
Exact Separation Logic
Towards Bridging the Gap Between Verification and Bug-Finding

Petar Maksimović
Imperial College London, UK
Runtime Verification Inc., Urbana, IL, USA

Caroline Cronjäger
Ruhr-Universität Bochum, Germany

Andreas Lööw
Imperial College London, UK

Julian Sutherland
Nethermind, London, UK

Philippa Gardner
Imperial College London, UK

Abstract
Over-approximating (OX) program logics, such as separation logic (SL), are used for verifying
properties of heap-manipulating programs: all terminating behaviour is characterised, but established
results and errors need not be reachable. OX function specifications are thus incompatible with
true bug-finding supported by symbolic execution tools such as Pulse and Pulse-X. In contrast,
under-approximating (UX) program logics, such as incorrectness separation logic, are used to find
true results and bugs: established results and errors are reachable, but there is no mechanism for
understanding if all terminating behaviour has been characterised.

We introduce exact separation logic (ESL), which provides fully-verified function specifications
compatible with both OX verification and UX true bug-funding: all terminating behaviour is
characterised and all established results and errors are reachable. We prove soundness for ESL with
mutually recursive functions, demonstrating, for the first time, function compositionality for a UX
logic. We show that UX program logics require subtle definitions of internal and external function
specifications compared with the familiar definitions of OX logics. We investigate the expressivity of
ESL and, for the first time, explore the role of abstraction in UX reasoning by verifying abstract
ESL specifications of various data-structure algorithms. In doing so, we highlight the difference
between abstraction (hiding information) and over-approximation (losing information). Our findings
demonstrate that abstraction cannot be used as freely in UX logics as in OX logics, but also that it
should be feasible to use ESL to provide tractable function specifications for self-contained, critical
code, which would then be used for both verification and true bug-finding.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of com-
putation → Program reasoning; Theory of computation → Separation logic; Theory of computation
→ Hoare logic; Theory of computation → Abstraction

Keywords and phrases Separation logic, program correctness, program incorrectness, abstraction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.19

Related Version Extended Version: https://arxiv.org/abs/2208.07200

Funding Maksimović, Lööw and Gardner were partially supported by the EPSRC Fellowship
“VetSpec: Verified Trustworthy Software Specification” (EP/R034567/1). Cronjäger was partially
supported by the Erasmus Plus Student Mobility for Traineeships scheme.

Acknowledgements We would like to thank Sacha-Élie Ayoun and Daniele Nantes Sobrinho for the
many discussions that have improved the quality of the paper. We would also like to thank the
anonymous reviewers for their comments.

© Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 19; pp. 19:1–19:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://arxiv.org/abs/2208.07200
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Exact Separation Logic

1 Introduction

Over-approximating (OX) program logics were introduced to reason about program cor-
rectness, starting with Hoare logic [18] and evolving to separation logic (SL) [27, 30]. SL
is used for verification and features function specifications of the form

{
P

}
f (⃗x)

{
Q

}
, the

meaning of which is that all terminating executions of the function f that start from a state
in the pre-condition P end in a state covered by the post-condition Q. SL has the standard
rule of forward consequence, which allows one to lose information (for example, if we had a
post-condition with x = 42, we could soundly weaken this precise information to the less
precise x > 0 or even to the non-informative true). In essence, the philosophy underlying the
OX approach in general can be stated as:

no paths can be cut, but information can be lost.

A key property of SL is that function specifications are compositional, enabling scalable
reasoning about the heap. This is due to their locality, which allows the pre-condition to
describe only the partial state sufficient for the function to execute, and the frame property,
which allows the function to be called in any larger state. SL function specifications have
been used for verification of complex, real-world code in tools such as VeriFast [19], Iris [20],
and Gillian [10,23]. However, given that their post-conditions may describe states that are
not reachable from their pre-conditions, such OX specifications are not compatible with true
bug-finding, as found, for example, in Meta’s Pulse [28] and Pulse-X [21] tools.

Under-approximating (UX) program logics were recently introduced, originating from
reverse Hoare logic (RHL) [8] for reasoning about correctness of probabilistic programs,
and coming to prominence with incorrectness logic [26] and incorrectness separation logic
(ISL) [28], which identified their bug-finding potential. ISL function specifications are of the
form

[
P

]
f (⃗x)

[
ok : Qok

]
and

[
P

]
f (⃗x)

[
err : Qerr

]
, the meaning of which is that any state

in the success post-condition Qok or the error post-condition Qerr is reachable from some
state in the pre-condition P by executing the function f ; this guarantees that all results and
bugs reported in the post-conditions will be true. In contrast to SL, ISL uses the rule of
backward consequence, which allows one to cut paths (for example, if we had a post-condition
with x > 0, we could soundly strengthen this information to consider only the path in which
x = 42). Therefore, the philosophy underlying UX logics in general can be summarised as:

paths can be cut, but no information can be lost.

When it comes to the use of ISL function specifications, whilst this has been implemented
in Pulse-X, as far as we are aware, ISL does not feature function-call rules, and function
compositionality for ISL and UX logics has not been proven. Moreover, as it is not possible
to determine if UX specifications cover all terminating behaviour, they remain incompatible
with verification and cannot therefore be used in tools such as VeriFast, Iris, and Gillian.

Our challenge is to develop a program logic in which we can state and prove function
specifications that are compatible with both verification and true bug-finding. Our motivation
comes from the unique flexibility and expressivity that such specifications would provide,
as they could be used by verification and bug-finding tools alike, closing the gap between
these two contrasting paradigms. From our experience in program logics and associated tool-
building, we believe that the main use case for exact specification should be self-contained,
critical code, such as widely-used data-structure libraries.

We introduce exact separation logic (ESL), with exact (EX) function specifications of
the form

(
P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
, whose meaning combines that of SL and ISL

specifications: all terminating executions of the function that start from a state in the

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:3

pre-condition P end in a state covered by the post-conditions; and all states in two post-
conditions are reachable from a state in the pre-condition by executing the function. The
exactness of ESL can be captured by the slogan:

no paths can be cut and no information can be lost.

The slogan is supported by the rule of equivalence, which combines the forward consequence
of SL and the backward consequence of ISL. In fact, ESL proof rules form a common core of
SL and ISL, and ESL should therefore be a familiar setting to those acquainted with either.

We prove soundness for ESL with mutually recursive functions, which we believe is the
first proof of function compositionality for a UX logic, and which transfers immediately
to ISL. In doing so, drawing inspiration from InsecSL [25], we provide formal definitions
of external and internal function specifications, which describe, respectively, the interface
a function exposes towards its clients and towards its implementation, and highlight the
difference in complexity between these two types of specifications in OX and UX reasoning.

Using numerous examples, we demonstrate here and in the extended version [24] how
ESL can be used to reason about data-structure libraries, language errors, mutual recursion,
and non-termination. In doing so, we introduce, for the first time, abstract predicates to
UX reasoning and provide abstract function specifications for a number of data-structure
algorithms, focussing on singly-linked lists and binary trees. In doing so, we highlight an
important difference between the concepts of abstraction and over-approximation: in partic-
ular, abstraction corresponds to hiding information whereas over-approximation corresponds
to losing it. Our findings demonstrate that, while abstraction cannot be used as freely in UX
logics as in OX logics, sometimes resulting in less abstract specifications and more complex
proofs, it should be feasible to use ESL to provide tractable function specifications for
self-contained, critical code that can then be used for both verification and true bug-finding.

2 Exact Separation Logic by Example

We guide the reader through what it means to write ESL specifications and proofs by intuition
and example, contrasting our findings with those known from SL and ISL.

Illustrative Example. Consider the command C ≜ if (x > 0) {y := 42} else {y := 21},
which can be specified, starting from the pre-condition x ∈ Z, in ESL, SL, and ISL as follows:

(x ∈ Z)
if (x > 0) {

(x > 0)
y := 42
(Q1 : x > 0 ∧ y = 42)

} else {
(x ≤ 0)
y := 21(

Q2 : x ≤ 0 ∧ y = 21
)

}
(Q1 ∨ Q2)

{
x ∈ Z

}
if (x > 0) {

. . .

// Same as ESL
. . .

}{
Q1 ∨ Q2

}
// Losing information{

x ∈ Z ∧ y > 0
}

[
x ∈ Z

]
if (x > 0) {[

x > 0
]

y := 42[
Q1 : x > 0 ∧ y = 42

]
} else { y := 21 }
// Path cutting[

x > 0 ∧ y = 42
]

As ESL specifications must neither cut paths nor lose information (in this example, about
the values of x and y), the ESL post-condition of C must be equivalent to (x > 0 ∧ y =
42) ∨ (x ≤ 0 ∧ y = 21). In SL, it is possible to use forward consequence to weaken this

ECOOP 2023

19:4 Exact Separation Logic

information and obtain, for example, x ∈ Z ∧ y > 0, or just x ∈ Z, or even just true. In ISL,
it is possible to cut, for example, the else branch of the if statement, but the values of x
and y must be maintained in the post-condition of the then branch, x > 0 ∧ y = 42.

One question that we have been often asked is whether it is simpler to prove an exact
specification

(
P

)
C

(
ok : Qok

) (
err : Qerr

)
in ESL, or to prove it separately in SL and ISL.

The answer is that it is simpler to prove the specification in ESL. If a specification is exact,
then it does not cut paths and it does not lose information. Therefore, the tools that make
SL and ISL proofs simpler than ESL proofs, namely forward consequence and backward
consequence, can only be used in very limited ways, if at all. From our experience, the ISL
proof of an exact specification will turn out to be almost identical to the ESL one, and an SL
proof on top of that would duplicate a large part of the work. In fact, if one were to try to
prove the exact specification (x ∈ Z) C ((x > 0 ∧ y = 42) ∨ (x ≤ 0 ∧ y = 21)) from the above
example in either SL or ISL, they would obtain exactly the same proof as in ESL.

We also emphasise that ESL is not meant to replace either SL or ISL. If one is interested in
only verification or only bug-finding, then one should use a formalism tailored to that type of
analysis to exploit the available shortcuts. However, if one wanted to use the same codebase
for both verification and bug-finding, then ESL offers a way of providing specifications useful
for both. One example of such a codebase would be a widely-used data-structure library,
where some of the users use it for verification and others for bug-finding.

List-length in ESL: Intuition. We consider a list-length function, LLen(x), which takes a
list at x, does not modify it, and returns its length, and the following ESL specification:

(x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n)

This specification uses a standard list-length predicate, list(x, n), which states that the length
of the list at x equals n and is defined as follows:

list(x, n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1)),

hiding the information about the values and internal node addresses of the list. Before
proving this specification, we establish some intuition about why it holds. Let us assume that
it does not hold and try to find a counter-example: by the meaning of ESL specifications,
it is either not OX-valid or it is not UX-valid. The former, however, is not possible, as the
analogous SL specification holds. The latter means that it is possible to find a state in the
post-condition not reachable by the execution of f from any state in the pre-condition, and
may be unfamiliar to the reader as UX program logics have been introduced only recently.

