted pull requests have been accepted

by the HTML5 committee and are now integrated into the official test suite repository.

To evaluate the symbolic engine of JaVerT.Click, we developed a symbolic test suite for each tar-

geted library. The symbolic test suites developed for the open-source libraries revealed, in total, six

previously unknown bugs. All bugs have been reported and two have been fixed via pull requests. The

remaining four bugs have also been acknowledged by the libraries’ developers. By symbolically testing

the three libraries, we establish the bounded correctness of several of their functional properties.

Outline. We first detail the testing of the reference implementations (§7.1). Finally, we present the

symbolic testing results for the cash, p−map, webworker-promise libraries (§7.2).

7.1. Testing API Reference Implementations

We tested our reference implementations of the chosen APIs against their official test suites. All these

test suites come with their own infrastructures and have tests written in different formats. For this

reason, we built a common testing infrastructure that converts the tests of all the considered test

suites into a uniform JS format that can be handled by JaVerT.Click.

We evaluated each of the implemented APIs using its official test suite as follows:

• The DOM Core Level 1 implementation was tested against the official DOM Core Level 1 test

suite [25];

• The JS Promises and JS async/await implementations were tested against the appropriate sub-

sets of the Test262 test suite, which covers the entire ECMAScript standard [26];

• The DOM Events, WebMessaging and WebWorkers implementations were tested against the

appropriate subsets of the Web Platform test suite [57].

In the following, we detail our testing infrastructure (§7.1.1), present the test results for all supported

APIs (§7.1.2) and discuss the coverage gaps and issues found in the official tests (§7.1.3).
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7.1.1. Testing Infrastructure

We illustrate our testing infrastructure in Figure 7.1. The tests for the JS Promises and JS async/await

APIs are written in JavaScript. To run them in JaVerT.Click, we only need to compile the test harness

together with the tests. The tests for DOM Events, WebMessaging and WebWorkers, in contrast, are

written in HTML and contain JS scripts enclosed by the <script> tag. We developed a Python script

to isolate the code of each test into a JS file. Then, if the test takes any XML/HTML file as input, we

also parse the corresponding input file with the help of the xml−js parser [146]. This parser returns

a JSON1 object, which is subsequently converted to a DOM tree. The following steps are identical to

the ones used for the JS Promises and JS async/await APIs. Finally, as the DOM Core Level 1 tests

are written in XML, we additionally have to first transform them into HTML tests using XSLT, and

then apply the same steps used for DOM Events, WebMessaging and WebWorkers. In the following,

we provide an example of an XML test to illustrate the transformations applied.

Figure 7.1.: Common Testing Infrastructure

Example. In Figure 7.2, we show an official test2 written in XML taken from the DOM Core Level 1

test suite (left) and the resulting JavaScript test after applying the transformations (right). In general,

each XML tag in the original test becomes a JavaScript command in the transformed test. For instance,

each <var> XML tag is transformed into a JavaScript variable declaration. Analogously, each <load>

tag is transformed into a variable assignment. Other tags representing functions provided either by the

DOM API or by the test harness, such as <createEntityRef> and <assertNotNull>, are transformed

into JS function calls. Note that this test takes as input the staff.xml file. In this particular example,

besides applying the ECMA XSLT transformation and using the Python script, our infrastructure also

parses the staff.xml file by calling the xml−js parser and creates the corresponding DOM tree stored

in the variable doc.

7.1.2. Test Results

In Table 7.1, we summarise the results of the testing of our reference implementations. We provide,

for each API: (1) the number of available tests, (2) the number of filtered tests, (3) the number of

applicable tests, these being the number of available tests minus the number of filtered tests, and

(4) the number of passing tests. Note that we pass all the applicable tests for all our API reference

implementations. We filter out the tests that require features not supported by JaVerT.Click, except

1https://www.json.org/json-en.html
2https://dev.w3.org/2001/DOM-Test-Suite/tests/level1/core/attrremovechild1.xml
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<test xmlns="..." name="attrremovechild1">

...

<title>attrremovechild1</title>

...

<var name="doc" type="Document"/>

<var name="entRef" type="EntityReference"/>

...

<load var="doc" href="staff".../>

<createEntityRef obj="doc" var="entRef".../>

<assertNotNull actual="entRef" id="..."/>

...

</test>

(function attrremovechild1() {

var doc;

var entRef;

...

doc = parser.parseDocument("staff.xml");

entRef = doc.createEntityReference("ent4");

assertNotNull("EntRefNotNull",entRef);

...

})()

Figure 7.2.: XML test taken from test suite (left) and corresponding JavaScript transformed file (right).

of the DOM Core Level 1, for which we pass all available tests. We explain the filtering criteria in more

detail later in this section.

DOMCore Level 1 DOMEvents JSPromises JS async/await WebMessaging WebWorkers

Available Tests 527 83 474 86 121 269
Filtered Tests 0 27 130 18 30 111

Applicable Tests 527 56 344 68 91 158
Passing Tests 527 56 344 68 91 158

Line Coverage 98.14% 97.45% 98.76% N/A N/A N/A
Untested Lines 13 8 5 N/A N/A N/A

Additional Tests 5 3 N/A N/A N/A N/A

Table 7.1.: Testing of Reference Implementations

We measured test suite line coverage of the DOM Core Level 1, DOM Events and JS Promises test

suites. The three test suites have comprehensive coverage, but there were still gaps that allowed us to

develop additional tests. We developed 5 additional tests for the DOM Core Level 1 API and 3 addi-

tional tests for the DOM Events API. The 5 untested lines in our implementation of the JS Promises

API are part of the Promise.allSettled function,3 which was not part of the standard yet at the time

when these tests were executed. Thus, we do not provide complementary tests. We manually checked

the filtered tests for DOM Events and JS Promises to make sure that our coverage results are trust-

worthy. Hence, we believe that including the filtered tests of the DOM Events and JS Promises test

suites would not affect our coverage results. We do not provide coverage results for the JS async/await,

WebMessaging and WebWorkers test suites because we do not implement all features from these APIs

and we filter out a substantial number of tests. Thus, we believe that the coverage results for these

three APIs would not be representative enough.

We did not submit the additional tests written for DOM Core Level 1 because the test suite is not

used anymore. However, it is the only test suite available for the DOM Core Level 1 and it allowed us to

test our reference implementation. Since the DOM standard has evolved substantially over the years,

its current test suite [57] covers the entire DOM Living Standard. We reported [52] the coverage gaps

of the DOM Events test suite to the committee, and, if possible, the additional tests will be integrated

into the test suite repository.

3https://tc39.es/proposal-promise-allSettled/
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DOMEvents JSPromises JS async/await WebMessaging WebWorkers

404 Not Found Error - - - - 1
Ajax 2 - - - -

Animation Frame - - - - 1
Array Buffer - - - 2 2

Atomics - - - - 1
Blob - - - 5 10

Canvas - - - 3 2
Cross-origin 5 - - 14 18

CSS 19 - - - -
Dynamic Import - - - - 20

Error Line Number - - - - 5
ES6 Features 1 127 18 - -

IFrame Detach - - - - 1
Navigation - - - - 6

NetworkError - - - - 6
Non-strict Mode - 3 - - -
Opaque Origin - - - 2 -

Python - - - - 2
RegExp - - - 4 8
Timers - - - - 2

Termination - - - - 4
URL Validation - - - - 7
UTF Encoding - - - - 2

XMLHttpRequest - - - - 13

Total 27 130 18 30 111

Table 7.2.: Filtered tests

Test Filtering Criteria. In order to run the official tests against our reference implementations,

we filtered tests that use features not supported by JaVerT.Click, such as ES6 features. In Table 7.2,

we provide, for each API, the number of tests filtered per category. We filtered out 27 tests from the

DOM Events test suite, of which 19 depend on Cascading Style Sheets (CSS),4 which is a language used

for defining the style of a webpage. JaVerT.Click does not support CSS and this feature is not part

of the DOM standard. The remaining 8 tests depend on 404 Not Found Error, Canvas and capturing

line numbers of JavaScript errors, which are also not core features of DOM Events.

We filtered out 130 tests from the JS Promises test suite, of which 127 depend on ES6 [28] features

and 3 depend on Non-strict mode, which is not supported by JaVerT.Click. Non-supported ES6

features include Symbol iteration, classes, reflection and proxies. All the 18 tests filtered out from the

JS async/await test suite also depend on ES6 features, such as default arguments and generators.

We filtered out 30 tests from the WebMessaging test suite, of which 14 depend on cross-origin com-

munication, which allows for the communication between Window objects holding HTML documents

coming from different origins. The remaining 16 depend on Array Buffer, Blob, Canvas, Opaque

Origin and RegExp. All filtering criteria, except cross-origin communication, are orthogonal to the

WebMessaging and WebWorkers APIs, being mostly related to features of the more recent versions of

the ECMAScript standard [28, 29] that are unsupported by JaVerT. We believe that one could apply

our methodology by extending JaVerT with support for these features without changing the MP-

semantics module at the core of JaVerT.Click. Finally, we filtered out 111 tests from the WebWorkers

test suite, of which 20 depend on dynamic import and 18 depend on cross-origin communication and

13 depend on XMLHttpRequest. The dynamic import and XMLHttpRequest features are not part

of the WebWorkers standard and thus not relevant in the context of our MP-semantics. We do not

detail the remaining filtered tests for brevity, but their filtering criteria is not related to core features

4https://www.w3.org/Style/CSS/Overview.en.html

103

https://www.w3.org/Style/CSS/Overview.en.html


of the WebWorkers API.

7.1.3. Contribution to official test suites.

During the process of testing our reference implementations against the official test suites, we identified

coverage gaps and bugs in the various test suites. The incorrect tests had to be fixed because they

were either inconsistent with the behaviour described in the standard or contained a bug in their

respective implementation. In the following, we provide examples of added and fixed tests.

Added Tests

In order to fill the coverage gaps identified in the DOM test suite, we developed 5 additional tests to

the DOM Core Level 1 test suite and 3 additional tests to the DOM Events test suite. In Figure 7.3, we

show one of the additional tests developed for the DOM Core Level 1 test suite. The scenario explored

in the test is the insertion of a text node (textNodeChild) as child of another text node (textNode).

According to the specification of the DOM Core Level 1 [130], a text node cannot have children. Hence,

this test expects the call to appendChild to raise a DOM exception of type INVALID HIERARCHY ERR.

(function nodeappendchildinvalidhierarchy() {

var success;

var doc;

var textNode;

var textNodeChild;

success = false;

// DOM tree is obtained from staff.xml file.

doc = docs["staff.xml"]

textNode = doc.createTextNode("new text node");

textNodeChild = doc.createTextNode("child text node");

try {

// This call must raise exception

textNode.appendChild(textNodeChild);

}

catch(ex) {

// Check if exception raised was of type INVALID_HIERARCHY

success = (typeof(ex.code) != 'undefined' && ex.code == 3);

}

// Check that the variable success is set to true

assertTrue("throw_INVALID_HIERARCHY_ERR",success);

})()

Figure 7.3.: DOM Core Level 1 additional test.

Fixed Tests

In Figure 7.4, we show one of the failing tests, in which we found two issues. The goal of this test is

to ensure that certain interfaces are globally available inside the running thread of a shared worker.

The test includes the worker (left) and main (right) scripts.

Worker script. First, in line 1, the worker script declares the prt variable that denotes the port

that is used to establish a connection with the main thread. Then, in lines 2-9, the script defines the
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function handleCall that iterates over the e.data array, which contains the interfaces that must be

present in the global object of the SharedWorker script. The interfaces that are found not be present

in the global object are added to the log array. In line 8, the worker thread sends a string containing

the missing interfaces to the main thread. Finally, in lines 10-13, the script defines the onconnect

function of the shared worker, which is executed whenever the worker is instantiated. In this case, the

onconnect function simply sets the handler of the worker’s implicit port to the handleCall function

defined in lines 2-9, meaning that this function is used to process the messages that come from the

main thread.

1 let prt;

2 const handleCall = e => {

3 const log = [];

4 for (let i=0; i < e.data.length; ++i) {

5 if (!(e.data[i] in self))

6 log.push(e.data[i]);

7 }

8 prt.postMessage('These were missing:'+

log.join(', '));↪→
9 };

10 onconnect = e => {

11 prt = e.ports[0];

12 prt.onmessage = handleCall;

13 };

1 async_test(t => {

2 const expected = 'XMLHttpRequest'+ ... +

3 'SharedWorker ApplicationCache'.split(' ');

4 const supported = [];

5 for (let i=0; i < expected.length; ++i) {

6 if (expected[i] in window)

7 supported.push(expected[i]);

8 }

9 const worker = new SharedWorker('worker.js');

10 worker.port.start();

11 worker.port.postMessage(supported);

12 worker.port.onmessage = e => {

13 assert_equals(e.data, '');

14 });

Figure 7.4.: Test taken from WebWorkers official test suite including worker (left) and main (right)
scripts.5

Main script. The main script contains the actual test code. In line 2, the variable expected is

assigned to a list of interfaces that should be accessible in shared workers. We omit some of these

interfaces to improve readability. Next, in lines 4-8 we store the list of interfaces that are accessible

through the window object in the variable supported. Then, in line 9, we create a new SharedWorker

object giving the filename worker.js. In lines 10-11, the worker port is enabled and the main script

sends the supported array of interfaces to the worker script as a message. Finally, in lines 12-14, the

onmessage handler of the worker port is assigned to a function that checks if the message received

from the worker is equal to the empty string, which should be the case if the SharedWorker thread

has access to the same interfaces accessible by the main thread.

The test has two issues. Note that the check performed by assert equals in line 13 always fails be-

cause the string sent from the worker to the main thread is never equal to the empty string, since, even if

no interface is found to be missing the worker thread will still send the string ‘These were missing:’

to the main thread. The other issue is that both the SharedWorker and ApplicationCache interfaces

must not be accessible in the worker thread, as specified in Section 10.2.6.4 of the HTML5 stan-

dard [138]. To fix this test, one would have to remove the strings ‘SharedWorker’ and ‘ApplicationCache’

from the expected array and modify the assert equals statement in line 13 to the string ‘These were

missing:’. We fixed the test by creating a pull request6 that has been accepted by the committee.

We found further issues in three other tests of the WebMessaging API and fixed them via pull re-

5https://github.com/web-platform-tests/wpt/blob/6b6a74e478f36b8039d448d8f44f86033dabefa3/workers/

constructors/SharedWorker/interface-objects.html
6https://github.com/web-platform-tests/wpt/pull/29987
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quests.7,8,9 All pull requests have been merged into the main branch of the repository. The fact

that our reference implementations revealed bugs in the official test suite of the HTML5 standard

demonstrates their usefulness for the guiding and managing the standardisation process.

7.2. Symbolic Testing of Open-Source Libraries Using JaVerT.Click

We discuss the evaluation of the symbolic testing engine provided by JaVerT.Click which has been

tested against three open-source libraries: cash [142], p−map [120] and webworker-promise [105]. We

apply the same approach for these three libraries, which consists of developing a symbolic test suite

for each library based on the library’s concrete test suite. Starting from the concrete tests written

by the library developers allows us to identify a set of functional properties satisfied by each library

and, based on these properties, write a symbolic test suite. Symbolic tests tend to provide, in general,

better coverage with fewer lines of code and stronger correctness results that are beyond the limit of

concrete tests. In the following, we introduce each library and present our symbolic testing results.

7.2.1. The cash library

The cash library [142] is a jQuery10 alternative for modern browsers that provides jQuery-style syntax

for manipulating the DOM. Its main goal is to remain as small as possible, while still staying (mostly)

compatible with jQuery and providing its users with a similar set of features. Moreover, it exhibits

better performance than jQuery, as it dominantly relies on native browser events rather than on a

custom event model. The library has 1,886 lines of JavaScript code and a growing community of

users, with more than 21K weekly downloads on NPM11, and more than 3M overall downloads12, and

more than 5.7K stars on GitHub [142]. We focus our analysis on the events module of cash, which

provides a mechanism for creating and manipulating DOM events, offering additional functionalities

and greater level of control with respect to the native DOM event model.

Library Overview

We provide a high-level description of the functions exposed by cash library. The events module has

five main and twelve auxiliary functions. Here, we focus on the main functions, which allow for basic

event-related operations, such as registering a handler to an event or dispatching an event.

on(e, h): ele.on(e, h) registers the handler h for an event e on the element ele;

off(e, h): ele.off(e, h) deregisters the handler h for the event e on the element ele;

one(e, h): ele.one(e, h) behaves the same as .on, except that h can be triggered only once and is

automatically deregistered afterwards;

7Issue:https://github.com/web-platform-tests/wpt/issues/29928;
Pull request:https://github.com/web-platform-tests/wpt/pull/29988

8Issue:https://github.com/web-platform-tests/wpt/issues/29546;
Pull request:https://github.com/web-platform-tests/wpt/pull/29546

9Issue:https://github.com/web-platform-tests/wpt/issues/31125;
Pull request:https://github.com/web-platform-tests/wpt/pull/31673

10https://jquery.com/
11https://www.npmjs.com/package/cash-dom
12https://npm-stat.com/charts.html?package=cash-dom&from=2016-01-04&to=2022-01-04
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Table 7.3.: Symbolic Test Suite for the events module of cash

Test Name rHand sHand tOne tOff other Total

Time 5.54s 144.38s 24.35s 22.87s 42.20s 239.34s
Cmds 1,468,907 38,240,506 9,288,337 9,400,471 14,150,893 72,549,114

ready(f): ele.ready(f) executes the function f after ensuring that the entire document content has

been loaded successfully;

trigger(e): ele.trigger(e) triggers the handlers for an event e on the element ele.

The cash library comes with a concrete test suite, which has 95.52% overall line coverage. The 18

tests for the events module contain 288 lines of code. Their line coverage of on is 76.92%, of trigger

is 93.75%, of ready is 0% and of the main auxiliary function called by on is 81.82%; the remaining

functions have 100% coverage.

Bounded Correctness

We create a symbolic test suite for the events module of cash, with two goals in mind: (1) achieving

100% line coverage for all event-related functions; and (2) establishing bounded correctness of several

essential properties. We achieve both goals using just eight symbolic tests. In Table 7.3, we give,

for these tests, their execution time (Time, in seconds) and the number of executed JSIL commands

(Cmds). Each test, additionally, has an overhead of 4.454 seconds, 9 lines of code, and 899,390

executed commands due to the setup of the initial heap and auxiliary testing functions. We single out

four tests, which capture important properties that the events module should respect; the remaining

ones are grouped together as other, as they offer little additional insight. These four tests are:

rHand: If a handler has been executed, then it must have previously been registered.

sHand: If a single handler h has been registered to a given event e using on(e, h), then that is the

only handler that can be executed for that event. This test has revealed two bugs in the events

module of cash, discussed in detail in §7.2.1.

tOne: If a single handler h has been registered to a given event e using one(e, h), then that handler

can be executed for that event only once.

tOff: If a handler h registered to an event e is deregistered using off(e, h), then that handler can no

longer be executed for that event.

The tests establish that these properties hold for all events (strings) up to length 20. The bound

20 has been chosen because it is the length of the longest property of the JavaScript initial heap,

propertyIsEnumerable. The bound can be adjusted in the tests themselves: the running times will

be bound-linear for rHand, tOne, and tOff, which use one symbolic event; and bound-quadratic for

sHand, which uses two.

