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ABSTRACT. Local reasoning about programs exploits the natural Ibeaviour common in pro-
grams by focussing on the footprint - that part of the respacessed by the program. We address
the problem of formally characterising and analysing thgomoof footprint for abstract local func-
tions introduced by Calcagno, O’Hearn and Yang. With ournikédin, we prove that the footprints
are the only essential elements required for a completefgadion of a local function. We formalise
the notion of small specifications in local reasoning andastiat, for well-founded resource mod-
els, a smallest specification always exists that only inetuithe footprints. We also present results
for the non-well-founded case. Finally, we use this thedrpotprints to investigate the conditions
under which the footprints correspond to the smallest dates We present a new model of RAM
in which, unlike the standard model, the footprints of evaemygram correspond to the smallest safe
states. We also identify a general condition on the primitemmands of a programming language
which guarantees this property for arbitrary models.

1. INTRODUCTION

Local reasoning about programs focusses on the collecfiogsources directly acted upon by
the program. It has recently been introduced and used tdeslzad effect inlocal Hoare reasoning
about memory update. Researchers previously used Hoaeniag based on First-order Logic
to specify how programs interacted with tivbolememory. O’Hearn, Reynolds and Yang instead
introduced local Hoare reasoning based on Separation [bdicl1]. The idea is to reason only
about the local parts of the memory—tfamtprints—that are accessed by a program. Intuitively,
the footprints form the pre-conditions of tlseall axioms, which provide the smallest complete
specification of the program. All the true Hoare triples agevible from the small axioms and the
general Hoare rules. In particular, trame ruleextends the reasoning to properties about the rest
of the heap which has not been changed by the command.

O’Hearn, Reynolds and Yang originally introduced Separafiogic to solve the problem
of how to reason about the mutation of data structures in rmgmbhey have applied their rea-
soning to several memory models, including heaps based imeparithmetic [14], heaps with
permissions[[4], and the combination of heaps with variatéeks which views variables as re-
source([5_1i7]. In each case, the basic soundness and cemgsstresults for local Hoare reasoning
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are essentially the same. For this reason, Calcagno, OiHmat Yang|[9] recently introduced
abstract local functions over abstract resource modelshwiiiey call separation algebras. They
generalised their specific examples of local imperative roamds and memory models in this ab-
stract framework. They introduced Abstract Separationit.ag provide local Hoare reasoning
about such functions, and give general soundness and ciemgds results.

We believe that the general concept of a local function isv@émental step towards establish-
ing the theoretical foundations of local reasoning, andtéslos Separation Logic is an important
generalisation of the local Hoare reasoning systems nowlyitudied in the literature. However,
Calcagno, O'Hearn and Yang do not characterise the foatpand small axioms in this general
theory, which is a significant omission. O’Hearn, Reynoldd #ang, in one of their first papers on
the subject([14], state the local reasoning viewpoint as:

‘to understand how a program works, it should be possibledasoning and speci-
fication to be confined to the cells that the program actualbesses. The value of
any other cell will automatically remain unchanged.’

A complete understanding of the foundations of local Hoaesoning therefore requires a formal
characterisation of the footprint notion. O’'Hearn tried@omalise footprints in his work on Sepa-
ration Logic (personal communication with O’Hearn). Hisuition was that the footprints should
be the smallest states on which the program is safe sdfety footprintand that thesmall axioms
arising from these footprints should give rise to a compépiecification using the general rules for
local Hoare reasoning. However, Yang discovered that thiion of footprint does not work, since
it does not always yield aompletespecification for the program. Consider the pro@am

AD = 1z :=new();dispose(x)

This allocate-deallocatgrogram allocates a new cell, stores its address value isttlo& variable
x, and then deallocates the cell. It is local because all dmat constituents are local. This tiny
example captures the essence of a common type of prograre;dhe many programs which, for
example, create a list, work on the list, and then destroyishe

The smallest heap on which tiAd program is safe is the empty heamp. The specification
using this pre-condition is:

{emp} AD {emp} (1.2)

We can extend our reasoning to larger heaps by applying dnecfrule: for example, extending to
a one-cell heap with arbitrary addrdssnd valuev gives

{l—v} AD {l— v} (1.2)

However, axiom (1) does not give the complete specificatfdhaAD program. In fact, it captures
very little of the spirit of allocation followed by de-allation. For example, the following triple is
also true:

{l—v} AD {l—vAz#l} (1.3)

This triple (3) is true because,lifs already allocated, then the new address cannbahbd hence:
cannot bd. It cannot be derived from (1). However, the combinationxaben (1) and axiom (3) for
arbitrary one-cell heaps does provide the smallest compgiatcification. This example illustrates
that O’'Hearn’s intuitive view of the footprints as the mirahsafe states just does not work for
common imperative programs.

Yyang’s example was the ‘allocate-deallocate-test’ progheDT ::= ‘x := new();dispose(x); if (x=1) then z:=0
else z:=1;x=0". OuAD program provides a more standard example of program balravio
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In this paper, we introduce the formal definition of the faatpof a local function that does
yield a complete specification for the function. For & example, our definition identifiesnp
and the arbitrary one-cell heaps— v as footprints, as expected. We prove the general result that
for any local function, the footprints are the only elemeamksch areessentiato specify completely
the behaviour of this function.

We then investigate the question siffficiency For well-founded resource, we show that the
footprints are also always sufficient: that is, a complegxgjation always exists that only uses the
footprints. We also explore results for the non-well-foeddcase, which depend on the presence
of negativity A resource has negativity if it is possible to combine twaumit elements to get
the unit, which is like taking two non-empty pieces of reseuand joining them to get nothing.
For non-well-founded models without negativity, such aggsewith infinitely divisible fractional
permissions, either the footprints are sufficient (suchoashie write command in the permissions
model) or there is no smallest complete specification (ssdbrahereadcommand in the permis-
sions model). For models with negativity, such as the imegader addition, we show that there
do exist smallest complete specifications based on elentegiisare not essential and hence not
footprints.

In the final section, we apply our theory of footprints to thsue of regaining the safety foot-
prints. We address a question that arose from discussidh€Ailearn and Yang, which is whether
there is an alternative model of RAM in which the safety fomtpdoes correspond to the actual
footprint, yielding complete specifications. We preserghsa model based on an examination of
the cause of théD problem in the original model. We prove that in this new madtiel footprint
of everyprogram, includingAD, does correspond to the safety footprint. Moreover, wetiflea
general condition on the primitive commands of a prograngni@mguage which ensures that this
property holds in arbitrary models.

A preliminary version of this paper was presented at the FAISS2008 conference. The final
section reports on work that is new to this journal versiohnis paper also contains the proofs which
were excluded from the conference paper.

2. BACKGROUND

The discussion in this paper is based on the framework inted in [9], where the approach
of local reasoning about programs with separation logic gexgeralised to local reasoning about
local functions that act on an abstract model of resource. Ouctigein this work is to investigate
the notion of footprint in this abstract setting, and thistigm gives a description of the underlying
framework.

2.1. Separation Algebras and Local Functions.We begin by describing separation algebras,
which provide a model of resource which generalises ovesgieeific heap models used in sep-
aration logic works. Informally, a separation algebra niedesource as a set of elements that
can be ‘glued’ together to create larger elements. The iigdieoperator satisfies properties in

accordance with this resource intuition, such as comnvitiaind associativity, as well as the can-
cellation property which requires that, if we are given anatnt and a subelement, then ‘ungluing’
that subelement gives us a unique element.

Definition 2.1 (Separation Algebra)A separation algebrais a cancellative, partial commutative
monoid (X, e, u), WhereX is a set ande is a partial binary operator with unit. The operator
satisfies the familiar axioms of associativity, commuigtiand unit, using a partial equality on
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where either both sides are defined and equal, or both ardinedelt also satisfies the cancellative
property stating that, for eaeche X, the partial functiorv e (-) : X — X is injective.

We shall sometimes overload notation, usigo denote the separation algeljpa e, u). Ex-
amples of separation algebras include multisets with umiweth unit(), the natural numbers with
addition and unit0, heaps as finite partial functions from locations to valu¢g] @nd example
[2.8), heaps with permissioris [9, 4], and the combinatioreafds and variable stacks enabling us to
model programs with variables as local functions! ( [9], [aAfl examplé_2]8). These examples all
have an intuition of resource, with;, e o5 intuitively giving more resource than just ando, for
01,09 # u. However, notice that the general notion of a separatioaelagalso permits examples
which may not have this resource intuition, such{asu} with « ¢ « = u. Since our aim is to
investigate general properties of local reasoning, odmation is to impose minimal restrictions
on what counts as resource and to work with a simple defind@fanseparation algebra.

