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ABSTRACT. Local reasoning about programs exploits the natural localbehaviour common in pro-
grams by focussing on the footprint - that part of the resource accessed by the program. We address
the problem of formally characterising and analysing the notion of footprint for abstract local func-
tions introduced by Calcagno, O’Hearn and Yang. With our definition, we prove that the footprints
are the only essential elements required for a complete specification of a local function. We formalise
the notion of small specifications in local reasoning and show that, for well-founded resource mod-
els, a smallest specification always exists that only includes the footprints. We also present results
for the non-well-founded case. Finally, we use this theory of footprints to investigate the conditions
under which the footprints correspond to the smallest safe states. We present a new model of RAM
in which, unlike the standard model, the footprints of everyprogram correspond to the smallest safe
states. We also identify a general condition on the primitive commands of a programming language
which guarantees this property for arbitrary models.

1. INTRODUCTION

Local reasoning about programs focusses on the collection of resources directly acted upon by
the program. It has recently been introduced and used to substantial effect inlocal Hoare reasoning
about memory update. Researchers previously used Hoare reasoning based on First-order Logic
to specify how programs interacted with thewholememory. O’Hearn, Reynolds and Yang instead
introduced local Hoare reasoning based on Separation Logic[14, 11]. The idea is to reason only
about the local parts of the memory—thefootprints—that are accessed by a program. Intuitively,
the footprints form the pre-conditions of thesmall axioms, which provide the smallest complete
specification of the program. All the true Hoare triples are derivable from the small axioms and the
general Hoare rules. In particular, theframe ruleextends the reasoning to properties about the rest
of the heap which has not been changed by the command.

O’Hearn, Reynolds and Yang originally introduced Separation Logic to solve the problem
of how to reason about the mutation of data structures in memory. They have applied their rea-
soning to several memory models, including heaps based on pointer arithmetic [14], heaps with
permissions [4], and the combination of heaps with variablestacks which views variables as re-
source [5, 17]. In each case, the basic soundness and completeness results for local Hoare reasoning
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are essentially the same. For this reason, Calcagno, O’Hearn and Yang [9] recently introduced
abstract local functions over abstract resource models which they call separation algebras. They
generalised their specific examples of local imperative commands and memory models in this ab-
stract framework. They introduced Abstract Separation Logic to provide local Hoare reasoning
about such functions, and give general soundness and completeness results.

We believe that the general concept of a local function is a fundamental step towards establish-
ing the theoretical foundations of local reasoning, and Abstract Separation Logic is an important
generalisation of the local Hoare reasoning systems now widely studied in the literature. However,
Calcagno, O’Hearn and Yang do not characterise the footprints and small axioms in this general
theory, which is a significant omission. O’Hearn, Reynolds and Yang, in one of their first papers on
the subject [14], state the local reasoning viewpoint as:

‘to understand how a program works, it should be possible forreasoning and speci-
fication to be confined to the cells that the program actually accesses. The value of
any other cell will automatically remain unchanged.’

A complete understanding of the foundations of local Hoare reasoning therefore requires a formal
characterisation of the footprint notion. O’Hearn tried toformalise footprints in his work on Sepa-
ration Logic (personal communication with O’Hearn). His intuition was that the footprints should
be the smallest states on which the program is safe - thesafety footprint, and that thesmall axioms
arising from these footprints should give rise to a completespecification using the general rules for
local Hoare reasoning. However, Yang discovered that this notion of footprint does not work, since
it does not always yield acompletespecification for the program. Consider the program1

AD ::= x := new(); dispose(x)

This allocate-deallocateprogram allocates a new cell, stores its address value in thestack variable
x, and then deallocates the cell. It is local because all its atomic constituents are local. This tiny
example captures the essence of a common type of program; there are many programs which, for
example, create a list, work on the list, and then destroy thelist.

The smallest heap on which theAD program is safe is the empty heapemp. The specification
using this pre-condition is:

{emp} AD {emp} (1.1)

We can extend our reasoning to larger heaps by applying the frame rule: for example, extending to
a one-cell heap with arbitrary addressl and valuev gives

{l 7→ v} AD {l 7→ v} (1.2)

However, axiom (1) does not give the complete specification of theAD program. In fact, it captures
very little of the spirit of allocation followed by de-allocation. For example, the following triple is
also true:

{l 7→ v} AD {l → v ∧ x 6= l} (1.3)

This triple (3) is true because, ifl is already allocated, then the new address cannot bel and hencex
cannot bel. It cannot be derived from (1). However, the combination of axiom (1) and axiom (3) for
arbitrary one-cell heaps does provide the smallest complete specification. This example illustrates
that O’Hearn’s intuitive view of the footprints as the minimal safe states just does not work for
common imperative programs.

1Yang’s example was the ‘allocate-deallocate-test’ program ADT ::= ‘x := new();dispose(x); if (x=1) then z:=0
else z:=1;x=0’. OurAD program provides a more standard example of program behaviour.
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In this paper, we introduce the formal definition of the footprint of a local function that does
yield a complete specification for the function. For ourAD example, our definition identifiesemp
and the arbitrary one-cell heapsl 7→ v as footprints, as expected. We prove the general result that,
for any local function, the footprints are the only elementswhich areessentialto specify completely
the behaviour of this function.

We then investigate the question ofsufficiency. For well-founded resource, we show that the
footprints are also always sufficient: that is, a complete specification always exists that only uses the
footprints. We also explore results for the non-well-founded case, which depend on the presence
of negativity. A resource has negativity if it is possible to combine two non-unit elements to get
the unit, which is like taking two non-empty pieces of resource and joining them to get nothing.
For non-well-founded models without negativity, such as heaps with infinitely divisible fractional
permissions, either the footprints are sufficient (such as for thewrite command in the permissions
model) or there is no smallest complete specification (such as for thereadcommand in the permis-
sions model). For models with negativity, such as the integers under addition, we show that there
do exist smallest complete specifications based on elementsthat are not essential and hence not
footprints.

In the final section, we apply our theory of footprints to the issue of regaining the safety foot-
prints. We address a question that arose from discussions with O’Hearn and Yang, which is whether
there is an alternative model of RAM in which the safety footprint does correspond to the actual
footprint, yielding complete specifications. We present such a model based on an examination of
the cause of theAD problem in the original model. We prove that in this new modelthe footprint
of everyprogram, includingAD, does correspond to the safety footprint. Moreover, we identify a
general condition on the primitive commands of a programming language which ensures that this
property holds in arbitrary models.

A preliminary version of this paper was presented at the FOSSACS 2008 conference. The final
section reports on work that is new to this journal version. This paper also contains the proofs which
were excluded from the conference paper.

2. BACKGROUND

The discussion in this paper is based on the framework introduced in [9], where the approach
of local reasoning about programs with separation logic wasgeneralised to local reasoning about
local functions that act on an abstract model of resource. Our objective in this work is to investigate
the notion of footprint in this abstract setting, and this section gives a description of the underlying
framework.

2.1. Separation Algebras and Local Functions.We begin by describing separation algebras,
which provide a model of resource which generalises over thespecific heap models used in sep-
aration logic works. Informally, a separation algebra models resource as a set of elements that
can be ‘glued’ together to create larger elements. The ‘glueing’ operator satisfies properties in
accordance with this resource intuition, such as commutativity and associativity, as well as the can-
cellation property which requires that, if we are given an element and a subelement, then ‘ungluing’
that subelement gives us a unique element.

Definition 2.1 (Separation Algebra). A separation algebrais a cancellative, partial commutative
monoid (Σ, •, u), whereΣ is a set and• is a partial binary operator with unitu. The operator
satisfies the familiar axioms of associativity, commutativity and unit, using a partial equality onΣ
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where either both sides are defined and equal, or both are undefined. It also satisfies the cancellative
property stating that, for eachσ ∈ Σ, the partial functionσ • (·) : Σ 7→Σ is injective.

We shall sometimes overload notation, usingΣ to denote the separation algebra(Σ, •, u). Ex-
amples of separation algebras include multisets with unionand unit∅, the natural numbers with
addition and unit0, heaps as finite partial functions from locations to values ([9] and example
2.8), heaps with permissions [9, 4], and the combination of heaps and variable stacks enabling us to
model programs with variables as local functions ( [9], [17]and example 2.8). These examples all
have an intuition of resource, withσ1 • σ2 intuitively giving more resource than justσ1 andσ2 for
σ1, σ2 6= u. However, notice that the general notion of a separation algebra also permits examples
which may not have this resource intuition, such as{a, u} with a • a = u. Since our aim is to
investigate general properties of local reasoning, our inclination is to impose minimal restrictions
on what counts as resource and to work with a simple definitionof a separation algebra.

Definition 2.2 (Separateness and substate). Given a separation algebra(Σ, •, u), theseparateness
(#) relation between two statesσ0, σ1 ∈ Σ is given byσ0#σ1 iff σ0 • σ1 is defined. Thesubstate
(�) relation is given byσ0 � σ1 iff ∃σ2. σ1 = σ0 • σ2. We writeσ0 ≺ σ1 whenσ0 � σ1 and
σ0 6= σ1.

Lemma 2.3(Subtraction). For σ1, σ2 ∈ Σ, if σ1 � σ2 then there exists a unique element denoted
σ2 − σ1 ∈ Σ, such that(σ2 − σ1) • σ1 = σ2.