The obtained results demonstrate that symbolic testing is far superior to concrete testing: our

symbolic test suite has greater coverage, 29% fewer lines of code, and, most importantly, provides

much stronger correctness guarantees that are beyond the limit of concrete testing.
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Discovered Bugs

As part of its effort to remain minimal, the cash library, unlike jQuery, does not implement its own

event model. Instead, it heavily relies on the DOM event model. However, the semantics of events

in cash differs from that of DOM events. For example, cash enforces that all user-defined focus-

related handlers bubble, by redirecting handler registration (via on or one) and deregistration (via

off) for the 'focus'/'blur' events to 'focusin'/'focusout' instead. The redirection is implemented

as follows: any event that is passed to the on, one, and off functions is first processed by the

getEventTypeBubbling function:

function getEventTypeBubbling(e) { return eventsFocus[e] || e }

which is intended to substitute 'focus' by 'focusin' and 'blur' by 'focusout', while keeping other

events intact, by indexing the eventsFocus object

var eventsFocus = { focus: 'focusin', blur: 'focusout' }.

with the event e. This indexing is meant to return a string, which is then processed using the split

function exposed by the String interface. This implementation, however, causes two subtle bugs,

discovered by the sHand symbolic test, whose stylised code, with detailed inlined explanations, is

given in Figure 7.5.

var count = 0, ele = $('.event'); // Initialise counter and target element

function h () { count++ } // Handler counts the number of times it was called

// Create two symbolic events, e1 and e2, of maximum length 20

var e1 = symbStr(20), e2 = symbStr(20);

// Register the handler for e1 on ele, then trigger e2 on ele

ele.on(e1, h); ele.trigger(e2);

Assert(

// Handler was executed only once, if e1 and e2 were equal and non-empty,

(count === 1 && e1 === e2 && e1 !== "") ||

// and was not executed otherwise.

(count === 0 && (e1 !== e2 || e1 === ""))

);

Figure 7.5.: sHand symbolic test.

Bug 1: Overlooked Prototype Inheritance. The first set of counter-examples demonstrates

that cash throws a native JavaScript type error when executing ele.on(e1, h) if

e1 ∈ {'constructor', 'hasOwnProperty', 'isPrototypeOf',
'propertyIsEnumerable', 'toLocaleString', 'toString', 'valueOf'}.

Recall that the function getEventTypeBubbling indexes the eventsFocus object to redirect focus-

related events. Indexing objects as key-value maps, however, may return unexpected values, as shown

in [108]: e.g., eventsFocus['valueOf'] returns the function object found at Object.prototype.valueOf,
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as the 'valueOf' property is not in the eventsFocus object itself, but is in its prototype. Then, since

that function object has no split property in its prototype chain, the subsequent call to split throws

a native JavaScript type error.

Bug 2: Unintended Event Triggering. The second set of counter-examples demonstrates that

the final correctness assertion of the sHand symbolic test does not hold if

(e1, e2) ∈ {('blur', 'blur'), ('focus', 'focus'), ('blur', 'focusout'), ('focus', 'focusin')}.

In particular, for the first two counter-examples, the handler registered is not executed even though

e1 and e2 are equal. In contrast, for the remaining counter-examples, the handler is executed despite

e1 and e2 being different. This bug, similarly to Bug 1, is also related to the implementation of the

getEventTypeBubbling function, which is called from the on, one, and off functions, but not from

the trigger function. Consequently, user-registered handlers for 'focus' and 'blur' can respectively

be triggered only via 'focusin' and 'focusout' instead. This is admittedly not intended, and it results

from the simplification of the corresponding jQuery mechanisms.

The two bugs found have been reported [43, 42] and acknowledged by to the developers of cash

and the second has been fixed [41]. The developers of cash decided to not fix the first bug arguing

that it would not be observed in practice. Nevertheless, the same type of bug had coincidently been

reported for jQuery13 and fixed by the library developers.

7.2.2. The p−map Library

The p−map library [120] is a small JavaScript library that extends the functionality of JavaScript

promises with the ability to concurrently map over pending promises. Despite having 81 lines of

JavaScript code, the p−map library has currently more than 18M weekly downloads on NPM14, almost

3B overall downloads15 and 808 stars on GitHub [120]. It calls both the JavaScript Promises and

JavaScript async/await APIs. We performed symbolic testing of p−map, where we achieved 98.76%

line coverage and discovered a bug [46, 44].

Library Overview

The p−map library is small, having 81 lines of code. The library only exposes the pMap function, which

relies on a few internal auxiliary functions. We describe the pMap function below.

pMap(input, mapper, options): Returns a promise p that is fulfilled if all promises resulting from

calling the mapper function on each element of the input array are fulfilled; otherwise, if any of

the promises is rejected, p is also rejected. The options object can have the following properties:

concurrency: Regulates the maximum number of pending promises at each computation step;

stopOnError: If set to true, the pMap function returns once a promise is rejected. Otherwise,

if set to false, the pMap function calls the mapper function on all elements of input and

13https://github.com/jquery/jquery/issues/3256
14https://www.npmjs.com/package/p-map
15https://npm-stat.com/charts.html?package=p-map&from=2016-01-04&to=2022-01-04
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rejects afterwards with an aggregated error containing all the errors from the rejected

promises.

The p−map library comes with a concrete test suite, which has 97.53% overall line coverage, con-

taining 10 tests. We increase the coverage of the p−map concrete test suite by writing one additional

test [47], which has already been integrated [45] into the library concrete test suite.

Bounded Correctness

We develop a symbolic test suite targeting the pMap function, establishing the bounded correctness of

several functional properties, which are listed below.

SerialXConc: If pMap is called with an arbitrary input i in serial mode (concurrency = 1) must

produce the same result of calling it concurrently (concurrency > 1).

InvalidConc: If pMap is called with an arbitrary input i and a non-number concurrency value must

produce a TypeError.

InvalidMapper: If pMap is called with an arbitrary input i and a non-function mapper must produce

a TypeError.

MaxConc: If pMap is called with an arbitrary input i the concurrency option must not allow the

number of pending promises to be greater than the specified concurrency parameter.

ErrContinue: If pMap is called with an arbitrary input i, a mapper m which throws an error e, and the

stopOnError optional argument set to false, the resulting promise needs to be rejected after

m is called on all elements of i. The resulting error must be an aggregate error containing all

errors e thrown by m.

ErrStop: If pMap is called with an arbitrary input i, a mapper m which throws an error e, and

the stopOnError optional argument set to true, the resulting promise needs to be rejected

immediately the first error e is thrown. The resulting error must be e.

Analogously to the approach used in the symbolic testing of the cash library, we have written

one symbolic test for each functional property of the p−map library. The tests establish that these

properties hold given that concurrency is a symbolic number with value of up to to 5. The bound

can be adjusted in the tests themselves, but because there are tests making use of several symbolic

variables, changing the bound can affect performance due to the increase in branching. In Table 7.4,

we provide the execution time for each symbolic test (in seconds) and the number of executed JSIL

commands.

Test SerialXConc InvalidConc InvalidMapper MaxConc ErrContinue ErrStop

Time 15.466s 0.720s 0.882s 8.377s 5.425s 8.173s
Cmds 2,336,055 104,669 115,232 1,474,012 816,099 691,944

Table 7.4.: Symbolic Test Suite for the p−map library

110



1 function next(){

2 if(isRejected){

3 return; // uncovered line

4 }

5 ...

6 try{

7 await mapper(...);

8 } catch (e) {

9 if (stopOnError) {

10 isRejected = true;

11 reject(e);

12 }

13 }

14 ...

15 }

Figure 7.6.: Uncovered line of pMap function

The test SerialXConc is the slowest as it makes use of four symbolic variables, thus creating more

branching. The tests InvalidConc and InvalidMapper, in contrast, run faster due to the use of fewer

symbolic variables and also to the fact that the number of commands is much smaller, as, in both

tests, the pMap function is expected to raise an error early in its execution.

The concrete test suite of p−map did not cover the scenario tested by InvalidMapper. We wrote

a symbolic test to guarantee that the property holds, and also a possible concrete test to test the

same property to fill the coverage gap. The additional test was submitted [47] and has already been

integrated [45] into the library code base.

The results demonstrate that symbolic testing is far superior to concrete testing: we achieve 98.76%

line coverage with 6 symbolic tests, while the concrete test suite has 10 tests and 97.53% line coverage.

Our symbolic test suite gives much stronger correctness guarantees that are beyond the limit of

concrete testing with fewer lines of code and better coverage. Our symbolic tests cover 80 lines of the

p−map library, which has a total of 81 lines of JavaScript code.

Figure 7.6 shows a fragment of the library function that contains the line of code that is not covered

by our symbolic test suite; namely line 3 of function next. To understand why this is so, we have to

take a closer look at the inner workings of the p−map library. It is the job of the function next to

apply the provided mapper to a single element of the given array. Initially, the pMap function calls the

function next n times, with n being equal to the minimum between the size of the given array and the

concurrency parameter. Each time a promise is resolved, the library calls the function next to check

if there is still an index of the given array to be processed and, if that is the case, to apply the mapper

to that index. The first if statement in the code of function next guards against the possibility that

the global promise, the one corresponding to the entire array of promises, is resolved between the

moment when the last array-index promise was resolved and the moment when the function next

starts executing. This behaviour is, however, not possible according to the semantics of JavaScript

promises and asynchronous functions. The reason is simple: in all contexts where the function next is

called the flag isRejected must be false and there is no yielding of control between the call to next

and the execution of its body, meaning that there is no way for the flag isRejected to become true

between the moment one calls next and the moment it starts executing.
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Discovered Bugs

The pMap function exposed by the p−map library iterates over an input array and applies the given

mapper function to each element found in the array. In Figure 7.7, we show a fraction of the code of

the pMap function. First, it validates the given input. For instance, the pMap function requires the

optional argument concurrency to be of type number and to be greater or equal to 1. Then, there is

a for loop in which the next function (previously introduced in Figure 7.6) is called n times, where

n is equal to the value of the optional argument concurrency.

if (!(typeof concurrency === 'number' && concurrency >= 1))

throw new TypeError(`Expected \`concurrency\` to be a number from 1 and up`);

...

for (let i = 0; i < concurrency; i++) {

next();

...

}

function next(){

...

await mapper(...);

...

}

Figure 7.7.: Fraction of the p−map library implementation.

This implementation causes a subtle bug, discovered by the MaxConc test, whose stylised code, with

detailed inlined explanations, is given in Figure 7.8.

// Create a symbolic number of min value 1 and max value 5

var c = symbNumb(5);

// Create the input array with 5 promises

var input = [new Promise(...), ..., new Promise(...)];

(async function (){

var mapper = async function(n, i, pendingPromises){

// Ensure that the number of pending promises will never exceed c

Assert(pendingPromises <= c);

};

// Create options object with the concurrency property set to c

var options = {concurrency: c};

// Call the pMap function passing arguments input, mapper and options

pMap(input, mapper, options);

})();

Figure 7.8.: MaxConc symbolic test developed for the p−map library.

Bug: JavaScript Dynamic Typing. The following set of counter-examples demonstrates that

the correctness assertion of the MaxConc test does not hold if

concurrency ∈ {1.5, 2.5, 3.5, 4.5}.
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In particular, the test fails if concurrency is a floating point number, such as 1.5, 2.5, 3.5 and 4.5.

This happens because (1) the pMap function requires the value of concurrency to be of type number

instead of integer and (2) the for loop inside the pMap function (see Figure 7.7) allows the counter i

to be greater than concurrency if concurrency is a floating point number.

We reported [46] the bug, which has been fixed [44] by the main developer of the p−map library.

The fix consists of ensuring that concurrency has type integer instead of type number. The developer

also added a test to the concrete test suite in order to make sure that the property will not be violated

in future.

Note that, in order to symbolically test the p−map library, we rely on our ES6+ transpiler, which

covers JS Promises, JS async/await and lambda functions. Our transpiler is trustworthy in the sense

that we pass all applicable tests from the test262 test suite for the JS Promises and JS async/await

APIs. Additionally, the testing of p−map helps to establish trust in the transpiler. In contrast to the

approach used for JS Promises and JS async/await, we did not test our transpiler against official tests

for lambda functions, but this is not a core contribution of our work. However, the compilation of

lambda functions was tested as part of the testing of our reference implementations and open-source

libraries. During this process, we did not observe any issue related to the compilation of lambda

functions.

We could, in future, provide built-in support for additional features of the ECMAScript standard

such as classes and methods. This would be possible, for instance, by implementing those features as

part of the JS2JSIL runtime provided by JaVerT. However, implementing advanced features in the

intermediate language of JaVerT (JSIL) involves a considerable amount of engineering work. Alterna-

tively, we could extend our transpiler with such ES6+ features. This would be a more straightforward

approach since the JS2JSIL runtime covers the ES5 strict version of the standard. When extending

our transpiler, we would need to be careful with, for instance, the order in which such transformations

would be handled by the transpiler to avoid interference. Depending on the complexity of the new

features, it could be necessary to configure the transpiler to apply transformations at multiple steps

instead of compiling the entire code to ES5 at once.

Despite the p−map library being small, its symbolic analysis revealed a previously unknown bug

that had not been found with the use of the existing concrete tests. Additionally, we provide bounded

correctness of 5 important functional properties. Again, this shows the importance of symbolic tests

and how they can complement concrete tests.

7.2.3. webworker-promise library

We previously presented the symbolic testing results for the cash and p−map libraries, which rely on

the DOM Core Level 1, DOM Events, JS Promises and JS async/await APIs. Our events model of the

event semantics introduced in Chapter 4 can capture the essence of these APIs. In order to test our

message-passing semantics introduced in Chapter 5, we perform symbolic analysis on the webworker-

promise [105] library, which is a promise-wrapper over the WebWorkers and WebMessaging APIs with

8K lines of code on GitHub, 2,190 weekly downloads on NPM16 and a total of 413,794 downloads.17

Similarly to the approach used in the symbolic testing of the cash and p−map libraries, we develop

16https://www.npmjs.com/package/webworker-promise
17https://npm-stat.com/charts.html?package=webworker-promise&from=2017-01-04&to=2022-01-04
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a symbolic test suite for the webworker-promise library, uncovering three previously unknown bugs

and providing bounded correctness guarantees of 10 functional properties.

Library Overview

The webworker-promise library exposes three modules: (1) a module providing basic functionality

on top of the WebMessaging and WebWorkers APIs (which we refer to as Base module), (2) an

EventEmitter module to allow for event-based operations to be performed across multiple workers,

and (3) a WorkerPool module to allow for the creation of pools of workers. In the following, we

describe the three modules and their main functions.

Base module. This module allows for the creation of WebworkerPromise objects, which represent

the result of the asynchronous computation performed by a worker.

• WebworkerPromise(w): creates a worker-promise object given the Worker object w.

• postMessage(m): posts the message m to the worker thread.

• terminate(): terminates the worker thread when called from the main thread.

EventEmitter module. This module allows for transparent event-based programming across con-

current workers. For instance, using this module, one can emit an event on the main thread and have

event processed by the worker thread with a handler registered for that event.

• on(e, h): registers handler h for event e.

• off(e, h): deregisters handler h for event e.

• emit(e, vs): emits event e with arguments vs.

WorkerPool module. This module allows for the creation and management of worker pools.

• WorkerPool(src, maxThreads, maxConcPerWorker): creates a worker pool given the script loca-

tion, src; the maximum number of executing threads, maxThreads; and the maximum number

of pending messages for a given worker, maxConcPerWorker.

• postMessage(m): posts the message m to the next available worker from the pool.

Bounded Correctness

By developing a symbolic test suite for webworker-promise, we establish the bounded correctness of

several functional properties, of which the most important are explained below. The developed test

suite covers all the main functions of each module of the webworker-promise library.

Mirror: If the main thread sends a message m to the worker thread using postMessage(m) and the

worker thread sends this same message back to the main thread, the message received in the

main thread must be equal to m.
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Terminate: If the main thread sends a message m to the worker thread after terminating it using

terminate(), the message must not be delivered to the worker thread.

Error: If the main thread sends a message m to the worker thread using postMessage(m), and the

worker thread raises an error when processing the message m, the promise associated with the

call to postMessage must be rejected in the main thread.

EmitOn: If the main thread emits an event e with arguments vs on the worker thread using emit(e, vs),

and the worker thread registers a handler h for e using on(e, h), the handler h must be triggered.

EmitOff: If the main thread emits an event e with arguments vs on the worker thread using emit(e, vs),

and the worker thread has deregistered the handler h for e using off(e, h), the handler h must

not be triggered.

EmitOnce: If the main thread emits more than one event e with arguments vs on the worker thread

using emit(e, vs), and the worker thread registers a handler h for e using once(e, h), the handler

h must be triggered only once.

PSend: If the main thread creates a pool of workers using the WorkerPool constructor and sends a

message m using postMessage(m), the next free worker must process the message m.

PError: If the main thread creates a pool of workers using the WorkerPool constructor and sends a

message m using postMessage(m), and the worker thread raises an error when processing the

message m, the promise associated to the communication in the main thread must be rejected.

PLimit: Suppose that the main thread creates a pool of workers using the WorkerPool constructor

with maximum number of active threads n; if the main thread then activates one or more workers

in the pool, the number of available workers must remain less than or equal to n.

Op: If the main thread asks to execute an operation op on the worker thread and the worker thread

registers a callback for op, the callback should be executed and the main thread should receive

the result from the worker thread.

We have written one symbolic test for each property of the library and used JaVerT.Click to run the

tests. The tests establish that these properties hold for all messages and events (strings) up to length

20. Table 7.5 provides the execution time for each symbolic test and the number of executed JSIL

commands. The execution times for the webworker-promise library are significantly higher than the

ones for the cash and p−map libraries. This is mainly due to the fact that, when using WebWorkers, the

program consumes at least twice the memory when compared to standard non-concurrent applications,

as each worker has its own separate memory. Unsurprisingly, the test PoolLimit takes longer than

the others as it creates a pool of workers with a symbolic number of workers, leading to a substantial

amount of branching.

Test Mirror Terminate Error EmitOn EmitOff EmitOnce PSend PError PLimit Op

Time 1m32s 0m45s 1m39s 5m33s 5m35s 10m13s 3m8s 2m3s 12m36s 10m34s
Cmds 316,500 151,396 319,608 1,112,574 1,088,356 1,898,784 502,257 377,745 1,722,600 2,012,982

Table 7.5.: Symbolic Test Suite for the webworker-promise library
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Discovered Bugs

As an outcome of the symbolic testing of webworker-promise, we found three previously unknown

bugs in the library. We show one of the bugs (Bug 1) and its corresponding symbolic test in §5.1,

which verifies the Mirror property. We illustrate another bug in the following.

Bug 2: Prototype Inheritance. This bug is analogous to the one found in the symbolic testing

of the cash library. In Figure 7.9, we show the library code that causes the bug. The on function is

exposed by the EventEmitter module and is responsible for registering a handler h to an event e.

on(e, h) {

if(!this.__listeners[e])

this.__listeners[e] = []; // There are no listeners registered for the given event

this.__listeners[e].push(h); // Add handler h to array of listeners

return this;

}

Figure 7.9.: Function on exposed by the EventEmitter module of the webworker-promise library.

We now show, in Figure 7.10, the EmitOn symbolic test which captured the bug, including its main

(left) and worker (right) scripts. In summary, the test consists of the main thread emitting an event

to the worker thread, which must have previously registered a handler for the emitted event.