Definition 2.2 (Separateness and substat8jven a separation algeb(&, e, »), theseparateness
(#) relation between two stateg, o1 € X is given byoo#o; iff o9 @ o1 is defined. Theubstate
(X) relation is given byoy < o4 iff dos.01 = og @ 09. We writeoy < o1 whenoy < o1 and
(s} 75 g1.

Lemma 2.3(Subtraction) For 01,09 € 3, if 01 < 05 then there exists a unique element denoted
o9 — 01 € E, such thal(o—2 — 01) e 0] = 09.

Proof. Existence follows by definition ok. For uniqueness, assume there exist” € ¥ such
thato’ e 01 = 05 ando” e 01 = 0. Then we have’ e 01 = ¢” e 01, and thus by the cancellation
property we have’ = ¢”. L]

We consider functions on separation algebras that geseratiperative programs operating
on heaps. Such programs can behave non-deterministieaity,can alsdault. To model non-
determinism, we consider functions from a separation afgEhto its powersetP(X). To model
faulting, we add a special top eleméntto the powerset. We therefore consider total functions of
the formf : ¥ — P(X)T. On any element of, the function can either map to a set of elements,
which modelssafe execution with non-deterministic outcomes, orftowhich models a faulting
execution. Mapping to the empty set represents divergermetermination).

Definition 2.4. The standard subset relation on the powerset is extend@{X0" by defining
pC Tforallp e P(X)". The binary operator onP(X) " is given by

pxq = {opeoy|og#or NogEpAor €q} if p,geP(X)
= T otherwise

P(X)T is a total commutative monoid undewith unit {u}.

Definition 2.5 (Function ordering) For functionsf, g : ¥ — P(X)T, f C giff f(o) C g(o) for
allo € X.

We shall only consider functions that anell-behavedn the sense that they aldtcally with
respect to resource. For imperative commands on the heaplntbd locality conditions were
first characterised ir_[21], where a soundness proof forl lassoning with separation logic was
demonstrated for the specific heap model. The conditiongifcel were
e Safety monotonicityif the command is safe on some heap, then it is safe on argrlaeap.

e Frame property if the command is safe on some heap, then in any outcome dyiagpghe
command on a larger heap, the additional heap portion wilbia unchanged by the command.
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In [9], these two properties were amalgamated and formailfteabstract functions on arbi-
trary separation algebras.

Definition 2.6 (Local Function) A local function on ¥ is a total functionf : ¥ — P(X)T which
satisfies théocality condition:

oo’ implies f(o' e o) C {0’} * f(0)
We let LocF'unc be the set of local functions on.

Intuitively, we think of a command to be local if, whenevee tbtommand executes safely on
any resource element, then the command will not ‘touch’ aldjteonal resource that may be added.
Safety monotonicity follows from the above definition besayif f is safe orv (f(o) = T), then
it is safe on any larger state, sinf&’ e o) C {0’} x f(o) C T.

The frame property follows by the fact that the additionaltest’ is preserved in the output
of f(o/ e o). Note, however, that the& ordering allows for reduced non-determinism on larger
states. This, for example, is the case for thB command from the introduction which allocates
a cell, assigns its address to stack variahlend then deallocates the cell. On the empty heap, its
result would allow all possible values for variabte However, on the larger heap where cell 1 is
already allocated, its result would allow all values foexcept 1, and we therefore have a more
deterministic outcome on this larger state.

Lemma 2.7. Locality is preserved under sequential composition, netedninistic choice and
Kleene-star, which are defined as

' B T if flo)=T
(f;9)(0) = { L [{g(c") | &' € f(o)}  otherwise

(f +9)(0) = flo)Ug(o)
o) =@

Example 2.8(Separation algebras and local functions)

(1) Plain heap model A simple example is the separation algebra of he@dpse, vy ), where
H = L —g, Val are finite partial functions from a set of locatiohsto a set of valued/al
with I. C Val, the partial operatos is the union of partial functions with disjoint domains, and
the unitu g is the function with the empty domain. Fhre H, let dom(h) be the domain of.
We write ! — v for the partial function with domaitl} that mapd to v. Forhy, he € H, if
ha = hy thenhy — ha = A1 |gom(hy)—dom(hs)- AN €xample of a local function is théisposell]
command that deletes the cell at location

. B {h=(l—v)} h=(—v)
disposelll(h) = { T otherwise

The function is local: ifh % (I +— v) thendisposell](h) = T, anddispose[l](h' @ h) C T.
Otherwise,dispose[l](h' o h) = {(h" e h) — (L= v)} T {W'} x {h = (L= 0v)} = {I'} *
disposell](h).

(2) Heap and stack There are two approaches to modelling the stack in theatilee. One is to
treat the stack as a total function from variables to valaed,only combine two heap and stack
pairs if the stacks are the same. The other approach, whiahsedere, is to allow splitting
of the variable stack and treat it as part of the resource. aldrcorporate the variable stack
into the heap model by using the gét= L U Var —g, Val, whereL andVal are as before
and Var is the set of stack variablese, y, z,...}. The e operator combines heap and stack
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portions with disjoint domains, and is undefined otherwisbe unituy is the function with
the empty domain which represents the empty heap and engatly. sAlthough this approach

is limited to disjoint reference to stack variables, thisgtoaint can be lifted by enriching the
separation algebra witbermissiong4]. However, this added complexity using permissions can
be avoided for the discussion in this paper. For a stateH, we letloc(h) andvar(h) denote
the set of heap locations and stack variables in the domainre$pectively. In this model we
can define the allocation and deallocation commands as

[ {Mex—lel—w|weValle L\loc(h')} h=Hhez—uv
new|z](h) = { T otherwise
. | {Wex—l} h=Nex—lel—uv
disposelz](h) = { T otherwise
Commands for heap mutation and lookup can be defined as
B {Wexr—lel—v} h=hexr—lel—w
mutatelz, v](h) = { T otherwise

hex—lel—vey—uv h=hexr—lel—vey—w
lookup[%y](h):{ {T G otherwise !

The AD command described in the introduction, which is the comjpwshew[z]; dispose|x],
corresponds to the following local function
AD(h):{ g_h’ole\leL\loc(h’)} h:h’.oxH’u
otherwise
Note that in all cases, any stack variables that the commeafiedsrto should be in the stack in
order for the command to execute safely, otherwise the cardmall be acting non-locally.

(3) Integers. The integers form a separation algebra under addition idéhtity 0. In this case
we have that any ‘adding’ functiori(z) = {z + ¢} that adds a constamtis local, while a
function that multiplies by a constant f(x) = {cz}, is non-local in general. However, the
integers under multiplication also form a separation algekith identity 1, and in this case
every multiplying function is local but not every adding @tion. This illustrates the point that
the notion of locality of commands depends on the notion passtion of resource that is being
used.

2.2. Predicates, Specifications and Local Hoare ReasoningVe now present the local reasoning
framework for local functions on separation algebras. Than adaptation of Abstract Separation
Logic [9], with some minor changes in formulation for the poses of this paper. Predicates over
separation algebras are treated simply as subsets of thmtep algebra.

Definition 2.9. A predicate p overX. is an element of the powersg(Y).

Note that the top element is not a predicate and that theoperator, although defined on
P(X)T x P(X)T — P(X)T, acts as a binary connective on predicates. We have thébdiate
law for union that, for anyX C P(X),

(|_|X)*p:|_|{x*p|$€X}
The same is not true for intersection in general, but doed foolprecise predicates. A predicate is
precise if, for any state, there is at most a single subdtatesatisfies the predicate.
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Definition 2.10 (Precise predicate)A predicatep € P(X) is preciseiff, for every o € 3, there
exists at most one,, € p such that, < o.

Thus, with precise predicates, there is at most a unique wayeak a state to get a substate
that satisfies the predicate. Any singleton predidaté is precise. Another example of a precise
predicate il v | v € Val} for somel, while {i{—wv | [ € L} for somev is not precise.

Lemma 2.11(Precision characterization predicatep is precise iff, for allX C P(X), ([ 1X) *
p=exp|eeX}

Proof. We first show the left to right direction. Assumpds precise. We have to show that for all
XCPE),(1X)*p=[Hz=*p|z e X}. Assumes € ([ ]X) * p. Then there existr|, o9
such thatr = o1 e 05 andoy € [ | X andoy € p. Thus for allz € X, o € = * p, and hence
oc€[Hzxp|re X}. Nowassume € [[{z+p |z € X}. Theno € z xpforallz € X. Hence
there existsr; < o such thatr; € p. Sincep is preciseg is unique. Leto, = o — o1. Thus we
haveo, € z forall x € X, and sar; € [ ] X. Hence we have € ([]X) * p.