Proof. Existence follows by definition of�. For uniqueness, assume there existσ′, σ′′ ∈ Σ such
thatσ′ • σ1 = σ2 andσ′′ • σ1 = σ2. Then we haveσ′ • σ1 = σ′′ • σ1, and thus by the cancellation
property we haveσ′ = σ′′.

We consider functions on separation algebras that generalise imperative programs operating
on heaps. Such programs can behave non-deterministically,and can alsofault. To model non-
determinism, we consider functions from a separation algebra Σ to its powersetP(Σ). To model
faulting, we add a special top element⊤ to the powerset. We therefore consider total functions of
the formf : Σ → P(Σ)⊤. On any element ofΣ, the function can either map to a set of elements,
which modelssafeexecution with non-deterministic outcomes, or to⊤, which models a faulting
execution. Mapping to the empty set represents divergence (non-termination).

Definition 2.4. The standard subset relation on the powerset is extended toP(Σ)⊤ by defining
p ⊑ ⊤ for all p ∈ P(Σ)⊤. The binary operator∗ onP(Σ)⊤ is given by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q} if p, q ∈ P(Σ)

= ⊤ otherwise

P(Σ)⊤ is a total commutative monoid under∗ with unit {u}.

Definition 2.5 (Function ordering). For functionsf, g : Σ → P(Σ)⊤, f ⊑ g iff f(σ) ⊑ g(σ) for
all σ ∈ Σ.

We shall only consider functions that arewell-behavedin the sense that they actlocally with
respect to resource. For imperative commands on the heap model, the locality conditions were
first characterised in [21], where a soundness proof for local reasoning with separation logic was
demonstrated for the specific heap model. The conditions identified were

• Safety monotonicity: if the command is safe on some heap, then it is safe on any larger heap.
• Frame property: if the command is safe on some heap, then in any outcome of applying the

command on a larger heap, the additional heap portion will remain unchanged by the command.
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In [9], these two properties were amalgamated and formulated for abstract functions on arbi-
trary separation algebras.

Definition 2.6 (Local Function). A local function on Σ is a total functionf : Σ → P(Σ)⊤ which
satisfies thelocality condition:

σ#σ′ implies f(σ′ • σ) ⊑ {σ′} ∗ f(σ)

We letLocFunc be the set of local functions onΣ.

Intuitively, we think of a command to be local if, whenever the command executes safely on
any resource element, then the command will not ‘touch’ any additional resource that may be added.
Safety monotonicity follows from the above definition because, iff is safe onσ (f(σ) ⊏ ⊤), then
it is safe on any larger state, sincef(σ′ • σ) ⊑ {σ′} ∗ f(σ) ⊏ ⊤.

The frame property follows by the fact that the additional stateσ′ is preserved in the output
of f(σ′ • σ). Note, however, that the⊑ ordering allows for reduced non-determinism on larger
states. This, for example, is the case for theAD command from the introduction which allocates
a cell, assigns its address to stack variablex, and then deallocates the cell. On the empty heap, its
result would allow all possible values for variablex. However, on the larger heap where cell 1 is
already allocated, its result would allow all values forx except 1, and we therefore have a more
deterministic outcome on this larger state.

Lemma 2.7. Locality is preserved under sequential composition, non-deterministic choice and
Kleene-star, which are defined as

(f ; g)(σ) =

{

⊤ if f(σ) = ⊤
⊔

{g(σ′) | σ′ ∈ f(σ)} otherwise

(f + g)(σ) = f(σ) ⊔ g(σ)

f∗(σ) =
⊔

n

fn(σ)

Example 2.8(Separation algebras and local functions).
(1) Plain heap model. A simple example is the separation algebra of heaps(H, •, uH ), where

H = L ⇀fin V al are finite partial functions from a set of locationsL to a set of valuesV al
with L ⊆ V al, the partial operator• is the union of partial functions with disjoint domains, and
the unituH is the function with the empty domain. Forh ∈ H, let dom(h) be the domain ofh.
We write l 7→ v for the partial function with domain{l} that mapsl to v. Forh1, h2 ∈ H, if
h2 � h1 thenh1 − h2 = h1 |dom(h1)−dom(h2). An example of a local function is thedispose[l]
command that deletes the cell at locationl:

dispose[l](h) =

{

{h− (l 7→v)} h � (l 7→v)
⊤ otherwise

The function is local: ifh 6� (l 7→ v) thendispose[l](h) = ⊤, anddispose[l](h′ • h) ⊑ ⊤.
Otherwise,dispose[l](h′ • h) = {(h′ • h) − (l 7→ v)} ⊑ {h′} ∗ {h − (l 7→ v)} = {h′} ∗
dispose[l](h).

(2) Heap and stack. There are two approaches to modelling the stack in the literature. One is to
treat the stack as a total function from variables to values,and only combine two heap and stack
pairs if the stacks are the same. The other approach, which weuse here, is to allow splitting
of the variable stack and treat it as part of the resource. We can incorporate the variable stack
into the heap model by using the setH = L ∪ V ar ⇀fin V al, whereL andV al are as before
andV ar is the set of stack variables{x, y, z, ...}. The • operator combines heap and stack
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portions with disjoint domains, and is undefined otherwise.The unituH is the function with
the empty domain which represents the empty heap and empty stack. Although this approach
is limited to disjoint reference to stack variables, this constraint can be lifted by enriching the
separation algebra withpermissions[4]. However, this added complexity using permissions can
be avoided for the discussion in this paper. For a stateh ∈ H, we letloc(h) andvar(h) denote
the set of heap locations and stack variables in the domain ofh respectively. In this model we
can define the allocation and deallocation commands as

new[x](h) =

{

{h′ • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′)} h = h′ • x 7→v
⊤ otherwise

dispose[x](h) =

{

{h′ • x 7→ l} h = h′ • x 7→ l • l 7→v
⊤ otherwise

Commands for heap mutation and lookup can be defined as

mutate[x, v](h) =

{

{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w
⊤ otherwise

lookup[x, y](h) =

{

{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w
⊤ otherwise

TheAD command described in the introduction, which is the composition new[x]; dispose[x],
corresponds to the following local function

AD(h) =

{

{h′ • x 7→ l | l ∈ L\loc(h′)} h = h′ • x 7→v
⊤ otherwise

Note that in all cases, any stack variables that the command refers to should be in the stack in
order for the command to execute safely, otherwise the command will be acting non-locally.

(3) Integers. The integers form a separation algebra under addition withidentity 0. In this case
we have that any ‘adding’ functionf(x) = {x + c} that adds a constantc is local, while a
function that multiplies by a constantc, f(x) = {cx}, is non-local in general. However, the
integers under multiplication also form a separation algebra with identity 1, and in this case
every multiplying function is local but not every adding function. This illustrates the point that
the notion of locality of commands depends on the notion of separation of resource that is being
used.

2.2. Predicates, Specifications and Local Hoare Reasoning.We now present the local reasoning
framework for local functions on separation algebras. Thisis an adaptation of Abstract Separation
Logic [9], with some minor changes in formulation for the purposes of this paper. Predicates over
separation algebras are treated simply as subsets of the separation algebra.

Definition 2.9. A predicatep overΣ is an element of the powersetP(Σ).

Note that the top element⊤ is not a predicate and that the∗ operator, although defined on
P(Σ)⊤ × P(Σ)⊤ → P(Σ)⊤, acts as a binary connective on predicates. We have the distributive
law for union that, for anyX ⊆ P(Σ),

(
⊔

X) ∗ p =
⊔

{x ∗ p | x ∈ X}

The same is not true for intersection in general, but does hold for precise predicates. A predicate is
precise if, for any state, there is at most a single substate that satisfies the predicate.
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Definition 2.10 (Precise predicate). A predicatep ∈ P(Σ) is precise iff, for every σ ∈ Σ, there
exists at most oneσp ∈ p such thatσp � σ.

Thus, with precise predicates, there is at most a unique way to break a state to get a substate
that satisfies the predicate. Any singleton predicate{σ} is precise. Another example of a precise
predicate is{l 7→v | v ∈ V al} for somel, while {l 7→v | l ∈ L} for somev is not precise.

Lemma 2.11(Precision characterization). A predicatep is precise iff, for allX ⊆ P(Σ), (
d
X) ∗

p =
d
{x ∗ p | x ∈ X}

Proof. We first show the left to right direction. Assumep is precise. We have to show that for all
X ⊆ P(Σ), (

d
X) ∗ p =

d
{x ∗ p | x ∈ X}. Assumeσ ∈ (

d
X) ∗ p. Then there existσ1, σ2

such thatσ = σ1 • σ2 andσ1 ∈
d
X andσ2 ∈ p. Thus for allx ∈ X, σ ∈ x ∗ p, and hence

σ ∈
d
{x ∗ p | x ∈ X}. Now assumeσ ∈

d
{x ∗ p | x ∈ X}. Thenσ ∈ x ∗ p for all x ∈ X. Hence

there existsσ1 � σ such thatσ1 ∈ p. Sincep is precise,σ1 is unique. Letσ2 = σ − σ1. Thus we
haveσ2 ∈ x for all x ∈ X, and soσ2 ∈

d
X. Hence we haveσ ∈ (

d
X) ∗ p.