We start looking for such a state in the post-condition (post-model) by choosing some
values for x and n: say, x = 0 and n = 2. This also fixes ret to 2. Then, we fully unfold
list(0, 2) to obtain ∃v1, x1, v2. 0 7→ v1, x1 ⋆ x1 7→ v2, null, and instantiate the existentials v1,
x1, and v2: say, with 1, 4, and 9, respectively. In this way, we obtain the state described
by the assertion 0 7→ 1, 4 ⋆ 4 7→ 9, null. When it comes to the pre-condition, x and n (and
also x) are fixed by the post-model choices, and when we unfold the list, the pre-condition
becomes x = 0 ⋆ ∃v1, x1, v2. 0 7→ v1, x1 ⋆ x1 7→ v2, null. As the algorithm does not modify
the list, it becomes clear that if we choose v1, x1, and v2 as for the post-model (that is, 1, 4,
and 9, respectively), the algorithm will reach our post-model. Given that the same reasoning
would apply for any choice of x and n, we realise that the given specification is, in fact, also
UX-valid and hence exact. This reveals an important observation, which is that

abstraction does not always equate to over-approximation, that is,
hiding information does not always mean losing information.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:5

For those used to OX reasoning, it might appear that the post-condition list(x, n) ⋆ ret = n

loses information about the structure of the list, but the insight here is that this information
was never known in the pre-condition in the first place, as we also only had list(x, n) there.

List-length in ESL: Proof Sketch. Reasoning about function specifications in the UX/EX
setting has not been studied previously and requires subtle definitions of external function
specifications, which provide the interface that the function exposes to the client, and internal
function specifications, which provide the interface to the function’s implementation. With
OX logics, these are well-understood and the gap between them is small. For UX/EX logics,
this gap is larger. We illustrate these concepts informally using the list-length example, and
give the corresponding formal definitions in §4.

The proof sketch of the ESL external specification of the list-length algorithm is given in
Figure 1. It is more complex than its SL counterpart (cf. [24]), but is manageable and comes
with the benefit that this ESL specification can be used for both verification and bug-finding.

First, as the function is recursive, we have to provide a measure and prove the specification
extended with this measure: in this case, the measure is α = n, given by the length of
the list. This measure is necessary to ensure the finite reachability property for mutually
recursive functions in UX logics, and is a known technique from the work on total correctness
specifications for OX logics [7, 9]. Recursive function calls are then allowed only if they use
specifications of a strictly smaller measure, represented in the proof sketch by the function
specification context Γ(α), which contains the specification of LLen(x) for all β < α.

The move from the external to the internal pre-condition initialises the local function
variables to null. The ESL rule for the if statement, just like in SL, adds the condition to
the then-branch, its negation to the else-branch, and collects the branch post-conditions using
disjunction. The rules for the basic commands (here, the assignments r := 0 and r := r + 1
and the lookup x := [x + 1]) are also the same as in SL, as these are already exact. The
unfolding of the list is also done in the same way, as unfolding always preserves equivalence;
note how the condition of the if statement determines the appropriate disjunct for the list
predicate. The recursive function call is allowed to go through as it is used with measure n−1
(with the parts of the assertion representing the pre- and the post-condition highlighted).

The major difference between ISL/ESL and SL proofs is that we cannot lose information
about the function parameters and local variables in the middle of the former. Therefore,
we cannot simplify the assertions Q′

1 and Q′
2 further and cannot fold back the list predicate

within the internal specification, as we would do in SL (cf. corresponding proof in [24]).
The most complex part of the proof sketch is the transition from the internal to the

external post-condition, in which we have to somehow forget the local variables of the
function, given that they must not spill out into the calling context. This is done by replacing
them with fresh, existentially quantified logical variables, which in this case also allows us
to use equivalence to fold back the list predicate and reach the target post-condition. The
details of this transition, in which we denote ret = n ⋆ α = n by R, are as follows:

∃xq, rq. Q′[xq/x][rq/r] ⋆ ret = r[xq/x][rq/r]
⇔ ((x = null ⋆ n = 0) ∨ (∃xq, rq, v, x′. xq = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ rq = n)) ⋆ R

⇔ ((x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1))) ⋆ R // can fold now
⇔ list(x, n) ⋆ (n = 0 ∨ n > 0) ⋆ R

⇔ list(x, n) ⋆ ret = n ⋆ α = n

Observe that, since we are proving an EX specification, we are not allowed to cut paths.
This means that the ISL proof of the analogous ISL specification of LLen(x) would be identical,
noting that the use of equivalence would technically be replaced by backward consequence.

ECOOP 2023

19:6 Exact Separation Logic

// Function is recursive and requires a measure: α = n

Γ(α) ⊢ (x = x ⋆ list(x, n) ⋆ α = n)
LLen(x) {

// Transition from external to internal pre-condition: initialise locals to null
(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null)
if (x = null) {

(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null ⋆ x = null)
r := 0
(Q′

1 : x = x ⋆ list(x, n) ⋆ α = n ⋆ r = 0 ⋆ x = null)
} else {

(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null ⋆ x ̸= null)
// Unfold list(x, n) using the equivalence
// |= list(x, n) ⋆ x ̸= null ⇔ ∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1)
(∃v, x′ . x = x ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α = n ⋆ r = null)
x := [x + 1];
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α = n ⋆ r = null)
// As α − 1 < α, we can use the specification of LLen(x) with measure α − 1
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = null)
r := LLen(x);
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = n − 1)
r := r + 1
(Q′

2 : ∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = n)
};
(Q′ : Q′

1 ∨ Q′
2)

return r
(Q′ ⋆ ret = r)
// Transition from internal to external post-condition given in text

}
(list(x, n) ⋆ ret = n ⋆ α = n)

Figure 1 ESL proof sketch: (x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n).

List-insert in ESL: Intuition. The list-length function, LLen(x), is an example of an algorithm
where the EX specification is analogous to the traditional OX specification. At times, however,
ESL specifications have to be more complex. Consider, for example, the list-insert algorithm
LInsertFirst(x, v), which inserts the element v at the beginning of the list x. Its traditional
OX specification is:

{x = x ⋆ v = v ⋆ list(x, vs)} LInsertFirst(x, v) {list(ret, v : vs)}

where list(x, vs) is the standard list predicate that exposes the values of the list:

list(x, vs) ≜ (x = null ⋆ vs = []) ∨ (∃v, x′, vs′. x 7→ v, x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)

Using the counter-example approach to check if this specification is EX-valid, we easily see
that it loses information: in particular, no end-state where x is not the second pointer in the
returned list ret is reachable from the given pre-condition. Consequently, for EX validity, we
are required to use the following, less abstract, ESL specification for LInsertFirst:

(x = x ⋆ v = v ⋆ list(x, xs, vs)) LInsertFirst(x, v) (list(ret, ret : xs, v : vs) ⋆ listHead(x, xs))

where list(x, xs, vs) is a predicate that exposes the internal pointers of a given list in addition
to the values, and listHead(x, xs) states that the list xs starts with x.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:7

Further Examples. In §5 and [24], we give many additional examples of ESL specifications
and proofs to illustrate reasoning about list algorithms and binary trees, as well as language
errors, mutual recursion, non-termination, and client programs.

3 The Programming Language

We introduce ESL using a simple programming language, the syntax of which is given below.

Language Syntax

v ∈ Val ::= n ∈ Nat | b ∈ Bool | s ∈ Str | null | v x ∈ PVar
E ∈ PExp ::= v | x | E + E | E − E | ... | E = E | E < E | ¬ E | E ∧ E | ... | E : E | E @ E | ...

C ∈ Cmd ::= skip | x := E | x := nondet | error(E) | if (E) C else C | while (E) C | C; C |
y := f(E⃗) | x := [E] | [E] := E | x := new(E) | free(E)

Values, v ∈ Val, include: natural numbers, n ∈ Nat; Booleans, b ∈ Bool ≜ {true, false};
strings, s ∈ Str; a dedicated value null; and lists of values, v ∈ List. Expressions, E ∈ Exp,
comprise values, program variables, x ∈ PVar, and various unary and binary operators (e.g.,
addition, equality, negation, conjunction, list prepending, and list concatenation). Commands
comprise: the variable assignment; non-deterministic number generation; error raising; the
if statement; the while loop; command sequencing; function call; and memory management
commands, that is, lookup, mutation, allocation, and deallocation. The sets of program
variables for expressions and commands, denoted by pv(E) and pv(C) respectively, and the
sets of modified variables for commands, denoted by mod(C), are defined in the standard way.

▶ Definition 1 (Functions). A function, denoted by f (⃗x) { C; return E }, comprises: a function
identifier, f ∈ Str; the function parameters, x⃗, given by a list of distinct program variables; a
function body, C ∈ Cmd; and a return expression, E ∈ PExp, with pv(E) ⊆ {⃗x} ∪ pv(C).

Program variables in function bodies that are not the function parameters are treated as
local variables initialised to null, with their scope not extending beyond the function.

▶ Definition 2 (Function Implementation Contexts). A function implementation context,
γ : Str ⇀fin PVar List × Cmd × PExp, is a finite partial function from function identifiers to
their implementations. For γ(f) = (⃗x, C, E), we also write f (⃗x){C; return E} ∈ γ.

We next define an operational semantics that gives a complete account of the behaviour
of commands and does not get stuck on any input, as we explicitly account for language
errors and missing resource errors.

▶ Definition 3 (Stores, Heaps, States). Variable stores, s : PVar ⇀fin Val, are partial finite
functions from program variables to values. Heaps, h : Nat ⇀fin (Val ⊎ ∅), are partial finite
functions from natural numbers to values extended with a dedicated symbol ∅ /∈ Val. Program
states, σ = (s, h), consist of a store and a heap.

Heaps are used to model the memory, and the dedicated symbol ∅ /∈ Val is required for
UX frame preservation1 to hold (cf. Definition 10). In particular, h(n) = v means that an
allocated heap cell with address n contains the value v; and h(n) = ∅ means that a heap

1 UX frame preservation means that if a program runs with a non-missing outcome to a given final state,
then it also runs with the same outcome to an extended final state, with the extension (the frame)
unaffected by the execution. From ISL [28], it is known that losing deallocation information breaks UX
frame preservation; the solution is to keep track of deallocated cells, which we achieve by using ∅.

ECOOP 2023

19:8 Exact Separation Logic

cell with address n has been deallocated [11–14,28]. This linear memory model is used in
much of the SL literature, including ISL [28]. Onward, ∅ denotes the empty heap, h1 ⊎ h2
denotes heap disjoint union, and h1 ♯ h2 denotes that h1 and h2 are disjoint.