For the other direction, we assume thdts not precise and show that there existsXsuch
that([1X) xp #[|{x *p | x € X}. Sincep is not precise, there exists € ¥ such that, for two
distinctoy, 09 € p, we haves; < o andoy < 0. Leto] = 0 — o1 andol, = o — 02. Now let
X = {{o}},{0h}}. Sinces € {0} }*pando € {o}}*p, we haver € [[{z*p | z € X }. However,
because of the cancellation property, we also havedhat o), and so([ ] X) «xp = 0 xp = 0.
Henceo & ([ ]X) * p, and we therefore hau@ | X) xp # [ [{z *p | v € X}. (]

Our Hoare reasoning framework is formulated with tuplesref mnd post- conditions, rather
than the usual Hoare triples that include the function a@Jnlp our case the standard triple shall
be expressed as a functigrsatisfyinga tuple(p, q), written f = (p, ¢). The reason for this is that
we shall be examining the properties that a pre- and postlitton tuple may have with respect to a
given function, such as whether a given tuple is completa fyiven function. This approach is very
similar to the notion of thepecification statemeifh Hoare triple with a *hole’) introduced in [12],
which is used in refinement calculi, and was also used to prowgpleteness of a local reasoning
system in([21].

Definition 2.12 (Specification) Let X be a separation algebra. shatementon X is a tuple(p, q),
wherep, ¢ € P(X) are predicates. Apecification$ on X is a set of statements. We lét =
P(P(X) x P(X)) denote the set of all specifications B We shall exclude the subscript when it
is clear from the context. Théomain of a specification is defined d3(¢) = | [{p | (p,q) € ¢}.
Domain equivalenceis defined ag ~p ¢ iff D(¢) = D(v).

Thus the domain is the union of the preconditions of all tlaeshents in the specification. It
is one possible measure size how much ofX the specification is referring to. We also adapt the
notion of precise predicates to specifications.

Definition 2.13. A specification is precise iff its domain is precise.

Definition 2.14 (Satisfaction) A local function f satisfies a statemefip, ¢), written f = (p, q),
iff, for all o € p, f(0) C ¢. It satisfies a specification € @, written f |= ¢, iff f = (p, q) for all
(pq) € ¢

Definition 2.15 (Semantic consequencelet p,q,r,s € P(X) and¢,v € ®. Each judgement

(p,q) E (r,8),¢ E (p,9), (p,q) E ¢, andg = ¢ holds iff all local functions that satisfy the left
hand side also satisfy the right hand side.

Proposition 2.16 (Order Characterization)f C g¢ iff, for all p,q € P(X), g E (p,q) implies
fE @ q)- O
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For every specification, there is a ‘best’ local function satisfying(lemmd2.18B), in the sense
that all statements that the best local function satisfiesatisfied by any local function that satisfies
¢. For example, in the heap and stack separation algebra wi@e@.8.2, consider the specification

Onew = {({z—v}, {z—lel—w|le LiweVal}) |veVal}

There are many local functions that satisfy this specificatirrivially, the local function that always
diverges satisfies it. Another example is the local functlat assigns the value of the newly
allocated cell to be 0, rather than any non-determinidjicgiosen value. However, the best local
function for this specification is theew[z] function described in examgdle 2.8.2, as it can be checked
that for any local functionf satisfying¢,..,, we havef C new[z]. The notion of the best local
function shall be used when addressing questions aboutletenpss of specifications. It is adapted
from [9], except that we generalise to the best local fumctiba specification rather than a single
pre- and post-condition pair.

Definition 2.17 (Best local function) For a specificatio € ®, the best local function af, written
bla[¢), is the function of typel — P(X) " defined by

blalg](0) =[ [{{o'} xq |0 =o' e 0",0" € p,(p.q) € ¢}

As an example, it can be checked that the best local funétiefy,,..,] of the specification
dnew given above is indeed the functiorrw|x] described in example 2.8.2. The following lemma
presents the important properties which characterisedhltltical function.

Lemma 2.18. Let¢ € ®. The following hold:
e bla[¢] is local

o bla[g] = ¢
e if fislocalandf |= ¢ thenf C bla[¢]

Proof. To show thathla|[¢] is local, consider, o2 such thatr; #02. We then calculate

bla[¢](o1 ® 02) [{{o'} xq| 01002 =0"00",0" €p,(p,q) € ¢}
[{{o1 00"} xq|o2=0"e0" 0" €p,(p,q) € b}
[H{o1}x{0"}xq| o2 =0" 00", 0" €p,(p,q) € b}
= {o}+[H{o"}xqloa =0"e0",0" €p,(p,q) € ¢}
= {o1} * bla[¢](o2)

In the second-last step we used the property {ba} is precise (lemma2.11).

1l

To show thathla[¢] satisfiesp, consider(p, q) € ¢ ando € p. Thenbla[¢](c) C {u} x ¢ = q.
For the last point, supposgis local andf = ¢. Then, for anys such thatr = o1 e 05 and
oz € pand(p,q) € ¢,
f(o) f(o1e02)
{o1} = f(o2)
{o1}*q

Ml

Thusf(o) C blalg](o).
In the case that there do not exist o, such that = oy e 05 ando, € D(¢), then

bla[¢l(c) = [10
.

So in this case als¢(c) C bla[¢](0). L]
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(p.9) PEp (na) ¢Ed (pi, @), alli € 1 (pi,q@i), alli e I,LI#0
(p*m,qx7) (', d) (Uiel pisLier qz’) (I_lz'el pis[ lier qz’)
Frame Consequence Union Intersection

Figure 1: Inference rules for local Hoare reasoning

Lemma 2.19. For ¢ € ® andp, q € P(X), bla[¢] = (p,q) & ¢ = (p,q).

Proof.
bla[¢] = (p,q)
< foralllocal functionsf, f E¢ = f E (p,q) (bylemmd2.1B)
& o =9 (by definition[2.15) ]

The inference rules of the proof system are given in figure dnséquence, union and in-
tersection are adaptations of standard rules of Hoare.lofe frame rule is what permits local
reasoning, as it codifies the fact that, since all functiomslacal, any assertion about a separate
part of resource will continue to hold for that part after #mplication of the function. We omit the
standard rules for basic constructs such as sequential asitiom, non-deterministic choice, and
Kleene-star which can be found in [9].

Definition 2.20(Proof-theoretic consequencejor predicatep, g, r, s and specifications, ¢, each
of the judgementsp, q) - (r,s),¢ F (p,q), (p,q) F ¢, and¢ + « holds iff the right-hand side is
derivable from the left-hand side by the rules in figure 1.

The proof system of figulld 1 is sound and complete with redpebie satisfaction relation.
Theorem 2.21(Soundness and Completenesg)- (p,q) < ¢ = (p,q)

Proof. Soundness can be checked by checking each of the proof migsiie[1. The frame rule is
sound by the locality condition, and the others are easydclch

For completeness, assume we are giwes (p,q). By lemmd2.1D, we hav&a[¢] = (p, q).
Soforallo € p, bla[¢](c) C ¢, which implies

| | blall(o) Tq  (+)
oEp
Now we have the following derivation:

¢
(r,s) forall(r,s) € o
({0'/}, S) forallo’ € r, (r,s) € ¢
({o—od'}x{0'},{oc— 0’} xs) forallo’ er (rs) € ¢, o <o,0€p

( |_| {o —0o'} x{o'}, |_| {o—0'}xs) foraloep

o' <o o'<o
o'er o'er
(r,s)€d (r,s)€d

({o}, bla[g](c)) foralle ep
(L {o}. | ] blalgl(0))

oeEp oEp

(p,q)
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The last step in the proof is bix) and the rule of consequence. Note that the intersection rule
can be safely applied because the argument of the intessastnecessarily non-empty (if it were
empty thenbla[¢](c) = T, which contradictdla[¢](o) C g). O

3. PROPERTIES OFSPECIFICATIONS

We discuss certain properties of specifications as a prisitzjfor our main discussion on foot-
prints in Section 4. We introduce the notion af@nmpletespecification for a local function, which is
a specification from which follows every property that haldsthe function. However, a function
may have many complete specifications, so we introduce angaidorm for specifications. We
show that of all the complete specifications of a local fumttthere exists a unique canonical com-
plete specification for every domain. As discussed in th®thiction, an important notion of local
reasoning is themall specificationvhich completely describes the behaviour of a local fumchig
mentioning only the footprint. Thus, as a prerequisite t@gtigating their existence, we formalise
small specifications as complete specifications with thellestgpossible domain. Similarly, we
definebig specifications as complete specifications with the biggestain.