For the other direction, we assume thatp is not precise and show that there exists anX such
that (

d
X) ∗ p 6=

d
{x ∗ p | x ∈ X}. Sincep is not precise, there existsσ ∈ Σ such that, for two

distinctσ1, σ2 ∈ p, we haveσ1 � σ andσ2 � σ. Let σ′1 = σ − σ1 andσ′2 = σ − σ2. Now let
X = {{σ′1}, {σ

′
2}}. Sinceσ ∈ {σ′1}∗p andσ ∈ {σ′2}∗p, we haveσ ∈

d
{x∗p | x ∈ X}. However,

because of the cancellation property, we also have thatσ′1 6= σ′2, and so(
d
X) ∗ p = ∅ ∗ p = ∅.

Hence,σ 6∈ (
d
X) ∗ p, and we therefore have(

d
X) ∗ p 6=

d
{x ∗ p | x ∈ X}.

Our Hoare reasoning framework is formulated with tuples of pre- and post- conditions, rather
than the usual Hoare triples that include the function as in [9]. In our case the standard triple shall
be expressed as a functionf satisfyinga tuple(p, q), writtenf |= (p, q). The reason for this is that
we shall be examining the properties that a pre- and post- condition tuple may have with respect to a
given function, such as whether a given tuple is complete fora given function. This approach is very
similar to the notion of thespecification statement(a Hoare triple with a ‘hole’) introduced in [12],
which is used in refinement calculi, and was also used to provecompleteness of a local reasoning
system in [21].

Definition 2.12 (Specification). Let Σ be a separation algebra. Astatementon Σ is a tuple(p, q),
wherep, q ∈ P(Σ) are predicates. Aspecificationφ on Σ is a set of statements. We letΦΣ =
P(P(Σ) × P(Σ)) denote the set of all specifications onΣ. We shall exclude the subscript when it
is clear from the context. Thedomain of a specification is defined asD(φ) =

⊔

{p | (p, q) ∈ φ}.
Domain equivalenceis defined asφ ∼=D ψ iff D(φ) = D(ψ).

Thus the domain is the union of the preconditions of all the statements in the specification. It
is one possible measure ofsize: how much ofΣ the specification is referring to. We also adapt the
notion of precise predicates to specifications.

Definition 2.13. A specification is precise iff its domain is precise.

Definition 2.14 (Satisfaction). A local functionf satisfies a statement(p, q), written f |= (p, q),
iff, for all σ ∈ p, f(σ) ⊑ q. It satisfies a specificationφ ∈ Φ, writtenf |= φ, iff f |= (p, q) for all
(p, q) ∈ φ.

Definition 2.15 (Semantic consequence). Let p, q, r, s ∈ P(Σ) andφ,ψ ∈ Φ. Each judgement
(p, q) |= (r, s), φ |= (p, q), (p, q) |= φ, andφ |= ψ holds iff all local functions that satisfy the left
hand side also satisfy the right hand side.

Proposition 2.16 (Order Characterization). f ⊑ g iff, for all p, q ∈ P(Σ), g |= (p, q) implies
f |= (p, q).
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For every specificationφ, there is a ‘best’ local function satisfyingφ (lemma 2.18), in the sense
that all statements that the best local function satisfies are satisfied by any local function that satisfies
φ. For example, in the heap and stack separation algebra of example 2.8.2, consider the specification

φnew = {({x 7→v}, {x 7→ l • l 7→w | l ∈ L,w ∈ V al}) | v ∈ V al}

There are many local functions that satisfy this specification. Trivially, the local function that always
diverges satisfies it. Another example is the local functionthat assigns the valuew of the newly
allocated cell to be 0, rather than any non-deterministically chosen value. However, the best local
function for this specification is thenew[x] function described in example 2.8.2, as it can be checked
that for any local functionf satisfyingφnew, we havef ⊑ new[x]. The notion of the best local
function shall be used when addressing questions about completeness of specifications. It is adapted
from [9], except that we generalise to the best local function of a specification rather than a single
pre- and post-condition pair.

Definition 2.17(Best local function). For a specificationφ ∈ Φ, the best local function ofφ, written
bla[φ], is the function of typeΣ → P(Σ)⊤ defined by

bla[φ](σ) =
l

{{σ′} ∗ q | σ = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

As an example, it can be checked that the best local functionbla[φnew] of the specification
φnew given above is indeed the functionnew[x] described in example 2.8.2. The following lemma
presents the important properties which characterise the best local function.

Lemma 2.18. Letφ ∈ Φ. The following hold:

• bla[φ] is local
• bla[φ] |= φ
• if f is local andf |= φ thenf ⊑ bla[φ]

Proof. To show thatbla[φ] is local, considerσ1, σ2 such thatσ1#σ2. We then calculate

bla[φ](σ1 • σ2) =
d
{{σ′} ∗ q | σ1 • σ2 = σ′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

⊑
d
{{σ1 • σ

′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}
=

d
{{σ1} ∗ {σ

′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}
= {σ1} ∗

d
{{σ′′′} ∗ q | σ2 = σ′′′ • σ′′, σ′′ ∈ p, (p, q) ∈ φ}

= {σ1} ∗ bla[φ](σ2)

In the second-last step we used the property that{σ1} is precise (lemma 2.11).

To show thatbla[φ] satisfiesφ, consider(p, q) ∈ φ andσ ∈ p. Thenbla[φ](σ) ⊑ {u} ∗ q = q.
For the last point, supposef is local andf |= φ. Then, for anyσ such thatσ = σ1 • σ2 and

σ2 ∈ p and(p, q) ∈ φ,
f(σ) = f(σ1 • σ2)

⊑ {σ1} ∗ f(σ2)
⊑ {σ1} ∗ q

Thusf(σ) ⊑ bla[φ](σ).
In the case that there do not existσ1, σ2 such thatσ = σ1 • σ2 andσ2 ∈ D(φ), then

bla[φ](σ) =
d

∅
= ⊤

So in this case alsof(σ) ⊑ bla[φ](σ).
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(p, q)

(p ∗ r, q ∗ r)

p′ ⊑ p (p, q) q ⊑ q′

(p′, q′)

(pi, qi), all i ∈ I
(
⊔

i∈I pi,
⊔

i∈I qi
)

(pi, qi), all i ∈ I, I 6= ∅
(d

i∈I pi,
d

i∈I qi
)

Frame Consequence Union Intersection

Figure 1: Inference rules for local Hoare reasoning

Lemma 2.19. For φ ∈ Φ andp, q ∈ P(Σ), bla[φ] |= (p, q) ⇔ φ |= (p, q).

Proof.

bla[φ] |= (p, q)
⇔ for all local functionsf, f |= φ⇒ f |= (p, q) (by lemma 2.18)
⇔ φ |= (p, q) (by definition 2.15).

The inference rules of the proof system are given in figure 1. Consequence, union and in-
tersection are adaptations of standard rules of Hoare logic. The frame rule is what permits local
reasoning, as it codifies the fact that, since all functions are local, any assertion about a separate
part of resource will continue to hold for that part after theapplication of the function. We omit the
standard rules for basic constructs such as sequential composition, non-deterministic choice, and
Kleene-star which can be found in [9].

Definition 2.20(Proof-theoretic consequence). For predicatesp, q, r, s and specificationsφ,ψ, each
of the judgements(p, q) ⊢ (r, s), φ ⊢ (p, q), (p, q) ⊢ φ, andφ ⊢ ψ holds iff the right-hand side is
derivable from the left-hand side by the rules in figure 1.

The proof system of figure 1 is sound and complete with respectto the satisfaction relation.

Theorem 2.21(Soundness and Completeness). φ ⊢ (p, q) ⇔ φ |= (p, q)

Proof. Soundness can be checked by checking each of the proof rules in figure 1. The frame rule is
sound by the locality condition, and the others are easy to check.

For completeness, assume we are givenφ |= (p, q). By lemma 2.19, we havebla[φ] |= (p, q).
So for allσ ∈ p, bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla[φ](σ) ⊑ q (∗)

Now we have the following derivation:

φ

(r, s) for all (r, s) ∈ φ

({σ′}, s) for all σ′ ∈ r, (r, s) ∈ φ

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ s) for all σ′ ∈ r, (r, s) ∈ φ, σ′ � σ, σ ∈ p

(

l

σ′�σ

σ′
∈r

(r,s)∈φ

{σ − σ′} ∗ {σ′},
l

σ′�σ

σ′
∈r

(r,s)∈φ

{σ − σ′} ∗ s
)

for all σ ∈ p

({σ}, bla[φ](σ)) for all σ ∈ p

(
⊔

σ∈p

{σ},
⊔

σ∈p

bla[φ](σ))

(p, q)
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The last step in the proof is by(∗) and the rule of consequence. Note that the intersection rule
can be safely applied because the argument of the intersection is necessarily non-empty (if it were
empty thenbla[φ](σ) = ⊤, which contradictsbla[φ](σ) ⊑ q).

3. PROPERTIES OFSPECIFICATIONS

We discuss certain properties of specifications as a prerequisite for our main discussion on foot-
prints in Section 4. We introduce the notion of acompletespecification for a local function, which is
a specification from which follows every property that holdsfor the function. However, a function
may have many complete specifications, so we introduce a canonical form for specifications. We
show that of all the complete specifications of a local function, there exists a unique canonical com-
plete specification for every domain. As discussed in the introduction, an important notion of local
reasoning is thesmall specificationwhich completely describes the behaviour of a local function by
mentioning only the footprint. Thus, as a prerequisite to investigating their existence, we formalise
small specifications as complete specifications with the smallest possible domain. Similarly, we
definebig specifications as complete specifications with the biggest domain.