Main script. First, in line 1, the main script declares the variable input, which represents data

sent in the event emitted to the worker thread. Then, in lines 3-4, it creates the WebworkerPromise

object which allows to establish communication with the corresponding worker thread. In line 6, the

main script declares the resultPromise variable, whose value is partially omitted in the code, but

corresponds to a promise that is resolved when the worker thread replies to the given event. In line

7, the main script declares the variable event and assign it a symbolic value of maximum length

20. Next, in line 9, the main script emits the event with data input to the worker thread by calling

wp.emit(event, input). Finally, in lines 11-13, it ensures that the response res from the worker thread

is equal to input.

1 var input = 'input';

2

3 const worker = new Worker('worker.js');

4 const wp = new WebworkerPromise(worker);

5

6 const resultPromise = new Promise(...);

7 var event = symbStr(20);

8

9 wp.emit(event, input);

10

11 resultPromise.then(function(res){

12 Assert(res === input);

13 });

1 const host =

2 RegisterPromise(async (data, emit) => {

3 ...

4 }

5 );

6

7 var e = symb_string(event);

8

9 host.on(e, function (input) {

10 host.emit(e, input);

11 });

Figure 7.10.: EmitOn symbolic test including the main (left) and worker (right) scripts.
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Worker script. First, in lines 1-5, the worker script declares the variable host and assigns it a

RegisterPromise object, which provides event-based operations such as handler registration/dereg-

istration and event dispatching. Then, in line 7, the worker script assigns the value of the existing

symbolic variable event to e. Finally, in lines 9-11, the worker script registers a handler to event e by

calling the on function on the host object. Essentially, whenever the worker thread receives an event

from the main thread, it emits it back to the main thread with the same input data.

In JavaScript, every object exposes, by default, a set of functions defined in the Object interface,

including toString, isPrototypeOf and hasOwnProperty. The on function shown in Figure 7.9

computes a map of events e to handlers hs, stored in this. listeners. Making the event equal to

any of the properties defined by the Object leads to an issue as accessing property e of the object

gives us a function instead of a list of handlers. Hence, the call to push causes a native JavaScript

type error. We identified this error in the library and reported to the developers,18 who acknowledged

the bug and will fix for the release of the next version of the webworker-promise library.

Bug 3: Dynamic Typing. This bug is analogous to the bug found during the symbolic testing

of the p−map library and was captured with the PoolLimit test. JavaScript is dynamically typed,

which makes programs more error-prone. The WorkerPool interface of webworker-promise takes a

maximum number of threads maxThreads as input, so pool should then always have no more workers

than maxThreads. The property is not valid, however, if maxThreads is a floating-point number, as

the WorkerPool module expects it to be an integer. We reported19 the bug to the developers and

fixed it via a pull request.20

The symbolic analysis of the webworker-promise library uncovered three previously unknown bugs

and allowed for the bounded correctness guarantee of 10 functional properties. Two bugs have already

been fixed via pull requests and the other bug has been acknowledged and will be fixed. Note that

the three libraries analysed cover all APIs supported by JaVerT.Click and our results of the symbolic

testing show that the tool is able to analyse real-world code. In contrast to the cash and p−map
libraries that make use of the DOM Core Level 1, DOM Events, JS Promises and JS async/await APIs,

the webworker-promise library highly depend on the WebMessaging and WebWorkers APIs.

Although we wrote all symbolic tests, we believe that developers could write them as well, given

that the symbolic tests are not syntactically very different from concrete tests. During the symbolic

testing of the three libraries, we engaged in discussions with developers who seem to understand the

idea behind our symbolic tests. However, in order to make this possible, we would need to improve

the debugging facilities of JaVerT.Click first.

Symbolic Testing in Amazon Using JaVerT.Click. In addition to the three open-source libraries

cash, p−map and webworker-promise, we also tested the symbolic execution engine of JaVerT.Click

in an industrial context inside Amazon. During three months, we collaborated with the Prime Video

Automated Reasoning (PVAR) team, whose focus is to develop tools with the use of automatic veri-

fication techniques in order to analyse the Prime Video App.21 We do not provide detailed results as

they need to remain confidential. Essentially, we tested three modules of a TypeScript library which

18https://github.com/kwolfy/webworker-promise/issues/12
19https://github.com/kwolfy/webworker-promise/issues/13
20https://github.com/kwolfy/webworker-promise/pull/14
21https://www.primevideo.com/splash/t/getTheApp/ref=atv_dl_rdr
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is part of the Prime Video App using JaVerT.Click. We chose the targeted modules considering, for

instance, their event-driven nature. Before starting the analysis, we ranked the modules in terms of

their complexity, taking into consideration for each module: (1) the number of lines of code and (2) the

number of external dependencies. This allowed us to increase the complexity of the analysis over time.

Similarly to the approach used for the three open source-libraries, we identified functional properties

to be satisfied by the library and developed a symbolic test suite for each targeted module. We found

potential issues in two of the three modules tested and reported them to the developers. Additionally,

the symbolic tests provided bounded correctness guarantees analogous to the ones obtained for the

cash, p−map and webworker-promise libraries.
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8. Conclusions

Client-side JavaScript Web programs interact with various event-driven and message-passing APIs.

These APIs are inherently complex due to their asynchronous execution model and multi-threaded

nature. There are both formal semantics [86, 83, 87, 101, 5] and analysis tools [30, 123, 36, 135, 4, 84, 3]

targeting event-driven Web APIs for JavaScript. However, these approaches either support a specific

API rather than a variety of APIs or do not faithfully model the targeted APIs. In this thesis, we

propose a trusted infrastructure for symbolic analysis of event-driven Web APIs which is built on top of

JaVerT 2.0 [35], our state-of-the-art symbolic execution tool for JavaScript which supports three kinds

of analysis: whole-program symbolic testing, verification and bi-abduction. We use the symbolic testing

mechanism of JaVerT 2.0, which consists of static symbolic execution with boundedness guarantees

in the style of Khurshid et al. [76] and Torlak and Bod́ık [127].

To the best of our knowledge, our infrastructure is the first to support static symbolic execution of

event-based Web APIs, the first to explore combinations of such Web APIs, and the first to provide

analysis for client-side message-passing Web APIs. We focus on the Web APIs DOM Core Level 1,

DOM Events, JS Promises, JS async/await, WebMessaging and WebWorkers, providing trustworthy

reference implementations in JavaScript and analysis using JaVerT.Click, which finds real-world

bugs and establishes the bounded correctness of functional properties. We summarise our contri-

butions (§8.1) and discuss potential directions for future work (§8.2).

8.1. Summary of Contributions

In the following, we list the novel contributions of this thesis.

Event Semantics. We introduce a general event semantics for event-driven Web programs, iden-

tifying event primitives which are enough to capture the event-related behaviour of the Web APIS

DOM Events, JS Promises and JS async/await. Our event semantics is designed to be parametric on

an underlying language semantics, which can be either concrete or symbolic, thus yielding either a

concrete or a symbolic event semantics. In this thesis, we instantiate our event semantics with JSIL,

the intermediate goto-language language of JaVerT 2.0. We believe that our event semantics could be

instantiated with other languages, such as the intermediate goto-language of the multi-language plat-

form Gillian [32, 91] which evolved from JaVerT 2.0. We also believe that it can be straightforwardly

extended to support other event-based APIs, such as File [132] and Timers [137].

Message-passing Semantics. Building on our event semantics, we focus on the message-passing

Web APIs, WebMessaging and WebWorkers. These APIs are also event-driven as they rely on

DOM Events, so provide further corroboration of our event semantics. They also bring an additional

complexity in that they allow JavaScript code to be executed via multiple threads which communicate
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via messages following the message-passing paradigm [19, 65, 69]. We introduce the message-passing

semantics, the first semantics to formalise the message-passing model underneath the WebMessaging

and WebWorkers APIs. We design the message-passing semantics parametric on an event semantics,

which can be either concrete or symbolic, and a scheduler, which chooses which thread should run at

each computation step.

API Reference Implementations. Our event semantics and message-passing semantics do not

aim at formalising all features of the targeted APIs; instead, they only capture the core event-driven

and message-passing behaviour of JavaScript Web applications, abstracting away details regarding each

specific API. These details are modelled by our reference implementations, which interact either with

the event semantics or the message-passing semantics when needed, and are trustworthy in that they

follow their respective standards line-by-line1 and pass all applicable tests. For this reason, we believe

that our reference implementations could be used in other static analysis tools and serve multiple

purposes. For instance, they could support developers on the debugging of JavaScript programs

which interact with the APIs.

JaVerT.Click. We implement the event semantics, message-passing semantics and the chosen APIs

on top of JaVerT 2.0, obtaining JaVerT.Click, which is the first to implement static symbolic execu-

tion of event-based Web APIs, the first to support the combinations of such Web APIs, and the first

to provide analysis for WebMessaging and WebWorkers. In JaVerT.Click, we instantiate the event

semantics semantics with the JSIL language provided by JaVerT 2.0. Our message-passing is instan-

tiated with our event semantics and a scheduler that runs each thread up to completion, mimicking

the behaviour that we observed in most browser implementations.

Symbolic test suites. The symbolic engine of JaVerT.Click has been evaluated against three open

source libraries: cash, p−map and webworker-promise. For each chosen library, we developed a

symbolic test suite based on existing concrete test suites with the goal of establishing the bounded

correctness of several functional properties and find bugs in real-world code. During the symbolic

testing process we found, in total, six bugs, four of which have been fixed.

8.2. Future Work

We would like to extend this work in several directions.

Automatic generation of event sequences and thread interleavings. In the context of event-

driven programming, there are bugs that are triggered by a particular event sequence. We would like

to extend the events module of JaVerT.Click so that it can automatically generate event sequences

for the purpose of symbolic testing in the style of [84, 123]. Similarly, the message-passing module of

JaVerT.Click could be extended to automatically explore multiple thread interleavings. We believe

that the problems of generating event sequences and exploring multiple thread interleavings are anal-

ogous and could be tackled with a technique based on Partial Order Reduction (POR) [6], which tries

to eliminate paths during symbolic execution that lead to the same outcome, with the goal of avoiding

1We do not make this claim for our implementation of JS async/await.
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the state explosion problem. This has been applied for event-driven concurrent programs; for instance,

Maiya et al. [90] developed a POR-based algorithm for exploring multiple orders of event handlers

executions that lead to different states. In order to allow developers to guide the automatic explo-

ration process, we could design a domain specific language for specifying policies for event sequences

or thread interleavings. This would reduce the state exploration space even further.

Identifying concurrency bugs. We would like to extend our message-passing module with a mech-

anism for identifying concurrency bugs, such as orphan messages or bad message interleavings [128].

A message becomes orphan if it is sent from one thread to another but never handled by the receiving

thread. This kind of scenario is typically observed in actor languages such as Erlang and Scala, but

can also happen in the context of WebWorkers, for instance, if the main thread sends a message to

a worker thread and the worker thread terminates before the message arrives. Although the HTML5

standard [138] mandates that such messages should simply be ignored without raising errors, we could

emit warnings so that developers would be aware.

Another scenario that we would like to avoid is the presence of bugs due to the processing of

messages in a certain order, corresponding to error triggering message interleavings. The HTML5

standard does not specify in which order messages having different senders should be processed, thus

allowing reference implementations to use different policies.

We are not aware of an approach for detecting JavaScript message-passing concurrency bugs, but

there are analogous approaches for other languages, such as Erlang [79] and Go [85], which could serve

as inspiration.

Instantiating our formal semantics with other languages. Although our event semantics and

message-passing semantics are parametric on an underlying language, we have only instantiated them

with JSIL. We plan to use our formal semantics in the context of other programming languages, such

as Rust.2 In fact, the Rust language supports message-passing concurrency.3 We could adapt our

message-passing semanticss to deal with the message-passing model of Rust. We hope to transfer

the JaVerT.Click infrastructure to Gillian [32, 91], a multi-language platform for symbolic analysis

that has evolved directly from JaVerT 2.0. In fact, the JaVerT.Click infrastructure was designed

with that transfer in mind. We can then explore our semantics using other programming languages.

For example, Sacha-Élie Ayoun is currently working on Gillian Rust, an instantiation of Gillian with

sequential Rust. In future, we would like to extend his work to account for message-passing in Rust.

2https://www.rust-lang.org/.
3https://doc.rust-lang.org/book/ch16-02-message-passing.html
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A. E-semantics

A.1. Concrete E-semantics

Values: v ∈ V Event Types: e ∈ E ⊂ V
Function Identifiers: f ∈ F ⊂ V Language Configurations: lc ∈ LC

Configuration Predicates: ρ ∈ P : LC → B Handler Registers: h ∈ H : E ⇀ F
Continuations: κ ∈ K := (f, v) | (lc, ρ) Continuation Queues: q ∈ Q : K

Event Configurations: εc ∈ EC : LC ×H ×Q
Event Primitives: p ∈ P := · | addHdlr〈e, f〉 | remHdlr〈e, f〉 | sDispatch〈e, v〉 | aDispatch〈e, vs〉

| schedule〈f, vs〉 | await〈v, ρ〉

Figure A.1.: Events Syntax

Language Semantics Interface

1. initialConf(lc, (f, e, v)) = lc′, where lc′ has the heap component of lc and the control flow/store

components required for starting the execution of the handler f with arguments e and v

2. mergeConfs(lc, lc′) = lc′′, where lc′′ has the heap component of lc and the control flow/store

components of lc′

3. isFinal(lc) = true, if lc is final; and = false otherwise

4. interrupt(lc) = lc′, where lc′ is the same as lc, except that it is marked as final

5. splitReturn(lc, v) = (lcr, lca), where lcr is obtained from lc by setting up the control flow compo-

nent as if the currently executing function, f , returned the value v and lca is obtained from lc

by setting up the control flow component to only contain the remainder of the execution of f

AH : H× E × F → H

AH(h, e, f) adds the handler f

for the event e to the handler

register h.

Add Handler

AH(h, e, f) ,

h [e 7→ h(e) ++ [f ]] , if e ∈ dom(h)

h [e 7→ [f ]] , otherwise

RH : H× E × F → H

RH(h, e, f) removes the handler

f for the event e from the

handler register h.

Remove Handler

RH(h, e, f) ,

h [e 7→ h(e) \ f ] , if e ∈ dom(h)

h, otherwise
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FH : H× E → H

FH(h, e) finds all of the

handlers for the event e in the

handler register h.

Find Handlers

FH(h, e) ,

h(e), if e ∈ dom(h)

[ ], otherwise

CWL : LC × K → LC

CWL(lc, κ) sets up the

configuration for the execution

of the continuation κ, starting

from the configuration lc.

Continue With - Handler-Continuation

CWL(lc, (f, e, v)) , L.initialConf(lc, (f, e, v))

Continue With - Yield-Continuation

ρ(lc) = True

CWL(lc, (lc′, ρ)) , L.mergeConfs(lc, lc′)

Auxiliary Functions of the E-semantics

Language Transition

lc;L lc
′

〈lc, h, q〉;E 〈lc′, h, q〉

No action is performed—the handler

register and the continuation queue re-

main unchanged

Add Handler

lc;p
L lc

′ p = addHdlr〈e, f〉

〈lc, h, q〉;E 〈lc′,AH(h, e, f), q〉

The new handler for the given event is

registered in the handler register

Remove Handler

c;p
L c
′ p = remHdlr〈e, f〉

〈lc, h, q〉;E 〈lc′,RH(h, e, f), q〉

The given handler is de-registered for

the given event from the handler regis-

ter

Synchronous Dispatch

lc;p
L lc

′ p = sDispatch〈e, vs〉
[fi |n0 ] = FH(h, e) q′ = [(fi, vs) |ni=0]

lc′′ = L.suspend(lc′)

〈lc, h, q〉;E 〈lc′′, h, q′ ++[(lc′, (λlc.True))]++q〉

The execution of the current UL-

configuration lc′ is interrupted; a list

of handler-continuations based on the

handlers registered for the dispatched

event is placed at the front of the con-

tinuation queue, together with a yield-

continuation that unconditionally re-

sumes the execution of lc′

Asynchronous Dispatch

lc;p
L lc

′ p = aDispatch〈e, vs〉
[fi |n0 ] = FH(h, e) q′ = [(fi, vs) |ni=0]

〈lc, h, q〉;E 〈lc′, h′, q++q′〉

A list of handler-continuations based

on the handlers registered for the dis-

patched event is placed at the back of

the continuation queue
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Schedule

lc;p
L lc

′ p = schedulef, vs

q′ = q′++[(f, vs)]

〈lc, h, q〉;E 〈lc, h, q′〉

The execution of the function f with

parameters v̄ is placed at the back of

the continuation queue

Await

lc;p
L lc

′ p = await〈v, ρ〉
(lcr, lca) = L.splitReturn(lc′, v)

〈lc, h, q〉;E 〈lcr, h, q++[(lca, ρ)]〉

The execution proceeds with the return

configuration; the await configuration is

placed at the back of the continuation

queue

Environment Dispatch

[fi |n0 ] = FH(h, e)

q′ = [(fi, vs) |ni=0]

〈lc, h, q〉;fire〈e,vs〉
E 〈lc, h, q++q′〉

An environment-dispatched event is es-

sentially treated in the same way as an

asynchronously-dispatched event.

Continuation - Success

L.final(lc) q = κ : q′

〈lc, h, q〉;E 〈CWL(lc, κ), h, q′〉

The current UL-configuration is final;

the configuration at the front of the con-

tinuation queue is set up for execution

Continuation - Failure

L.final(lc) q = κ : q′

(lc, κ) 6∈ dom(CWL)

〈lc, h, q〉;E 〈lc, h, q′++[κ]〉

The current UL-configuration is final;

the configuration at the front of the con-

tinuation queue cannot be executed and

is placed at the back of the continuation

queue

Transition System: 〈lc, h, q〉;εα
E 〈lc′, h′, q′〉

A.2. Symbolic E-semantics

Values: v̂ ∈ V̂ Event Types: ê ∈ Ê ⊂ V̂
Function Identifiers: f ∈ F ⊂ V̂ Path Conditions: π ∈ Π ⊂ V̂

Language Configurations: l̂c ∈ L̂C Configuration Predicates: ρ̂ ∈ P̂ : L̂C → B
Handler Registers: ĥ ∈ Ĥ : Ê ⇀ F Continuations: κ̂ ∈ K̂ := (f, v̂) | (l̂c, ρ̂)

Continuation Queues: q̂ ∈ Q̂ : K̂ Event Configurations: ε̂c ∈ ÊC : L̂C × Ĥ × Q̂
Event Primitives: p̂ ∈ P̂ := addHdlr〈ê, f〉 | remHdlr〈ê, f〉 | sDispatch〈ê, v̂〉 | aDispatch〈ê, v̂〉

| schedulef, ¯̂v | await〈v̂, ρ̂〉 | ·

Figure A.2.: Events Syntax
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Auxiliary Functions of the Language Semantics

1. initialConf(l̂c, (f, ê, v̂)) = l̂c
′
, where l̂c

′
has the heap component of l̂c and the control flow/store

components required for starting the execution of the handler f with arguments ê and v̂

2. mergeConfs(l̂c, l̂c
′
) = l̂c

′′
, where l̂c

′′
has the heap component of l̂c and the control flow/store

components of l̂c
′

3. isFinal(l̂c) = true, if l̂c is final; and = false otherwise.

4. interrupt(l̂c) = l̂c
′
, where l̂c

′
is the same as l̂c, except that it is marked as final

5. assume(l̂c, π) = l̂c
′
, where l̂c

′
is obtained from l̂c by extending its path condition with the

formula π, if such an extension is satisfiable

6. splitReturn(l̂c, v̂) = (l̂cr, l̂ca), where l̂cr is obtained from lc by setting up the control flow compo-

nent as if the currently executing function, f , returned the value v̂ and l̂ca is obtained from l̂c

by setting up the control flow component to only contain the remainder of the execution of f

7. pc(l̂c) = π, where π is the path condition computed in the current branch of configuration l̂c.