Definition 3.1 (Complete Specification)A specificationy € ® is acomplete specificatiorfor f,
written complete(¢, f), iff, for all p,q € P(X),f = (p,q) < ¢ = (,q). Let ®.y,,(5) be the set
of all complete specifications of f.

¢ is complete forf whenever the tuples that hold férareexactlythe tuples that follow frong.
This also means that any two complete specficatibasd for a local function are semantically
equivalent, that is¢p == . The following proposition illustrates how the notions adsh local
action and complete specification are closely related.

Proposition 3.2. For all ¢ € ® and local functionsf, complete(¢, ) < f = bla[d)].

Proof. Assumef = bla[¢]. Then, by lemma2.19, we have thats a complete specification fgf.

For the converse, assumemplete(¢, f). We shall show that for any € %, f(o0) =
blalg)(0)-

case 1: f(o) = T. If bla[p](c) # T, thenbla[p] = ({o}, bla[¢](c)). This means that
¢ = ({0}, bla[¢](0)) (by lemmd2.1B), and sp = ({o}, bla[$](c)), but this is a contradiction.
Therefore bla[p](c) =T

case 2: bla[p|(c) = T. If f(o) # T, thenf = ({¢}, f(¢)). This means that =
({c}, f(0)), and sobla[¢] = ({o}, f(o)), but this is a contradiction. Thereforg(c) = T

case 3:bla[¢](c) # T and f(o) # T. We have

fE{o}, f(o))
blald] = ({0}, (o))
blal¢](o) C f(0)

bla[d] = ({0}, bla[¢](o))
fE ({o}, bla[¢](0))
f(o) C bla[¢](o)

Thereforef (o) = bla[¢](o) L]

=
=

=
=
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Any specification is therefore only complete for a uniquealdanction, which is its best local
action. However, a local function may have lots of complgtectfications. For example, i is a
complete specification fof and(p, q) € ¢, then¢ U {(p, ¢’)} is also complete foy if ¢ C ¢'. For
this reason it will be useful to have a canonical form for sjeations.

Definition 3.3 (Canonicalisation) The canonicalisationof a specificationy is defined ag.., =
{({c}, blalg](0)) | o € D(¢)}. A specification is ircanonicalform if it is equal to its canonicali-
sation. Letd,,, ;) denote the set of all canonical complete specifications of

Notice that a given local function does not necessarily lzaweiquecanonical complete spec-
ification. For example, botl({u},{u})} and {({u},{u}), {c},{c})}, for someos € %, are
canonical complete specifications for the identity functio

Proposition 3.4. For any specification, we havep 9E ¢can.

Proof. We first showo F ¢cen. FOr any(p,q) € oécan, (p,q) is of the form({c}, bla[¢](o)) for

someo € D(¢). So we havéla[é] = (p,q), and sop = (p, q) by lemmd 2.1D9.
We now showg.,, F ¢. For any(p,q) € ¢, we havebla[¢] & (p,q). So for allo € p,
bla]p](o) C ¢, which implies

| | blalgl(0) Eq (+)
oEp
Now we have the following derivation:

¢Can
({o}, bla[¢](0)) foralloep

(|_H{e} | ] blalgl(e))
oEp oEp
(p,q)
The last step is by«) and consequence. So we havg, + ¢, and by soundness..,, = ¢. L]

Thus, the canonicalisation of a specification is logicaliyigalent to the specification. The
following corollary shows that all complete specificatidhat have the same domain have a unique
canonical form, and specifications of different domainsehdifferent canonical forms.

Corollary 3.5. @,y is isomorphic to the quotient sét,,,,,,, r)/ =p, under the isomorphism that

maps[¢|=,, t0 Pean, fOr everyep D omp(f)-

Proof. By proposition 3.P, all complete specifications fohave the same best local action, which
is f itself. So by the definition of canonicalisation, it can bers¢hat complete specifications
with different domains have different canonicalisatioasgd complete specifications with the same
domain have the same canonicalisation. This shows that dppimg is well-defined and injective.
Every canonical complete specificatignis also complete, anf|~,, maps to¢.., = ¢, so the
mapping is surjective. L]

Definition 3.6 (Small and Big specifications)y is asmall specificationfor f iff ¢ € ®.,,,,(r) and

there is nap € ®,,,,,(r) such thatD(y)) C D(¢). A big specificationis defined similarly.

Smallandbig specifications are thus the specifications with the smadiedtbiggest domains
respectively. The question is iffwhen small and big speatifbms exist. The following result shows
that a canonical big specification exists for every locatfiom.
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Proposition 3.7(Big Specification) For any local functionf, the canonical big specification fgt
is given bygyyp) = {({o}, f(0)) [ f(o) C T}
Proof. f = ¢uig(y) is trivial to check. To showomplete(pyiq(r), f), assumef = (p, q) for some
p,q € P(X). Note that, for any € p, f(c) C ¢ and so|_| f(o) C q. We then have the derivation
gEp
Phig(f)
({U}, f(a)) forall f(o) T T

(Lo}, ] f0))

oEp oEp
(P, q)
By soundness we gé¥,;,(r) = (P, q)- ¢uig(r) has the biggest domain becayserould fault on any
element not included i, 7). L]

The notion of a small specification has until now been used infarmal sense in local reason-
ing papersl[14,14,]7] as specifications that completely §péioe behaviour of an update command
by only describing the command’s behaviour on the part ofrfseurce that it affects. Although
these papers present examples of such specifications fafism@mmands, the notion has so far
not received a formal treatment in the general case. Thdiqnesf the existence of small speci-
fications is strongly related to the concept of footprinis¢s finding a small specification is about
finding a complete specification with the smallest possiloaain, and therefore enquiring about
which elements of are essential and sufficient for a complete specificatiois rHyuires a formal
characterisation of the footprint notion, which we shalvaresent.

4. FOOTPRINTS

In the introduction we discussed how AP program demonstrates that the footprints of a local
function do not correspond simply to the smallest safe state these states alone do not always
yield complete specifications. In this section we introdtieedefinition of footprint that does yield
complete specifications. In order to understand what thigpfid of a local function should be, we
begin by analysing the definition of locality. Recall thag ttiefinition of locality (definitiod_216)
says that the action on a certain staf@mposes dimit on the action on a bigger staig e o1. This
limitis {02} * f(01), as we havef (o2 @ 01) C {02} * f(01).

Another way of viewing this definition is that for any statethe action of the function on that
state has to be within the limit imposed byerysubstater’ of o, that is,f (o) C {o — o’} * f(o”).

In the case where’ = o, this condition is trivially satisfied for any function (lakor non-local).
The distinguishing characteristic of local functions iattkhis condition is also satisfied by every
strict substate of, and thus we have

f@) E [T{o— o'y # 10"
o' <o
We define this overall constraint imposed®by all of its strict substates as thecal limit of f on
o, and show that the locality definition is equivalent to Sgiiigy the local limit constraint.
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Definition 4.1 (Local limit). For a local functionf on X ando € %, thelocal limit of f ono is

defined as
Li(o) = [ |{o o'} * f(o)
o' <o
Proposition 4.2. fislocal <« f(o)C Ly(o) forallo e X

Proof. Assumef is local. So for any, for everyo’ < o, f(o) C {0 — o'} x f(o'). f(o)is
therefore smaller than the intersection of all these sdt&gwis L (o).

For the converse, assume the rhs and thaé o, is defined. Ifo; = u then f(oy e 03)
{01} * f(o2) and we are done. Otherwise, < o1 @ o and we havef (o, @ 02) T L(0o1 @ 02)

{o1} = f(o2).

Thus for any local functiory acting on a certain state, the local limit determines amallest
upper boundon the possible outcomes en based on the outcomes on all smaller states. If this
smallest upper bound does correspond exactly to the set pbssible outcomes on, theno
is ‘large enough’ that just the action gfon smaller states and the locality ffdetermines the
complete behaviour of ono. In this case we will not think of as a footprint off, as smaller
states are sufficient to determine the actiorf o o. With this observation, we define footprints as
those states on which the outcomes cannot be determinedwtihe smaller states, that is, the set
of outcomes is atrict subset of the local limit.

L
L

Definition 4.3 (Footprint) For a local functionf ando € %, o is a footprint of f, written (o),
iff f(o) C Ly¢(o). We denote the set of footprints gfoy F'(f).