Definition 3.1 (Complete Specification). A specificationφ ∈ Φ is acomplete specificationfor f ,
written complete(φ, f), iff, for all p, q ∈ P(Σ),f |= (p, q) ⇔ φ |= (p, q). Let Φcomp(f) be the set
of all complete specifications of f.

φ is complete forf whenever the tuples that hold forf areexactlythe tuples that follow fromφ.
This also means that any two complete specficationsφ andψ for a local function are semantically
equivalent, that is,φ �� ψ. The following proposition illustrates how the notions of best local
action and complete specification are closely related.

Proposition 3.2. For all φ ∈ Φ and local functionsf , complete(φ, f) ⇔ f = bla[φ].

Proof. Assumef = bla[φ]. Then, by lemma 2.19, we have thatφ is a complete specification forf .
For the converse, assumecomplete(φ, f). We shall show that for anyσ ∈ Σ, f(σ) =

bla[φ](σ).
case 1: f(σ) = ⊤. If bla[φ](σ) 6= ⊤, thenbla[φ] |= ({σ}, bla [φ](σ)). This means that

φ |= ({σ}, bla [φ](σ)) (by lemma 2.19), and sof |= ({σ}, bla [φ](σ)), but this is a contradiction.
Therefore,bla[φ](σ) = ⊤

case 2: bla[φ](σ) = ⊤. If f(σ) 6= ⊤, then f |= ({σ}, f(σ)). This means thatφ |=
({σ}, f(σ)), and sobla[φ] |= ({σ}, f(σ)), but this is a contradiction. Therefore,f(σ) = ⊤

case 3:bla[φ](σ) 6= ⊤ and f(σ) 6= ⊤. We have

f |= ({σ}, f(σ))
⇒ bla[φ] |= ({σ}, f(σ))
⇒ bla[φ](σ) ⊑ f(σ)

bla[φ] |= ({σ}, bla [φ](σ))
⇒ f |= ({σ}, bla [φ](σ))
⇒ f(σ) ⊑ bla[φ](σ)

Thereforef(σ) = bla[φ](σ)



FOOTPRINTS IN LOCAL REASONING 11

Any specification is therefore only complete for a unique local function, which is its best local
action. However, a local function may have lots of complete specifications. For example, ifφ is a
complete specification forf and(p, q) ∈ φ, thenφ ∪ {(p, q′)} is also complete forf if q ⊆ q′. For
this reason it will be useful to have a canonical form for specifications.

Definition 3.3 (Canonicalisation). Thecanonicalisationof a specificationφ is defined asφcan =
{({σ}, bla [φ](σ)) | σ ∈ D(φ)}. A specification is incanonical form if it is equal to its canonicali-
sation. LetΦcan(f) denote the set of all canonical complete specifications off .

Notice that a given local function does not necessarily haveauniquecanonical complete spec-
ification. For example, both{({u}, {u})} and {({u}, {u}), ({σ}, {σ})}, for someσ ∈ Σ, are
canonical complete specifications for the identity function.

Proposition 3.4. For any specificationφ, we haveφ �� φcan.

Proof. We first showφ � φcan. For any(p, q) ∈ φcan, (p, q) is of the form({σ}, bla [φ](σ)) for
someσ ∈ D(φ). So we havebla[φ] |= (p, q), and soφ |= (p, q) by lemma 2.19.

We now showφcan � φ. For any(p, q) ∈ φ, we havebla[φ] |= (p, q). So for allσ ∈ p,
bla[φ](σ) ⊑ q, which implies

⊔

σ∈p

bla[φ](σ) ⊑ q (∗)

Now we have the following derivation:

φcan

({σ}, bla [φ](σ)) for all σ ∈ p

(
⊔

σ∈p

{σ},
⊔

σ∈p

bla[φ](σ))

(p, q)

The last step is by(∗) and consequence. So we haveφcan ⊢ φ, and by soundnessφcan |= φ.

Thus, the canonicalisation of a specification is logically equivalent to the specification. The
following corollary shows that all complete specificationsthat have the same domain have a unique
canonical form, and specifications of different domains have different canonical forms.

Corollary 3.5. Φcan(f) is isomorphic to the quotient setΦcomp(f)/ ∼=D, under the isomorphism that
maps[φ]∼=D

to φcan, for everyφ ∈ Φcomp(f).

Proof. By proposition 3.2, all complete specifications forf have the same best local action, which
is f itself. So by the definition of canonicalisation, it can be seen that complete specifications
with different domains have different canonicalisations,and complete specifications with the same
domain have the same canonicalisation. This shows that the mapping is well-defined and injective.
Every canonical complete specificationφ is also complete, and[φ]∼=D

maps toφcan = φ, so the
mapping is surjective.

Definition 3.6 (Small and Big specifications). φ is asmall specificationfor f iff φ ∈ Φcomp(f) and
there is noψ ∈ Φcomp(f) such thatD(ψ) ⊏ D(φ). A big specificationis defined similarly.

Smallandbig specifications are thus the specifications with the smallestand biggest domains
respectively. The question is if/when small and big specifications exist. The following result shows
that a canonical big specification exists for every local function.
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Proposition 3.7(Big Specification). For any local functionf , the canonical big specification forf
is given byφbig(f) = {({σ}, f(σ)) | f(σ) ⊏ ⊤}.

Proof. f |= φbig(f) is trivial to check. To showcomplete(φbig(f), f), assumef |= (p, q) for some

p, q ∈ P(Σ). Note that, for anyσ ∈ p, f(σ) ⊑ q and so
⊔

σ∈p

f(σ) ⊑ q. We then have the derivation

φbig(f)

({σ}, f(σ)) for all f(σ) ⊏ ⊤

(
⊔

σ∈p

{σ},
⊔

σ∈p

f(σ))

(p, q)

By soundness we getφbig(f) |= (p, q). φbig(f) has the biggest domain becausef would fault on any
element not included inφbig(f).

The notion of a small specification has until now been used in an informal sense in local reason-
ing papers [14, 4, 7] as specifications that completely specify the behaviour of an update command
by only describing the command’s behaviour on the part of theresource that it affects. Although
these papers present examples of such specifications for specific commands, the notion has so far
not received a formal treatment in the general case. The question of the existence of small speci-
fications is strongly related to the concept of footprints, since finding a small specification is about
finding a complete specification with the smallest possible domain, and therefore enquiring about
which elements ofΣ are essential and sufficient for a complete specification. This requires a formal
characterisation of the footprint notion, which we shall now present.

4. FOOTPRINTS

In the introduction we discussed how theAD program demonstrates that the footprints of a local
function do not correspond simply to the smallest safe states, as these states alone do not always
yield complete specifications. In this section we introducethe definition of footprint that does yield
complete specifications. In order to understand what the footprint of a local function should be, we
begin by analysing the definition of locality. Recall that the definition of locality (definition 2.6)
says that the action on a certain stateσ1 imposes alimit on the action on a bigger stateσ2 •σ1. This
limit is {σ2} ∗ f(σ1), as we havef(σ2 • σ1) ⊑ {σ2} ∗ f(σ1).

Another way of viewing this definition is that for any stateσ, the action of the function on that
state has to be within the limit imposed byeverysubstateσ′ of σ, that is,f(σ) ⊑ {σ − σ′} ∗ f(σ′).
In the case whereσ′ = σ, this condition is trivially satisfied for any function (local or non-local).
The distinguishing characteristic of local functions is that this condition is also satisfied by every
strict substate ofσ, and thus we have

f(σ) ⊑
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

We define this overall constraint imposed onσ by all of its strict substates as thelocal limit of f on
σ, and show that the locality definition is equivalent to satisfying the local limit constraint.
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Definition 4.1 (Local limit). For a local functionf on Σ andσ ∈ Σ, the local limit of f on σ is
defined as

Lf (σ) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

Proposition 4.2. f is local ⇔ f(σ) ⊑ Lf (σ) for all σ ∈ Σ

Proof. Assumef is local. So for anyσ, for everyσ′ ≺ σ, f(σ) ⊑ {σ − σ′} ∗ f(σ′). f(σ) is
therefore smaller than the intersection of all these sets, which isLf (σ).

For the converse, assume the rhs and thatσ1 • σ2 is defined. Ifσ1 = u thenf(σ1 • σ2) ⊑
{σ1} ∗ f(σ2) and we are done. Otherwise,σ2 ≺ σ1 • σ2 and we havef(σ1 • σ2) ⊑ Lf (σ1 • σ2) ⊑
{σ1} ∗ f(σ2).

Thus for any local functionf acting on a certain stateσ, the local limit determines asmallest
upper boundon the possible outcomes onσ, based on the outcomes on all smaller states. If this
smallest upper bound does correspond exactly to the set of all possible outcomes onσ, thenσ
is ‘large enough’ that just the action off on smaller states and the locality off determines the
complete behaviour off on σ. In this case we will not think ofσ as a footprint off , as smaller
states are sufficient to determine the action off onσ. With this observation, we define footprints as
those states on which the outcomes cannot be determined onlyby the smaller states, that is, the set
of outcomes is astrict subset of the local limit.

Definition 4.3 (Footprint). For a local functionf andσ ∈ Σ, σ is a footprint off , writtenFf (σ),
iff f(σ) ⊏ Lf (σ). We denote the set of footprints off by F (f).

Note that an elementσ is therefore not a footprint if and only if the action off on σ is at the
local limit, that isf(σ) = Lf (σ).

Lemma 4.4. For any local functionf , the smallest safe states off are footprints off .