We leave the computation of the path condition to the underlying language L, meaning that

pc(〈l̂c, ĥ, q̂〉) = pc(l̂c)

AH : Ĥ × Ê × F → ℘(Ĥ ×Π)

AH(ĥ, ê, f) adds the handler f

for the event ê to the handler

register ĥ, branching on all

possible values of ê.

Add Handler

AH(ĥ, ê, f) ,

{
(ĥ

[
ê′ 7→ ĥ(ê′) ++ [f ]

]
, ê = ê′) | ê′ ∈ dom(ĥ)

}
∪

{
(h [e 7→ [f ]] , ê′ ∈ dom(ĥ))

}
RH : Ĥ × Ê × F → ℘(Ĥ ×Π)

RH(h, e, f) removes the handler

f for the event ê from the

handler register ĥ, branching on

all possible values of ê.

Remove Handler

RH(ĥ, ê, f) ,

{
(ĥ

[
ê′ 7→ ĥ(ê′) \ f

]
, ê = ê′) | ê′ ∈ dom(ĥ)

}
∪

{
(h, ê′ ∈ dom(ĥ))

}
FH : Ĥ × Ê → ℘(Ĥ ×Π)

FH(ĥ, ê) finds all of the

handlers for the event ê in the

handler register ĥ, branching on

all possible values of ê.

Find Handlers

FH(ĥ, ê) ,

{
(ĥ(ê), ê = ê′) | ê′ ∈ dom(ĥ)

}
∪

{
([ ], ê′ ∈ dom(ĥ))

}

CWL : L̂C × K̂ → L̂C

CWL(l̂c, κ̂) sets up the

configuration for the execution

of the continuation κ̂, starting

from the configuration l̂c.

Continue With - Handler-Continuation

CWL(l̂c, (f, v̂)) , L.initialConf(l̂c, (f, v̂))

Continue With - Yield-Continuation

ρ̂(l̂c) = True

CWL(l̂c, (l̂c
′
, ρ̂)) , L.mergeConfs(l̂c, l̂c

′
)
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Auxiliary Relations of the E-semantics (In Set-Notation)

Transition System: 〈l̂c, ĥ, q̂〉 ;ε̂α
Ê
〈l̂c
′
, ĥ′, q̂′〉 The transition rules for the symbolic E-semantics

differ from the concrete ones in that every time an auxiliary relation is used, the constraint it generates

must be added to the current path condition using the assume function of the UL-semantics. These

differences are highlighted in grey .

Language Transition

l̂c;L l̂c
′

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′
, ĥ, q̂〉

Add Handler

l̂c;p̂
L l̂c

′
p̂ = addHdlr〈ê, f〉

AH(ĥ, ê, f) ; (ĥ′, π)

l̂c
′′

= L.assume(l̂c
′
, π)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′
, ĥ′, q̂〉

Remove Handler

l̂c;p̂
L l̂c

′

p̂ = remHdlr〈ê, f〉
RH(ĥ, ê, f) ; (ĥ′, π)

l̂c
′′

= L.assume(l̂c
′
, π)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′
, ĥ′, q̂〉

Synchronous Dispatch

l̂c;p̂
L l̂c

′
p̂ = sDispatch〈ê, v̂s〉

FH((ĥ, ê)) ; (([fi |n0 ], π))

q̂′ = [(fi, v̂s) |ni=0]

l̂c
′′

= L.assume(l̂c
′
, π)

lc′′′ = L.suspend(lc′′)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′′
, ĥ, q̂′ ++[(l̂c

′′
, (λl̂c.True))]++q̂〉

Asynchronous Dispatch

l̂c;p̂
L l̂c

′

p̂ = aDispatch〈ê, v̂s〉
FH(ĥ, ê) ; ([fi |n0 ], π)

q̂′ = [(fi, v̂) |ni=0]

l̂c
′′

= L.assume(l̂c
′
, π)

〈l̂c, ĥ, q̂〉;
Ê
〈l̂c
′′
, ĥ′, q̂′〉

Schedule

l̂c;p̂
L l̂c

′
p̂ = schedulef, v̂s

q̂′ = q̂′++[(f, v̂s)]

〈l̂c, ĥ, q̂〉;E 〈l̂c, ĥ, q̂′〉

Await

l̂c;p̂
L l̂c

′
p̂ = await〈v̂, ρ̂〉

(l̂cr, l̂ca) = L.splitReturn(l̂c
′
, v̂)

〈l̂c, ĥ, q̂〉;E 〈l̂cr, ĥ, q̂++[(l̂ca, ρ̂)]〉

Environment Dispatch

FH(ĥ, ê) ; ([fi |n0 ], π)

q̂′ = [(fi, ê, v̂) |ni=0] l̂c
′
= L.assume(l̂c, π)

〈l̂c, ĥ, q̂〉;(ê,v̂)

Ê
〈l̂c
′
, ĥ, q̂++q̂′〉

Continuation - Success

L.final(l̂c) q̂ = κ̂ : q̂′

〈l̂c, ĥ, q̂〉;E 〈CWL(l̂c, κ̂), ĥ, q̂′〉

Continuation - Failure

L.final(l̂c) q̂ = κ̂ : q̂′ (l̂c, κ̂) 6∈ dom(CWL)

〈l̂c, ĥ, q̂〉;E 〈l̂c, ĥ, q̂′++[κ̂]〉
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A.3. Correctness

Type-Preserving Symbolic Environments: ε : X̂ ⇀ V
Interpretations (Iε(v̂)): Iε(x̂) = ε(x̂)

Interpretation of E-semantics Structures

HR - Empty

Iε(∅) , ∅
HR - Composition

Iε(ĥ1 ] ĥ2) , Iε(ĥ1) ] Iε(ĥ2)

HR - Cell

Iε([ê 7→ f ]) , [Iε(ê) 7→ f ]

CQ - Empty

Iε([]) , []

CQ - Non-Empty

Iε(κ̂ : q̂) , Iε(κ̂) : Iε(q̂)
Cont - Hanlder-Cont

Iε((f, [v̂1, ..., v̂n])) , (f, [Iε(v̂1), ..., Iε(v̂n)])

Cont - Yield-Cont

Iε((l̂c, ρ̂)) , (Iε(l̂c), Iε(ρ̂))

Event Label - AH/RH

lab ∈ {addHdlr, remHdlr}

Iε(lab〈ê, f〉) , lab〈Iε(ê), f〉

Event Label - SD/AD

lab ∈ {sDispatch, aDispatch}

Iε(lab〈ê, v̂〉) , lab〈Iε(ê), Iε(v̂)〉

Event Label - Schedule

Iε(schedulef, [v̂1, ..., v̂n]) , schedulef, [Iε(v̂1), ..., Iε(v̂n)]

Event Label - Await

Iε(await〈ρ̂〉) , await〈Iε(ρ̂)〉

EAction - Event

Iε((ê, v̂)) , (Iε(ê), Iε(v̂))

EAction - UL

Iε(·) , ·
ESemantics Configuration

Iε(〈l̂c, ĥ, q̂〉) , 〈Iε(l̂c), Iε(ĥ), Iε(q̂)〉

Models of Symbolic E-semantics Structures

L-Configurations

Mπ(l̂c) , {(ε, Iε(l̂c)) | Iε(π) = True}
E-Configurations

Mπ(〈l̂c, ĥ, q̂〉) , {(ε, 〈Iε(l̂c), Iε(ĥ), Iε(q̂))〉 | Iε(π) = True}

Event Labels

Mπ(p̂) , {(ε, Iε(p̂)) | Iε(π) = True}
Environment Actions

Mπ(ε̂α) , {(ε, Iε(ε̂α)) | Iε(π) = True}

Requirements 1 (Interpretations). Interpretations on symbolic values must satisfy the following

properties:

1. Iε(v) = v

2. Iε(l ++l′) = Iε(l) ++Iε(l′)

3. ρ̂(l̂c) ⇐⇒ (Iε(ρ̂))(Iε(l̂c))

Requirements 2 (L-Semantics Interface Functions). The interface functions of the L-semantics must

preserve path conditions, as follows:

1. assume(l̂c, π) = l̂c
′

=⇒ pc(l̂c
′
) = pc(l̂c) ∧ π

2. pc(initialConf(l̂c, (f, v̂)) = pc(l̂c)

3. pc(mergeConfs(l̂c, l̂c
′
)) = pc(l̂c)

4. splitReturn(l̂c, v̂) = (l̂cr, l̂ca) =⇒ pc(l̂c) = pc(l̂cr) ∧ pc(l̂c) = pc(l̂ca)

5. pc(interrupt(l̂c)) =⇒ pc(l̂c)
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Requirements 3 (Interpretation Preservation). The interface functions of the L-semantics must

preserve interpretations, as follows:

1. initialConf(l̂c, (f, v̂)) = l̂c
′

=⇒ initialConf(Iε(l̂c), (f, Iε(v̂))) = Iε(l̂c
′
)

2. mergeConfs(l̂c, l̂c
′
)) = l̂c

′′
=⇒ mergeConfs(Iε(l̂c), Iε(l̂c

′
)) = Iε(l̂c

′′
)

3. isFinal(l̂c) ⇐⇒ isFinal(Iε(l̂c))

4. assume(l̂c, πa) = l̂c
′
∧ Iε(pc(l̂c

′
)) = True =⇒ Iε(l̂c) = Iε(l̂c

′
)

5. interrupt(l̂c) = l̂c
′

=⇒ interrupt(Iε(l̂c)) = Iε(l̂c
′
)

6. splitReturn(l̂c, v̂) = (l̂cr, l̂ca) =⇒ splitReturn(Iε(l̂c), Iε(v̂)) = (Iε(l̂cr), Iε(l̂ca))

Lemma 4 (Configuration Projection - Models).

(ε, 〈lc, h, q〉) ∈Mπ(〈l̂c, ĥ, q̂〉) =⇒ (ε, lc) ∈Mπ(l̂c)

Proof:

Assume: 1. (ε, 〈lc, h, q〉) ∈Mπ(〈l̂c, ĥ, q̂〉)
Prove: lc ∈Mπ(l̂c)

1. (ε, 〈lc, h, q〉) ∈Mπ(〈l̂c, ĥ, q̂〉) [Assumption 1]

2. (ε, 〈lc, h, q〉) ∈ {(ε, Iε(〈lc, h, q〉)) | Iε(π) = True} [Definition of Mπ()]

3. 〈lc, h, q〉 = Iε(〈l̂c, ĥ, q̂〉) [Set theory and 2]

4. Iε(π) = True [Definition of Mπ()]

5. lc = Iε(l̂c) [Equality of Tuples and 4]

6. (ε, lc) ∈ {(ε, l̂c) | Iε(π) = True} [Set theory and 5]

7. (ε, lc) ∈Mπ(l̂c) [Definition of Mπ() and 6]

Lemma 5 (Add Handler - Symbolic to Concrete).

AH(ĥ, ê, f) ; (ĥ′, π) ∧ Iε(π) = True =⇒ AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

Proof:

Assume: 1. AH(ĥ, ê, f) ; (ĥ′, π)

2. Iε(π) = True

Prove: AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)
The proof proceeds by case analysis on the symbolic rules for AH.

1. Case: [Add Handler: Found]

1.1. ∃ê′ ∈ dom(ĥ) [Add Handler - Found (Symbolic)]

1.2. ĥ′ = ĥ
[
ê′ 7→ ĥ(ê′)++[f ]

]
[Add Handler - Found (Symbolic)]

1.3. π = (ê = ê′) [Add Handler - Found (Symbolic)]

1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]

1.6. Let : h = Iε(ĥ)
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1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]

1.8. AH(h, e, f) = h [e 7→ ho(e)++[f ]] [Definition of AH (Concrete)]

1.9. AH(h, e, f) = h [e 7→ h(e)++[f ]] [1.7 and 1.8]

1.10. h [e 7→ h(e)++[f ]] = Iε(ĥ
[
ê′ 7→ ĥ(ê′)++[f ]

]
) [Definition of Iε]

1.11. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [1.2, 1.4 and 1.10]

2. Case: [Add Handler: Not Found]

2.1. ê 6∈ dom(ĥ) [Add Handler - Not Found (Symbolic)]

2.2. ĥ′ = ĥ [ê 7→ [f ]] [Add Handler - Not Found (Symbolic)]

2.3. π = ê 6∈ dom(ĥ) [Add Handler - Not Found (Symbolic)]

2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]

2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]

2.7. AH(h, e, f) = h [e 7→ ho(e)++[f ]] [definition of AH (Concrete)]

2.8. AH(h, e, f) = h [e 7→ [f ]] [2.6 and 2.7]

2.9. h [e 7→ [f ]] = Iε(ĥ [ê 7→ [f ]]) [Definition of Iε]
2.10. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [2.2, 2.4 and 2.9]

Lemma 6 (Remove Handler - Symbolic to Concrete).

RH(ĥ, ê, f) ; (ĥ′, π) ∧ Iε(π) = True =⇒ RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

Proof:

Assume: 1. RH(ĥ, ê, f) ; (ĥ′, π)

2. Iε(π) = True

Prove: RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)
The proof proceeds by case analysis on the symbolic rules for RH.

1. Case: [Remove Handler: Found]

1.1. ∃ê′ ∈ dom(ĥ) [Remove Handler - Found (Symbolic)]

1.2. ĥ′ = ĥ
[
ê′ 7→ ĥ(ê′) \ f

]
[Remove Handler - Found (Symbolic)]

1.3. π = (ê = ê′) [Remove Handler - Found (Symbolic)]

1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]

1.6. Let : h = Iε(ĥ)

1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]

1.8. RH(h, e, f) = h [e 7→ h(e) \ f ] [1.7 and definition of RH]

1.9. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ
[
ê′ 7→ ĥ(ê′) \ f

]
) [1.2 and 1.8]

1.10. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [1.9 and definition of RH]

2. Case: [Remove Handler: Not Found]

2.1. ê 6∈ dom(ĥ) [Remove Handler - Not Found (Symbolic)]

2.2. ĥ′ = ĥ [Remove Handler - Not Found (Symbolic)]
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2.3. π = ê 6∈ dom(ĥ) [Remove Handler - Not Found (Symbolic)]

2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]

2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]

2.7. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [Definition of RH, 2.2 and 2.6]

Lemma 7 (Find Handler - Symbolic to Concrete).

FH(ĥ, ê) ; (f̄, π) ∧ Iε(π) = True =⇒ FH(Iε(ĥ), Iε(ê)) = f̄

Proof:

Assume: 1. FH(ĥ, ê) ; (f̄, π)

2. Iε(π) = True

Prove: FH(Iε(ĥ), Iε(ê)) = f̄

The proof proceeds by case analysis on the symbolic rules for FH.

1. Case: [Find Handler: Found]

1.1. ∃ê′ ∈ dom(ĥ) [Find Handler - Found (Symbolic)]

1.2. f̄ = ĥ(ê′) [Find Handler - Found (Symbolic)]

1.3. π = (ê = ê′) [Find Handler - Found (Symbolic)]

1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]

1.6. Let : h = Iε(ĥ)

1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]

1.8. FH(h, e) = ho(e) [1.7 and definition of FH]

1.9. FH(h, e) = h(e) [1.2 and 1.8]

1.10. FH(Iε(ĥ), Iε(ê)) = f̄ [1.9 and definition of FH]

2. Case: [Find Handler: Not Found]

2.1. ê 6∈ dom(ĥ) [Find Handler - Not Found (Symbolic)]

2.2. f̄ = [] [Find Handler - Not Found (Symbolic)]

2.3. π = ê 6∈ dom(ĥ) [Find Handler - Not Found (Symbolic)]

2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]

2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]

2.7. FH(Iε(ĥ), Iε(ê)) = ho(e) = [] [Definition of FH, 2.2 and 2.6]

2.8. FH(Iε(ĥ), Iε(ê)) = f̄ [2.7 and definition of FH]

Lemma 8 (Mapping E-semantics and UL Concretely).

〈lc, h, q〉;εα
E εc′ ∧ εα = · ∧ ¬L.final(lc) =⇒ ∃p, lc′ · lc;p

L lc
′

Proof:The proof follows by case analysis on the E-semantics symbolic rules.
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Assume: 1. 〈lc, h, q〉;εα
E εc′

2. εα = ·
3. ¬L.final(lc)

Prove: ∃p, lc′ · lc;p
L lc

′

1. Case: [Environment Event Dispatch]

1.1. εα = (e, v) [Environment Event Dispatch Rule (Concrete)]

1.2. ⊥ [Assumption 2 and 1.1]

This rule is not applicable due to a contradiction.

2. Case: [Continuation - Success]

2.1. L.final(lc) [Continuation - Sucess (Concrete)]

2.2. ⊥ [Assumption 3 and 2.1]

This rule is not applicable due to a contradiction.

3. Case: [Continuation - Failure]

3.1. L.final(lc) [Continuation - Sucess (Concrete)]

3.2. ⊥ [Assumption 3 and 3.1]

This rule is not applicable due to a contradiction.

For the remaining cases, the proof follows directly from the rule definition. It is always the case that

∃p, lc′ · lc;p
L lc

′ holds.
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Definition A.1 (Correctness Criteria - UL-Symbolic Semantics).

L-Directed-Soundness

l̂c;p̂
L l̂c

′
∧ (π ⇒ pc(l̂c

′
)) ∧ (ε, lc) ∈Mπ(l̂c) ∧ lc;p

L lc
′

=⇒ (ε, lc′) ∈Mπ(l̂c
′
) ∧ (ε, p) ∈Mπ(p̂)

L-Directed-Completeness

l̂c;p̂
L l̂c

′
∧ (π ⇒ pc(l̂c

′
)) ∧ (ε, lc) ∈Mπ(l̂c) =⇒ ∃p, lc′. lc;p

L lc
′

Theorem A.1 (Directed Soundness of the Symbolic E-semantics).

ε̂c;ε̂α
Ê
ε̂c′ ∧ (π ⇒ pc(ε̂c′)) ∧ (ε, εc) ∈Mπ(ε̂c)

∧ (ε, εα) ∈Mπ(ε̂α) ∧ εc;εα
E εc′

=⇒ (ε, εc′) ∈Mπ(ε̂c′)

Proof:

Assume: 1. ε̂c;ε̂α
Ê
ε̂c′

2. π ⇒ pc(ε̂c′)

3. (ε, εc) ∈Mπ(ε̂c)

4. (ε, εα) ∈Mπ(ε̂α)

5. εc;εα
E εc′

Prove: (ε, εc′) ∈Mπ(ε̂c′)

The proof follows by case analysis on the symbolic semantics rules.