▶ Definition 4 (Expression Evaluation). The evaluation of an expression E with respect to a
store s, denoted JEKs, results in either a value or a dedicated symbol denoting an evaluation
error, /∈ Val. Some illustrative cases are:

JvKs = v JxKs =

{
s(x), x ∈ dom(s)
 , otherwise

JE1 + E2Ks =

{
JE1Ks + JE2Ks, JE1Ks, JE2Ks ∈ Nat
 , otherwise

The big-step operational semantics uses judgements of the form σ, C ⇓γ o : σ′, read: given
implementation context γ and starting from state σ, the execution of command C results
in outcome o ∈ O = {ok, err , miss} and state σ′. The outcome can either equal: ok (elided
where possible), denoting a successful execution; err , denoting an execution faulting with a
language error, or miss, denoting an execution faulting with a missing resource error.

▶ Definition 5 (Operational Semantics). The representative cases of the big-step operational
semantics are given in Figure 2. The complete semantics is given in [24].

The successful transitions are straightforward: for example, the nondet command generates
an arbitrary natural number; the function call executes the function body in a store where
the function parameters are given the values of the function arguments and the function
locals are initialised to null; and the control flow statements behave as expected. Allocation
requires the specified amount of contiguous cells (always available as heaps are finite), and
lookup, mutation, and deallocation require the targeted cell not to have been freed.

The semantics stores error information in a dedicated program variable err, not available to
the programmer. For simplicity of error messages, we assume to have a function str : PExp →
Str, which serialises program expressions into strings. The faulting semantic transitions are
split into language errors, which can be captured by program-logic reasoning, and missing
resource errors, which cannot, as such errors break the frame property. Language errors
arise due to, for example, expressions being incorrectly typed (e.g. null + 1) or an attempt
to access deallocated cells (that is, the use-after-free error). On the other hand, missing
resource errors arise from accessing cells that are not present in memory.

4 Exact Separation Logic

We introduce an exact separation logic for our programming language, giving the assertion
language in §4.1, specifications in §4.2, and the program logic rules in §4.3.

4.1 Assertion Language

To define assertions and their meaning, we introduce logical variables, x, y, z, ∈ LVar, distinct
from program variables, and define the set of logical expressions as follows:

E ∈ LExp ≜ v | x | x | E + E | E − E | ... | E = E | ¬ E | E ∧ E | ... | E · E | E : E | ...

Note that we can use program expressions in assertions (for example, E ∈ Val), as they
form a proper subset of logical expressions.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:9

JEKs = v s′ = s[x → v]
(s, h), x := E ⇓γ (s′, h)

n ∈ N s′ = s[x → n]
(s, h), x := nondet ⇓γ (s′, h)

JEKs = false
(s, h), while (E) C ⇓γ (s, h)

JEKs = true (s, h), C ⇓γ σ′′

σ′′, while (E) C ⇓γ o : σ′

(s, h), while (E) C ⇓γ o : σ′

f (⃗x) { C; return E′ } ∈ γ JE⃗Ks = v⃗ pv(C) \ {⃗x} = {⃗z}
sp = ∅[⃗x → v⃗][⃗z → null] (sp, h), C ⇓γ (sq, h′) JE′Ksq = v′

(s, h), y := f(E⃗) ⇓γ (s[y → v′], h′)

JEKs = n h(n) = v

(s, h), x := [E] ⇓γ (s[x → v], h)
JE1Ks = n h(n) ∈ Val JE2Ks = v h′ = h[n 7→ v]

(s, h), [E1] := E2 ⇓γ (s, h′)

(n′ + i /∈ dom(h))|JEKs−1
i=1 h′ = h ⊎ {(n′ + i 7→ null)|JEKs−1

i=1 }
(s, h), x := new(E) ⇓γ (s[x → n′], h′)

JEKs = n h(n) ∈ Val
(s, h), free(E) ⇓γ (s, h[n 7→ ∅])

JEKs = verr = [“ExprEval”, str(E)]
(s, h), x := [E] ⇓γ err : (serr , h)

JEKs = n /∈ dom(h) verr = [“MissingCell”, str(E), n]
(s, h), x := [E] ⇓γ miss : (serr , h)

h(JEKs) = ∅ verr = [“UseAfterFree”, str(E1), JEKs]
(s, h), x := [E] ⇓γ err : (serr , h)

JEKs = v verr = [“Error”, v]
(s, h), error(E) ⇓γ err : (serr , h)

Figure 2 Operational semantics (excerpt), with serr ≜ s[err → verr] and str : PExp → Str.

▶ Definition 6 (Assertion Language). The assertion language is defined as follows:

π ∈ BAsrt ≜ E1 = E2 | E1 < E2 | E ∈ X | . . . | ¬π | π1 ⇒ π2
P ∈ Asrt ≜ π | False | P1 ⇒ P2 | ∃x. P | emp | E1 7→ E2 | E 7→ ∅ | P1 ⋆ P2 | �E1≤x<E2 P

where E , E1, E2 ∈ LExp, X ⊆ Val, and x ∈ LVar.

Boolean assertions, π ∈ BAsrt, lift Boolean logical expressions to assertions. Assertions,
P ∈ Asrt, contain Boolean assertions, standard first-order connectives and quantifiers, and
spatial assertions. Spatial assertions include: the empty memory assertion, emp; the positive
cell assertion, E1 7→ E2; the negative cell assertion, E 7→ ∅ (as in [11–14] and denoted in ISL
by E ̸7→ [28]), the separating conjunction (star); and its iteration (iterated star).

To define assertion satisfiability, we introduce substitutions, θ : LVar ⇀fin Val, which are
partial finite mappings from logical variables to values, extending expression evaluation of
Definition 4 to JEKθ,s straightforwardly, with a new base case for logical variables:

JxKθ,s = θ(x), if x ∈ dom(θ) JxKθ,s = , if x /∈ dom(θ)

▶ Definition 7 (Satisfiability). The assertion satisfiability relation, denoted by θ, σ |= P , is
defined as follows:

θ, (s, h) |= π ⇔ JπKθ,s = true ∧ h = ∅
θ, (s, h) |= False ⇔ never
θ, (s, h) |= P1 ⇒ P2 ⇔ θ, (s, h) |= P1 ⇒ θ, (s, h) |= P2

θ, (s, h) |= ∃x. P ⇔ ∃v ∈ Val. θ[x 7→ v], (s, h) |= P

θ, (s, h) |= emp ⇔ h = ∅
θ, (s, h) |= E1 7→ E2 ⇔ h = {JE1Kθ,s 7→ JE2Kθ,s}
θ, (s, h) |= E1 7→ ∅ ⇔ h = {JE1Kθ,s 7→ ∅}
θ, (s, h) |= P1 ⋆ P2 ⇔ ∃h1, h2. h = h1 ⊎ h2 ∧ θ, (s, h1) |= P1 ∧ θ, (s, h2) |= P2

θ, (s, h) |= �E1≤x<E2 P ⇔ ∃hi, . . . , hk−1. h = ⊎k−1
j=i hj ∧ ∀j. i ≤ j < k ⇒ θ, (s, hj) |= P [j/x]

where i = JE1Kθ,s, k = JE2Kθ,s, and x is not free in E1 or E2.

ECOOP 2023

19:10 Exact Separation Logic

Assertion satisfiability is defined in the standard way. For convenience, we choose Boolean
assertions to be satisfiable only in the empty heap.

▶ Definition 8 (Validity). An assertion P is valid, denoted by |= P , iff ∀θ, σ. θ, σ |= P .

4.2 Specifications
We define specifications for commands and functions, focussing in particular on external and
internal function specifications and the relationship between them.

▶ Definition 9. Specifications, t =
(
P

) (
ok : Qok

) (
err : Qerr

)
∈ Spec, comprise a pre-

condition, P , a success post-condition, Qok, and a faulting post-condition, Qerr .

We denote that command C has specification t by C : t, or by
(
P

)
C

(
ok : Qok

) (
err : Qerr

)
in quadruple form. Additionally, we use the following shorthand:

(P) C (Q) ≜
(
P

)
C

(
ok : Q

) (
err : False

)
(P) C (err : Q) ≜

(
P

)
C

(
ok : False

) (
err : Q

)
(P) C (Q) ≜

(
P

)
C

(
ok : −

) (
err : −

)
noting the use of Q for cases in which the post-condition details are not relevant. We use
quadruples rather than triples since, even though the post-condition could be expressed as a
disjunction of ok- and err-labelled assertions, we find the quadruple distinction helpful as
compound commands (e.g. sequence) treat the two differently (cf. Figure 3).

The EX-validity of a specification t for a command C in an implementation context γ

requires both OX and UX frame-preserving validity.

▶ Definition 10 (γ-Valid Specifications). Given implementation context γ, command C, and
specification t =

(
P

) (
ok : Qok

) (
err : Qerr

)
, t is γ-valid for C, denoted by γ |= C : t or

γ |=
(
P

)
C

(
ok : Qok

) (
err : Qerr

)
, if and only if:

// Frame-preserving over-approximating validity
(∀θ, s, h, hf , o, s′, h′′. θ, (s, h) |= P =⇒

(s, h ⊎ hf), C ⇓γ o : (s′, h′′) =⇒ (o ̸= miss ∧ ∃h′. h′′ = h′ ⊎ hf ∧ θ, (s′, h′) |= Qo)) ∧
// Frame-preserving under-approximating validity
(∀θ, s′, h′, hf , o. θ, (s′, h′) |= Qo =⇒ hf ♯ h′ =⇒

(∃s, h. θ, (s, h) |= P ∧ (s, h ⊎ hf), C ⇓γ o : (s′, h′ ⊎ hf)))

Observe that the outcome o can either be success or a language error; it cannot be
a missing resource error as this would break UX frame preservation. As our operational
semantics is complete, we can also use ESL to characterise non-termination. In particular, if
a command satisfies a specification with both post-conditions False, then the execution of the
command is guaranteed to not terminate if executed from a state satisfying the pre-condition.
Were the semantics incomplete (for example, if it did not reason about errors), then such a
specification might also indicate the absence of a semantic transition.

Compared to traditional OX reasoning, UX reasoning brings additional complexity to
proofs of function specifications. To handle this complexity, we introduce two types of
function specifications: external specifications, which provide the interface the function
exposes to the client, and the related internal specifications, which provide the interface to
the function implementation. This terminology is also used informally in InsecSL [25]. We
use these in subsequent sections to show that ESL exhibits function compositionality.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:11

▶ Definition 11 (External Specifications). A specification
(
P

) (
ok : Qok

) (
err : Qerr

)
is an

external function specification if and only if:
P = (⃗x = x⃗ ⋆ P ′), for some distinct program variables x⃗, distinct logical variables x⃗, and
assertion P ′, with pv(P ′) = ∅; and
either pv(Qok) = {ret} or Qok = False, and either pv(Qerr) = {err} or Qerr = False.

The set of external specifications is denoted by ESpec.

▶ Definition 12 (Function Specification Contexts). A function specification context,
Γ : Fid ⇀fin P(ESpec), is a finite partial function from function identifiers to a set of external
specifications, with the more familiar notation

(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
∈ Γ

at times used in place of
(⃗
x = x⃗ ⋆ P

) (
ok : Qok

) (
err : Qerr

)
∈ Γ(f).