Proof. Let σ be a smallest safe state forf . Then for anyσ′ ≺ σ, f(σ′) = ⊤. ThereforeLf (σ) = ⊤
and sof(σ) ⊏ Lf (σ).

However, the smallest safe states are not always theonly footprints. An example is theAD
command discussed in the introduction. The empty heap is a footprint as it is the smallest safe heap,
but the heap celll 7→v is also a footprint.

Example 4.5(Dispose). The footprints of thedispose[l] command in the plain heap model (exam-
ple 2.8.1) are the cells at locationl. We check this by considering the following cases

(1) The empty heap,uH , is not a footprint sinceLdispose[l](uH) = ⊤ = dispose[l](uH)
(2) Every celll 7→v for somev is a footprint

Ldispose[l](l 7→v) = {l 7→v} ∗ dispose[l](uH) = {l 7→v} ∗ ⊤ = ⊤
dispose[l](l 7→v) = {uH} ⊏ Ldispose[l](l 7→v)

(3) Every stateσ such thatσ ≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ − (l 7→v)} ∗ dispose[l](l 7→v) = {σ − (l 7→v)} = dispose[l](σ)

By proposition 4.2, we haveLdispose[l](σ) = dispose[l](σ). The intuition is thatσ does not
characterise any ‘new’ behaviour of the function: its action onσ is just a consequence of its
action on the cells at locationl and the locality property of the function.
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(4) Every stateσ such thatσ 6≻ (l 7→v) for somev is not a footprint

Ldispose[l](σ) ⊑ {σ} ∗ dispose[l](uH) = {σ} ∗ ⊤ = ⊤ = dispose[l](σ)

Again by proposition 4.2,Ldispose[l](σ) = dispose[l](σ).

Example 4.6(AD command). The AD (Allocate-Deallocate) command was defined on the heap
and stack model in example 2.8.2. We have the following casesfor σ.

(1) σ 6� x 7→v1 for somev1 is not a footprint, sinceLAD(σ) = ⊤ = AD(σ).
(2) σ = x 7→v1 for somev1 is a footprint sinceLAD(σ) = ⊤ (by case (1)) andAD(σ) = {x 7→w |

w ∈ L} ⊏ LAD(σ).
(3) σ = l 7→v1 • x 7→v2 for somel, v1, v2 is a footprint.

LAD(σ) = {l 7→v1} ∗ AD(x 7→v2)
(AD faults on all other elements strictly smaller thanσ)

= {l 7→v1} ∗ {x 7→w | w ∈ L}
= {l 7→v1 • x 7→w | w ∈ L}

AD(σ) = {l 7→v1 • x 7→w | w ∈ L,w 6= l} ⊏ LAD(σ)

(4) σ = h • x 7→v1 for somev1, and where|loc(h)| > 1, is not a footprint.

LAD(σ) ⊑
l

h≻l 7→v

{(h − l 7→v} ∗AD(l 7→v • x 7→v1)

= {h • x 7→w | w 6∈ loc(h)} = AD(σ)

By proposition 4.2, we getLAD(σ) = AD(σ).

Our footprint definition therefore works properly for thesespecific examples. Now we give the
formal general result which captures the underlying intuition of local reasoning, that the footprints
of a local function are the only essential elements for a complete specification of the function.

Theorem 4.7(Essentiality). The footprints of a local function are the essential domain elements for
any complete specification of that function, that is,

Ff (σ) ⇔ ∀φ ∈ Φcomp(f). σ ∈ D(φ)

Proof. Assume some fixedf andσ. We establish the following equivalent statement :

¬Ff (σ) ⇔ ∃φ ∈ Φcomp(f). σ 6∈ D(φ)

We first show the right to left implication. So assumeφ is a complete specification off such that
σ 6∈ D(φ). Sincecomplete(φ, f), by proposition 3.2, we havef = bla[φ]. So

f(σ) =
l

σ1�σ,σ1∈p,(p,q)∈φ

{σ − σ1} ∗ q

Now for any set{σ−σ1}∗q in the above intersection, we have thatσ1 ∈ p, and(p, q) ∈ φ for some
p. Sinceσ1 ∈ p, we havef(σ1) ⊑ q, and therefore{σ−σ1}∗f(σ1) ⊑ {σ−σ1}∗ q. Also,σ1 6= σ,
because otherwise we would haveσ ∈ p, which would contradict the assumption thatσ /∈ D(φ).
Soσ1 ≺ σ and we have

Lf (σ) ⊑ {σ − σ1} ∗ f(σ1) ⊑ {σ − σ1} ∗ q

So the local limit is smaller than each set{σ− σ1} ∗ q in the intersection, and therefore it is smaller
than the intersection itself:Lf (σ) ⊑ f(σ). We know from proposition 4.2 thatf(σ) ⊑ Lf (σ), so
we getf(σ) = Lf (σ) and therefore¬Ff (σ).
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We now show the left to right implication. Assume thatσ is not a footprint off . We shall use
the big specification,φbig(f), to construct a complete specification off which does not containσ in
its domain. Iff(σ) = ⊤ then the big specification itself is such a specification, andwe are done.
Otherwise assumef(σ) ⊏ ⊤. Letφ = φbig(f)/{({σ}, f(σ))}. It can be seen thatσ /∈ D(φ). Now
we need to show thatφ is complete forf . For this it is sufficient to showφ ⊣⊢ φbig(f) because we
know thatφbig(f) is complete forf . The right to left direction,φ ⊣ φbig(f), is trivial.

Forφ ⊢ φbig(f), we just need to showφ ⊢ ({σ}, f(σ)). We have the following derivation:

φ

({σ′}, f(σ′)) for all σ′ ≺ σ, f(σ′) ⊏ ⊤

({σ − σ′} ∗ {σ′}, {σ − σ′} ∗ f(σ′)) for all σ′ ≺ σ, f(σ′) ⊏ ⊤

({σ},
l

σ′≺σ,f(σ′)⊏⊤

{σ − σ′} ∗ f(σ′))

({σ}, Lf (σ))

The intersection rule can be safely applied as there is at least oneσ′ ≺ σ such thatf(σ′) ⊏ ⊤.
This is becausef(σ) ⊏ ⊤, so if there were no suchσ′ thenσ would be a footprint, which is a
contradiction. Note that the last step uses the fact that

l

σ′≺σ,f(σ′)⊏⊤

{σ − σ′} ∗ f(σ′) =
l

σ′≺σ

{σ − σ′} ∗ f(σ′) = Lf (σ)

because adding the top element to an intersection does not change its value. Sinceσ is not a
footprint, f(σ) = Lf (σ), and soφ ⊢ ({σ}, f(σ)).

5. SUFFICIENCY AND SMALL SPECIFICATIONS

We know that the footprints are the only elements that areessentialfor a complete specification
of a local function in the sense that every complete specification must include them. Now we ask
when a set of elements issufficientfor a complete specification of a local function, in the sensethat
there exists a complete specification of the function that only includes these elements. In particular,
we wish to know if the footprints alone are sufficient. To study this, we begin by identifying the
notion of thebasisof a local function.

5.1. Bases. In the last section we defined the local limit of a functionf on a stateσ as the constraint
imposed onf by all the strict substates ofσ. This was used to identify the footprints as those states
on which the action off cannot be determined by just its action on the smaller states. We are now
addressing the question of when a set of states issufficientto determine the behaviour off on any
state. We shall do this by identifying a fixed set of states, which we call abasisfor f , such that the
action off on any stateσ can be determined by just the substates ofσ taken from this set (rather
than all the strict substates ofσ). Thus we first generalise the local limit definition to consider the
constraint imposed by only the substates taken from a given set.

Definition 5.1 (Local limit imposed by a set). For a subsetA of a separation algebraΣ, the local
limit imposed byA on the action off onσ is defined by

LA,f (σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′)
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Sometimes, the local limit imposed byA is enough to completely determinef . In this case, we
callA abasisfor f .

Definition 5.2 (Basis). A ⊑ Σ is abasisfor f , writtenbasis(A, f), iff LA,f = f .

This means that, when given the action off on elements in A alone, we can determine the
action off on any element inΣ by just using the locality property off . Every local function has
at least one basis, namely the trivial basisΣ itself. We next show the correspondence between the
bases and complete specifications of a local function.

Lemma 5.3. Let φA,f = {({σ}, f(σ)) | σ ∈ A, f(σ) ⊏ ⊤}. Then we havebasis(A, f) ⇔
complete(φA,f , f).

Proof. We haveLA,f = bla[φA,f ] by definition. The result follows by proposition 3.2 and the
definition of basis.

For every canonical complete specificationφ ∈ Φcan(f), we haveφ = φD(φ),f . By the previous
lemma it follows thatD(φ) forms a basis forf . The lemma therefore shows that every basis deter-
mines a complete canonical specification, and vice versa. This correspondence also carries over to
all complete specifications forf by the fact that every domain-equivalent class of complete spec-
ifications forf is represented by the canonical complete specification withthat domain (corollary
3.5). By the essentiality of footprints (theorem 4.7), it follows that the footprints are present in every
basis of a local function.

Lemma 5.4. The footprints off are included in every basis of f.

Proof. Every basisA of f determines a complete specification forf the domain of which is a subset
of A. By the essentiality theorem (4.7), the domain includes thefootprints.

The question of sufficiency is about how small the basis can get. Given a local function, we
wish to know if it has a smallest basis.

5.2. Well-founded Resource.We know that every basis must contain the footprints. Thus ifthe
footprints alone form a basis, then the function will have asmallestcomplete specification whose
domain are just the footprints. We find that, for well-founded resource models, this is indeed the
case.