1. Case: [Language Transition]

1.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

1.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

1.3. ε̂α = · [Language Transition Rule - Symbolic]

1.4. l̂c;p̂
L l̂c

′
[Language Transition Rule - Symbolic]

1.5. p̂ = · [Language Transition Rule - Symbolic]

1.6. ε̂c′ = 〈l̂c
′
, ĥ, q̂〉 [Language Transition Rule - Symbolic]

1.7. εc = Iε(ε̂c) ∧ Iε(π) = True [by Assumption 3 and definition of M()]

1.8. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

1.9. εα = · [by 1.8 and Definition of Iε]
1.10. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 1.1]

1.11. ¬L.final(l̂c) [by 1.4 and definition of isFinal]

1.12. ¬L.final(lc) [by Lemma 3, given 1.10, 1.11 and definition of Mπ()]

1.13. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 1.9 and 1.12]

1.14. π ⇒ pc(l̂c
′
) [by Assumption 2 and Definition of pc()]

1.15. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 1.4, 1.10, 1.13 and 1.14]

1.16. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 1.4, 1.10, 1.13 and 1.14]

1.17. p = · [by 1.3, 1.16, definition of Mπ() and definition of Iε]
1.18. εc′ = 〈Iε(l̂c

′
), Iε(ĥ), Iε(q̂)〉 [by 1.13, 1.17 and the Language Transition Rule - Concrete]

1.19. (ε, εc′) ∈Mπ(ε̂c′) [by 1.18 and definition of M()]
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2. Case: [Add Handler]

2.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

2.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

2.3. ε̂α = · [Add Handler Rule - Symbolic]

2.4. l̂c;p̂
L l̂c

′
[Add Handler Rule - Symbolic]

2.5. p̂ = addHdlr〈ê, f〉 [Add Handler Rule - Symbolic]

2.6. AH(ĥ, ê, f) ; (ĥ′, πah) [Add Handler Rule - Symbolic]

2.7. Let : l̂c
′′

= L.assume(l̂c
′
, πah)

2.8. ε̂c′ = 〈l̂c
′′
, ĥ′, q̂〉 [Add Handler Rule - Symbolic]

2.9. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 2.1]

2.10. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

2.11. Iε(π) = True [by 2.10 and Set Theory]

2.12. εα = · [by 2.3, 2.10 and definition of Iε]
2.13. ¬L.final(l̂c) [by 2.4 and definition of isFinal]

2.14. ¬L.final(lc) [by Lemma 3, given 2.9, 2.13 and definition of Mπ()]

2.15. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 2.2, 2.12 and 2.2]

2.16. π ⇒ pc(l̂c
′′
) [by Assumption 2, 2.8 and definition of pc()]

2.17. π ⇒ pc(l̂c
′
) [by Lemma 2, given 2.7 and 2.16]

2.18. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 2.4, 2.9, 2.15 and 2.17]

2.19. lc′ = Iε(l̂c
′
) [by 2.18 and definition of Mπ()]

2.20. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 2.4, 2.9, 2.15 and 2.17]

2.21. Let : e = Iε(ê)
2.22. p = addHdlr〈e, f〉 [by 2.5, 2.20, 2.21 and definition of Iε(addHdlr〈ê, f〉)]
2.23. Let : h′ = AH(h, e, f)

2.24. εc′ = 〈lc′, h′, q〉 [Add Handler Rule - Concrete]

2.25. π ⇒ πah [by Lemma 2, given 2.7 and 2.16]

2.26. Iε(pc(l̂c
′′
)) = True [by 2.11, 2.16 and definition of Iε]

2.27. lc′ = Iε(l̂c
′′
) [by Lemma 3, given 2.7 and 2.26]

2.28. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [by Lemma 5, given 2.6, 2.11 and 2.25]

2.29. Iε(ĥ′) = h′ [by 2.23 and 2.28]

2.30. Iε(q̂) = q [by Assumption 2 and definition of Mπ()]

2.31. Iε(〈l̂c
′′
, ĥ′, q̂〉) = 〈lc′, h′, q〉 [by 2.27, 2.29, 2.30 and definition of Iε]

2.32. εc′ ∈Mπ(ε̂c′) [by 2.24, 2.31 and definition of Mπ()]

3. Case: [Remove Handler]

3.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

3.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

3.3. ε̂α = · [Remove Handler Rule - Symbolic]

3.4. l̂c;p̂
L l̂c

′
[Remove Handler Rule - Symbolic]

3.5. p̂ = remHdlr〈ê, f〉 [Remove Handler Rule - Symbolic]

3.6. RH(ĥ, ê, f) ; (ĥ′, πrh) [Remove Handler Rule - Symbolic]

3.7. Let : l̂c
′′

= L.assume(l̂c
′
, πrh)
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3.8. ε̂c′ = 〈l̂c
′′
, ĥ′, q̂〉 [Remove Handler Rule - Symbolic]

3.9. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 3.1]

3.10. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

3.11. Iε(π) = True [by 3.10 and Set Theory]

3.12. εα = · [by 3.3, 3.10 and definition of Iε]
3.13. ¬L.final(l̂c) [by 3.4 and definition of isFinal]

3.14. ¬L.final(lc) [by Lemma 3, given 3.9, 3.13 and definition of Mπ()]

3.15. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 3.2, 3.12 and 3.14]

3.16. π ⇒ pc(l̂c
′′
) [by Assumption 2, 3.8 and definition of pc()]

3.17. π ⇒ pc(l̂c
′
) [by Lemma 2, given 3.7 and 3.16]

3.18. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 3.4, 3.9, 3.15 and 3.17]

3.19. lc′ = Iε(l̂c
′
) [3.18 and definition of Mπ()]

3.20. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 3.4, 3.9, 3.15 and 3.17]

3.21. Let : e = Iε(ê)
3.22. p = remHdlr〈e, f〉 [by 3.5, 3.20, 3.21 and definition of Iε(remHdlr〈ê, f〉)]
3.23. Let : h′ = RH(h, e, f)

3.24. εc′ = 〈lc′, h′, q〉 [Remove Handler Rule - Concrete]

3.25. π ⇒ πrh [by Lemma 2, given 3.7 and 3.16]

3.26. Iε(pc(l̂c
′′
)) = True [by 3.11, 3.17 and definition of Iε]

3.27. lc′ = Iε(l̂c
′′
) [by Lemma 3, given 3.7, 3.11 and 3.26]

3.28. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [by Lemma 6, given 3.11, 3.25 and 3.27]

3.29. Iε(ĥ′) = h′ [by 3.23 and 3.28]

3.30. Iε(q̂) = q [by Assumption 3 and definition of Mπ()]

3.31. Iε(〈l̂c
′′
, ĥ′, q̂〉) = 〈lc′, h′, q〉 [3.27, 3.29, 3.30 and definition of Iε()]

3.32. εc′ ∈Mπ(ε̂c′) [3.24, 3.31 and definition of Mπ()]

4. Case: [Synchronous Dispatch]

4.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

4.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

4.3. ε̂α = · [Synchronous Dispatch Rule - Symbolic]

4.4. l̂c;p̂
L l̂c

′
[Synchronous Dispatch Rule - Symbolic]

4.5. p̂ = sDispatch〈ê, v̂〉 [Synchronous Dispatch Rule - Symbolic]

4.6. FH(ĥ, ê) ; ([fi |n0 ], πfh) [Synchronous Dispatch Rule - Symbolic]

4.7. Let : q̂′ = [(fi, ê, v̂) |ni=0]

4.8. Let : l̂c
′′

= L.assume(l̂c
′
, π)

4.9. Let : l̂c
′′′

= L.suspend(l̂c
′′
)

4.10. ε̂c′ = 〈l̂c
′′′
, ĥ, q̂′ ++[(l̂c

′′
, (λl̂c.True))]++q̂〉 [Synchronous Dispatch Rule - Symbolic]

4.11. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 4.1]

4.12. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

4.13. Iε(π) = True [by 4.12 and Set Theory]

4.14. εα = · [by 4.3, 4.12 and definition of Iε]
4.15. ¬L.final(l̂c) [by 4.4 and definition of isFinal]
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4.16. ¬L.final(lc) [by Lemma 3, given 4.11, 4.15 and definition of Mπ()]

4.17. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 4.2, 4.14 and 4.16]

4.18. π ⇒ pc(l̂c
′′′

) [Assumption 2, 4.10 and definition of pc()]

4.19. π ⇒ pc(L.suspend(l̂c
′′
)) [by 4.9 and 4.18]

4.20. π ⇒ pc(l̂c
′′
) [by Lemma 2, given 4.19]

4.21. π ⇒ pc(l̂c
′
) [by Lemma 2, given 4.8 and 4.20]

4.22. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 4.4, 4.11, 4.17 and 4.21]

4.23. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 4.4, 4.11, 4.17 and 4.21]

4.24. Let : e = Iε(ê)
4.25. Let : v = Iε(v̂)

4.26. p = sDispatch〈e, v〉 [4.5, 4.23, definition of Mπ() and definition of Iε(sDispatch〈ê, v̂〉)]
4.27. Let : lc′′ = L.suspend(lc′)

4.28. Let : [fi |n0 ] = FH(h, e)

4.29. Let : q′ = [(fi, [e, v]) |ni=0]

4.30. εc′ = 〈lc′′, h, q′ ++[(lc′, (λlc.True))]++q〉 [Synchronous Dispatch Rule - Concrete]

4.31. π ⇒ πfh [by Lemma 2, given 4.8 and 4.20]

4.32. Iε(pc(l̂c
′′
)) = True [by 4.13, 4.20 and definition of Iε]

4.33. lc′ = Iε(l̂c
′′
) [by Lemma 3, given 4.8, 4.13 and 4.32]

4.34. Iε(L.suspend(l̂c
′′
)) = L.suspend(Iε(l̂c

′′
)) [by Lemma 3]

4.35. Iε(L.suspend(l̂c
′′
)) = L.suspend(lc′) [by 4.33 and 4.34]

4.36. (ε, lc′′) ∈Mπ(l̂c
′′′

) [by 4.9, 4.35 and definition of Mπ()]

4.37. Iε(ĥ) = h [by Assumption 2 and definition of Mπ()]

4.38. FH(Iε(ĥ), Iε(ê)) = [fi |n0 ] [by Lemma 7, given 4.6, 4.13 and 4.31]

4.39. Iε(q̂′ ++[(l̂c
′′
, (λl̂c.True))]++q̂) = Iε(q̂′) ++Iε([(l̂c

′′
, (λl̂c.True))])++Iε(q̂) [Definition of Iε]

4.40. Iε(q̂′) = Iε([(fi, ê, v̂) |ni=0]) = [(Iε(fi), e, v) |ni=0] = q′ [by definition of Iε, 4.7, 4.29, 4.39]

4.41. Iε([(l̂c
′′
, (λl̂c.True))]) = [(lc′, (λlc.True))] [by 4.33 and definition of Iε]

4.42. Iε(q̂) = q [by Assumption 2 and definition of Mπ()]

4.43. εc′ ∈Mπ(ε̂c′) [by 4.35, 4.39, 4.40, 4.41, 4.42 and definition of Mπ()]

5. Case: [Asynchronous Dispatch]

5.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

5.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

5.3. ε̂α = · [Asynchronous Dispatch Rule - Symbolic]

5.4. l̂c;p̂
L l̂c

′
[Asynchronous Dispatch Rule - Symbolic]

5.5. p̂ = aDispatch〈ê, v̂〉 [Asynchronous Dispatch Rule - Symbolic]

5.6. FH((ĥ, ê)) ; (([fi |n0 ], πfh)) [Asynchronous Dispatch Rule - Symbolic]

5.7. Let : q̂′ = [(fi, ê, v̂) |ni=0]

5.8. Let : l̂c
′′

= L.assume(l̂c
′
, π)

5.9. ε̂c′ = 〈l̂c
′′
, ĥ, q̂′〉 [Asynchronous Dispatch Rule - Symbolic]

5.10. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 5.1]

5.11. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

5.12. Iε(π) = True [by 5.11 and Set Theory]
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5.13. εα = · [by 5.3, 5.11 and Definition of Iε]
5.14. ¬L.final(l̂c) [by 5.4 and definition of isFinal]

5.15. ¬L.final(lc) [by Lemma 3, given 5.10, 5.14 and definition of Mπ()]

5.16. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 5.2, 5.13 and 5.15]

5.17. π ⇒ pc(l̂c
′′
) [by Assumption 2, 5.9 and definition of pc()]

5.18. π ⇒ pc(l̂c
′
) [by Lemma 2, given 5.8 and 5.17]

5.19. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 5.4, 5.10, 5.16 and 5.18]

5.20. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 5.4, 5.10, 5.16 and 5.18]

5.21. Let : e = Iε(ê)
5.22. Let : v = Iε(v̂)

5.23. p = aDispatch〈e, v〉 [by 5.5, 5.20, definition of Mπ() and definition of Iε(aDispatch〈ê, v̂〉)]
5.24. Let : [fi |n0 ] = FH(h, e)

5.25. Let : q′ = [(fi, [e, v]) |ni=0]

5.26. εc′ = 〈lc′, h, q′〉 [Asynchronous Dispatch Rule - Concrete]

5.27. Iε(pc(l̂c
′′
)) = True [by 5.12, 5.17 and definition of Iε]

5.28. lc′ = Iε(l̂c
′′
) [by Lemma 3, given 5.8 and 5.27]

5.29. π ⇒ πfh [by Lemma 2, given Assumption 2 and 5.8]

5.30. (ε, lc′) ∈Mπ(l̂c
′′
) [by 5.12, 5.28 and definition of Mπ()]

5.31. Iε(ĥ) = h [by Assumption 3, 5.1, 5.2 and definition of Mπ()]

5.32. FH(Iε(ĥ), Iε(ê)) = [fi |n0 ] [by Lemma 7, given 5.6, 5.12 and 5.29]

5.33. Iε(q̂′) = Iε([(fi, [ê, v̂]) |ni=0]) = [(fi, [e, v]) |ni=0] = q′ [by 5.7 and definition of Iε]
5.34. εc′ ∈Mπ(ε̂c′) [5.9, 5.26, 5.30, 5.31, 5.33 and definition of Mπ()]

6. Case: [Environment Dispatch]

6.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

6.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

6.3. FH(ĥ, ê) ; ([fi |n0 ], πfh) [Environment Dispatch Rule - Symbolic]

6.4. Let : q̂′ = [(fi, ê, v̂) |ni=0]

6.5. Let : l̂c
′
= L.assume(l̂c, πfh)

6.6. ε̂c′ = 〈l̂c
′
, ĥ, q̂++q̂′〉 [Environment Dispatch Rule - Symbolic]

6.7. ε̂α = (ê, v̂) [Environment Dispatch Rule - Symbolic]

6.8. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 6.1]

6.9. Iε(π) = True [by 6.8 and definition of Mπ()]

6.10. Let : e = Iε(ê)
6.11. Let : v = Iε(v̂)

6.12. εα = (e, v) [by 6.7, 6.10, 6.11, Assumption 4 and definition of Mπ(ε̂α)]

6.13. εc′ = 〈lc, h, q++q′〉 [Environment Dispatch Rule - Concrete]

6.14. Iε(q̂′) = Iε([(fi, [ê, v̂]) |ni=0]) = [(fi, [e, v]) |ni=0] = q′ [by 6.4 and Definition of Iε]
6.15. Iε(q̂++q̂′) = Iε(q̂)++Iε(q̂′) [by definition of Iε]
6.16. Iε(pc(l̂c

′
)) = True [by 6.5, 6.9 and definition of Iε]

6.17. lc = Iε(l̂c
′
) [by Lemma 3, given 6.5 and 6.16]

6.18. π ⇒ πfh [by Lemma 2, given Assumption 2 and 6.5]
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6.19. FH(Iε(ĥ), e) = [fi |n0 ] [by Lemma 7, given 6.3, 6.9 and 6.18]

6.20. (ε, lc) ∈Mπ(l̂c
′
) [by 6.17 and definition of Mπ()]

6.21. q′ ∈Mπ(q̂′) [by 6.14 and definition of Mπ()]

6.22. Iε(q̂) = q [by Assumption 2, 6.1, 6.2 and definition of Mπ()]

6.23. Iε(ĥ) = h [by Assumption 2, 6.1, 6.2 and definition of Mπ()]

6.24. εc′ ∈Mπ(ε̂c′) [by 6.6, 6.8, 6.13, 6.21, 6.22, 6.23 and definition of Mπ()]

7. Case: [Schedule]

7.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

7.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

7.3. ε̂α = · [Schedule Rule - Symbolic]

7.4. l̂c;p̂
L l̂c

′
[Schedule Rule - Symbolic]

7.5. p̂ = schedulef, v̂ [Schedule Rule - Symbolic]

7.6. Let : q̂′ = q̂++[(f, v̂)]

7.7. ε̂c′ = 〈l̂c
′
, ĥ, q̂′〉 [Schedule Rule - Symbolic]

7.8. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 7.1]

7.9. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

7.10. εα = · [by 7.3, 7.9 and definition of Iε]
7.11. ¬L.final(l̂c) [by 7.4 and definition of isFinal]

7.12. ¬L.final(lc) [by Lemma 3, given 7.8, 7.11 and definition of Mπ()]

7.13. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 7.2, 7.10 and 7.12]

7.14. π ⇒ pc(l̂c
′
) [by Assumption 2, 7.7, 7.8 and definition of pc()]

7.15. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 7.4, 7.13 and 7.14]

7.16. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 7.4, 7.13 and 7.14]

7.17. Let : v = Iε(v̂)

7.18. p = schedulef, v [by 7.5, 7.16, definition of Mπ() and definition of Iε(schedulef, v̂)]

7.19. Let : q′ = q++[(f, v)]

7.20. εc′ = 〈lc′, h, q′〉 [by 7.13, 7.17, 7.18 and Schedule Rule - Concrete]

7.21. Iε(ĥ) = h [by Assumption 3, 7.1, 7.2 and definition of Mπ()]

7.22. Iε(q̂′) = Iε(q̂++[(f, v̂)]) = q++[(f, v)] = q′ [by Assumption 3, 7.6, 7.17, 7.19 and definition of

Iε]
7.23. εc′ ∈Mπ(ε̂c′) [by 7.7, 7.15, 7.20, 7.21, 7.22 and definition of Mπ()]

8. Case: [Await]

8.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

8.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

8.3. l̂c;p̂
L l̂c

′
[Await Rule - Symbolic]

8.4. ε̂α = · [Await Rule - Symbolic]

8.5. p̂ = await〈v̂, ρ̂〉 [Await Rule - Symbolic]

8.6. Let : (l̂cr, l̂ca) = L.splitReturn(l̂c
′
, v̂)

8.7. ε̂c′ = 〈l̂cr, ĥ, q̂++[(l̂ca, ρ̂)]〉 [Await Rule - Symbolic]

8.8. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 2 and 8.1]
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8.9. (ε, εα) ∈ {(ε, Iε(ε̂α)) | Iε(π) = True} [by Assumption 4 and definition of Mπ()]

8.10. εα = · [by 8.4, 8.9 and definition of Iε]
8.11. ¬L.final(l̂c) [by 8.3 and definition of isFinal]

8.12. ¬L.final(lc) [by Lemma 3, given 8.8, 8.11 and definition of Mπ()]

8.13. ∃p, lc′. lc;p
L lc

′ [by Lemma 8, given Assumption 5, 8.2, 8.10 and 8.12]

8.14. π ⇒ pc(l̂cr) [by Assumption 2, 8.7 and definition of Mπ()]

8.15. π ⇒ pc(l̂c
′
) [by Lemma 2, given 8.6 and 8.14]

8.16. (ε, lc′) ∈Mπ(l̂c
′
) [by Definition A.1, given 8.3, 8.8 and 8.16]

8.17. (ε, p) ∈Mπ(p̂) [by Definition A.1, given 8.3, 8.8 and 8.16]

8.18. Let : v = Iε(v̂)

8.19. Let : ρ = Iε(ρ̂)

8.20. p = await〈v, ρ〉 [by 8.5, 8.17 8.18 and 8.19 and definition of Iε]
8.21. Let : (lcr, lca) = L.splitReturn(lc′, v)

8.22. (lcr, lca) = (Iε(l̂cr), Iε(l̂ca)) [by Lemma 3, given 8.6 and 8.21]