Note that an elemernt is therefore not a footprint if and only if the action ¢fon ¢ is at the
local limit, that isf(0) = Ly (o).
Lemma 4.4. For any local functionf, the smallest safe states pare footprints off.
Proof. Let o be a smallest safe state fpr Then for any’ < o, f(o’) = T. ThereforeL;(o) =T
and sof (o) C Ly(o). O]

However, the smallest safe states are not alwayotiefootprints. An example is th&D
command discussed in the introduction. The empty heap igtpriat as it is the smallest safe heap,
but the heap cell— v is also a footprint.

Example 4.5(Dispose) The footprints of thelispose[l] command in the plain heap model (exam-
ple[2.8.1) are the cells at locatiénWe check this by considering the following cases
(1) The empty heapy, is not a footprint SINCE. 4, sposey (ur) = T = dispose[l](un)
(2) Every celll— v for somev is a footprint
Ldispose[l}(l'_}v) = {ZHU} * d’iSpOSE[l](UH) = {ll—>’U} T =T
dz‘spose[l](l'—w) = {uH} C Ldispose[l}(l'_)v)
(3) Every stater such that > (I~ v) for somev is not a footprint
Laiaposei) (7) € {0 = (10)} « disposell](1—v) = {o — (1)} = dispose[l](0)

By proposition[4.2, we havé ;;,,,s.1(0) = dispose[l](c). The intuition is thatr does not
characterise any ‘new’ behaviour of the function: its attan o is just a consequence of its
action on the cells at locatidnand the locality property of the function.
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(4) Every stater such thav * (I+—v) for somev is not a footprint
Ldispose[l](a) E {U} * dispose[l](uH) = {U} * T =1T= dispose[l](a)
Again by proposition412L j;spose(i (o) = dispose[l](o).
Example 4.6 (AD command) The AD (Allocate-Deallocate) command was defined on the heap
and stack model in examgle 2.8.2. We have the following ctses.
(1) o # x+— v, for someuv; is not a footprint, sincd 4p(c) = T = AD(o).
(2) 0 = x> v, for someuv is a footprint sincel 4p(c) = T (by case (1)) andl D (o) = {x—w |
we L} T Lap(o).
(3) 0 =l—wv; e x— vy fOr somel, vy, vs is a footprint.
Lap(o) ={l—uv1}*x AD(x—v3)
(AD faults on all other elements strictly smaller than
={l—v}*x{z—w|welL}
={l—viez—w|welL}

AD(o) =A{l—viex—w|we L,w#I1}C Lap(o)
(4) 0 = h e x+—v; for somev;, and wherdloc(h)| > 1, is not a footprint.
Lup(o) C |_| {(h = l—v}*x AD(l—v e x+>1v1)
h>=l—wv
={hezr—w|w¢loc(h)} = AD(o)
By propositior[ 4.2, we get sp (o) = AD(o).
Our footprint definition therefore works properly for thesgecific examples. Now we give the

formal general result which captures the underlying irgniof local reasoning, that the footprints
of a local function are the only essential elements for a detespecification of the function.

Theorem 4.7(Essentiality) The footprints of a local function are the essential domé&ements for
any complete specification of that function, that is,

Ff(O‘) & Ve (I)comp(f)' o< D(¢)
Proof. Assume some fixed ando. We establish the following equivalent statement :

_'Ff(a) & doe q)comp(f)' a ¢ D(¢)
We first show the right to left implication. So assumés a complete specification gfsuch that
o & D(¢). Sincecomplete(o, f), by proposition 3.2, we havg = bla[¢]. So

flo) = [] {o —o1}*q
0120,01€p,(p,q)€
Now for any sef{ o — o1 } * ¢ in the above intersection, we have thatc p, and(p, ¢) € ¢ for some
p. Sinceo; € p, we havef (o) C ¢, and therefordo — o1}« f(01) C {0 — 01} *q. Also,01 # o,
because otherwise we would have= p, which would contradict the assumption thatz D(¢).
Soo; < o and we have

Li(o)E{o—o1}* f(o1) C{o—o01}*q
So the local limit is smaller than each get— o1 } x ¢ in the intersection, and therefore it is smaller

than the intersection itselff s (¢) T f(o). We know from proposition 412 that(c) T Ls(o), SO
we getf(o) = Ls(o) and therefore-Fy (o).
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We now show the left to right implication. Assume tlaais not a footprint off. We shall use
the big specificationg,, s, to construct a complete specificationfoihich does not contaia in
its domain. Iff(o) = T then the big specification itself is such a specification, wedare done.
Otherwise assumg(o) C T. Let ¢ = duig(p)/{({0}, f(0))}. It can be seen that ¢ D(¢). Now
we need to show that is complete forf. For this it is sufficient to show -t ¢, ) because we
know thatgy,, () is complete forf. The right to left directiong = ¢4y, is trivial.

Foro = @pig(r), We just need to show - ({o}, f(o)). We have the following derivation:

¢
({o'}, f(d')) foralle’ <o, f(c)ET
({o — o'}« {o'},{c — '} x f(d)) foralle’ <o, f(c') T
{ot [T Ao=o}+f(@)
o' <o, f(c")CT
({o}, Ly(0))
The intersection rule can be safely applied as there is at @o’ < o such thatf(¢’) C T.

This is because (o) = T, so if there were no such’ theno would be a footprint, which is a
contradiction. Note that the last step uses the fact that

M {00} =i0) = [T{o— o'} # £(0") = Ly(o)

o' <o, f(c")CT o' <o
because adding the top element to an intersection does aagehts value. Since is not a
footprint, f(o) = Ly(0), and sap - ({o}, f(0)). (]

5. SUFFICIENCY AND SMALL SPECIFICATIONS

We know that the footprints are the only elements thataeentiafor a complete specification
of a local function in the sense that every complete spetificanust include them. Now we ask
when a set of elements ssifficientfor a complete specification of a local function, in the sethse
there exists a complete specification of the function that imeludes these elements. In particular,
we wish to know if the footprints alone are sufficient. To stubis, we begin by identifying the
notion of thebasisof a local function.

5.1. Bases.In the last section we defined the local limit of a functibon a stater as the constraint
imposed onf by all the strict substates of. This was used to identify the footprints as those states
on which the action of cannot be determined by just its action on the smaller statlesare now
addressing the question of when a set of statesifficientto determine the behaviour gfon any
state. We shall do this by identifying a fixed set of statesctvive call abasisfor f, such that the
action of f on any stater can be determined by just the substates ¢diken from this set (rather
than all the strict substates @j. Thus we first generalise the local limit definition to catesithe
constraint imposed by only the substates taken from a gwen s

Definition 5.1 (Local limit imposed by a set)For a subsetd of a separation algebrd, thelocal
limit imposed byA on the action off ono is defined by

Lago)= [] {o-0}=f(0)

o'<o,0'€A
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Sometimes, the local limit imposed byis enough to completely determirfe In this case, we
call A abasisfor f.

Definition 5.2 (Basis) A C X is abasisfor f, writtenbasis(A, f), iff L s = f.

This means that, when given the action fobn elements in A alone, we can determine the
action of f on any element ift by just using the locality property of. Every local function has
at least one basis, namely the trivial basigself. We next show the correspondence between the
bases and complete specifications of a local function.

Lemma 5.3. Let pa r = {({o}.f(0)) | ¢ € A, f(o) C T}. Then we havéasis(4, ) <
complete(da,y, f).

Proof. We haveL, ; = bla[¢a ¢] by definition. The result follows by proposition 8.2 and the
definition of basis. []

For every canonical complete specificatioie P, (), We havep = ¢p (4, y- By the previous
lemma it follows thatD(¢) forms a basis foif. The lemma therefore shows that every basis deter-
mines a complete canonical specification, and vice versi. cbiirespondence also carries over to
all complete specifications fof by the fact that every domain-equivalent class of complpezs
ifications for f is represented by the canonical complete specification thithdomain (corollary
[3.5). By the essentiality of footprints (theoréml4.7), ltdws that the footprints are present in every
basis of a local function.

Lemma 5.4. The footprints off are included in every basis of f.

Proof. Every basisA of f determines a complete specification fathe domain of which is a subset
of A. By the essentiality theorern (4.7), the domain includesdbéorints. L]

The question of sufficiency is about how small the basis can @esen a local function, we
wish to know if it has a smallest basis.

5.2. Well-founded Resource.We know that every basis must contain the footprints. Thulkeaf
footprints alone form a basis, then the function will havenaallestcomplete specification whose
domain are just the footprints. We find that, for well-fouddesource models, this is indeed the
case.