The constraints on external specifications are well-known from OX logics and follow the
usual scoping of function parameters and local variables, which are limited to the function
body: the pre-conditions only contain the function parameters, x⃗; and the post-conditions
may only have the (dedicated) program variables ret or err, which hold, respectively, the
return value on successful termination or the error value on faulting termination.

Internal function specifications are more interesting for exact and UX than for OX
reasoning. The internal pre-condition is straightforward, extending the external pre-condition
by instantiating the local variables to null. The internal post-condition must therefore
include information about the parameters and local variables, as the internal specification
cannot lose information. This means that the connection between internal and external
post-conditions is subtle, given the constraints on the latter. To address this, we define an
internalisation function, relating an external function specification with a set of possible
internal specifications. In particular, the external post-condition has to be equivalent to an
internal one in which the parameters and local variables of the internal post-condition have
been replaced by fresh existentially quantified logical variables.

▶ Definition 13 (Internalisation). Given implementation context γ and function f ∈ dom(γ),
a function specification internalisation, Intγ,f : ESpec → P(Spec), is defined as follows:

Intγ,f (
(
P

) (
ok : Qok

) (
err : Qerr

)
) =

{
(
P ⋆ z⃗ = null

) (
ok : Q′

ok
) (

err : Q′
err

)
| |= Q′

ok ⇒ E ∈ Val ⋆ True and
|= Qok ⇔ ∃p⃗. Q′

ok [p⃗/p⃗] ⋆ ret = E[p⃗/p⃗] and
|= Qerr ⇔ ∃p⃗. Q′

err [p⃗/p⃗]},

where f (⃗x){C; return E} ∈ γ, z⃗ = pv(C) \ pv(P), p⃗ = pv(P) ⊎ {⃗z}, and the logical variables
p⃗ are fresh with respect to Qok and Qerr .

This approach also works for SL and ISL as well (with ⇐ instead of ⇔ for the post-
conditions for SL, and ⇒ instead of ⇔ for ISL). It is not strictly necessary for SL, however,
as information about program variables can be forgotten in the internal post-conditions
before the transition to the external post-condition.

▶ Definition 14 (Environments). An environment, (γ, Γ), is a pair consisting of an imple-
mentation context γ and a specification context Γ.

An environment (γ, Γ) is valid if and only if every function specified in Γ has an imple-
mentation in γ and every specification in Γ has a γ-valid internal specification.

ECOOP 2023

19:12 Exact Separation Logic

▶ Definition 15 (Valid Environments). Given an implementation context γ and a specification
context Γ, the environment (γ, Γ) is valid, written |= (γ, Γ), if and only if

dom(Γ) ⊆ dom(γ) ∧
(∀f, x⃗, C, E. f (⃗x){C; return E} ∈ γ =⇒ (∀t. t ∈ Γ(f) =⇒ ∃t′ ∈ Intγ,f (t). γ |= C : t′))

Finally, a specification t is valid for a command C in a specification context Γ if and only
if t is γ-valid for all implementation contexts γ that validate Γ.

▶ Definition 16 (Γ-Valid Specifications). Given a specification context Γ, a command C, and
a specification t = (P) (Q), the specification t is Γ-valid for command C, written Γ |= C : t

or Γ |= (P) C (Q), if and only if ∀γ. |= (γ, Γ) =⇒ γ |= (P) C (Q).

4.3 Program Logic
We give the representative ESL proof rules in Figure 3 and all in [24]. We introduce and
discuss in detail the function-related rules, given for the first time in a UX setting. We denote
the repetition of the pre-condition in the post-condition by pre. When reading the rules, it is
important to remember that we must not drop paths and must not lose information. The
judgement Γ ⊢

(
P

)
C

(
ok : Qok

) (
err : Qerr

)
means that the specification t is derivable for a

command C given the specifications recorded in Γ.
The basic command rules are fairly straightforward. The [nondet] rule existentially

quantifies the generated value via x ∈ N to capture all paths, in contrast with the RHL [8]
and ISL [28] rules, which explicitly choose one value to describe one path. The E ′ ∈ Val in the
post-condition is necessary as we know that E ′ evaluates to a value from the pre-condition
and cannot lose information; the same principle applies to many other rules. The [assign]
rule requires that the evaluation of E does not fault in the pre-condition via E ∈ Val. Strictly
speaking, we should have an additional case in which the assigned variable is not in the
store. To avoid this clutter, we instead assume that program variables are always in the store
as we are analysing function bodies and, in our programming language, all local variables
are initialised on function entry. The error-related rules capture cases in which expression
evaluation faults (e.g. [lookup-err-val] rule, using E /∈ Val), expressions are of the incorrect
type, or memory is accessed after it has been freed (e.g. [lookup-err-use-after-free]
rule, using E 7→ ∅). Note that missing resource errors cannot be captured without breaking
frame preservation, as the added-on frame could contain the missing resource.

When it comes to composite commands, we opt for two if-rules, covering the branches
separately. The sequencing rule shows how exact quadruples of successive commands can
be joined together, highlighting, in particular, how errors are collected using disjunction.
One interesting aspect of this rule is what happens when C1 only throws an error or does
not terminate, meaning that R = False. In both those cases, given the exactness of the
rules, it has to be that Qok = Q2

err = False, and the post-condition of the sequence becomes
(ok : False) (err : Q1

err ∨ False), meaning that, if C1 only throws an error (that is, Q1
err ̸= False)

then that is the only error that can come out of the sequence, and if C1 does not terminate
(that is, Q1

err = False) then the sequence does not terminate either.
The while rule is an adaptation of the RHL while rule [8], generalising the invariant of the

SL while rule with two natural-number-indexed families of variants, Pi and Qi, which explicitly
maintain the iteration index. Note how the i in the premise is a meta-variable representing a
natural number, which in the conclusion gets substituted for an existentially quantified logical
variable; a similar principle will be applied later when dealing with environment extension.
Interestingly, this rule does not require adjustment to reason about non-termination.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:13

skip
Γ ⊢ (emp) skip (emp)

nondet
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x ∈ N
Γ ⊢ (x = E ′) x := nondet (Q)

assign
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x = E[E ′/x]
Γ ⊢ (x = E ′ ⋆ E ∈ Val) x := E (Q)

lookup
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x = E1[E ′/x] ⋆ E[E ′/x] 7→ E1[E ′/x]
Γ ⊢ (x = E ′ ⋆ E 7→ E1) x := [E] (Q)

mutate
Q ≜ E1 7→ E2 ⋆ E ∈ Val

Γ ⊢ (E1 7→ E ⋆ E2 ∈ Val) [E1] := E2 (Q)

new
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆� 0≤i<E[E′/x]((x + i) 7→ null)
Γ ⊢ (x = E ′ ⋆ E ∈ N) x := new(E) (ok : Q)

error
Eerr ≜ [“Error”, E]

Γ ⊢ (E ∈ Val) error(E) (err : err = Eerr)

free
Q ≜ E ′ ∈ Val ⋆ E 7→ ∅

Γ ⊢ (E 7→ E ′) free(E) (ok : Q)

lookup-err-val
P ≜ x = E ′ ⋆ E /∈ Val

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (P) x := [E] (err : Q∗

err)

lookup-err-use-after-free
P ≜ x = E ′ ⋆ E 7→ ∅

Eerr ≜ [“UseAfterFree”, str(E), E]
Γ ⊢ (P) x := [E] (err : Q∗

err)

if-then
C ≜ if (E) C1 else C2

Γ ⊢ (P ⋆ E) C1 (Q)
Γ ⊢ (P ⋆ E) C (Q)

if-else
C ≜ if (E) C1 else C2
Γ ⊢ (P ⋆ ¬E) C2 (Q)
Γ ⊢ (P ⋆ ¬E) C (Q)

if-err-val
C ≜ if (E) C1 else C2

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (P ⋆ E /∈ Val) C (err : Q∗

err)

seq
Γ ⊢ (P) C1 (ok : R) (err : Q1

err)
Γ ⊢ (R) C2 (ok : Qok) (err : Q2

err)
Γ ⊢ (P) C1; C2 (ok : Qok) (err : Q1

err ∨ Q2
err)

while
∀i ∈ N. |= Pi ⇒ E ∈ B ⋆ True

∀i ∈ N. Γ ⊢ (Pi ⋆ E) C (ok : Pi+1) (err : Qi)
Γ ⊢ (P0) while (E) C (ok : ¬E ⋆ ∃i. Pi) (err : ∃i. Qi)

equiv
Γ ⊢ (P ′) C (ok : Q′

ok) (err : Q′
err)

|= P ′, Q′
ok , Q′

err ⇔ P, Qok , Qerr

Γ ⊢ (P) C (ok : Qok) (err : Qerr)

frame
mod(C) ∩ fv(R) = ∅

Γ ⊢ (P) C (ok : Qok) (err : Qerr)
Γ ⊢ (P ⋆ R) C (ok : Qok ⋆ R) (err : Qerr ⋆ R)

exists
Γ ⊢ (P) C (ok : Qok) (err : Qerr)

Γ ⊢ (∃x. P) C (ok : ∃x. Qok) (err : ∃x. Qerr)

disj
Γ ⊢ (P1) C (ok : Q1

ok) (err : Q1
err)

Γ ⊢ (P2) C (ok : Q2
ok) (err : Q2

err)
Γ ⊢ (P1 ∨ P2) C (ok : Q1

ok ∨ Q2
ok) (err : Q1

err ∨ Q2
err)

Figure 3 ESL proof rules (excerpt), with Q∗
err = (pre ⋆ err = Eerr).

The structural rules are not surprising, with equivalence replacing the forward/backward
consequence of OX/UX reasoning and with frame, existential introduction, and disjunction
affecting both post-conditions. Disjunction allows us to derive the standard SL if rule, which
captures both branches at the same time. Note that there, however, is no sound conjunction
rule, as the conjunction rules of SL and ISL cannot be combined in ESL, since conjunction
does not distribute over the star in both directions, breaking frame preservation.