8.23. εc′ = 〈lcr, h, q++[(lca, ρ)]〉 [by Await Rule - Concrete, given 8.2, 8.10, 8.13, 8.20 and 8.21]

8.24. Iε(l̂cr) = lcr [by 8.22 and Equality of Tuples

8.25. Iε(ĥ) = h [by Assumption 3, 8.1, 8.2 and definition of Mπ()]

8.26. Iε(q̂) = q [by Assumption 3, 8.1, 8.2 and definition of Mπ()]

8.27. Iε(q̂++[(l̂ca, ρ̂)]) = Iε(q̂)++Iε([l̂ca, ρ̂]) = q++[lca, ρ] [by 8.22, 8.26 and definition of Iε]
8.28. εc′ ∈Mπ(ε̂c′) [by 8.7, 8.23, 8.24, 8.25, 8.27 and definition of Mπ()]

9. Case: [Continuation - Success]

9.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

9.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

9.3. L.final(l̂c) [Continuation Success Rule (Symbolic)]

9.4. q̂ = κ̂ : q̂′ [Continuation Success Rule (Symbolic)]

9.5. Let : l̂c
′′

= CWL(l̂c, κ̂)

9.6. ε̂c′ = 〈l̂c
′′
, ĥ, q̂′〉 [Continuation Success Rule (Symbolic)]

9.7. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 9.1]

9.8. L.final(lc) [by Lemma 3, given 9.3, 9.7 and definition of Mπ()]

9.9. Case: κ̂ = (l̂c
′
, ρ̂)

9.9.1. l̂c
′′

= L.mergeConfs(l̂c, l̂c
′
) [by definition of CWL]

9.9.2. Let : lc′ = Iε(l̂c
′
)

9.9.3. Let : q′ = Iε(q̂′)
9.9.4. q = Iε(q̂) [by Assumption 2 and definition of Mπ()]

9.9.5. q = Iε(κ̂ : q̂′) = Iε(κ̂) : Iε(q̂′) [by 9.4, 9.9.4 and definition of Iε]
9.9.6. Let : κ = Iε(κ̂)

9.9.7. Let : ρ = Iε(ρ̂)

9.9.8. κ = (lc′, ρ) [by 9.9.2, 9.9.6, 9.9.7 and definition of Iε]
9.9.9. Let : lc′′ = CWL(lc, κ)

9.9.10. lc′′ = L.mergeConfs(lc, lc′) [by 9.9.7 and definition of CWL]

9.9.11. εc′ = 〈lc′′, h, q′〉 [Continuation - Sucess (Concrete)]
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9.9.12. Iε(l̂c
′′
) = lc′′ [by Lemma 3, given 9.9.1 9.9.2 and 9.9.10]

9.9.13. Iε(ĥ) = h [by Assumption 3 and definition of Mπ()]

9.9.14. εc′ ∈Mπ(ε̂c′) [by 9.6, 9.9.3, 9.9.11, 9.9.12, 9.9.13 and definition of Mπ()]

9.10. Case: κ̂ = (f, v̂)

9.10.1. ρ̂(l̂c) = True [Continuation Success Rule (Symbolic)]

9.10.2. l̂c
′′

= L.initialConf(l̂c, (f, v̂)) [by 9.10.1 and Definition of CWL]

9.10.3. Let : v = Iε(v̂)

9.10.4. Let : q′ = Iε(q̂′)
9.10.5. q = Iε(q̂) [by Assumption 2 and definition of Mπ()]

9.10.6. q = Iε(κ̂ : q̂′) = Iε(κ̂) : Iε(q̂′) [by 9.4, 9.10.5 and definition of Iε]
9.10.7. Let : κ = Iε(κ̂)

9.10.8. Let : ρ = Iε(ρ̂)

9.10.9. κ = (f, v) [by 9.10.3, 9.10.7 and definition of Iε]
9.10.10. Let : lc′ = CWL(lc, κ)

9.10.11. ρ(lc) = True [9.10.1, 9.10.8 and definition of Iε]
9.10.12. lc′ = L.initialConf(f, v) [9.10.10, 9.10.11 and definition of CWL]

9.10.13. εc′ = 〈lc′, h, q′〉 [Continuation - Sucess (Concrete)]

9.10.14. Iε(l̂c
′′
) = lc′ [by Lemma 3, given 9.10.2 and 9.10.12]

9.10.15. Iε(ĥ) = h [by Assumption 3 and definition of Mπ()]

9.10.16. εc′ ∈Mπ(ε̂c′) [9.6, 9.10.4, 9.10.14, 9.10.15 and definition of Mπ()]

10. Case: [Continuation - Failure]

10.1. Let : ε̂c = 〈l̂c, ĥ, q̂〉
10.2. Let : εc = 〈lc, h, q〉
10.3. L.final(l̂c) [Continuation Failure Rule (Symbolic)]

10.4. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 1 and 10.1]

10.5. q̂ = κ̂ : q̂′ [Continuation Failure Rule (Symbolic)]

10.6. (l̂c, κ̂) 6∈ dom(CWL) [Continuation Failure Rule (Symbolic)]

10.7. ε̂c′ = 〈l̂c, ĥ, q̂′++[κ̂]〉 [Continuation - Failure (Symbolic)]

10.8. L.final(lc) [by Lemma 3, given 10.3, 10.4 and definition of Mπ()]

10.9. Let : κ = Iε(κ̂)

10.10. Let : q′ = Iε(q̂′)
10.11. (lc, κ) 6∈ dom(CWL) [by 10.6, 10.9, 10.10 and definition of Iε]
10.12. εc′ = 〈lc, h, q′++[κ]〉 [Continuation Failure Rule (Concrete)]

10.13. q′++[κ] ∈Mπ(q̂′++[κ̂]) [by 10.9, 10.10 and definition of Mπ()]

10.14. εc′ ∈Mπ(ε̂c′) [by 10.6, 10.7, 10.13 and definition of Mπ()]

Theorem A.2 (Directed Completeness of the Symbolic E-semantics).

ε̂c;ε̂α
Ê
ε̂c′ ∧ π ⇒ pc(ε̂c′) ∧ (ε, εc) ∈Mπ(ε̂c) =⇒ ∃ εα, εc′. εc;εα

E εc′

Proof:
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Assume: 1. ε̂c;ε̂α
Ê
ε̂c′

2. π ⇒ pc(ε̂c′)

3. (ε, εc) ∈Mπ(ε̂c)

Prove: ∃ εα, εc′. εc;εα
E εc′

The proof follows by case analysis on the symbolic semantics rules.

1. Case: [Language Transition]

1.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

1.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

1.3. l̂c;p̂
L l̂c

′
[Language Transition Rule (Symbolic)]

1.4. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 1.1]

1.5. π ⇒ pc(l̂c) [by Assumption 2 and definition of pc()]

1.6. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 1.3, 1.4, 1.5]

1.7. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 1.3, 1.4, 1.5 and 1.6]

1.8. εc;E 〈lc′, h, q〉 [Language Transition Rule (Concrete)]

1.9. ∃ εα, εc′. εc;εα
E εc′ [by 1.8]

2. Case: [Add Handler]

2.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

2.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

2.3. l̂c;p̂
L l̂c

′
[Add Handler Rule (Symbolic)]

2.4. p̂ = addHdlr〈ê, f〉 [Add Handler Rule (Symbolic)]

2.5. AH(ĥ, ê, f) ; (ĥ′, πah) [Add Handler Rule (Symbolic)]

2.6. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 2.1]

2.7. π ⇒ pc(l̂c) [by Assumption 2 and definition of pc()]

2.8. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 2.3, 2.4 and 2.5]

2.9. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 2.3, 2.4, 2.5 and 2.8]

2.10. Let : e = Iε(ê)
2.11. p = addHdlr〈e, f〉 [by 2.9, 2.10, 2.11 and definition of Iε(addHdlr〈ê, f〉)]
2.12. 〈lc, h, q〉;E 〈lc′,AH(h, e, f), q〉 [Add Handler Rule (Concrete)]

2.13. ∃ εα, εc′. εc;εα
E εc′ [by 2.12]

3. Case: [Remove Handler]

3.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

3.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

3.3. l̂c;p̂
L l̂c

′
[Remove Handler Rule (Symbolic)]

3.4. p̂ = remHdlr〈ê, f〉 [Remove Handler Rule (Symbolic)]

3.5. RH(ĥ, ê, f) ; (ĥ′, πah) [Remove Handler Rule (Symbolic)]

3.6. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 3.1]

3.7. π ⇒ pc(l̂c) [by Assumption 2 and definition of pc()]

3.8. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 3.3, 3.4 and 3.5]

3.9. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 3.3, 3.4, 3.5 and 3.8]

3.10. Let : e = Iε(ê)
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3.11. p = remHdlr〈e, f〉 [by 3.9, 3.10, 3.11 and definition of Iε(remHdlr〈ê, f〉)]
3.12. 〈lc, h, q〉;E 〈lc′,RH(h, e, f), q〉 [Remove Handler Rule (Concrete)]

3.13. ∃ εα, εc′. εc;εα
E εc′ [by 3.12]

4. Case: [Synchronous Dispatch]

4.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

4.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

4.3. l̂c;p̂
L l̂c

′
[Synchronous Dispatch Rule (Symbolic)]

4.4. p̂ = sDispatch〈ê, v̂〉 [Synchronous Dispatch Rule (Symbolic)]

4.5. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 4.1]

4.6. Let : e = Iε(ê)
4.7. Let : v = Iε(v̂)

4.8. π ⇒ pc(l̂c) [by Assumption 3 and definition of pc()]

4.9. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 4.3, 4.5, 4.8]

4.10. (ε, p) ∈Mπ(p̂) [by Definition A.1 , given 4.3, 4.5, 4.8 and 4.9]

4.11. p = sDispatch〈e, v〉 [by 4.4, 4.6, 4.7 and definition of Iε(sDispatch〈ê, v̂〉)]
4.12. Let : [fi |n0 ] = FH(h, e)

4.13. Let : q′ = [(fi, [e, v]) |ni=0]

4.14. Let : lc′′ = L.suspend(lc′)

4.15. 〈lc, h, q〉;E 〈lc′′, h, q′ ++[(lc′, (λlc.True))]++q〉 [Synchronous Dispatch Rule (Concrete)]

4.16. ∃ εα, εc′. εc;εα
E εc′ [by 4.15]

5. Case: [Asynchronous Dispatch]

5.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

5.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

5.3. l̂c;p̂
L l̂c

′
[Asynchronous Dispatch Rule (Symbolic)]

5.4. p̂ = aDispatch〈ê, v̂〉 [Asynchronous Dispatch Rule (Symbolic)]

5.5. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 5.1]

5.6. π ⇒ pc(l̂c) [Assumption 2 and definition of pc()]

5.7. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 5.3, 5.5 and 5.6]

5.8. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 5.3, 5.5, 5.6 and 5.7]

5.9. Let : e = Iε(ê)
5.10. Let : v = Iε(v̂)

5.11. p = aDispatch〈e, v〉 [by 5.8, 5.9, 5.10 and definition of Iε(aDispatch〈ê, v̂〉)]
5.12. Let : [fi |n0 ] = FH(h, e)

5.13. Let : q′ = [(fi, [e, v]) |ni=0]

5.14. 〈lc, h, q〉;E 〈lc′, h′, q++q′〉 [Asynchronous Dispatch Rule (Concrete)]

5.15. ∃ εα, εc′. εc;εα
E εc′ [by 5.14]

6. Case: [Environment Dispatch]

6.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]
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6.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

6.3. Let : [fi |n0 ] = FH(h, e)

6.4. Let : q′ = [(fi, [e, v]) |ni=0]

6.5. 〈lc, h, q〉;(e,v)
E 〈lc, h, q++q′〉 [Environment Dispatch Rule (Concrete)]

6.6. ∃ εα, εc′. εc;εα
E εc′ [by 6.5]

7. Case: [Schedule]

7.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

7.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

7.3. l̂c;p̂
L l̂c

′
[Schedule Rule (Symbolic)]

7.4. p̂ = schedulef, v̂ [Schedule Rule (Symbolic)]

7.5. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 7.1]

7.6. π ⇒ pc(l̂c) [Assumption 3 and definition of pc()]

7.7. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 7.3, 7.5 and 7.6]

7.8. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 7.3, 7.5, 7.6 and 7.7]

7.9. Let : v = Iε(v̂)

7.10. p = schedulef, v [by 7.4, 7.8, 7.9 and definition of Iε(schedulef, v̂)]

7.11. Let : q′ = q++[(f, v)]

7.12. 〈lc, h, q〉;E 〈lc′, h, q′〉 [Schedule Rule (Concrete)]

7.13. ∃ εα, εc′. εc;εα
E εc′ [by 7.13]

8. Case: [Await]

8.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

8.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

8.3. l̂c;p̂
L l̂c

′
[Await Rule (Symbolic)]

8.4. p̂ = await〈v̂, ρ̂〉 [Await Rule (Symbolic)]

8.5. (ε, lc) ∈Mπ(l̂c) [by Lemma 4, given Assumption 3 and 8.1]

8.6. π ⇒ pc(l̂c) [Assumption 3 and definition of pc()]

8.7. ∃p, lc′. lc;p
L lc

′ [by Definition A.1, given 8.3, 8.5, 8.6]

8.8. (ε,p) ∈Mπ(p̂) [by Definition A.1, given 8.3, 8.5, 8.6 and 8.8]

8.9. Let : v = Iε(v̂)

8.10. Let : ρ = Iε(ρ̂)

8.11. p = await〈v, ρ〉 [by 8.4, 8.8, 8.9 and definition of Iε(await〈v̂, ρ̂〉)]
8.12. Let : (lcr, lca) = L.splitReturn(lc′, v)

8.13. 〈lc, h, q〉;E 〈lcr, h, q++[(lca, ρ)]〉 [Await Rule (Concrete)]

8.14. ∃ εα, εc′. εc;εα
E εc′ [by 8.13]

9. Case: [Continuation - Success]

9.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

9.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

9.3. εα = · [Continuation - Success Rule (Symbolic)]
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9.4. L.final(l̂c) [Continuation - Success Rule (Symbolic)]

9.5. L.final(lc) [by Lemma 3, given Assumption 2, 9.4 and definition of Mπ()]

9.6. Let : q = κ : q′

9.7. 〈lc, h, q〉;E 〈CWL(lc, κ), h, q′〉 [Continuation - Success (Concrete)]

9.8. ∃ εα, εc′. εc;εα
E εc′ [by 9.7]

10. Case: [Continuation - Failure]

10.1. ε̂c = 〈l̂c, ĥ, q̂〉 [Definition of symbolic E-configurations]

10.2. εc = 〈lc, h, q〉 [Definition of concrete E-configurations]

10.3. εα = · [Continuation - Failure Rule (Symbolic)]

10.4. (l̂c, κ̂) 6∈ dom(CWL) [Continuation - Failure Rule (Symbolic)]

10.5. L.final(l̂c) [Continuation - Failure Rule (Symbolic)]

10.6. L.final(lc) [by Lemma 3, given Assumption 2, 10.5 and definition of Mπ()]

10.7. Let : q = κ : q′

10.8. (lc, κ) 6∈ dom(CWL) [by Assumption 2, definition of Mπ() and 10.4]

10.9. 〈lc, h, q〉;E 〈CWL(lc, κ), h, q′〉 [Continuation - Success (Concrete)]

10.10. ∃ εα, εc′. εc;εα
E εc′ [10.8]

153



B. Message-Passing Semantics

B.1. Concrete Semantics

Values Variables E-confs E-conf Ids Ports Messages
v ∈ V x ∈ X εc ∈ EC α ∈ A ⊂ Int p ∈ P ⊂ Int m ∈M := (vs, ps)

Message-passing Primitives
p ∈ P := · | send〈vs, ps, p1, p2〉 | create〈x, vs〉 | terminate〈α〉 | newPort〈〉 | connect〈p1, p2〉 |
disconnect〈p〉 | getConnected〈x, p〉 | notifyAll〈v, vs〉 | beginAtomic | endAtomic | fire〈v, vs〉

E-Conf Sequences Message Queues Port-confs Map Conn-ports Map
cs ∈ CS : EC × A mq ∈MQ :M×P pcm ∈ PCM : P ⇀ A cpm ∈ CPM : P ⇀ P

Lead Confs MP-Configurations
` ∈ L := · | Conf〈α〉 mc ∈MC : CS ×MQ×PCM× CPM×L

Configuration Actions
ca ∈ CA := · | Add〈εc, α〉 | Rem〈α〉 | Hold〈α〉 | Free〈α〉 | Notify〈v, vs〉

Figure B.1.: Message-Passing Syntax (Concrete)

Concrete Event Semantics Interface

1. newConf(vs): creates a new configuration based on the arguments vs that could be defined, for

instance, as a tuple 〈lc, h, q〉, as defined by our E-semantics.

2. setVar(εc, x, v): updates the value of the variable x to v in the configuration εc.

3. final(εc): checks wether the event configuration εc is final. Intuitively, a configuration is final if

there is nothing else to execute at the underlying language configuration.

Auxiliary Functions of the MP-semantics

Final: final(cs) returns true if all the event configurations in cs are final and false otherwise. To know

whether a configuration is final, we make use of the underlying final(εc) function provided by

the E-semantics;

Delete ports: del ports(ps,mq, pcm, cpm) deletes the ports of ps from mq, pcm and cpm;

Connect ports: connect ports(p1, p2, cpm) connects ports p1 and p2 in cpm;

Disconnect port: disconnect port(p, cpm) disconnects port p in cpm;

Transfer: transfer(α, ps, pcm) transfers each port of ps to configuration α in pcm;
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Final Configurations

final(cs) ,

{
true, if cs is empty

ES.final(c) ∧ final(cs′), if cs = c : cs′

Delete Ports

del ports(ps,mq, pcm, cpm) , (mq′, pcm′, cpm′), where


mq′ = mq \ ps
pcm′ = pcm \ ps
cpm = cpm \ ps

Connect Ports

connect ports(p1, p2, cpm) , cpm′, where


ps1 = cpm(p1)

ps2 = cpm(p2)

cpm′ = cpm[p1 7→ ps1 ++ [p2], p2 7→ ps2 ++ [p1]]

Disconnect Port
disconnect port(p, cpm) , cpm′, where cpm′ = cpm \ p

Transfer Ports

transfer(α, ps, pcm) , pcm′, where

{
ps = [pi |ni=0]

pcm′ = pcm[p0 7→ α, ..., pn 7→ α]

Apply Config Action

applyAction(cs, `, ca) ,



(cs, `), if ca is ·
(cs++ [εcα], `), if ca is Add〈εcα〉
(cs \ α, `), if ca is Rem〈α〉
(cs, Conf〈α〉), if ca is Hold〈α〉

(cs, ·), if

{
ca is Free〈α〉
` is Conf〈α〉

(cs′, `), if


ca is Notify〈v, vs〉
cs = [εci |ni=0]

εci ;
fire〈v,vs〉
E εc′i |ni=0

cs′ = [εc′i |ni=0]

Apply Config Action: applyAction(cs, `, ca) updates the configuration queue cs and the lead configu-

ration ` based on the configuration action ca. For instance, if the action is Add〈εcα〉, the function

adds the newly created configuration at the back of the configuration sequence cs and the lead

configuration remans unchanged. In contrast, if the action is Hold〈α〉, the configuration sequence

remains unchanged and the lead configuration becomes the one with identifier α.
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Transition System (MP-semantics): 〈cs,mq, pcm, cpm, `〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉

[Run Configuration - Non Atomic Block] This rule is applied when there is no leading configura-

tion, meaning that the semantics is not executing an atomic block. The scheduler chooses a

configuration to run. The MP-semantics then applies the reduced-configuration transition to

the chosen configuration and applies the resulting configuration action.