Theorem 5.5(Sufficiency 1) If a separation algebr& is well-founded under th& relation, then
the footprints of any local function form a basis for it, thaitf = Ly ;-

Proof. Assume thak is well-founded undex. We shall show by induction thgt(o) = Ly ¢(o)
for all o € X. The induction hypothesis is that, for all < o, f(0’) = Lp(s) (")

case 1:Assumeo is a footprint off. We havef (o) = {u} * f(o) is in the intersection in the
definition of Lr(y) (0), and soLp(5) r(o) E f(o). We have by locality thaf (o) C Lg(ys) (o),
and SOf(O') = LF(f),f(U)
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case 2:Assumeo is not a footprint off. We have
f(o) = Ls(0o) (becauser is not a footprint of f)

= [ {0~ o'} = (o)

o' <o

=[] W{o—c}+ [] {o'—=0"}=f(0") (bytheinduction hypothesis)
o' <o O'Njalva(U”)

= |—| {o — o'} x {0’ — "} x f(¢") (by the precision ofo — o'})

o'<0,0" X0’ ,Fr(c’)

= 1 fo-o"}+4("

o' <a,Fs(a’)

= [] {o-0"}xf(c") (because is not a footprint of f)
o' <0,Fs (o)

= Lr(),4(0) [
In section 8, the notions of big and small specifications viet®duced (definitior_3]6), and the
existence of a big specification was shown (proposition. 3V are now in a position to show
the existence of the small specification for well-foundesbrece. IfY is well-founded, then every
local function has a small specification whose domain is tlogpfrints of the function.

Corollary 5.6 (Small specification) For well-founded separation algebras, every local functias
a small specification given by ) .

Proof. ¢r(y), s is complete by theorein 5.5 and lemimal 5.3. It has the smalbesaih by the essen-
tiality theorem. L]

Thus, for well-founded resource, the footprints are alwessential and sufficient, and specifi-
cations need not consider any other elements. In practital) specifications may not always be in
canonical form even though they always have the same doméaieaanonical form. For example,
the heap dispose command can have the specificltidr-v | v € Val}, {ug})} rather than the
canonical one given by({i— v}, {ur}) | v € Val}.

In practical examples it is usually the case that resoureeisfounded. A notable exception is
the fractional permissions model [4] in which the resouregudes ‘permissions to access’, which
can be indefinitely divided. We next investigate the nonkfeinded case.

5.3. Non-well-founded Resource.If a separation algebra is non-well-founded under theela-
tion, then there is some infinite descending chain of elesnent- o5 = o3.... From a resource-
oriented point of view, there are two distinct ways in whibistcould happen. One way is when
it is possible to remove non-empty pieces of resource frotata sndefinitely, as in the separation
algebra of non-negative real numbers under addition. I ¢hse any infinite descending chain
does not have more than one occurrence of any element. Anetheis when an infinite chain
may exist because of repeated occurrences of some elefbighappens when thereriggativity
present in the resource: some elements have inverses iarike that adding two non-unit elements
together may give the unit. An example is the separationbaégef integers under addition, where
14 (—1) = 0, so adding -1 to 1 is like adding negative resource. Alsaesin= 0 + 1, we have
thatl > 0 > 1... forms an infinite chain.
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Definition 5.7 (Negativity) A separation algebra hasnegativity iff there exists a non-unit ele-
mento € X that has an inverse; that is,# u ando e ¢/ = u for someo’ € . We say that is
non-negativeif no such element exists.

All separation algebras with negativity are non-well-fded because, for elementsand o’
such thatr e ¢’ = u, the set{o, u} forms an infinite descending chain (there is no least element
All well-founded models are therefore non-negative. Fergbneral non-negative case, we find that
either the footprints form a basis, or there is no smallesisba

Theorem 5.8(Sufficiceny Il). If ¥ is non-negative then, for any locél either the footprints form
a smallest basis or there is no smallest basis for f.

Proof. Let A be a basis forf (we know there is at least one, which is the trivial basigself). If A
is the set of footprints then we are done. So assdmentains some non-footpript We shall show
that there exists a smaller basis farwhich is A/{u}. So it suffices to show (o) = L4,(,,(0)
forallo € X.

case 1:u A 0. We have

flo)=Laglo)= [] {o—0o}xf(o)= [1  {o—0"}=£(0)) =Lajs0)
o'=2o,0'€cA o' =Ro,0'cA/{u}

as desired
case 2:u = o. This implies

f@=( 1 Ao-otsf@)) N {o—udsfu)
o' 200’ €A/{p}
It remains to show that the right hand side of this intersectiontains the left hand side:

{o —p}* f(p) ={o—p}+xLi(pn) (becauseg: is nota footprint of f)
= {o—u}x [ [{n—0'} = f(o")

o' <
fo—pbe [ (u-ots ] {o =" s fl")
o'<p 0" =o', 0"cA/{un}

(case 1 applies becauseis non-negative, s6’ < i = u A o’)

=[] [ {o—py«{pu—0o"Y«{c' ="}« f(c") (by precision)

o' <po’"=<c’,0"€A/{u}

=TT 1 Ao—o"}+ 50"

o'<po"=0’0"cA/{p}

= [T {o—0"}x (")

o' <p,0" € A/{u}
0[] de-d"} ") 0
0" 2o,0"€A/{u}

Corollary 5.9 (Small Specification) If X is non-negative, then every local function either has a
small specification given by )  or there is no smallest complete specification for that fiamct

Example 5.10(Permissions) The fractional permissions modeél [4] is hon-well-foundex @on-
negative. It can be represented by the separation algéBram = L —p, Val x P whereL
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andVal are as in example 2.8, arfd is the interval (0, 1] of rational numbers. Elementsrof
represent ‘permissions’ to access a heap cell. A permissgibrior a cell means both read and write
access, while any permission less than 1 is read-only acdéss operatoe joins disjoint heaps
and adds the permissions together for any cells that aremtres both heaps only if the resulting
permission for each heap cell does not exceed 1; the opeiatisndefined otherwise. In this case,
the write function that updates the value at a location megua permission of at least 1 and faults
on any smaller permission. It therefore has a small spetditavith precondition being the cell
with permission 1. The read function, however, can execafielyson any positive permission, no
matter how small. Thus, this function can be completely ggecwith a specification that has a
precondition given by the cell with permissianfor all 0 < z < 1. However, this is not amallest
specification, as a smaller one can be given by further efisigi0 < 2 < 0.5. We can therefore
always find a smaller specification by reducing the value lofit keeping it positive.

For resource with negativity, we find that it is possible tedhamall specifications that include
non-essential elements (which by theofen 4.7 are not fimbspr These elements are non-essential
in the sense that complete specifications exist that do mbide them, but there is no complete
specification that includes only essential elements.

Example 5.11(Integers) An example of a model with negativity is the separation algedf in-
tegers(Z, +,0). In this case there can be local functions which can havel spetifications that
contain non-footprints. Lef : Z — P(Z) " be defined ag(n) = {n+c} for some constant, as in
examplé 2B is local, but it has no footprints. This is because for any(n) = 1+ f(n—1), and
son is not a footprint off. However,f does have small specifications, for examgl0}, {c})},
{{({5}, {5 + ¢})}, orindeed{({n},{n + c¢})} for anyn € Z. So although every element is non-
essential, some element is required to give a completefaaicin.

6. REGAINING SAFETY FOOTPRINTS

In the introduction we discussed how the notion of footrias the smallest safe states - the
safety footprintis inadequate for giving complete specifications, astilaied by theAD example.
For this reason, so far in this paper we have investigatedjyéineral notion of footprint for arbi-
trary local functions on arbitrary separation algebrasuigged with this general theory, we now
investigate how the regaining of safety footprints may deeed with different resource modelling
choices. We start by presenting an alternative model of RB&ded on an investigation of why the
AD phenomenon occurs in the standard model. We then demanstedtthe footprints of the D
command in this new model do correspond to the safety fadtprin the final section we identify,
for arbitrary separation algebras, a condition on locatfiams which guarantees the equivalence
of the safety footprint and the actual footprint. We thenvgliimat if this condition is met by all the
primitive commands of a programming language then the wébetprints are regained for every
program in the language, and finally show that this is indeedcase in our new RAM model.