Theorem 5.5(Sufficiency I). If a separation algebraΣ is well-founded under the� relation, then
the footprints of any local function form a basis for it, thatis, f = LF (f),f .

Proof. Assume thatΣ is well-founded under�. We shall show by induction thatf(σ) = LF (f),f (σ)

for all σ ∈ Σ. The induction hypothesis is that, for allσ′ ≺ σ, f(σ′) = LF (f),f (σ′)
case 1:Assumeσ is a footprint off . We havef(σ) = {u} ∗ f(σ) is in the intersection in the

definition ofLF (f),f (σ), and soLF (f),f (σ) ⊑ f(σ). We have by locality thatf(σ) ⊑ LF (f),f (σ),
and sof(σ) = LF (f),f (σ).
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case 2:Assumeσ is not a footprint off . We have

f(σ) = Lf (σ) (becauseσ is not a footprint of f)

=
l

σ′≺σ

{σ − σ′} ∗ f(σ′)

=
l

σ′≺σ

(

{σ − σ′} ∗
l

σ′′�σ′,Ff (σ′′)

{σ′ − σ′′} ∗ f(σ′′)
)

(by the induction hypothesis)

=
l

σ′≺σ,σ′′�σ′,Ff (σ′′)

{σ − σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by the precision of{σ − σ′})

=
l

σ′′≺σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′�σ,Ff (σ′′)

{σ − σ′′} ∗ f(σ′′) (becauseσ is not a footprint of f)

= LF (f),f (σ)

In section 3, the notions of big and small specifications wereintroduced (definition 3.6), and the
existence of a big specification was shown (proposition 3.7). We are now in a position to show
the existence of the small specification for well-founded resource. IfΣ is well-founded, then every
local function has a small specification whose domain is the footprints of the function.

Corollary 5.6 (Small specification). For well-founded separation algebras, every local function has
a small specification given byφF (f),f .

Proof. φF (f),f is complete by theorem 5.5 and lemma 5.3. It has the smallest domain by the essen-
tiality theorem.

Thus, for well-founded resource, the footprints are alwaysessential and sufficient, and specifi-
cations need not consider any other elements. In practice, small specifications may not always be in
canonical form even though they always have the same domain as the canonical form. For example,
the heap dispose command can have the specification{({l 7→v | v ∈ V al}, {uH})} rather than the
canonical one given by{({l 7→v}, {uH}) | v ∈ V al}.

In practical examples it is usually the case that resource iswell-founded. A notable exception is
the fractional permissions model [4] in which the resource includes ‘permissions to access’, which
can be indefinitely divided. We next investigate the non-well-founded case.

5.3. Non-well-founded Resource.If a separation algebra is non-well-founded under the� rela-
tion, then there is some infinite descending chain of elements σ1 ≻ σ2 ≻ σ3.... From a resource-
oriented point of view, there are two distinct ways in which this could happen. One way is when
it is possible to remove non-empty pieces of resource from a state indefinitely, as in the separation
algebra of non-negative real numbers under addition. In this case any infinite descending chain
does not have more than one occurrence of any element. Another way is when an infinite chain
may exist because of repeated occurrences of some elements.This happens when there isnegativity
present in the resource: some elements have inverses in the sense that adding two non-unit elements
together may give the unit. An example is the separation algebra of integers under addition, where
1 + (−1) = 0, so adding -1 to 1 is like adding negative resource. Also, since1 = 0 + 1, we have
that1 ≻ 0 ≻ 1... forms an infinite chain.
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Definition 5.7 (Negativity). A separation algebraΣ hasnegativity iff there exists a non-unit ele-
mentσ ∈ Σ that has an inverse; that is,σ 6= u andσ • σ′ = u for someσ′ ∈ Σ. We say thatΣ is
non-negativeif no such element exists.

All separation algebras with negativity are non-well-founded because, for elementsσ andσ′

such thatσ • σ′ = u, the set{σ, u} forms an infinite descending chain (there is no least element).
All well-founded models are therefore non-negative. For the general non-negative case, we find that
either the footprints form a basis, or there is no smallest basis.

Theorem 5.8(Sufficiceny II). If Σ is non-negative then, for any localf , either the footprints form
a smallest basis or there is no smallest basis for f.

Proof. LetA be a basis forf (we know there is at least one, which is the trivial basisΣ itself). If A
is the set of footprints then we are done. So assumeA contains some non-footprintµ. We shall show
that there exists a smaller basis forf , which isA/{µ}. So it suffices to showf(σ) = LA/{µ},f (σ)
for all σ ∈ Σ.

case 1:µ 6� σ. We have

f(σ) = LA,f(σ) =
l

σ′�σ,σ′∈A

{σ − σ′} ∗ f(σ′) =
l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′) = LA/{µ},f (σ)

as desired
case 2:µ � σ. This implies

f(σ) =
( l

σ′�σ,σ′∈A/{µ}

{σ − σ′} ∗ f(σ′)
)

⊓ ({σ − µ} ∗ f(µ))

It remains to show that the right hand side of this intersection contains the left hand side:

{σ − µ} ∗ f(µ) = {σ − µ} ∗ Lf (µ) (becauseµ is not a footprint of f)

= {σ − µ} ∗
l

σ′≺µ

{µ− σ′} ∗ f(σ′)

= {σ − µ} ∗
l

σ′≺µ

(

{µ− σ′} ∗
l

σ′′�σ′,σ′′∈A/{µ}

{σ′ − σ′′} ∗ f(σ′′)
)

(case 1 applies becauseΣ is non-negative, soσ′ ≺ µ⇒ µ 6� σ′)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − µ} ∗ {µ− σ′} ∗ {σ′ − σ′′} ∗ f(σ′′) (by precision)

=
l

σ′≺µ

l

σ′′�σ′,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

=
l

σ′′≺µ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

⊒
l

σ′′�σ,σ′′∈A/{µ}

{σ − σ′′} ∗ f(σ′′)

Corollary 5.9 (Small Specification). If Σ is non-negative, then every local function either has a
small specification given byφF (f),f or there is no smallest complete specification for that function.

Example 5.10(Permissions). The fractional permissions model [4] is non-well-founded and non-
negative. It can be represented by the separation algebraHPerm = L ⇀fin V al × P whereL



FOOTPRINTS IN LOCAL REASONING 19

andV al are as in example 2.8, andP is the interval (0, 1] of rational numbers. Elements ofP
represent ‘permissions’ to access a heap cell. A permissionof 1 for a cell means both read and write
access, while any permission less than 1 is read-only access. The operator• joins disjoint heaps
and adds the permissions together for any cells that are present in both heaps only if the resulting
permission for each heap cell does not exceed 1; the operation is undefined otherwise. In this case,
the write function that updates the value at a location requires a permission of at least 1 and faults
on any smaller permission. It therefore has a small specification with precondition being the cell
with permission 1. The read function, however, can execute safely on any positive permission, no
matter how small. Thus, this function can be completely specified with a specification that has a
precondition given by the cell with permissionz, for all 0 < z ≤ 1. However, this is not asmallest
specification, as a smaller one can be given by further restricting 0 < z ≤ 0.5. We can therefore
always find a smaller specification by reducing the value ofz but keeping it positive.

For resource with negativity, we find that it is possible to have small specifications that include
non-essential elements (which by theorem 4.7 are not footprints). These elements are non-essential
in the sense that complete specifications exist that do not include them, but there is no complete
specification that includes only essential elements.

Example 5.11(Integers). An example of a model with negativity is the separation algebra of in-
tegers(Z,+, 0). In this case there can be local functions which can have small specifications that
contain non-footprints. Letf : Z → P(Z)⊤ be defined asf(n) = {n+c} for some constantc, as in
example 2.8.f is local, but it has no footprints. This is because for anyn, f(n) = 1+f(n−1), and
son is not a footprint off . However,f does have small specifications, for example,{({0}, {c})},
{({5}, {5 + c})}, or indeed{({n}, {n + c})} for anyn ∈ Z. So although every element is non-
essential, some element is required to give a complete specification.

6. REGAINING SAFETY FOOTPRINTS

In the introduction we discussed how the notion of footprints as the smallest safe states - the
safety footprint- is inadequate for giving complete specifications, as illustrated by theAD example.
For this reason, so far in this paper we have investigated thegeneral notion of footprint for arbi-
trary local functions on arbitrary separation algebras. Equipped with this general theory, we now
investigate how the regaining of safety footprints may be achieved with different resource modelling
choices. We start by presenting an alternative model of RAM,based on an investigation of why the
AD phenomenon occurs in the standard model. We then demonstrate that the footprints of theAD
command in this new model do correspond to the safety footprints. In the final section we identify,
for arbitrary separation algebras, a condition on local functions which guarantees the equivalence
of the safety footprint and the actual footprint. We then show that if this condition is met by all the
primitive commands of a programming language then the safety footprints are regained for every
program in the language, and finally show that this is indeed the case in our new RAM model.