[Run Configuration - Atomic Block] In this case, the MP-semantics starts by obtaining the lead-

ing configuration εcα. Then, it applies the reduced-configuration transition to εcα proceeding

analogously to the previous rule.

[Process Message] The scheduler can also choose to process a message from the message queue

by returning Msg〈((vs, ps), p),mq′〉. The MP-semantics then processes the message by firing

the ProcessMessage event with the arguments vs supplied in the message on the target

configuration εc

Run Conf - Non Atomic
schedule(cs,mq) ; Conf〈cspre, εc, cspost〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉
cs′, `′ = applyAction(cspre ++ [εc′] ++ cspost, ·, ca)

〈cs,mq, pcm, cpm, ·〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉

Run Conf - Atomic
cspre ++ [εcα] ++ cspost = cs ` = Conf〈α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉
cs′, `′ = applyAction(cspre ++ [εc′] ++ cspost, `, ca)

〈cs,mq, pcm, cpm, `〉;MP 〈cs′,mq′, pcm′, cpm′, `′〉

Process Message
schedule(cs,mq) ; Msg〈((vs, ps), p),mq′〉 α = pcm(p)
pcm′ = transfer(α, ps, pcm) cspre ++ [εcα] ++ cspost = cs

εcα ;fire〈ProcessMessage,vs〉
E εc′α cs′ = cspre ++ [εc′] ++ cspost

〈cs,mq, pcm, cpm, ·〉;MP 〈cs′,mq′, pcm′, cpm, ·〉

Transition System (Scheduler) The scheduler either choses a configuration to run (schedule(cs,mq) ;

Conf〈cspre, εc, cspost〉) or a message to be processed (schedule(cs,mq) ; Msg〈((vs, ps), p),mq′〉). We

provide an example below.

Configuration Scheduled
cspre ++ [εc] ++ cspost = cs
final(cspre) !ES.final(εc)

schedule(cs,mq) ; Conf〈cspre, c, cspos〉

Message Scheduled
mq′ = mq . (λ(vs, ps) · ps 6= []) ++mq . (λ(vs, ps) · ps = [])

m :: mq′′ = mq′ final(cs)

schedule(cs,mq) ; Msg〈m,mq′′〉
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Transition System (Reduced Semantics): 〈εc,mq, pcm, cpm, ·〉 ;MP 〈εc′,mq′, pcm′, cpm′, ca〉
In the following, we give the rules of the reduced semantics.

E-semantics Transition

εc;·E εc
′

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm〉

The reduced semantics updates its in-

ner configuration accordingly to the

E-semantics transition.

Post Message

εc;p
E εc

′ p = send〈vs, ps, p1, p2〉
p2 ∈ cpm(p1) mq′ = mq ++ [((vs, ps), p2)]

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm, cpm〉

The reduced semantics enqueues the

message (vs, ps) in the message queue

New Execution

εc;p
E εc

′ p = create〈x, vs〉
εc′′α = ES.newConf(vs)

εc′′′ = ES.setVar(εc′, x, α) ca = Add〈εc′′α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′′′,mq, pcm, cpm, ca〉

The reduced semantics makes use of

the auxiliary function newConf(vs)

for creating a fresh configuration.

Terminate Execution

εc;p
E εc

′ p = terminate〈α〉 ps = pcm . α

(mq′, pcm′, cpm′) = del ports(ps,mq, pcm, cpm)

ca = Rem〈α〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq′, pcm′, cpm′, ca〉

The reduced semantics is responsible

for immediately terminating the con-

figuration with identifier α.

New Port

εcα ;p
E εc

′
α p = newPort〈〉 p is fresh

pcm′ = pcm[p 7→ α]

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm′, cpm〉

The reduced semantics creates a fresh

port in the current configuration.

Get Connected Ports

εc;p
E εc

′ p = getConnected〈x, p〉
ps = cpm(p) εc′′ = ES.setVar(εc′, x, ps)

〈εc,mq, pcm, cpm〉;MP 〈εc′′,mq, pcm, cpm〉

The reduced semantics obtains the

ports ps connected with p by access-

ing the connected-ports map cpm.

Connect Ports

εc;p
E εc

′ p = connect〈p1, p2〉
cpm′ = connect ports(p1, p2, cpm)

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm′〉

The reduced semantics connects the

ports p1 and p2 using the auxiliary

function connect ports(p1, p2, cpm).
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Disconnect Port

εc;p
E εc

′ p = disconnect〈p〉
cpm′ = disconnect port(p, cpm)

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm′〉

The reduced semantics disconnects

p from all the ports to which it

is currently connected with the

help of the auxiliary function

disconnect port(p, cpm).

Begin Atomic

εcα ;p
E εc

′
α p = beginAtomic

ca = Hold〈α〉

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm, cpm, ca〉

The reduced semantics must ensure

that there is no interleaving of config-

urations until an endAtomic primitive

is found.

End Atomic

εcα ;p
E εc

′
α p = endAtomic

ca = Free〈α〉

〈εcα,mq, pcm, cpm〉;MP 〈εc′α,mq, pcm, cpm, ca〉

The reduced semantics generates the

configuration action Free〈α〉, indicat-

ing that the scheduler can run nor-

mally and the configuration α does

not need to be chosen.

Notify All

εcα ;p
E εc

′
α p = notifyAll〈v, vs〉

ca = Notify〈v, vs〉

〈εc,mq, pcm, cpm〉;MP 〈εc′,mq, pcm, cpm, ca〉

The reduced semantics generates the

configuration action Notify〈v, vs〉, so

that the event v is triggered on all

configurations with arguments vs.

B.2. Symbolic Semantics

Values Variables E-confs E-conf Ids Ports Messages
v̂ ∈ V̂ x̂ ∈ X̂ ε̂c ∈ ÊC α ∈ A ⊂ Int p ∈ P ⊂ Int m̂ ∈ M̂ := (vs, ps)

Message-passing Primitives
p̂ ∈ P̂ := · | send〈v̂s, ps, p1, p2〉 | create〈x̂, v̂s〉 | terminate〈α〉 | newPort〈〉 | connect〈p1, p2〉 |
disconnect〈p〉 | getConnected〈x̂, p〉 | notifyAll〈v̂, v̂s〉 | fire〈v̂, v̂s〉 | beginAtomic | endAtomic

E-Conf Sequences Message Queues Port-confs Map Conn-ports Map

ĉs ∈ ĈS : ÊC × A m̂q ∈ M̂Q : M̂ × P pcm ∈ PCM : P ⇀ A cpm ∈ CPM : P ⇀ P
Lead Confs MP-Configurations

` ∈ L := · | Conf〈α〉 m̂c ∈ M̂C : ĈS × M̂Q× PCM× CPM×L
Configuration Actions

ĉa ∈ ĈA := · | Add〈ε̂c, α〉 | Rem〈α〉 | Hold〈α〉 | Free〈α〉 | Notify〈v̂, v̂s〉

Figure B.2.: Message-Passing Syntax (differences to concrete execution highlighted in blue)

Symbolic E-semantics Interface

1. newConf(v̂s): creates a new configuration based on the arguments v̂s that could be defined, for

instance, as a tuple 〈l̂c, ĥ, q̂〉, as defined by our E-semantics.

2. setVar(ε̂c, x̂, v̂): updates the value of the variable x̂ to v̂ in the configuration ε̂c.
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Apply Config Action

applyAction(ĉs, `, ĉa) ,



(ĉs, `), if ca is ·
(ĉs++ [ε̂cα], `), if ca is Add〈ε̂cα〉
(ĉs \ α, `), if ca is Rem〈α〉
(ĉs, Conf〈α〉), if ca is Hold〈α〉

(ĉs, ·), if

{
ca is Free〈α〉
` is Conf〈α〉

(ĉs′, `), if


ca is Notify〈v̂, v̂s〉
ĉs = [ε̂ci |ni=0]

ε̂ci ;
fire〈v̂,v̂s〉
E ε̂c′i |ni=0

ĉs′ = [ε̂c′i |ni=0]

([ES.assume(ε̂ci, f) |ni=0], `), if

{
ca is Assume〈f〉
ĉs = [ε̂ci |ni=0]

3. final(ε̂c): checks wether the event configuration ε̂c is final. Intuitively, a configuration is final if

there is nothing else to execute at the underlying language configuration.

4. assume(ε̂c, π) = ε̂c′, where ε̂c′ is obtained from ε̂c by extending its path condition with the

formula π, if such an extension is satisfiable.

5. pc(ε̂c) = π, where π is the path condition computed in the current branch of configuration ε̂c.

Auxiliary Functions of MP-semantics The only auxiliary function that has a different definition

from its concrete counterpart is Apply Config Action. The others are identical to the concrete

ones.

Transition System (Reduced Semantics): 〈ε̂c, m̂q, pcm, cpm, ·〉 ;MP 〈ε̂c
′, m̂q′, pcm′, cpm′, ca〉

All rules for the symbolic reduced semantics analogous to their concrete counterparts. However, we

have an additional rule, which is given below.

Assume

ε̂c;p̂
E ε̂c

′ p̂ = assume〈f〉 ca = Assume〈f〉

〈ε̂c, m̂q, pcm, cpm〉;MP 〈ε̂c
′, m̂q, pcm, cpm, ca〉

The reduced semantics generates the

configuration action Assume〈f〉, indi-

cating that the formula f should be

appended to the path conditions of

each event configuration.
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B.2.1. Correctness

Interpretation of MP-semantics Structures

CS - Empty
Iε(∅) , ∅

CS - Composition
Iε(ĉs1 ] ĉs2) , Iε(ĉs1) ] Iε(ĉs2)

CS - Cell
Iε([(ε̂c, α)]) , [(Iε(ε̂c), α)]

MQ - Empty
Iε([]) , []

MQ - Non-Empty
Iε(([v̂1, ..., v̂n], ps), p) , (([Iε(v̂1), ..., Iε(v̂n), ps), p)]

MP Confs
Iε(〈ĉs, m̂q, pcm, cpm, `〉) , 〈Iε(ĉs), Iε(m̂q), pcm, cpm, `〉

MP primitive - Send
Iε(send〈v̂s, ps, p1, p2〉) , send〈Iε(v̂s), ps, p1, p2〉

MP primitive - Create
Iε(create〈x̂, v̂s〉) , create〈Iε(x̂), Iε(v̂s)〉

Configuration Actions (Add)

Iε(Add〈ε̂c, α〉) , Add〈Iε(ε̂c), α〉

Configuration Actions (Notify)

Iε(Notify〈v̂, v̂s〉) , Notify〈Iε(v̂), Iε(v̂s)〉

Models of Symbolic MP-semantics Structures

E-Configurations

Mπ(ε̂c) , {(ε, Iε(ε̂c)) | Iε(π) = True}
Primitives

Mπ(p̂) , {(ε, Iε(p̂)) | Iε(π) = True}

MP-Configurations

Mπ(〈ĉs, m̂q, pcm, cpm, ˆ̀〉) , {(ε, 〈Iε(ĉs), Iε(m̂q), pcm, cpm, Iε(ˆ̀))〉 | Iε(π) = True}

Requirements 9 (Scheduler). The MP-semantics scheduler should satisfy the following properties:

1. schedule(ĉs, m̂q) ; Conf〈ĉspre, ε̂c, ĉspost〉 =⇒
schedule(Iε(ĉs), Iε(m̂q)) ; Conf〈Iε(ĉspre), Iε(ε̂c), Iε(ĉspost)〉

2. schedule(ĉs, m̂q) ; Msg〈((v̂s, p̂s), p̂), m̂qrem〉 =⇒
schedule(Iε(ĉs), Iε(m̂q)) ; Msg〈(Iε(v̂s), Iε(p̂s)), Iε(p̂)), Iε(m̂qrem)〉

Requirements 10 (E-semantics Interface Functions). The interface functions of the E-semantics

must preserve path conditions, as follows:

1. newConf(v̂s) = ε̂c =⇒ newConf(Iε(v̂s)) = Iε(ε̂c)

2. setVar(ε̂c, x̂, v̂) = ε̂c′ =⇒ setVar(ε̂c, x̂, v̂) = Iε(ε̂c′)

3. final(ε̂c) =⇒ final(Iε(ε̂c))

4. εc = Iε(ε̂c) ∧ ε̂c;fire〈v̂,v̂s〉
E ε̂c′ =⇒ εc;fire〈Iε(v̂),Iε(v̂s)〉

E Iε(ε̂c′)

Lemma 11 (Final - Symbolic to Concrete).

final(ĉs) =⇒ final(Iε(ĉs))

Proof:
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Assume: 1. final(ĉs)

Prove: final(Iε(ĉs))
The proof follows by induction on the length of the configuration sequence ĉs.

1. Base Case: ĉs has length 0

1.1. final(Iε(ĉs)) = final(Iε([])) [Assumption 1 and step 1]

1.2. final(Iε([])) = true [Definition of final and step 1.1]

2. Inductive Case: ĉs has length n+1. We assume that the property holds for length n and prove

that it is valid for length n+1

Assume: 1. final(ĉs) =⇒ final(Iε(ĉs))
Prove: final([ε̂c] ++ ĉs) =⇒ final(Iε([ε̂c] ++ Iε(ĉs)))

2.1. final([ε̂c] ++ ĉs) = ES.final(ε̂c) ∧ final(ĉs)

2.2. ES.final(ε̂c) ∧ final(ĉs) =⇒ ES.final(Iε(ε̂c)) ∧ final(ĉs) [Assumption 10]

2.3. ES.final(Iε(ε̂c)) ∧ final(ĉs) =⇒ ES.final(Iε(ε̂c)) ∧ final(Iε(ĉs)) [Step 2.2 and Assumption 1]

2.4. ES.final(Iε(ε̂c)) ∧ final(ĉs) =⇒ final(Iε([ε̂c] ++ ĉs)) [Definition of final, Iε and step 2.3]

2.5. final([ε̂c] ++ ĉs) =⇒ final(Iε([ε̂c] ++ ĉs)) [Steps 2.1, 2.2, 2.3 and 2.4]

Lemma 12 (Delete Ports - Symbolic to Concrete).

del ports(ps, m̂q, pcm, cpm) , (m̂q′, pcm′, cpm′) =⇒

del ports(ps, Iε(m̂q), pcm, cpm) , (Iε(m̂q′), pcm′, cpm′)

Proof:

Assume: 1. del ports(ps, m̂q, pcm, cpm) , (m̂q′, pcm′, cpm′)

Prove: del ports(ps, Iε(m̂q), pcm, cpm) , (Iε(m̂q′), pcm′, cpm′)
1. del ports(ps, Iε(m̂q), pcm, cpm) = (Iε(m̂q) \ ps, pcm \ ps, cpm \ ps) [Definition of del ports]

2. (m̂q′, pcm′, cpm′) = (m̂q \ ps, pcm \ ps, cpm \ ps) [Definition of del ports and Assumption 1]

3. m̂q′ = m̂q \ ps [Equality of tuples and step 2]

4. Iε(m̂q′) = Iε(m̂q \ ps) [Definition of Iε and step 3]

5. del ports(ps, Iε(m̂q), pcm, cpm) , (Iε(m̂q′), pcm′, cpm′) [Steps 1, 2, 3 and 4]

Lemma 13 (Apply Config Action - Symbolic to Concrete).

applyAction(ĉs, `, ĉa) , ĉs′, `′ =⇒

applyAction(Iε(ĉs), `, Iε(ĉa)) , Iε(ĉs′), `′

Proof:The proof follows by case analysis on the type of configuration action ĉa

Assume: 1. applyAction(ĉs, `, ĉa) , ĉs′, `′

Prove: applyAction(Iε(ĉs), `, Iε(ĉa)) , Iε(ĉs′), `′

1. Case ĉa = ·
1.1. applyAction(Iε(ĉs), `, Iε(·)) = (Iε(ĉs), `)
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1.2. ` = `′ [Assumption 1 and Definition of applyAction]

1.3. applyAction(Iε(ĉs), `, Iε(ĉa)) , Iε(ĉs′), `′ [Steps 1.1 and 1.2]

2. Case ĉa = Add〈εcα〉
2.1. applyAction(Iε(ĉs), `, Iε(Add〈εcα〉)) = (Iε(ĉs) ++ ([Iε(εcα)], `)

2.2. (ĉs++ [εcα], `) = ĉs′, `′ [Definition of applyAction and step 2.1]

2.3. ĉs++ [εcα] = ĉs′ ∧ ` = `′ [Equality of tuples and step 2.2]

2.4. Iε(ĉs++ [εcα]) = Iε(ĉs′) [Definition of Iε and step 2.3]

2.5. applyAction(Iε(ĉs), `, Iε(ĉa)) , Iε(ĉs′), `′ [Definition of applyAction and step 2.4]

3. Case ĉa = Rem〈α〉
This case is analogous to Add〈εcα〉.

4. Case ĉa = Hold〈α〉
4.1. applyAction(Iε(ĉs), `, Iε(Hold〈α〉)) = (Iε(ĉs), Conf〈α〉) [Definition of applyAction]

4.2. applyAction(ĉs, `, Iε(Hold〈α〉)) = (ĉs, Conf〈α〉) [Definition of applyAction]

4.3. (ĉs, Conf〈α〉) = ĉs′, `′ [Step 4.2 and Assumption 1]

4.4. ĉs = ĉs′ ∧ Conf〈α〉 = `′ [Equality of tuples and step 4.3]

4.5. applyAction(Iε(ĉs), `, Iε(ĉa)) , Iε(ĉs′), `′ [Steps 4.1, 4.2, 4.3 and 4.4]

5. Case ĉa = Free〈α〉
This case is analogous to Hold〈α〉.

6. Case ĉa = Notify〈v̂, v̂s〉
6.1. Let : ĉs = [ε̂ci |ni=0]

6.2. ε̂ci ;
fire〈v̂,v̂s〉
E ε̂c′i |ni=0 [Definition of applyAction and Assumption 1]

6.3. ĉs′ = [ε̂c′i |ni=0] [Definition of applyAction and Assumption 1]

6.4. applyAction(ĉs, `,Notify〈v̂, v̂s〉) , ĉs′, ` [Definition of applyAction and steps 6.2 and 6.3]

6.5. ` = `′ [Assumption 1 and step 6.4]

6.6. Iε(ĉs) = [Iε(εci) |ni=0] [Definition of Iε and step 6.1]

6.7. Iε(ε̂ci) ;fire〈Iε(v̂),Iε(v̂s)〉
E εc′i |ni=0

6.8. Let : cs′ = [εc′i |ni=0]

6.9. applyAction(Iε(ĉs), `, Iε(Notify〈v̂, v̂s〉)) , cs′, `

6.10. cs′ = Iε(ĉs′) [Assumption 10 and steps 6.3, 6.1, 6.2, 6.3, 6.7]

Definition B.1 (Correctness Criteria - Symbolic E-semantics).

E-Directed-Soundness

ε̂c;p̂
E ε̂c

′ ∧ (π ⇒ pc(ε̂c′))∧
(ε, εc) ∈Mπ(ε̂c) ∧ εc;p

E εc
′

=⇒ (ε, εc′) ∈Mπ(ε̂c′) ∧ (ε, p) ∈Mπ(p̂)

E-Directed-Completeness

ε̂c;p̂
E ε̂c

′ ∧ (π ⇒ pc(ε̂c′))∧
(ε, c) ∈Mπ(ε̂c)

=⇒ ∃p, c′. c;p
E c
′
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Theorem B.1 (Correctness of the Symbolic MP-semantics).