Function Call. We discuss the ESL function-call rule in detail, creating it starting from the
standard OX-sound SL rule, adapted for quadruples:{

x⃗ = x⃗ ⋆ P
}

f (⃗x)
{

ok : Qok
} {

err : Qerr
}

∈ Γ y ̸∈ pv(Ey)

Γ ⊢
{

y = Ey ⋆ E⃗ = x⃗ ⋆ P
}

y := f(E⃗)
{

ok : Qok [y/ret]
} {

err : y = Ey ⋆ Qerr
}

In order to make this rule UX-sound, we only have to ensure that no information from the
pre-condition is lost in the post-conditions. In particular, we have to remember:

ECOOP 2023

19:14 Exact Separation Logic

that the evaluation of Ey does not fault, captured by Ey ∈ Val and needed in the success
post-condition only, as it is already implied by the error post-condition; and
that E⃗ = x⃗ holds (with the substitution [Ey/y] needed in the success post-condition as
the value of y may change if the function call succeeds);

bringing us to the ESL function call rule:(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
∈ Γ y ̸∈ pv(Ey)

Q′
ok ≜ Ey ∈ Val ⋆ E⃗[Ey/y] = x⃗ ⋆ Qok [y/ret] Q′

err ≜ y = Ey ⋆ E⃗ = x⃗ ⋆ Qerr

Γ ⊢
(

y = Ey ⋆ E⃗ = x⃗ ⋆ P
)

y := f(E⃗)
(
ok : Q′

ok
) (

err : Q′
err

)
Environment Formation. Whereas the ESL function-call rule does not deviate substan-
tially from its OX counterpart, the environment formation rules illustrate the difference in
complexity between OX and UX function compositionality. These rules use the judgement
⊢ (γ, Γ) to state that the environment (γ, Γ) is well-formed. The base case, ⊢ (∅, ∅), is trivial
and the same as for SL, stating that the environment consisting of an empty implementation
context and an empty specification context is well-formed. For illustrative purposes, we give
a simplified version of the extension rule, extending the environment with a single, possibly
recursive, function. The full rule, which extends the environment with a group of mutually
recursive functions, is given in [24]. We start from the corresponding OX-sound rule from SL:

env-extend-sl
⊢ (γ, Γ) f ̸∈ dom(γ) γ′ = γ[f 7→ (⃗x, C, E)] Γ′ = Γ[f 7→ {t}] ∃t′ ∈ Intγ′,f (t). Γ′ ⊢ C : t′

⊢ (γ′, Γ′)

which states that a well-formed environment (γ, Γ) can be extended with a given function f

and its external specification t to (γ′, Γ′) if some corresponding internal specification of f can
be proven for the body of f under the extended specification context Γ′.2 Note that using Γ′

means that a specification can be used to prove itself, which is sound in SL but unsound
in ISL: specifically, it would allow us to prove UX-invalid specifications of non-terminating
functions. For example, we would be able to prove that the function f() { r := f(); return r }
satisfies the EX-valid specification (emp) f() (False), but also the EX-invalid specification
(emp) f() (ret = 42). The latter is vacuously OX-valid as there are no terminating executions,
but when considered from the UX viewpoint, it implies the existence of an execution path
from the pre- to the post-condition, contradicting the non-termination of f.

Therefore, to be soundly usable in UX reasoning, specifications with satisfiable post-
conditions (onward: terminating specifications) must come with a mechanism that disallows
the above counter-example. We achieve this by following a standard approach for reasoning
about termination [7,9], based on decreasing measures on well-ordered sets. In particular,
we require the terminating specification to be proven, t ≜

(
P

) (
ok : Qok

) (
err : Qerr

)
to be

extended with a measure α ∈ N, denoting this extension by t(α):3

t(α) ≜
(
P ⋆ α = Eµ

) (
ok : Qok ⋆ α = Eµ

) (
err : Qerr ⋆ α = Eµ

)
where Eµ is a logical expression describing how the measure is computed. Then, we prove that
t(α) holds for every specific α, assuming that recursive calls to f can only use the terminating

2 Internalisation is normally omitted in SL as forward consequence allows information about program
variables to be lost, making internal and external post-conditions of SL specifications almost the same.

3 We can extend the measure beyond natural numbers to computable ordinals, O ≜ ωCK
1 , allowing us to

reason about a broader set of functions, such as those with non-deterministic nested recursion (cf. [24]).

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:15

specifications t(β) of a measure β strictly smaller than α. This restriction is standard and, if
the proof succeeds, ensures that f has at least one terminating execution. Also, it disallows
the above-mentioned counter-example, as no measure given in the pre-condition would be
able to decrease before the recursive call. Importantly, the measure is only a tool required
for proving specification validity and once this proof has been completed, the specification
without the measure is added to Γ and can be used in proofs of client code.

In addition, we incorporate reasoning about non-terminating specifications (NT-specifica-
tions). This is relevant in situations in which the operational semantics of the analysed lan-
guage is complete, which allows non-termination to be captured using the post-condition False.
As NT-specifications are vacuously UX-sound, our focus is on ensuring their OX-soundness,
which we do by again imposing a measure α, but allowing recursive calls for a measure β

smaller or equal than α, that is, for an NT-specification to be used to prove itself. This, for
example, allows for a proof of the specification (emp) f() { r := f(); return r } (False) by
choosing a constant measure α. The ESL environment extension rule, therefore, is as follows:

env-extend
// Assume valid environment, extend implementation context with new function f

⊢ (γ, Γ) f ̸∈ dom(γ) γ′ = γ[f 7→ (⃗x, C, E)]
// Extend the specifications of f with a measure α

t ≜
(
P

) (
ok : Qok

) (
err : Qerr

)
t∞ ≜

(
P∞

) (
False

)
t∞(α) ≜

(
P∞ ⋆ α = Eµ

) (
False

)
t(α) ≜

(
P ⋆ α = Eµ

) (
ok : Qok ⋆ α = Eµ

) (
err : Qerr ⋆ α = Eµ

)
// Construct Γ(α): assume t for measure β < α and t∞ for measure β ≤ α

Γ(α) = Γ[f 7→ {t(β) | β < α} ∪ {t∞ | β ≤ α}]
// For every α, prove internal specifications of f corresponding to t and t∞
∀α. ∃t′ ∈ Intγ′,f

(
t(α)

)
. Γ(α) ⊢ C : t′ ∀α. ∃t′ ∈ Intγ′,f (t∞(α)). Γ(α) ⊢ C : t′

// Extend Γ with t and t∞
Γ′ := Γ[f 7→ {t, t∞}]

⊢ (γ′, Γ′)

4.4 Soundness
We state the soundness results for ESL and give intuition about the proofs; the full proofs
can be found in [24].

▶ Theorem 17. Any derivable specification is valid: Γ ⊢ (P) C (Q) =⇒ Γ |= (P) C (Q).

Proof. By induction on Γ ⊢ (P) C (Q). Most cases are straightforward; the [fun-call] rule
obtains a valid specification for the function body from the validity of the environment. ◀

▶ Theorem 18. Any well-formed environment is valid: ⊢ (γ, Γ) =⇒ |= (γ, Γ).

Proof. At the core of the proof is a lemma stating that |= (γ, Γ) =⇒ (∀α. |= (γ′, Γ(α))),
where γ′ and Γ(α) have been obtained from γ and Γ as per [env-extend]. Using this lemma,
we derive the desired |= (γ′, Γ′), where Γ′ is obtained from Γ and Γ(α) as per [env-extend].
The proof of this lemma is done by transfinite induction on α and has the standard zero,
successor, and limit ordinal cases. We outline the proof for the case in which a single, possibly
recursive, function f with body Cf is added; the generalisation to n mutually recursive
functions is straightforward and can be seen in [24].

ECOOP 2023

19:16 Exact Separation Logic

In all three cases, the soundness of all specifications except the NT-specification with
the highest considered ordinal follows from the inductive hypothesis. This remaining NT-
specification is vacuously UX-valid, meaning that we only need to prove its OX-validity.
For this, we use a form of fixpoint induction called Scott induction (see, e.g., Winskel [31]),
required when specifications can be used to prove themselves (e.g. any SL specification).

We set up the Scott induction by extending the set of commands with two pseudo-
commands, scope and choice, with the former modelling the function call but allowing
arbitrary commands to be executed in place of the function body, and the latter denoting
non-deterministic choice. We then construct the greatest-fixpoint closure of these extended
commands, denoted by C, whose elements may contain infinite applications of the command
constructors. We define a behavioural equivalence relation ≃γ′ on C and denote by Cγ′ the
obtained quotient space. This relation induces a partial order ⊑γ′ , and a join operator that
coincides with choice, and we show that (Cγ′ , ⊑γ′) is a domain.

We next define Sα as the set of all equivalence classes that hold an element that, for
every specification in (Γ(α))(f), OX-satisfies at least one of its internal specifications, and
show that Sα is an admissible subset of Cγ′ , that is, that it contains the least element of Cγ′

(represented, for example, by the infinite loop while (true) { skip }) and is chain-closed.
We then define the function h(C) ≜ Cf [C, γ′, f], which replaces all function calls to

f in Cf with C using the scope command, and the function g as the lifting of h to Cγ′ :
g([C]) := [h(C)]. We next prove that g is continuous (that is, monotonic and supremum-
preserving) and that g(Sα) ⊆ Sα, from which we can apply the Scott induction principle,
together with a well-known identity of the least-fixpoint, which implies that Cf ∈ lfp(g), to
obtain that [Cf] ∈ Sα. From there, we are finally able to prove that |= (γ′, Γ(α)). ◀

These two theorems, to the best of our knowledge, are the first to demonstrate sound
function compositionality for UX logics. Previous work on UX logics [25,28,29] used function
specifications in examples but did not include rules in the logic for calling functions and
managing a function specification environment. Program logics that do not include function
rules and function specification environments in effect delegate soundness responsibilities to
the meta-logic within which they are embedded. This might be appropriate in some contexts,
such as in interactive theorem provers, whose meta-logic is reliable. Charguéraud’s clean-slate
tutorial SL implementation in Coq [6], for example, does not provide either function call
rules or program-logic-level infrastructure for a function specification environment; instead,
it relies on Coq’s induction mechanism and definitional mechanism to use and store function
specifications. However, when implementing an SL/ISL/ESL-based tool in a mainstream
non-ITP language, such as C++ or OCaml, no reliable meta-logic that can act as a safety
net is available. This is particularly concerning for UX logics, which require complex rules for
handling functions, including forgetting information about function-local mutable variables.
In ESL, the handling of functions is fully internalised into the logic, no meta-logic facilities
are required to handle function calls, and the program-logic-level facilities of ESL for handling
functions are validated by the soundness proof.

The proof of Theorem 18 can be adjusted for ISL: the function call rule would remain the
same, and [env-extend] would not include NT-specifications, removing the need for Scott
induction. On the other hand, the Scott induction itself could be easily adapted for SL.

5 Examples: ESL in Practice

We demonstrate how to use ESL to specify and verify correctness and incorrectness properties
of data-structure algorithms, focussing on singly-linked lists and binary search trees.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:17

We investigate, for the first time, the use of abstract predicates in a UX program
logic, decoupling abstraction from over-approximation. Our findings show that UX/EX
specifications can soundly incorporate abstraction, but also that it, ultimately, cannot be used
as freely as in the OX setting. Firstly, since UX reasoning cannot lose information, not all
algorithms can be UX-specified at all levels of abstraction, and hence sometimes specifications
have to be less abstract than in OX reasoning. Secondly, because specifications are only
composable when expressed at the same level of abstraction, specifications of a library client
have to be written at the “least common level of abstraction” of the specifications of all of
the library functions that the client calls.

Building on §2, we give further intuition on how to think informally about UX/EX
specifications using a number of list algorithms and predicates describing lists with various
degrees of abstraction (§5.1, §5.2), more detail on how to write formal ESL proofs (§5.3),
and examples of ESL reasoning for binary-search-tree algorithms (§5.4).