6.1. An alternative model. In this section we explore an alternative heap model in whichthe safety
footprints do correspond to the actual footprints. We beginby taking a closer look at why theAD
anomaly occurs in the standard heap and stack model described in example 2.8.2. Consider an
application of the allocation command in this model:

new [x ](42 7→ v • x 7→ w) = {42 7→ v • x 7→ l • l 7→ r | l ∈ L\{42}, r ∈ V al}
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The intuition of locality is that the initial state42 7→ v • x 7→ w is only describing a local
region of the heap and the stack, rather than the whole globalstate. In this case it says that the
address 42 is initially allocated, and the definition of the allocation command is that the resulting
state will have a new cell, the address of which can be anything other than 42. However, we notice
that the initial state is in fact not just describing only itslocal region of the heap. It does state that
42 is allocated, but it also implicitly states a very global property: thatall other addresses are not
allocated. This is why the allocation command can choose to allocate any location that is not 42.
Thus in this model, every local state implicitly contains some global allocation information which
is used by the allocation command. In contrast, a command such as mutate does not require this
global ‘knowledge’ of the allocation status of any other cell that it is not affecting. Now the global
information of which cells are freechangesas more resource is added to the initial state, so this can
lead to program behaviour being sensitive to the addition ofmore resource to the initial state, and
this sensitivity is apparant in the case of theAD program.

Based on this observation, we consider an alternative model. As before, a statel 7→ v will
represent a local allocated region of the heap at addressl with valuev. However, unlike before,
this state will say nothing about the allocation status any locations other thanl. This information
about the allocation status of other locations will be represented explicitly in afreeset, which will
contain every location that is not allocated in theglobal heap. The model can be interpreted from
an ownership point of view, where the free set is to be thoughtof as a unique, atomic piece of
resource, ownership of which needs to be obtained by a command if it wants to do allocation or
deallocation. An analogy is with the permissions model: a command that wants to read or write
to a cell needs ownership of the appropriate permission on that cell. In the same way, in our new
model, a command that wants to do allocation or deallocationneeds to have ownership of the free
set: the ‘permission’ to see which cells are free in the global heap so that it can choose one of them
to allocate, or update the free set with the address that it deallocates. On the other hand, commands
that only read or write to cells shall not require ownership of the free set.

Example 6.1(Heap model with free set). Formally, we work with a separation algebra(H, •, uH ).
Let L, V ar andV al be locations, variables and values, as before. Statesh ∈ H are given by the
grammar:

h ::= uH | l 7→v | x 7→v | F | h • h

wherel ∈ L, v ∈ V al, x ∈ V ar andF ∈ P(L). The operator• is undefined for states with
overlapping locations or variables. Letloc(h) andvar(h) be the set of locations and variables in
stateh respectively. The setF carries the information of which locations are free. Thus weallow at
most one free set in a state, and the free set must be disjoint from all locations in the state. Soh •F
is only defined whenloc(h)∩F = ∅ andh 6= h′ •F ′ for anyh′ andF ′. We assume• is associative
and commutative with unituH .

In this model, the allocation command requires ownership ofthe free set for safe execution,
since it chooses the location to allocate from this set. It removes the chosen address from the free
set as it allocates the cell. It is defined as

new[x](h) =

{

{h′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} h = h′ • x 7→v • F
⊤ otherwise

Note that the output statesh′ • x 7→ l • l 7→w • F\{l} are defined, since we havel 6∈ F\{l} and the
input stateh′ • x 7→ v • F implies thatloc(h′) is disjoint fromF\{l}. The deallocation command
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also requires the free set, as it updates the set with the address of the cell that it deletes:

dispose[x](h) =

{

{h′ • x 7→ l • F ∪ {l}} h = h′ • x 7→ l • l 7→v • F
⊤ otherwise

Again, the output states are defined, since the input state implies thatloc(h′)∪{l} is disjoint fromF ,
and soloc(h′) is disjoint fromF∪{l}. Notice that in this model, only the allocation and deallocation
commands require ownership of the free set, since commands such as mutation and lookup are
completely independent of the allocation status of other cells, and they are defined exactly as in
example 2.8.2:

mutate[x, v](h) =

{

{h′ • x 7→ l • l 7→v} h = h′ • x 7→ l • l 7→w
⊤ otherwise

lookup[x, y](h) =

{

{h′ • x 7→ l • l 7→v • y 7→v} h = h′ • x 7→ l • l 7→v • y 7→w
⊤ otherwise

Lemma 6.2. The functionsnew[x], dispose[x], mutate[x, v] and lookup[x, y] are all local in the
separation algebra(H, •, uH) from example 6.1.

Proof. Let f = new[x] and assumeh′#h. We want to showf(h′ • h) ⊑ {h′} ∗ f(h). Assume
h = h′′ • x 7→v • F for someh′′, x, l, v andF , because otherwisef(h) = ⊤ and we are done. So
we have

f(h′ • h) = {h′ • h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ {h′′ • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ f(h)

The other functions can be checked in a similar way.

6.2. Safety footprints for AD. We consider the footprint of theAD command in the new model.
In this model the sequential compositionnew[x]; dispose[x] gives the function

AD(h) =

{

{h′ • x 7→ l • F | l ∈ F} h = h′ • x 7→v • F
⊤ otherwise

The smallest safe states are given by the set{x 7→ v • F | v ∈ V al, F ∈ P(L)}. By lemma 4.4,
these smallest safe states are footprints. However, unlikebefore, in this model these are theonly
footprints of theAD command. To see this, consider a larger stateh • x 7→v • F for non-emptyh.
We have

AD(h • x 7→v • F ) = {h • x 7→ l • F | l ∈ F}
= {h} ∗ {x 7→ l • F | l ∈ F}
= {h} ∗ AD(x 7→v • F )

Since the local limitLAD(h • x 7→ v • F ) ⊑ {h} ∗ AD(x 7→ v • F ) by definition, we have by
proposition 4.2 thatLAD(h • x 7→ v • F ) = AD(h • x 7→ v • F ), and soh • x 7→ v • F is not a
footprint ofAD.

Thus the footprints ofAD in this model do not include any non-empty heaps. By corollary 5.6,
in this model theAD command has a smallest complete specification in which the pre-condition
only describes the empty heap. This specification is

{({x 7→v • F}, {x 7→ l • F}) | v ∈ V al, F ∈ P(L), l ∈ F}

Intuitively, it says that if initially the heap is empty, thevariablex is present in the stack, and we
know which cells are free in the global heap, then after the execution, the heap will still be empty,
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JcK ∈ LocFunc JskipK(σ) = {σ}

JC1;C2K = JC1K; JC2K JC1 + C2K = JC1K ⊔ JC2K JC⋆K =
⊔

nJC nK

Figure 2: Denotational semantics for the imperative programming language

exactly the same cells will still be free, andx will point to one of those free cells. This completely
describes the behaviour of the command for all larger statesusing the frame rule. For example, we
get the complete specification on the larger state in which 42is allocated:

{({42 7→w} ∗ {x 7→v • F}, {42 7→w} ∗ {x 7→ l • F}) | v,w ∈ V al, F ∈ P(L), l ∈ F}

In the pre-condition, the presence of location 42 in the heapmeans that 42 is not in the free set
F (by definition of∗). Therefore, in the post-condition,x cannot point to 42.

Notice that in order to check that we have ‘regained’ safety footprints, we only needed to check
that the footprint definition (definition 4.3) corresponds to the smallest safe states. The desired prop-
erties such as essentiality, sufficiency, and small specifications then follow by the results established
in previous sections.

6.3. Safety footprints for arbitrary programs. Now that we have regained the safety footprints
for AD in the new model, we want to know if this is generally the case for any program. We consider
the abstract imperative programming language given in [9]:

C ::= c | skip | C;C | C + C | C⋆

wherec ranges over an arbitrary collection of primitive commands,+ is nondeterministic choice,;
is sequential composition, and(·)⋆ is Kleene-star (iterated;). As discussed in [9], conditionals and
while loops can be encoded using+ and(·)⋆ and assume statements. The denotational semantics of
commands is given in Figure 2.

Taking the primitive commands to benew[x], dispose[x],mutate[x, v], andlookup[x, y], our
original aim was to show that, for every commandC, the footprints ofJCK in the new model are
the smallest safe states. However, in attempting to do this,we identified a general condition on
primitive commands under which the result holds for arbitrary separation algebras.

Let f be a local function on a separation algebraΣ. If, for A ∈ P(Σ), we definef(A) =
⊔

σ∈A

f(σ), then the locality condition (definition 2.6) can be restated as

∀σ′, σ ∈ Σ. f({σ′} ∗ {σ}) ⊑ {σ′} ∗ f({σ})

The⊑ ordering in this definition allows local functions to be moredeterministic on larger states.
This sensitivity of determinism to larger states is apparant in theAD command in the standard model
from example 2.8.2. On the empty heap, the command produces an empty heap, and reassigns vari-
ablex to anyvalue, while on the singleton cell 1, it disallows the possibility that x = 1 afterwards.
In the new model, theAD command does not have this sensitivity of determinism in theoutput
states. In this case, the presence or absence of the cell 1 does not affect the outcomes of theAD
command, since the command can only assignx to a value chosen from the free set, which does not
change no matter what additional cells may be framed in. Withthis observation, we consider the
general class of local functions in which this sensitivity of determinism is not present.
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Definition 6.3 (Determinism Constancy). Let f be a local function andsafe(f) the set of states on
whichf does not fault.f has the determinism constancy property iff, for everyσ ∈ safe(f),

∀σ′ ∈ Σ. f({σ′} ∗ {σ}) = {σ′} ∗ f({σ})

Notice that the determinism constancy property by itself implies that the function is local, and
it can therefore be thought of as a form of ‘strong locality’.Firstly, we find that local functions that
have determinism constancy always have footprints given bythe smallest safe states.