MP-Directed-Soundness
m̂c;MP m̂c

′ ∧ π ⇒ pc(m̂c′)∧
(ε,mc) ∈Mπ(m̂c) ∧ mc;MP mc

′

=⇒ (ε,mc′) ∈Mπ(m̂c′)

Proof:

Assume: 1. m̂c;MP m̂c
′

2. π ⇒ pc(m̂c′)

3. (ε,mc) ∈Mπ(m̂c)

4. mc;MP mc
′

Prove: (ε,mc′) ∈Mπ(m̂c′)

The proof follows by case analysis on the MP-semantics rules.

1. Case: [Run Conf - Non Atomic]

1.1. m̂c = 〈ĉs, m̂q, pcm, cpm, ˆ̀〉 [Definition of symbolic MP-configurations]

1.2. schedule(ĉs, m̂q) ; Conf〈ĉspre, ε̂c, ĉspost〉 [Run Conf - Non Atomic]

1.3. 〈ε̂c, m̂q, pcm, cpm〉;MP 〈ε̂c
′, m̂q′, pcm′, cpm′, ĉa〉 [Run Conf - Non Atomic]

1.4. ĉs′, ˆ̀′ = applyAction(ĉspre ++ [ε̂c′] ++ ĉspost, ·, ĉa) [Run Conf - Non Atomic]

1.5. Case: [E-semantics Transition]

1.5.1. ε̂c;E ε̂c
′ [E-semantics Transition (symbolic)]

1.5.2. 〈ε̂c, m̂q, pcm, cpm〉;MP 〈ε̂c
′, m̂q, pcm, cpm〉 [E-semantics Transition]

1.5.3. π ⇒ pc(ε̂c′) [Definition of pc() and Assumption 2]

1.5.4. (ε, c) ∈Mπ(ε̂c) [Definition of Mπ(ε̂c) and Assumption 3]

1.5.5. c;E c
′ [E-semantics Transition (concrete) and Step 1.5.1]

1.5.6. (ε, c′) ∈Mπ(ε̂c′) [Steps 1.5.1, 1.5.3, 1.5.4, 1.5.5 and Definition B.1]

1.5.7. 〈c′,mq, pcm, cpm〉 ∈ Mπ(〈ε̂c′, m̂q, pcm, cpm〉) [Definition of Mπ(rc), Step 1.5.6 and As-

sumption 3]

1.5.8. ĉa = ·
1.5.9. ĉs′ = ĉspre ++ [ε̂c′] ++ ĉspost

1.5.10. Let : cspre = Iε(ĉspre), cspost = Iε(ĉspost)
1.5.11. schedule(cs,mq) ; Conf〈cspre, c, cspost〉 [Lemma 9 and Step 1.5.10]

1.5.12. 〈c,mq, pcm, cpm〉;MP 〈c′,mq, pcm, cpm〉 [E-semantics transition and Step 1.5.5]

1.5.13. Let : cs′ = cspre ++ [c′] ++ cspost

1.5.14. 〈cs,mq, pcm, cpm, ·〉;MP 〈cs′,mq, pcm, cpm, ·〉 [Assumption 4 and Step 1.5.13]

1.5.15. 〈cs′,mq, pcm, cpm, ·〉 ∈ Mπ(〈ĉs′, m̂q, pcm, cpm, ˆ̀〉) [Steps 1.5.6,1.5.9,1.5.13, 1.5.14 and

defintion of Mπ(ε̂c)]

1.6. Case: [New Execution]

1.6.1. ε̂c;p̂
E ε̂c

′ [E-semantics Transition (symbolic)]

1.6.2. schedule(ĉs, m̂q) ; Conf〈ĉspre, ε̂c, ĉspost〉 [Run Conf - Non Atomic]

1.6.3. schedule(Iε(ĉs), Iε(m̂q)) ; Conf〈Iε(ĉspre), Iε(ε̂c), Iε(ĉspost)〉 [Lemma 9 and step 1.6.2]

1.6.4. p̂ = create〈x̂, v̂s〉 [New Execution Rule (Symbolic)]

1.6.5. Let : ε̂c′′α = ES.newConf(v̂s)

1.6.6. Let : ε̂c′′′ = ES.setVar(ε̂c′, x̂, α)
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1.6.7. Let : ĉa = Add〈ε̂c′′α〉
1.6.8. 〈ε̂c, m̂q, pcm, cpm〉 ;MP 〈ε̂c

′′′, m̂q, pcm, cpm, ĉa〉 [New Execution Rule (Symbolic) and

steps 1.6.1, 1.6.4, 1.6.5, 1.6.6 and 1.6.7]

1.6.9. εc;p
E εc

′ [Concrete MP-semantics]

1.6.10. Let : εc′′α = Iε(ε̂c′′α)

1.6.11. Let : vs = Iε(v̂s)
1.6.12. εc′′α = ES.newConf(vs) [Assumption 10 and steps 1.6.5, 1.6.10 and 1.6.11]

1.6.13. εc = Iε(ε̂c) [Assumption 3]

1.6.14. (ε, εc′) ∈ Mπ(ε̂c′) ∧ (ε, p) ∈ Mπ(p̂) [Definition B.1, Assumption 2, steps 1.6.1, 1.6.9 and

1.6.10, and definition of Mπ()]

1.6.15. p = Add〈Iε(ε̂c′′α)〉 [Steps 1.6.7 and 1.6.14 and Definition of Mπ()]

1.6.16. p = Add〈εc′′α〉 [Steps 1.6.10 and 1.6.15]

1.6.17. Iε(ε̂c′′′) = ES.setVar(Iε(ε̂c′), Iε(x̂), α) [Step 1.6.6 and Assumption 10]

1.6.18. Let : εc′′′ = Iε(ε̂c′′′), x = Iε(x̂) and ca = Iε(ĉa)

1.6.19. 〈εc,mq, pcm, cpm〉;MP 〈εc′′′,mq, pcm, cpm, ca〉 [Concrete MP-semantics and steps 1.6.9,

1.6.12, 1.6.15, 1.6.16, 1.6.17 and 1.6.18]

1.6.20. Let : cspre = Iε(ĉspre), cspost = Iε(ĉspost)
1.6.21. Let : cs′, `′ = applyAction(cspre ++ [εc′′′] ++ cspost, `, ca)

1.6.22. 〈cs,mq, pcm, cpm, `〉;MP 〈cs′,mq, pcm, cpm, `′〉 [Concrete MP-semantics]

1.6.23. Let : ĉs′, `′ = applyAction(ĉspre ++ [ε̂c′′′] ++ ĉspost, `, ĉa)

1.6.24. 〈ĉs, m̂q, pcm, cpm, `〉;MP 〈ĉs
′, m̂q, pcm, cpm, `′〉 [Symbolic MP-semantics and steps 1.6.8

and 1.6.23]

1.6.25. Iε(ĉs′, `′) = applyAction(Iε(ĉspre ++ [ε̂c′′′] ++ ĉspost), `, Iε(ĉa)) [Step 1.6.23 and Lemma 13]

1.6.26. Iε(ĉs′), `′ = applyAction(Iε(ĉspre)++[Iε(ε̂c′′′)]++Iε(ĉspost), `, Iε(ĉa)) [Definition of Iε() and

step 1.6.25]

1.6.27. Iε(ĉs′), `′ = applyAction(cspre ++ εc′′′ ++ cspost, `, ca) [Step 1.6.2 and Assumption 3]

1.6.28. Iε(ĉs′), `′ = cs′, `′ [Steps 1.6.20 and 1.6.27]

1.6.29. Iε(ĉs′) = cs′ [Step 1.6.28 and equality of tuples]

1.6.30. 〈cs′,mq, pcm, cpm, `′〉 ∈ Mπ(〈ĉs′, m̂q, pcm, cpm, ˆ̀〉) [Definition of Mπ(), Assumption 3

and steps 1.6.24,1.6.29]

1.7. Case: [Begin Atomic]

1.7.1. ε̂c;p̂
E ε̂c

′ [Symbolic MP-semantics (Begin Atomic)]

1.7.2. p̂ = beginAtomic [Symbolic MP-semantics (Begin Atomic)]

1.7.3. ĉa = Hold〈α〉 [Symbolic MP-semantics (Begin Atomic)]

1.7.4. 〈ε̂cα, m̂q, pcm, cpm〉;MP 〈ε̂c
′
α, m̂q, pcm, cpm, ĉa〉 [Symbolic MP-semantics (Begin Atomic)]

1.7.5. ĉs′, ˆ̀′ = applyAction(ĉspre ++ [ε̂c′α] ++ ĉspost, ·, ĉa) [Symbolic MP-semantics]

1.7.6. 〈ĉs, m̂q, pcm, cpm, ·〉;MP 〈ĉs
′, m̂q, pcm, cpm, `′〉 [Symbolic MP-semantics]

1.7.7. Let : cspre, cspost = Iε(ĉspre), Iε(ĉspost)
1.7.8. Let : cs,mq = Iε(ĉs), Iε(m̂q)
1.7.9. Let : εcα = Iε(ε̂cα)

1.7.10. schedule(Iε(ĉs), Iε(m̂q)) ; Conf〈cspre, εc, ĉspost〉 [Step 1.2 and Lemma 9]

1.7.11. ∃εc′ · εc;p
E εc

′ [Concrete MP-semantics, step 1.7.10 and Assumption 4]
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1.7.12. π ⇒ pc(ε̂c′) [Definition of pc() and Assumption 2]

1.7.13. (ε, εc′) ∈Mπ(ε̂c′) ∧ (ε, p) ∈Mπ(p̂) [Steps 1.7.1, 1.7.11, 1.7.12 and Definition B.1]

1.7.14. p = beginAtomic [Steps 1.7.2 and 1.7.13]

1.7.15. Let : ca = Hold〈α〉
1.7.16. 〈εcα,mq, pcm, cpm〉 ;MP 〈εc′α,mq, pcm, cpm, ca〉 [Concrete MP-semantics (Begin

Atomic)]

1.7.17. Let : cs′, `′ = applyAction(cspre ++ [εc′α] ++ cspost, ·, ca)

1.7.18. cs′ = Iε(ĉs′) [Step 1.7.17 and Lemma 13]

1.7.19. 〈cs′,mq, pcm, cpm, `′〉 ∈ Mπ(〈ĉs′, m̂q, pcm, cpm, ˆ̀〉) [Definition of Mπ(), Assumption 3

and step 1.7.18]

1.8. Case: [Post Message]

1.8.1. ε̂c;p̂
E ε̂c

′ [Symbolic MP-semantics (Post Message)]

1.8.2. p̂ = send〈v̂s, ps, p1, p2〉 [Symbolic MP-semantics (Post Message)]

1.8.3. p2 ∈ cpm(p1) [Symbolic MP-semantics (Post Message)]

1.8.4. Let : m̂q′ = m̂q ++ [((v̂s, ps), p2)] [Symbolic MP-semantics (Post Message)]

1.8.5. 〈ε̂c, m̂q, pcm, cpm〉 ;MP 〈ε̂c
′, m̂q′, pcm, cpm〉 [Symbolic MP-semantics (Post Mes-

sage)]

1.8.6. ĉa = · [Symbolic MP-semantics (Post Message)]

1.8.7. ĉs′, ˆ̀′ = applyAction(ĉspre++[ε̂c′α]++ĉspost, ·, ĉa) [Symbolic MP-semantics (Begin Atomic)]

1.8.8. 〈ĉs, m̂q, pcm, cpm, ·〉;MP 〈ĉs
′, m̂q′, pcm, cpm, `′〉 [Symbolic MP-semantics]

1.8.9. Let : cspre, cspost = Iε(ĉspre), Iε(ĉspost)
1.8.10. Let : cs,mq = Iε(ĉs), Iε(m̂q)
1.8.11. Let : εcα = Iε(ε̂cα)

1.8.12. schedule(Iε(ĉs), Iε(m̂q)) ; Conf〈cspre, εc, ĉspost〉 [Step 1.2 and Lemma 9]

1.8.13. ∃εc′ · εc;p
E εc

′ [Concrete MP-semantics, step 1.8.12 and Assumption 4]

1.8.14. π ⇒ pc(ε̂c′) [Definition of pc() and Assumption 2]

1.8.15. (ε, εc′) ∈Mπ(ε̂c′) ∧ (ε, p) ∈Mπ(p̂) [Steps 1.8.1, 1.8.13, 1.8.14 and Definition B.1]

1.8.16. Let : vs = Iε(v̂s)
1.8.17. p = send〈vs, ps, p1, p2〉 [Steps 1.8.2 and 1.8.16]

1.8.18. Let : ca = ·
1.8.19. Let : mq′ = mq ++ [((v̂s, ps), p2)]

1.8.20. 〈εcα,mq, pcm, cpm〉 ;MP 〈εc′α,mq′, pcm, cpm, ca〉 [Steps 1.8.16, 1.8.17, 1.8.18 and 1.8.19

and Concrete MP-semantics (Post Message)]

1.8.21. Let : cs′, `′ = applyAction(cspre ++ [εc′α] ++ cspost, ·, ca)

1.8.22. cs′ = Iε(ĉs′) [Step 1.8.21 and Lemma 13]

1.8.23. mq′ = Iε(m̂q′) [Definition of Mπ() and steps 1.8.4 and 1.8.19]

1.8.24. 〈cs′,mq, pcm, cpm, `′〉 ∈ Mπ(〈ĉs′, m̂q′, pcm, cpm, ˆ̀〉) [Definition of Mπ(), Assumption 3

and steps 1.8.22 and 1.8.23]

1.9. Case: [Remaining Cases]

The proof follows analogously to the previous cases.

2. Case: [Run Conf - Atomic]
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The proof follows analogously to Run Conf - Non Atomic

3. Case: [Process Message]

3.1. ε̂c = 〈ĉs, m̂q, pcm, cpm, ·〉 [Definition of symbolic MP-configurations and Process Message]

3.2. schedule(ĉs, m̂q) ; Msg〈((v̂s, ps), p), m̂q′〉 [Process Message]

3.3. α = pcm(p) [Process Message]

3.4. pcm′ = transfer(α, ps, pcm) [Process Message]

3.5. ĉspre ++ [ε̂cα] ++ ĉspost = ĉs [Process Message]

3.6. v = ProcessMessage [Process Message]

3.7. ε̂c;fire〈v,v̂s〉
E ε̂c′ [Process Message]

3.8. 〈ĉs, m̂q, pcm, cpm, ·〉;MP 〈ĉs
′, m̂q′, pcm′, cpm, ·〉 [Assumption 4 and [Process Message]]

3.9. Let : vs = Iε(v̂s)
3.10. c;fire〈v,vs〉

E c′ [Assumption 4 and Step 3.9]

3.11. Let : c = Iε(ε̂c), cspre = Iε(ĉspre), cspost = Iε(ĉspost)
3.12. cs ∈Mπ(ĉs) [Definition of Mπ(ε̂c) and Assumption 3]

3.13. cs = cspre ++ [c] ++ cspost [Steps 3.9 and 3.12]

3.14. Let : cs′ = cspre ++ [c′] ++ cspost

3.15. schedule(cs,mq) ; Msg〈((vs, ps), p),mq′〉 [Lemma 9 and Step 3.2]

3.16. εc′ = 〈cs,mq′, pcm′, cpm〉 [Process Message and Steps 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 and

3.15]

3.17. (ε, εc′) ∈Mπ(ε̂c′) [Definition of Mπ(ε̂c) and Steps 3.12,3.14,3.15, 3.16]

Theorem B.2 (Correctness of the Symbolic MP-semantics).

MP-Directed-Completeness
m̂c;MP m̂c

′ ∧ π ⇒ pc(m̂c′)∧
(ε,mc) ∈Mπ(m̂c)

=⇒ ∃mc′. mc;MP mc
′

Proof:

Assume: 1. m̂c;MP m̂c
′

2. π ⇒ pc(m̂c′)

3. (ε,mc) ∈Mπ(m̂c)

Prove: ∃mc′. mc;MP mc
′

The proof follows by case analysis on the MP-semantics rules.

1. Case: [Run Conf - Non Atomic]

1.1. m̂c = 〈ĉs, m̂q, pcm, cpm, ˆ̀〉
1.2. schedule(ĉs, m̂q) ; Conf〈ĉspre, ε̂c, ĉspost〉 [Run Conf - Non Atomic]

1.3. 〈ε̂c, m̂q, pcm, cpm〉;MP 〈ε̂c
′, m̂q′, pcm′, cpm′, ĉa〉 [Run Conf - Non Atomic]

1.4. ĉs′, ˆ̀′ = applyAction(ĉspre ++ [ε̂c′] ++ ĉspost, ·, ĉa) [Run Conf - Non Atomic]

1.5. Case: [E-semantics Transition]

1.5.1. ε̂c;E ε̂c
′ [E-semantics Transition (symbolic)]

1.5.2. 〈ε̂c, m̂q, pcm, cpm, ·〉;MP 〈ε̂c
′, m̂q, pcm, cpm, ·〉 [E-semantics Transition (symbolic)]

1.5.3. Let : cs = Iε(ĉs),mq = Iε(m̂q)
1.5.4. εc = 〈cs,mq, pcm, cpm〉 [Assumption 3, Step 1.5.3 and Definition of Mπ(ε̂c)]
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1.5.5. c ∈Mπ(ε̂c) [Definition of Mπ(ĉs) and Step 1.5.3]

1.5.6. ∃p, c′. c;p
E c
′ [Steps 1.5.1, Assumption 2, Step 1.5.5 and Definition B.1]

1.5.7. c;p
E c
′ [Step 1.5.6]

1.5.8. 〈c,mq, pcm, cpm, ·〉;MP 〈c′,mq, pcm, cpm, ·〉 [Step 1.5.7 and E-semantics Transition]

1.5.9. ∃ εc′. εc;MP εc
′ [Step 1.5.8]

1.6. Case: [Remaining Cases]

The proof follows analogously to E-semantics Transition

2. Case: [Run Conf - Atomic]

The proof follows analogously to Run Conf - Non Atomic

3. Case: [Process Message]

3.1. ε̂c = 〈ĉs, m̂q, pcm, cpm, ·〉 [Definition of symbolic MP-configurations and Process Message]

3.2. schedule(ĉs, m̂q) ; Msg〈((v̂s, ps), p), m̂q′〉 [Process Message]

3.3. α = pcm(p) [Process Message]

3.4. pcm′ = transfer(α, ps, pcm) [Process Message]

3.5. ĉspre ++ [ε̂cα] ++ ĉspost = ĉs [Process Message]

3.6. v = ProcessMessage [Process Message]

3.7. ε̂c;fire〈v,v̂s〉
E ε̂c′ [Process Message]

3.8. 〈ĉs, m̂q, pcm, cpm, ·〉;MP 〈ĉs
′, m̂q′, pcm′, cpm, ·〉 [Assumption 4 and [Process Message]]

3.9. Let : cs = Iε(ĉs),mq = Iε(m̂q)
3.10. εc = 〈cs,mq, pcm, cpm〉 [Assumption 3, Step 3.9 and Definition of Mπ(ε̂c)]

3.11. c ∈Mπ(ε̂c) [Definition of Mπ(ĉs), Step 3.9 and Assumption 3]

3.12. ∃p, c′. c;p
E c
′ [Step 3.7, Assumption 2, Step 3.11 and Definition B.1]

3.13. ∃ εc′. εc;MP εc
′ [MP-semantics rules and Step 3.12]
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