6.1. An alternative model. In this section we explore an alternative heap model in wittielsafety
footprints do correspond to the actual footprints. We béyinaking a closer look at why th&D
anomaly occurs in the standard heap and stack model deddribexampld 2]8.2. Consider an
application of the allocation command in this model:

new[z](42 —vexr— w)={42—vex—lel—r |l e L\{42},r € Val}



20 M. RAZA AND P. GARDNER

The intuition of locality is that the initial staté2 — v e 2 +— w is only describing a local
region of the heap and the stack, rather than the whole gkib#&. In this case it says that the
address 42 is initially allocated, and the definition of tHecation command is that the resulting
state will have a new cell, the address of which can be anytbiher than 42. However, we notice
that the initial state is in fact not just describing onlyldsal region of the heap. It does state that
42 is allocated, but it also implicitly states a very globebgerty: thatall other addresses are not
allocated This is why the allocation command can choose to allocayd@ration that is not 42.
Thus in this model, every local state implicitly containsreoglobal allocation information which
is used by the allocation command. In contrast, a commani asignutate does not require this
global ‘knowledge’ of the allocation status of any othed tgt it is not affecting. Now the global
information of which cells are freehangesas more resource is added to the initial state, so this can
lead to program behaviour being sensitive to the additiomarfe resource to the initial state, and
this sensitivity is apparant in the case of i@ program.

Based on this observation, we consider an alternative mo&elbefore, a staté — v will
represent a local allocated region of the heap at addresth valuev. However, unlike before,
this state will say nothing about the allocation status amations other thah This information
about the allocation status of other locations will be repreed explicitly in dree set, which will
contain every location that is not allocated in tflebal heap The model can be interpreted from
an ownership point of view, where the free set is to be thowudlas a unique, atomic piece of
resource, ownership of which needs to be obtained by a couhifidgnwants to do allocation or
deallocation. An analogy is with the permissions model: mmand that wants to read or write
to a cell needs ownership of the appropriate permission ancell. In the same way, in our new
model, a command that wants to do allocation or deallocat&sds to have ownership of the free
set: the ‘permission’ to see which cells are free in the dlbleap so that it can choose one of them
to allocate, or update the free set with the address thaaitabates. On the other hand, commands
that only read or write to cells shall not require ownersHithe free set.

Example 6.1(Heap model with free setfFormally, we work with a separation algelid, e, u ).
Let L, Var andVal be locations, variables and values, as before. StatesH are given by the
grammar:

hi=ug|l—v|z—v|F|heh
wherel € L,v € Val, x € Var andF € P(L). The operatom is undefined for states with
overlapping locations or variables. Lkic(h) andvar(h) be the set of locations and variables in
stateh respectively. The sdft carries the information of which locations are free. Thusali@w at
most one free set in a state, and the free set must be disjomtdll locations in the state. Soe F'
is only defined wheioc(h) N F' = () andh # h' e F' for anyh’ andF”. We assume is associative
and commutative with unit; .

In this model, the allocation command requires ownershitheffree set for safe execution,
since it chooses the location to allocate from this set. ntaees the chosen address from the free
set as it allocates the cell. It is defined as

new(z](h) = { il_h’oxb—>lol»—>woF\{l} |weVal,le F}  h= h’.ow»—woF
otherwise

Note that the output statés e z+— [ e [+—w e F'\{l} are defined, since we haveZ F\{l} and the
input stateh’ e x+— v o F' implies thatloc(h') is disjoint from F'\{/}. The deallocation command
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also requires the free set, as it updates the set with thessldf the cell that it deletes:

/0 =10 ® = /0 =0 ® (VD @
disposelalty = { £+ LT
Again, the output states are defined, since the input statiieisthatoc(h’)U{(} is disjoint from F,
and sdoc(h’) is disjoint fromFU{l}. Notice that in this model, only the allocation and dealtmra
commands require ownership of the free set, since commarats & mutation and lookup are
completely independent of the allocation status of othéis,cand they are defined exactly as in
exampld 2.B.2:

B {W exr—lel—uv} h=hez—lel—w
mutate[z, v](h) —{ T otherwise

- {h exr—lel—vey—uv} h=hezr—lel—vey—w
lookuplz, y)(h) = { T otherwise

Lemma 6.2. The functionsiew|(z], dispose[z|, mutate|x,v] andlookup|x, y] are all local in the
separation algebrd H, e, u ) from exampl€6]1.

Proof. Let f = new[z] and assumeé’#h. We want to showf (k' e h) T {h’} = f(h). Assume
h = h" ex+—wv e F for someh”, z, , v and F, because otherwisg(h) = T and we are done. So
we have
f(Weh) = {Weh"exr—lel—weF\{l}|weValleccF}
= {N}x{h ex—lel—weF\{l}|weVallecF}
{n'} = f(h)

The other functions can be checked in a similar way. L]

6.2. Safety footprints for AD. We consider the footprint of thAD command in the new model.
In this model the sequential compositinaw[z]; dispose|x] gives the function

[ {Wex—leF|lcF} h=hexr—veF
AD(h) = { T otherwise

The smallest safe states are given by the{set>v e F' | v € Val, F € P(L)}. By lemma 4.4,
these smallest safe states are footprints. However, ubkkere, in this model these are thaly
footprints of theAD command. To see this, consider a larger staser — v o F' for non-emptyh.

We have
ADhez—velF) = {hex—leF |lcF}

= {h}x{x—leF|leF}

= {h}x AD(z—veF)
Since the local limitLsp(h e z — v e F) T {h} x AD(x — v e F') by definition, we have by
proposition 4.2 thal sp(he z+—v e F) = AD(hexz+—ve F),and soh e x+— v e F'is not a
footprint of AD.

Thus the footprints oft D in this model do not include any non-empty heaps. By corpliaé,

in this model theAD command has a smallest complete specification in which thegndition
only describes the empty heap. This specification is

{{z—veF} {zx—leF})|veVal,FeP(L)leF}

Intuitively, it says that if initially the heap is empty, thrariablex is present in the stack, and we
know which cells are free in the global heap, then after thexation, the heap will still be empty,
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[c] € LocFunc [skip](o) = {0}
[Ci; ol =[] [C]  [Ci+Co] =[G]ulC:]  [C*]=L,0C"]

Figure 2: Denotational semantics for the imperative pnognéng language

exactly the same cells will still be free, andwill point to one of those free cells. This completely
describes the behaviour of the command for all larger statig) the frame rule. For example, we
get the complete specification on the larger state in whicis 4Hocated:

{{22—w} x {x—ve F} {422—w} x{x—leF})|v,we Val,F € P(L),l € F}

In the pre-condition, the presence of location 42 in the hmaapns that 42 is not in the free set
I (by definition of«). Therefore, in the post-conditiom,cannot point to 42.

Notice that in order to check that we have ‘regained’ safeoggdrints, we only needed to check
that the footprint definition (definitidn 4.3) correspondshe smallest safe states. The desired prop-
erties such as essentiality, sufficiency, and small spatiics then follow by the results established
in previous sections.

6.3. Safety footprints for arbitrary programs. Now that we have regained the safety footprints
for AD in the new model, we want to know if this is generally the caseify program We consider
the abstract imperative programming language givenlin [9]:

C == c|skip|C;C|C+C|C*

wherec ranges over an arbitrary collection of primitive commandss nondeterministic choice,
is sequential composition, arid* is Kleene-star (iterated. As discussed iri [9], conditionals and
while loops can be encoded usirgand(-)* and assume statements. The denotational semantics of
commands is given in Figufe 2.

Taking the primitive commands to be-w|x], dispose[z]|, mutate|x, v], andlookup|z, y], our
original aim was to show that, for every commafidthe footprints of[C] in the new model are
the smallest safe states. However, in attempting to do wsidentified a general condition on
primitive commands under which the result holds for arbjtiseparation algebras.

Let f be a local function on a separation algebra If, for A € P(X), we definef(A) =

|_| f (o), then the locality condition (definitidn 2.6) can be resteds
ogEA

Vo',o € 5. f({o'} x{o}) T {0} » f({o})

TheC ordering in this definition allows local functions to be mdegerministic on larger states.
This sensitivity of determinism to larger states is apptirathe AD command in the standard model
from examplé 2.J8.2. On the empty heap, the command produmoespty heap, and reassigns vari-
ablez to anyvalue, while on the singleton cell 1, it disallows the po#itjbthat + = 1 afterwards.

In the new model, thed D command does not have this sensitivity of determinism incihgput
states. In this case, the presence or absence of the cellsindbaffect the outcomes of th&D
command, since the command can only assigma value chosen from the free set, which does not
change no matter what additional cells may be framed in. Withobservation, we consider the
general class of local functions in which this sensitivifydeterminism is not present.
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Definition 6.3 (Determinism Constancy)Let f be a local function andafe( f) the set of states on
which f does not fault.f has the determinism constancy property iff, for everg safe(f),

vo' € 3. f({o'} x {o}) = {o"} x fF({o})

Notice that the determinism constancy property by itseflies that the function is local, and
it can therefore be thought of as a form of ‘strong localityitstly, we find that local functions that
have determinism constancy always have footprints givethépmallest safe states.