Lemma 6.4. If a local functionf has determinism constancy then its footprints are the smallest
safe states.

Proof. Let min(f) be the smallest safe states off . These are footprints by lemma 4.4. For any
larger stateσ′ • σ whereσ ∈ min(f), σ′ ∈ Σ andσ is non-empty, we have

f(σ′ • σ) = f({σ′} ∗ {σ}) = {σ′} ∗ f(σ)

SinceLf (σ′ • σ) ⊑ {σ′} ∗ f(σ), by proposition 4.2 we have thatLf (σ′ • σ) = f(σ′ • σ), and so
σ′ • σ is not a footprint off .

We now demonstrate that the determinism constancy propertyis preserved by all the constructs
of our programming language. This implies that if all the primitive commands of the programming
language have determinism constancy, then the footprints of every program are the smallest safe
states.

Theorem 6.5. If all the primitive commands of the programming language have determinism con-
stancy, then the footprint of every program is given by the smallest safe states.

Proof. Assuming all primitive commands have determinism constancy, we shall show by induction
that every composite command has determinism constancy andthe result follows by lemma 6.4.
So for commandsC1 andC2, let f = JC1K andg = JC2K and assumef andg have determinism
constancy. For sequential composition we have, forσ ∈ safe(f ; g) andσ′ ∈ Σ,

(f ; g)({σ′} ∗ {σ})

= g(f({σ′} ∗ {σ}))

= g({σ′} ∗ f({σ})) (f has determinism constancy andσ ∈ safe(f) sinceσ ∈ safe(f ; g))

= g(
⊔

σ1∈f(σ)

{σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

g({σ′} ∗ {σ1})

=
⊔

σ1∈f(σ)

{σ′} ∗ g(σ1) (g has determinism constancy and
σ1 ∈ safe(g) sinceσ ∈ safe(f ; g) andσ1 inf(σ))

= {σ′} ∗
⊔

σ1∈f(σ)

g(σ1) (distributivity)

= {σ′} ∗ (f ; g)(σ)
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For non-deterministic choice, we have forσ ∈ safe(f + g) andσ′ ∈ Σ,

(f + g)({σ′} ∗ {σ})

= f({σ′} ∗ {σ}) ⊔ g({σ′} ∗ {σ})

= {σ′} ∗ f({σ}) ⊔ {σ′} ∗ g({σ}) (f andg have determinism constancy and
σ ∈ safe(f) andσ ∈ safe(g) sinceσ ∈ safe(f + g))

= {σ′} ∗ (f({σ}) ⊔ g({σ})) (distributivity)

= {σ′} ∗ (f + g)({σ})

For Kleene-star, we have forσ ∈ safe(f⋆) andσ′ ∈ Σ,

(f⋆)({σ′} ∗ {σ})

=
⊔

n

fn({σ′} ∗ {σ})

=
⊔

n

{σ′} ∗ fn({σ}) (determinism constancy preserved under sequential composition and
σ ∈ safe(fn))

= {σ′} ∗
⊔

n

fn({σ}) (distributivity)

= {σ′} ∗ (f⋆)({σ})

Now that we have shown the general result, it remains to checkthat all the primitive commands in
the new model of section 6.1 do have determinism constancy.

Proposition 6.6. LetH1 be the stack and heap model of example 2.8.2 andH2 be the alternative
model of section 6.1. The commandsnew[x], mutate[x, v] and lookup[x, y] all have determinism
constancy in both models. Thedispose[x] command has determinism constancy inH2 but not in
H1.

Proof. We give the proofs for the new and dispose commands in the two models, and the cases for
mutate and lookup can be checked in a similar way. Fordispose[x] in H1, the following counterex-
ample shows that it does not have determinism constancy.

dispose[x]({l 7→v} ∗ {x 7→ l • l 7→w})
= dispose[x](∅)
= ∅
⊏ {l 7→v • x 7→ l}
= {l 7→v} ∗ dispose[x](x 7→ l • l 7→w)

Fornew[x] in H1, any safe state is of the formh • x 7→v. For anyh′ ∈ H1, we have

{h′} ∗ new[x](h • x 7→v) = {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)} (†)

If h′•h•x 7→v is undefined thenh′ shares locations withloc(h) or variables withvar(h)∪{x}.
This means that the RHS in† is the empty set. We havenew[x]({h′}∗{h•x 7→v}) = new[x](∅) =
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∅ = {h′} ∗ new[x](h • x 7→v). If h′ • h • x 7→v is defined, then

new[x]({h′} ∗ {h • x 7→v})
= new[x](h′ • h • x 7→v)
= {h′ • h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}
= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h′ • h)}
= {h′} ∗ {h • x 7→ l • l 7→w | w ∈ V al, l ∈ L\loc(h)}
= {h′} ∗ new[x](h • x 7→v)

Fordispose[x] in H2, any safe state is of the formh • x 7→ l • l 7→v • F . Leth′ ∈ H2. We have

{h′} ∗ dispose[x](h • x 7→ l • l 7→v • F ) = {h′} ∗ {h • x 7→ l • F ∪ {l}} (††)

If h′ •h•x 7→ l • l 7→v •F is undefined then eitherh′ contains a free set or it contains locations
in loc(h) ∪ {l} or variables invar(h) ∪ {x}. If h′ contains a free set or it contains locations in
loc(h) or variables invar(h) ∪ {x}, then the RHS in†† is the empty set. Ifh′ contains the location
l then also the RHS in†† is the empty set since the free setF ∪ {l} also containsl. Thus in both
cases the RHS in†† is the empty set, and we havedispose[x]({h′} ∗ {h •x 7→ l • l 7→v •F}) = ∅ =
{h′} ∗ dispose[x](h • x 7→ l • l 7→v • F ).

If h′ • h • x 7→ l • l 7→v • F is defined then we have
dispose[x]({h′} ∗ {h • x 7→ l • l 7→v • F})

= dispose[x](h′ • h • x 7→ l • l 7→v • F )
= {h′ • h • x 7→ l • F ∪ {l}}
= {h′} ∗ {h • x 7→ l • F ∪ {l}}
= {h′} ∗ dispose[x](h • x 7→ l • l 7→v • F )

Fornew[x] in H2, any safe state is of the formh • x 7→v • F . Leth′ ∈ H2. We have

{h′} ∗ new[x](h • x 7→v • F ) = {h′} ∗ {h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F} (†††)

If h′ • h • x 7→ v • F is undefined then eitherh′ contains a free set or it contains locations in
loc(h) or variables invar(h) ∪ {x}. In all these cases the RHS in††† is the empty set, and so we
havenew[x]({h′} ∗ {h • x 7→v • F}) = ∅ = {h′} ∗ new[x](h • x 7→v • F ).

If h′ • h • x 7→v • F is defined then we have
new[x]({h′} ∗ {h • x 7→v • F})

= new[x](h′ • h • x 7→v • F )
= {h′ • h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ {h • x 7→ l • l 7→w • F\{l} | w ∈ V al, l ∈ F}
= {h′} ∗ new[x](h • x 7→v • F )

Thus theorem 6.5 and proposition 6.6 tell us that using the alternative model of example 6.1,
the footprint of every program is given by the smallest safe states, and hence we have regained
safety footprints for all programs. In fact, the same is truefor the original model of example 2.8.2
if we do not include the dispose command as a primitive command, since all the other primitive
commands have determinism constancy. This, for example, would be the case when modelling a
garbage collected language [16].
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7. CONCLUSIONS

We have developed a general theory of footprints in the abstract setting of local functions
that act on separation algebras. Although central and intuitive concepts in local reasoning, the
notion of footprints and small specifications had evaded a formal general treatment until now. The
main obstacle was presented by theAD problem, which demonstrated the inadequacy of the safety
footprint notion in yielding complete specifications. In addressing this issue, we first investigated the
notion of footprint which does not suffer from this inadequacy. Based on an analysis of the definition
of locality, we introduced the definition of the footprint ofa local function, and demonstrated that,
according to this definition, the footprints are the only essential elements necessary to obtain a
complete specification of the function. For well-founded resource models, we showed that the
footprints are also sufficient, and we also presented results for non-well-founded models.

Having established the footprint definition, we then explored the conditions under which the
safety footprint does correspond to the actual footprint. We introduced an alternative heap model in
which safety footprints are regained foreveryprogram, includingAD. We also presented a general
condition on local functions in arbitrary models under which safety footprints are regained, and
showed that if this condition is met by all the primitive commands of the programming language,
then safety footprints are regained for every program. The theory of footprints has proven very
useful in exploring the situations in which safety footprints could be regained, as one only needs to
check that the smallest safe states correspond to the footprint definition 4.3. This automatically gives
the required properties such as essentiality and sufficiency, which, without the footprint definition
and theorems, would need to be explicitly checked in the different cases.

Finally, we comment on some related work. The discussion in this paper has been based on
the static notion of footprints asstatesof the resource on which a program acts. A different notion
of footprint has recently been described in [10], where footprints are viewed astracesof execution
of a computation. O’Hearn has described how theAD problem is avoided in this more elaborate
semantics, as the allocation of cells in an execution prevents the framing of those cells. Interestingly,
however, the heap model from example 6.1 illustrates that itis not essential to move to this more
elaborate setting and incorporate dynamic, execution-specific information into the footprint in order
to resolve theAD problem. Instead, with the explicit representation of freecells in states, one can
remain in an extensional semantics and have a purely static,resource-based (rather than execution-
based) view of footprints.
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