5.1 List Predicates
We implement singly-linked lists in the standard way: every list consists of two contiguous
cells in the heap (denoted x 7→ a, b, meaning x 7→ a ⋆ x + 1 7→ b), with the first holding the
value of the node, the second holding a pointer to the next node in the list, and the list
terminating with a null pointer. To capture lists in ESL, we use a number of list predicates:

list(x) ≜ (x = null) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′))
list(x, n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1))

list(x, vs) ≜ (x = null ⋆ vs = []) ∨ (∃v, x′, vs′. x 7→ v, x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)
list(x, xs) ≜ (x = null ⋆ xs = []) ∨ (∃v, x′, xs′. x 7→ v, x′ ⋆ list(x′, xs′) ⋆ xs = x : xs′)

list(x, xs, vs) ≜ (x = null ⋆ xs = [] ⋆ vs = []) ∨
(∃v, x′, xs′, vs′. x 7→ v, x′ ⋆ list(x′, xs′, vs′) ⋆ xs = x : xs′ ⋆ vs = v : vs′)

These predicates expose different parts of the list structure in their parameters, hiding the rest
via existential quantification: the list(x) predicate hides all information about the represented
mathematical list, just declaring that there is a singly-linked list at address x; the list(x, n)
predicate hides the internal node addresses and values, exposing the list length via the
parameter n; the list(x, xs) predicate hides information about the values of the mathematical
list, exposing the internal addresses of the list via the parameter xs; the list(x, vs) predicate
hides information about the internal addresses, exposing the list’s values via the parameter vs;
and the list predicate list(x, xs, vs) hides nothing, exposing the entire node-value structure via
the parameters xs and vs. These predicates are related to each other via logical equivalence;
for example, it holds that:

|= list(x) ⇔ ∃n. list(x, n) |= list(x) ⇔ ∃vs. list(x, vs)
|= list(x) ⇔ ∃xs, vs. list(x, xs, vs) |= list(x, n) ⇔ ∃vs. list(x, vs) ⋆ |vs| = n

5.2 Writing UX/EX Abstract Specifications
We consider a number of list algorithms, described in words, and guide the reader on how to
write correct UX/EX specifications for these algorithms using the list abstractions given in
the previous section (§5.1), comparing how the UX/EX approach and specifications differ
from their OX counterparts. We provide detailed proofs and implementations for each type
of algorithm (iterative/recursive, allocating/deallocating, pure/mutative, etc.) in [24].

ECOOP 2023

19:18 Exact Separation Logic

An important point is to understand how to look for counter-examples to a given
specification: from the definition of OX validity, it follows that breaking OX reasoning
amounts to “finding a state in the pre-condition (pre-model) for which the execution of f

terminates and does not end in a state in the post-condition”; from the definition of UX
validity, breaking UX reasoning means “finding a model of the post-condition (post-model)
not reachable by execution of f from any state in the pre-condition”; and from the definition
of EX validity, it follows that breaking EX reasoning means breaking either OX or UX
reasoning. In addition, it is useful to remember that, for breaking UX validity, it is sufficient
to find information known in the pre-condition but lost in the post-condition.

Length. We first revisit the list-length function LLen(x), which takes a list at address x,
does not modify it, and returns its length. In §2, we have shown that it satisfies the exact
specification (x = x ⋆ list(x, n)) LLen(x) (list(x, n) ⋆ ret = n) and observed that

(O1) abstraction does not always equal over-approximation.

Using similar reasoning, we can come to the conclusion that the following, less abstract
specifications for LLen(x) are also EX-valid:

(x = x ⋆ list(x, vs)) LLen(x) (list(x, vs) ⋆ ret = |vs|)
(x = x ⋆ list(x, xs, vs)) LLen(x) (list(x, xs, vs) ⋆ ret = |xs|)

On the other hand, if we consider the following OX-valid specification:{
x = x ⋆ list(x)

}
LLen(x)

{
∃n ∈ N. list(x) ⋆ ret = n

}
we see that it is not UX-valid as the post-condition does not connect the return value to the
list. In particular, if we choose a post-model for list(x) that has length 2, but then choose,
for example, ret = 42, we run into a problem: as the algorithm does not modify the list, we
have to choose the same model of list(x) for the pre-model to have a chance of reaching the
post-model, but then the algorithm will return 2, not 42, meaning that this specification is
indeed not UX/EX-valid. From this discussion, we observe that:

(O2) in valid UX/EX specifications, data-structure abstractions used in a post-condition
must expose enough information to capture the behaviour of the function being specified

with respect to the information given in the pre-condition.

Note that, given a specification less abstract than strictly needed, one can obtain more
abstract ones by using validity-preserving transformations on specifications that correspond
to the structural rules of the logic. We refer to these as admissible transformations, give the
ones for existential introduction and equivalence below, and the rest in [24]:

adm-exists
Γ |=

(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
y /∈ x⃗

Γ |=
(⃗
x = x⃗ ⋆ ∃y. P

)
f (⃗x)

(
ok : ∃y. Qok

) (
err : err : ∃y. Qerr

)
adm-equiv

Γ |=
(⃗
x = x⃗ ⋆ P ′) f (⃗x)

(
ok : Q′

ok
) (

err : Q′
err

)
|= P ′, Q′

ok , Q′
err ⇔ P, Qok , Qerr

Γ |=
(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
For list-length, starting from the least abstract specification using list(x, xs, vs), we can

derive, for example, the specification using list(x, n), as follows:

(x = x ⋆ list(x, xs, vs)) LLen(x) (list(x, xs, vs) ⋆ ret = |xs|)
[adm-exists] (∃vs. x = x ⋆ list(x, xs, vs)) LLen(x) (∃vs. list(x, xs, vs) ⋆ ret = |xs|)
[adm-exists] (∃xs, vs. x = x ⋆ list(x, xs, vs)) LLen(x) (∃xs, vs. list(x, xs, vs) ⋆ ret = |xs|)
[adm-equiv] (x = x ⋆ list(x, n)) LLen(x) (list(x, n) ⋆ ret = n)

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:19

Interestingly, from one more application of [adm-exists] and [adm-equiv], we can derive

(x = x ⋆ list(x)) LLen(x) (∃n. list(x, n) ⋆ ret = n)

which further illustrates observation (O2), in that even though the pre-condition does not
talk about the length of the list, the post-condition has to expose it because the function
output depends on it, and hence the post-condition must connect up the return value to the
length of the list, here by an existentially quantified variable.

This approach of deriving abstract specifications can be used in general for working with
ESL: for a given algorithm, first prove the least abstract specification, which exposes all
details, and then adjust the degree of abstraction to fit the needs of the client code. We
discuss this further in the upcoming paragraph on reasoning about client programs.

Membership. Next, we consider the list-membership function LMem(x, v), which takes a list
at address x, does not modify it, and returns true if v is in the list, and false otherwise. Given
(O2) and the fact that the function output depends on the values in the list, we understand
that, for its UX/EX specification, we should be using a list abstraction that exposes at least
the values, that is, list(x, vs) or list(x, xs, vs). The corresponding specifications are:

(x = x ⋆ v = v ⋆ list(x, vs)) LMem(x, v) (list(x, vs) ⋆ ret = (v ∈ vs))
(x = x ⋆ v = v ⋆ list(x, xs, vs)) LMem(x, v) (list(x, xs, vs) ⋆ ret = (v ∈ vs))

and are proven similarly to list-length. We can check that a more abstract specification, say:{
x = x ⋆ v = v ⋆ list(x)

}
LMem(x, v)

{
∃b ∈ B. list(x) ⋆ ret = b

}
is not UX-valid, by choosing, as the post-model, b to be false and the list at x to contain v.
As for list-length, since list-membership does not modify the list, we have to choose the same
model of list(x) for the pre-model to have a chance of reaching the post-model, but then the
algorithm will return true, not false, so this post-model is not reachable.

Swap-First-Two. Next, we consider the list-swap-first-two function LSwapFirstTwo(x),
which takes a list at address x, swaps its first two values if the list is of sufficient length,
returning null, and throws an error otherwise without modifying the list. Given (O2), to
specify this function we need an abstraction that captures list length and, apparently, also the
list values; for example, list(x, vs). As this function can throw errors, its full EX specification
has to use the ESL quadruple, in which the two post-conditions are constrained with the
corresponding, shaded, branching conditions:

(x = x ⋆ list(x, vs))
LSwapFirstTwo(x, v)

(ok : ∃v1, v2, vs′. vs = v1 : v2 : vs′ ⋆ list(x, v2 : v1 : vs′) ⋆ ret = null)
(err : list(x, vs) ⋆ |vs| < 2 ⋆ err = “List too short!”)

observing that the success post-condition, given the used abstraction, has to not only state
that the length of the list is not less than two, but also how the values are manipulated, and
also that the error message is chosen for illustrative purposes.

However, note that the swapped values are not featured in the function output, but instead
remain contained within the predicate. This indicates that a more abstract specification:

(x = x ⋆ list(x, n))
LSwapFirstTwo(x, v)

(ok : list(x, n) ⋆ n ≥ 2 ⋆ ret = null) (err : list(x, n) ⋆ n < 2 ⋆ err = “List too short!”)

ECOOP 2023

19:20 Exact Separation Logic

which only reveals the list length, might be EX-valid, and indeed it is. Any list we choose in
the error post-model will have length less than two, and can then be used in the pre-model to
reach the post-model. On the other hand, whichever list we choose in the success post-model
will have length at least two, that is, its values will be of the form v1 : v2 : vs and it will have
some addresses, and then we can choose a list with the same addresses and values v2 : v1 : vs
in the pre-model and we will reach the post-model by executing the function.

Pointer-Reverse. Let us now examine the list-pointer-reverse function, LPRev(x), which
takes a list at address x and reverses it by reversing the direction of the next-pointers, returning
the head of the reversed list. Given (O2) and the fact that the algorithm manipulates pointers
and returns an address, but the actual values in the list are not exposed, we will try to use
the address-only list(x, xs) predicate to specify this function as in the following OX triple,
where xs† denotes the reverse of the mathematical list xs:{

x = x ⋆ list(x, xs)
}

LPRev(x)
{

list(ret, xs†)
}

which would seem to be UX-valid given our OX experience and previous examples, but
is not. In particular, it has no information about the logical variable x, which exists only
in the pre-condition. This is not an issue in OX reasoning, but in UX reasoning it would
mean that there exists a logical environment that interprets the post-condition but not the
pre-condition, and such a specification, by the definition, could never be UX-valid.