Lemma 6.4. If a local function f has determinism constancy then its footprints are the ssiall
safe states.

Proof. Let min(f) be the smallest safe states fof These are footprints by lemrha 4.4. For any
larger stater’ @ o whereo € min(f), o’ € ¥ ando is non-empty, we have
flo'eo) = f({o'} x{o}) = {0’} + f(0)
SinceL (o’ @ o) C {0’} = f(0), by propositior. 4.2 we have th#t; (¢’ e 0) = f(c’' ® o), and so
o’ e o is not a footprint off. []
We now demonstrate that the determinism constancy projsaptgserved by all the constructs
of our programming language. This implies that if all thenitive commands of the programming

language have determinism constancy, then the footprinésery program are the smallest safe
states.

Theorem 6.5. If all the primitive commands of the programming languageehdeterminism con-
stancy, then the footprint of every program is given by thallest safe states.

Proof. Assuming all primitive commands have determinism constane shall show by induction
that every composite command has determinism constancyhancksult follows by lemma_86.4.
So for command€’; andCy, let f = [C4] andg = [C2]] and assum¢g andg have determinism
constancy. For sequential composition we havegfer safe(f; g) ando’ € %,

(fig){o'}  {o})
= g(f({o'} *{a}))
= g({o'}* f({e}))  (f has determinism constancy ande safe(f) sinces € safe(f;g))

= g( | (o} +{o})

a1€f(o)

= || (o'} {m})

o1€f(o)
= |_| {0’} * g(o1) (9 has determinism constancy and

o1€f(0) o1 € safe(g) sinceo € safe(f;g) andoy inf(0))
= {o'}» || g(or)  (distributivity)

a1€f(o)

= {o'} = (f19)(0)
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For non-deterministic choice, we have fore safe(f + g) ando’ € X,
(f+9){o'} x{o})
= f({o'}x{o}) Ug({o'} x {o})
= {0’} x f{o}) U{o'} xg({o}) (f andg have determinism constancy and
o € safe(f) ando € safe(g) sinceo € safe(f + g))

= {0}« (f({e}) Ug({r})) (distributivity)

= {o'}+ (f +9)({o})
For Kleene-star, we have for € safe(f*) ando’ € 3,

(f1){o'} x{o})

= Lo’y {o})

= |_|{o—’} x f({c}) (determinism constancy preserved under sequential catigpoand
n o € safe(f™))

= {o'} | |f"({e})  (distributivity)

= {0} (f)({o}) O

Now that we have shown the general result, it remains to ctietkall the primitive commands in
the new model of sectidn 6.1 do have determinism constancy.

Proposition 6.6. Let H, be the stack and heap model of exaniplé 2.8.2 dpndbe the alternative
model of sectiof 6l1. The commandsu|x], mutate[x,v] andlookup|z, y] all have determinism
constancy in both models. Théspose[z] command has determinism constancyHg but not in

H;.

Proof. We give the proofs for the new and dispose commands in the tadets, and the cases for
mutate and lookup can be checked in a similar way.dzgpose[z] in H;, the following counterex-
ample shows that it does not have determinism constancy.

disposelz|({l—v} x {1l e l—w})
= dispose[z](D)
0
{l—vex—l}
{l—v} * dispose|z|(x—1 o l—w)

I

Fornew[z] in Hy, any safe state is of the forme x+— v. For anyh’ € H;, we have
{W'} x newlx)(h @ x+—v) = {h'} x {hex—lel—w|w e Val,l € L\loc(h)} ()

If W’ ehex— v isundefined theh’ shares locations witloe(h) or variables withvar(h)U{x}.
This means that the RHS iris the empty set. We haveew[z]({h'} x {hez+—v}) = new[z](D) =
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0 = {h'} * new[x](h e x+—v). If h' ® h e z+— v is defined, then

new(x]({h'} * {h e x—wv})
= newz](h e hexrv)
= {Wehexr—lel—w|weValle L\loc(h' eh)}
= {W}x{hex—lel—w|we Vall e L\loc(h' eh)}
= {W}x{hex—lel—w|we Valle L\loc(h)}
= {I'} xnew[z](h ® x+—v)

Fordispose[z] in Hy, any safe state is of the forme x+— /e [+—v e F. Leth’ € Hy. We have
{W'} x dispose[z](hez—lel—ve F)={h'} x {hex—le FU{lI}} (if)

If W ehex—lel—veF isundefined then eithér contains a free set or it contains locations
in loc(h) U {l} or variables invar(h) U {z}. If b’ contains a free set or it contains locations in
loc(h) or variables irvar(h) U {z}, then the RHS irf is the empty set. I/ contains the location
[ then also the RHS inf is the empty set since the free getU {/} also containg. Thus in both
cases the RHS it} is the empty set, and we hadéspose[z|({h'} x {hex—lel—ve F}) =0 =
{W'} x dispose[x](h e x—lel—veF).

If W’ e hexr—1[el—uveFisdefined then we have

dispose[z]|({W'} x {hez+—lel—v e F})
= dispose[z|(h ehex—lel—uvelF)
= {Wehexr—leFU{l}}
= {W}x{hex—le FU{i}}
= {W'} xdispose[z](hexr—lel—veF)

Fornew[z] in Hy, any safe state is of the forme z+—v e F. Leth’ € H,. We have
{W'} *newlx](hezr—sveF)={h}+«{hexr—lelswe F\{I} |weVal,l € F} ({t1)

If " e h e x+— v e F is undefined then eithér’ contains a free set or it contains locations in
loc(h) or variables invar(h) U {z}. In all these cases the RHS i is the empty set, and so we
havenew(z]({h'} x {h e x—v e F}) =0 = {h'} * new[z](h e z—v e F).

If h' e h e x—v e Fis defined then we have

new(z]({h'} * {h e x+—v e F})
= newz|(h ehexr—veF)
{hehexr—lel—weF\{l}|weValleF}
{W}*{hexr—lel—weF\{l}|weValleF}
= {W}xnew[z](hexr—veF)

[

Thus theorenm 615 and propositibn 6.6 tell us that using ttegredtive model of example 6.1,
the footprint of every program is given by the smallest saftes, and hence we have regained
safety footprints for all programs. In fact, the same is fiarethe original model of example 2.8.2
if we do not include the dispose command as a primitive conanaimce all the other primitive
commands have determinism constancy. This, for examplaldame the case when modelling a
garbage collected language [16].
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7. CONCLUSIONS

We have developed a general theory of footprints in the atissetting of local functions
that act on separation algebras. Although central andtiveuconcepts in local reasoning, the
notion of footprints and small specifications had evadedmdb general treatment until now. The
main obstacle was presented by thig problem, which demonstrated the inadequacy of the safety
footprint notion in yielding complete specifications. Irdaglssing this issue, we first investigated the
notion of footprint which does not suffer from this inadequaBased on an analysis of the definition
of locality, we introduced the definition of the footprint aflocal function, and demonstrated that,
according to this definition, the footprints are the onlyegg®l elements necessary to obtain a
complete specification of the function. For well-foundedawce models, we showed that the
footprints are also sufficient, and we also presented se&uinon-well-founded models.

Having established the footprint definition, we then exptbthe conditions under which the
safety footprint does correspond to the actual footpring.iktfoduced an alternative heap model in
which safety footprints are regained feweryprogram, includingAD. We also presented a general
condition on local functions in arbitrary models under whiafety footprints are regained, and
showed that if this condition is met by all the primitive comnals of the programming language,
then safety footprints are regained for every program. Heery of footprints has proven very
useful in exploring the situations in which safety footpsicould be regained, as one only needs to
check that the smallest safe states correspond to the ifatdefinition[4.3. This automatically gives
the required properties such as essentiality and suffigieviaich, without the footprint definition
and theorems, would need to be explicitly checked in thedifft cases.

Finally, we comment on some related work. The discussiomigaper has been based on
the static notion of footprints astatesof the resource on which a program acts. A different notion
of footprint has recently been described[inl[10], whereffdats are viewed asacesof execution
of a computation. O’Hearn has described how &2 problem is avoided in this more elaborate
semantics, as the allocation of cells in an execution pttevbe framing of those cells. Interestingly,
however, the heap model from examplel 6.1 illustrates thatribt essential to move to this more
elaborate setting and incorporate dynamic, executionifpéformation into the footprint in order
to resolve theAD problem. Instead, with the explicit representation of fte#s in states, one can
remain in an extensional semantics and have a purely stasiource-based (rather than execution-
based) view of footprints.
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