To understand which specific information about x is required, we first add the general
x ∈ Val, making the post-condition list(ret, xs†) ⋆ x ∈ Val, and then try to choose a post-
model by picking values for ret, xs, and x. Note that, given the definition of list(x, xs), we
cannot just pick any non-correlated values for ret and xs: in particular, either xs is an empty
list and ret is null, or xs is non-empty and ret is its last element. This observation, in fact,
reveals the information needed about x: either x is null and xs is empty, or xs is non-empty
and x is its first element. We capture this information using the listHead(x, xs) predicate:

listHead(x, xs) ≜ (xs = [] ⋆ x = null) ∨ (∃xs′. xs = x : xs′)

and arrive at the desired EX specification of the list-pointer-reverse algorithm:

(x = x ⋆ list(x, xs)) LPRev(x) (list(ret, xs†) ⋆ listHead(x, xs))

Let us make sure that this specification is UX-valid. If we pick a post-model with xs = [],
then x = ret = null and the pre-model with the same x and xs will work, as the list holds
no values. For a post-model with non-empty xs, x must equal the head of xs, ret must equal
the tail of xs, and we also have to pick some arbitrary values vs, with |vs| = |xs|. Then, given
the described behaviour of the algorithm, we know that this post-model is reachable from a
pre-model which has the list at x with addresses xs and values vs†.

Free. Next, we take a look at the LFree(x) function, which frees a given list at address x. Its
OX specification is

{
x = x ⋆ list(x)

}
LFree(x)

{
ret = null

}
, but it does not transfer to UX

contexts because no resource from the pre-condition can be forgotten in the post-condition
as that would break the UX frame property [28]. Instead, we have to keep track of the
addresses to be freed, which we can do using the list(x, xs) predicate (or list(x, xs, vs)), and
we also have to explicitly state in the post-condition that these addresses have been freed:

(x = x ⋆ list(x, xs)) LFree(x) (freed(xs) ⋆ listHead(x, xs) ⋆ ret = null)

using the freed(xs) predicate, which is defined as follows:

freed(xs) ≜ (xs = []) ∨ (∃x, xs′. xs = x : xs′ ⋆ x 7→ ∅,∅ ⋆ freed(xs′))

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:21

Client Programs and Specification Composition. We discuss the usability of ESL specific-
ations in general and abstraction in particular in the context of client programs that call
multiple library functions. Consider the following (slightly contrived) client program, which
takes a list and: pointer-reverses it if its length is between 5 and 10; frees it and then throws
an error if its length is smaller than 5; and does not terminate otherwise:

LClient(x) {
l := LLen(x);
if (l < 5)

{ r := LFree(x); error(“List too short!”) } else
{ if (l > 10) { while (true) { skip } } else { r := LPRev(l) } };

return r
}

Our first goal is to understand which is the most abstract list predicate that could be used
for reasoning about this client, since we want to minimise the amount of details we need to
carry along in the proof, noting that the least abstract one, list(x, xs, vs), will always work.
Observe that, importantly, only specifications expressed at the same abstraction level are
composable with each other, because they must be composed using equivalence. We explore
this in more detail in the subsequent formal discussion (see, in particular, observation (O5)).

When it comes to LClient(x), for list-length, we need information about the list length,
meaning that we can use either list(x, n), list(x, xs), or list(x, vs), but not list(x). For list-free,
we must have information about the addresses, meaning that list(x, n) and list(x, vs) will not
work, leaving us with list(x, xs), which is also usable for list-pointer-reverse. Therefore, we
can write the specification of this client using the list(x, xs) predicate, as follows:

(x = x ⋆ list(x, xs))
LClient(x)

(ok : 5 ≤ |xs| ≤ 10 ⋆ list(ret, xs†) ⋆ listHead(x, xs))
(err : |xs| < 5 ⋆ freed(xs) ⋆ listHead(x, xs) ⋆ err = “List too short!”)

In general, however, it is sufficient for a client to call one function that works with addresses
and another that works with values for the only applicable predicate to be list(x, xs, vs),
which is still abstract in the sense that it allows for unbounded reasoning about lists, but
does not hide any of its internal information. This leads us to the following observation:

(O3) specifications that use predicates which hide data-structure information,
albeit provable, may have limited use in UX client reasoning.

As a final remark on abstraction, note that we have only considered predicates that expose
the data-structure sub-parts (for lists, these sub-parts are values vs and addresses xs) either
entirely or not at all. It would be also possible to expose some of this structure for some of the
algorithms, but because of (O3), specifications using such abstractions are only composable
with specifications exposing the same partial structure, and hence likely to be of limited use.

Non-termination. We conclude our discussion on specifications with two remarks on EX
reasoning about non-terminating behaviour. First, consider the non-terminating branch of the
LClient function, which is triggered when |xs| > 10. Observe that this branch is implicit in
the client specification, in that it is subsumed by the success post-condition (since |= P ∨(|xs|>
10 ⋆ False) ⇔ P). However, to demonstrate that it exists, we can constrain the pre-condition
appropriately to prove the specification (x = x ⋆ list(x, xs) ⋆ |xs| > 10) LClient(x) (False).
This implicit loss of non-terminating branches can be characterised informally as follows:

ECOOP 2023

19:22 Exact Separation Logic

(O4) if the post-conditions do not cover all paths allowed by the pre-condition,
then the “gap” is non-terminating.

In this case, the pre-condition implies |xs| ∈ N and the post-conditions cover the cases where
|xs| ≤ 10, leaving the gap when |xs| > 10, for which we provably have client non-termination.

Second, we observe that, in contrast to terminating behaviour, for non-terminating
behaviour EX is as expressive as OX; that is, the EX triple (P) C (False) is equivalent to the
OX triple

{
P

}
C

{
False

}
as the UX triple

[
P

]
C

[
False

]
is vacuously true. This is not to say

that all non-terminating behaviour can be captured by ESL specifications. For example, as
in OX, if the code branches on a value that does not come from the pre-condition, and if one
of the resulting branches does not terminate, and if the code can also terminate successfully,
then the non-terminating branch will be implicit in the pre-condition, but no gap in the
sense of (O4) will be present. This is illustrated by the code and specification below, where
the pre- and the post-condition are the same, but a non-terminating path still exists:

(x = 0) x := nondet; if (x > 42) { while (true) {skip} } else { x := 0 } (x = 0)

5.3 More ESL Proofs: Iterative list-length
In §2, we have shown a proof sketch for a recursive implementation of the list-length algorithm,
demonstrating how to handle the measure for recursive function calls; how the folding of
predicates works in the presence of equivalence; and how to move between external and
internal specifications. We highlight again the UX-specific issue that we raised and that is
related to predicate folding, which can be formulated generally as follows:

(O5) if the code accesses data-structure information that the used predicate hides, then that
predicate might not be foldable in a UX-proof in all of the places in which

it would be foldable in the corresponding OX-proof.

Here, we show how to write ESL proofs for looping code, using as example an iterative
implementation of the list-length algorithm. Proofs for the majority of the other algorithms
mentioned in §5.2 can be found in [24]; the rest are similar.

Iterative list-length in ESL: Proof Sketch. In Figure 4, we give an iterative implementation
of the list-length algorithm and show that it satisfies the same ESL specification as its
recursive counterpart, (x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n). Since there is
no recursion, we elide the (trivial) measure. To state the loop variant, we use the list-segment
predicate, defined as follows:

lseg(x, y, n) ≜ (x = y ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ lseg(x′, y, n − 1))

and to apply the [while] rule, we define:

Pi ≜ ∃j. lseg(x, x, i) ⋆ list(x, j) ⋆ n = i + j ⋆ r = i

Note that we could have chosen to elide i from the body of Pi in this simple example, but
since this is not necessarily possible or evident in general as well as for instructive purposes,
we chose to keep it in the proof. Note how, on exiting the loop, the negation of the loop
condition collapses the existentials i and j. This allows us to obtain the given internal
post-condition, from which we then easily move to the desired external post-condition. For
this proof, we also use three equivalence lemmas, which state that a non-empty list segment
can be separated into its last element and the rest, that the length of an empty list equals
zero, and that a null-terminated list-segment is a list.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:23

Γ ⊢ (x = x ⋆ list(x, n))
LLen(x) {

(x = x ⋆ list(x, n) ⋆ r = null)
r := 0
(x = x ⋆ list(x, n) ⋆ r = 0)
(P0)
while (x ̸= null) {

(Pi ⋆ x ̸= null)(
∃j, v, x′. lseg(x, x, i) ⋆ x 7→ v, x′ ⋆ list(x′, j − 1) ⋆ n = i + j ⋆ r = i

)
x := [x + 1];(

∃j, v, x′. lseg(x, x′, i) ⋆ x′ 7→ v, x ⋆ list(x, j) ⋆ n = i + (j + 1) ⋆ r = i
)

// equivalence: |= lseg(x, y, n + 1) ⇔ ∃x′, v. lseg(x, x′, n) ⋆ x′ 7→ v, y]](
∃j. lseg(x, x, i + 1) ⋆ list(x, j) ⋆ n = (i + 1) + j ⋆ r = i

)
r := r + 1
(Pi+1)

}(
x = null ⋆ ∃i. Pi

)(
∃i, j. lseg(x, x, i) ⋆ list(x, j) ⋆ n = i + j ⋆ r = i ⋆ x = null

)(
lseg(x, null, n) ⋆ r = n ⋆ x = null

)
// equivalence: |= list(null, j) ⇔ j = 0(

list(x, n) ⋆ r = n ⋆ x = null
)

// equivalence: |= lseg(x, null, n) ⇔ list(x, n)
return r
(list(x, n) ⋆ r = n ⋆ x = null ⋆ ret = r)
(∃xq, rq. list(x, n) ⋆ rq = n ⋆ xq = null ⋆ ret = rq)
(list(x, n) ⋆ ret = n)

}
(list(x, n) ⋆ ret = n)

Figure 4 ESL proof sketch: iterative list-length.

5.4 Beyond List Examples: Binary Search Trees

While list algorithms illustrate many aspects of exact reasoning, it is also important to
understand how ESL specification and verification works with other data structures. For
this reason, we discuss two algorithms operating over binary search trees (BSTs) that are
intended to represent sets of natural numbers. We use two abstractions for BSTs, one in
which only their values are considered as a mathematical set:

BST(x, K) ≜ (x = null ⋆ K = ∅) ∨ (∃k, l, r, Kl, Kr. x 7→ k, l, r ⋆ BST(r, Kr) ⋆ BST(l, Kl) ⋆

K = Kl ⊎ {k} ⊎ Kr ⋆ Kl < k ⋆ k < Kr)

and another that fully exposes the BST structure:

BST(x, τ) ≜ (x = null ⋆ τ = τ∅) ∨ (∃k, l, r, τl, τr. E 7→ k, l, r ⋆ BST(r, τr) ⋆ BST(l, τl) ⋆

τ = ((x, k), τl, τr) ⋆ τl < k ⋆ k < τr)

where τ is a mathematical tree, that is, an algebraic data type with two constructors
representing, respectively, an empty tree and a root node with two child trees: τ ∈ Tree ≜
τ∅ | ((x, n), τl, τr), where the notation (x, n) represents a BST node with address x and
value n. Note the overloaded < notation, where one of the operands can be a set or a tree,
which carry the intuitive meaning.

ECOOP 2023

19:24 Exact Separation Logic

BST algorithms. We first consider the BST-find-minimum algorithm, BSTFindMin(x), which
takes a tree with root at x, does not modify it, and returns its minimum element or throws
an empty-tree error. Since that algorithm operates only on the values in the tree, we are
able to state its ESL specification using the BST(x, K) predicate as follows:

(x = x ⋆ BST(x, K)) BSTFindMin(x) (ok: x ̸= null ⋆ BST(x, K) ⋆ ret = min(K))
(err : x = null ⋆ BST(x, K) ⋆ err = “Empty tree!”)

We have also considered the BST-insert algorithm, BSTInsert(x, v), which takes a tree with
root at x and inserts a new node with value v into it as a leaf if v is not already in the tree, or
leaves the tree unmodified if it is. As this algorithm interacts both with values and addresses
in the tree, the appropriate abstraction for it is BST(x, τ), and its ESL specification is:

(x = x ⋆ v = v ⋆ BST(x, τ))
BSTInsert(x, v)

(∃x′. BST(ret, BSTInsert(τ, (x′, v))) ⋆ BSTRoot(x, τ))

where BSTInsert(τ, ν) is the mathematical algorithm that inserts the node ν into the tree τ :

BSTInsert(τ∅, (x′, v)) ≜ BSTInsert(((x, k), τl, τr), (x′, v)) ≜
((x′, v), τ∅, τ∅) if v < k then ((x, k), BSTInsert(τl, (x′, v)), τr)

else if k < v then ((x, k), τl, BSTInsert(τr, (x′, v)))
else((x, k), τl, τr)

and the predicate BSTRoot(x, τ) is defined analogously to listHead(x, xs):

BSTRoot(x, τ) ≜ (τ = τ∅ ⋆ x = null) ∨ (∃k, τl, τr. τ = ((x, k), τl, τr))

This example shows how in EX verification, just as in OX verification, we end up relating
an imperative heap-manipulating algorithm to its mathematical/functional counterpart
(cf. Appel [3] for a recent reiteration of this idea). The additional work required is that
EX mathematical models must be more detailed: we are, yet again, not allowed to lose
information. In particular, in OX verification we could relate BSTInsert(x, v) to mathematical
sets, but in EX verification we must relate our imperative implementation to tree models,
including both values and pointers. Moreover, our mathematical model of the algorithm,
BSTInsert(τ, (x′, v)), must insert elements in the same way as the imperative implementation,
that is, in this case at the leaves of the tree. The proofs for both algorithms are given in [24].

6 Related Work

In the previous sections, we have placed ESL in the context of related work on OX and UX
logics and associated tools. Here, we discuss formalisms capable of reasoning both about
program correctness and program incorrectness, as well as existing approaches to the use of
function specifications (summaries) and abstraction in symbolic execution.

Program Logics for Both Correctness and Incorrectness. Developed in parallel but
independently of ESL, Outcome Logic (OL) [33], much like ESL, brings together reasoning
about correctness and incorrectness into one logic. Both OL and ESL rely on the traditional
meaning of correctness, but OL introduces a new approach to incorrectness, based on
reachability of sets of states. It has not yet been shown that this approach has the same bug-
finding potential as that of ISL: in particular, bi-abduction has not yet been demonstrated to
be compatible with OL. In addition, the OL work, in contrast to ESL, does not discuss function
compositionality or the interaction between abstraction, reachability, and incorrectness.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:25

LCLA [4, 5] is a non-function-compositional, first-order logic that combines UX and OX
reasoning using abstract interpretation. It is parametric on an abstract domain A, and
proves UX triples of the form ⊢A [P] C [Q] where, under certain conditions, the triple also
guarantees verification. These conditions, however, normally mean that only a limited number
of pre-conditions can be handled. The conditions also have to be checked per-command and
if they fail to hold (due to, e.g., issues with Boolean guards, which are known to be a major
source of incompleteness), then the abstract domain has to be incrementally adjusted; the
complexity of this adjustment and the expressivity of the resulting formalism is unclear.

Compositional Symbolic Execution. There exists a substantial body of work on symbolic
execution with function summaries (e.g. [1, 15–17, 22, 32]), which is primarily based on
first-order logic. We highlight the work of Godefroid et al., which initially used exact
summaries of bounded program behaviour to drive the compositional dynamic test generation
of SMART [15], and later distinguished between may (OX) and must (UX) summaries,
leveraging the interaction between them to design the SMASH tool for compositional
property checking and test generation [16]. SMASH, however, is limited in its ability to
reason about heap-manipulating programs because, for example, it lacks support for pointer
arithmetic. Nevertheless, it shows that interactions between OX and UX summaries can be
exploited for automation, which is an important consideration for any automation of ESL. For
example, SMASH is able to use not-may summaries (which amount to non-reachability) when
constructing must-summaries (which amount to reachability), using the former to restrict
the latter. When it comes to abstraction, for example, Anand et al. [2] implement linked-list
and array abstractions for true bug-finding in non-compositional symbolic execution, in
the context of the Java PathFinder, and use it to find bugs in list and array partitioning
algorithms. True bug-finding is maintained by checking for state subsumption, which requires
code modification rather than annotation and a record of all previously visited states.

7 Conclusions

We have introduced ESL, a program logic for exact reasoning about heap-manipulating
programs. ESL specifications provide a sweet spot between verification and true bug-finding:
as SL specifications, they capture all terminating behaviour, and, as ISL specifications,
they describe only results and errors that are reachable. ESL specifications are therefore
compatible with tools that target OX verification, such as VeriFast [19] and Iris [20], tools
that target UX true bug-finding, such as Pulse [26, 28], and tools capable of targeting both,
such as Gillian [10, 23]. ESL supports reasoning about mutually recursive functions and
comes with a soundness result that immediately transfers to SL and ISL, thus demonstrating,
for the first time, scalable functional compositionality for UX logics.

We have verified exact specifications for a number of illustrative examples, showing that
ESL can reason about data-structure libraries, language errors, mutual recursion, and non-
termination. In doing so, we emphasise the distinction between the often-conflated concepts
of abstraction and over-approximation. We have demonstrated that abstract predicates can
be soundly used in EX and UX reasoning, albeit not as freely as in OX reasoning.

We believe that ESL reasoning, in its intended context of semi-automatic verification of
functional correctness properties, is useful for the verification of self-contained, critical code
that underpins a larger codebase. To demonstrate this, we will in the future incorporate
UX and EX verification inside Gillian [10, 23], which already has support for function
compositionality and semi-automatic predicate management as part of its OX verification.

ECOOP 2023

19:26 Exact Separation Logic

References
1 Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compositional

symbolic execution. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008. doi:10.1007/978-3-540-78800-3_28.

2 Saswat Anand, Corina S. Pasareanu, and Willem Visser. Symbolic execution with abstraction.
International Journal on Software Tools for Technology Transfer, 11(1), 2009. doi:10.1007/
s10009-008-0090-1.

3 Andrew W. Appel. Coq’s vibrant ecosystem for verification engineering. In Conference on
Certified Programs and Proofs (CPP), 2022. doi:10.1145/3497775.3503951.

4 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A logic for locally
complete abstract interpretations. In Symposium on Logic in Computer Science (LICS), 2021.
doi:10.1109/LICS52264.2021.9470608.

5 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A correctness and
incorrectness program logic. Journal of the ACM, 70(2), 2023. doi:10.1145/3582267.

6 Arthur Charguéraud. Separation logic for sequential programs (functional pearl). Proceedings
of the ACM on Programming Languages, 4(ICFP), 2020. doi:10.1145/3408998.

7 Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.
Modular termination verification for non-blocking concurrency. In European Symposium on
Programming (ESOP), 2016. doi:10.1007/978-3-662-49498-1_8.

8 Edsko de Vries and Vasileios Koutavas. Reverse Hoare logic. In Software Engineering and
Formal Methods (SEFM), 2011. doi:10.1007/978-3-642-24690-6_12.

9 Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19, 1967.

10 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,
part I: A multi-language platform for symbolic execution. In Programming Language Design
and Implementation (PLDI), 2020. doi:10.1145/3385412.3386014.

11 José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic execution for JavaScript. In Principles and Practice of Declarative
Programming (PPDP), 2018. doi:10.1145/3236950.3236956.

12 José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa
Gardner. JaVerT: JavaScript verification toolchain. Proceedings of the ACM on Programming
Languages, 2(POPL), 2018. doi:10.1145/3158138.

13 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
Compositional symbolic execution for JavaScript. Proceedings of the ACM on Programming
Languages, 3(POPL), 2019. doi:10.1145/3290379.

14 Philippa Gardner, Sergio Maffeis, and Gareth David Smith. Towards a program logic for
JavaScript. In Principles of Programming Languages (POPL), 2012. doi:10.1145/2103656.
2103663.

15 Patrice Godefroid. Compositional dynamic test generation. In Principles of Programming
Languages (POPL), 2007. doi:10.1145/1190216.1190226.

16 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Compositional
may-must program analysis: Unleashing the power of alternation. In Principles of Programming
Languages (POPL), 2010. doi:10.1145/1706299.1706307.

17 Benjamin Hillery, Eric Mercer, Neha Rungta, and Suzette Person. Exact heap summaries for
symbolic execution. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
2016. doi:10.1007/978-3-662-49122-5_10.

18 C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM (CACM), 12(10), 1969. doi:10.1145/363235.363259.

19 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods Symposium (NFM), 2011. doi:10.1007/978-3-642-20398-5_4.

https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3582267
https://doi.org/10.1145/3408998
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1007/978-3-662-49122-5_10
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-20398-5_4

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:27

20 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In Principles of Programming Languages (POPL), 2015. doi:10.1145/2676726.2676980.

21 Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
Finding real bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages, 6(OOPSLA1), 2022. doi:10.1145/3527325.

22 Yude Lin, Tim Miller, and Harald Sondergaard. Compositional symbolic execution using
fine-grained summaries. In Australasian Software Engineering Conference, 2015. doi:10.1109/
ASWEC.2015.32.

23 Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,
part II: Real-world verification for JavaScript and C. In Computer Aided Verification (CAV),
2021. doi:10.1007/978-3-030-81688-9_38.

24 Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa
Gardner. Exact separation logic (extended version), 2023. arXiv:2208.07200.

25 Toby Murray, Pengbo Yan, and Gidon Ernst. Incremental vulnerability detection with
insecurity separation logic, 2021. arXiv:2107.05225.

26 Peter W. O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages,
4(POPL), 2019. doi:10.1145/3371078.

27 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Computer Science Logic, 2001. doi:10.1007/3-540-44802-0_1.

28 Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard.
Local reasoning about the presence of bugs: Incorrectness separation logic. In Computer Aided
Verification (CAV), 2020. doi:10.1007/978-3-030-53291-8_14.

29 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Concurrent incorrectness
separation logic. Proceedings of the ACM on Programming Languages, 6(POPL), 2022.
doi:10.1145/3498695.

30 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science (LICS), 2002. doi:10.1109/LICS.2002.1029817.

31 Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction, Chapter
10. MIT Press, 1993.

32 Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure
summaries. In Principles of Programming Languages (POPL), 2008. doi:10.1145/1328438.
1328467.

33 Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic: A unifying foundation for
correctness and incorrectness reasoning. Proceedings of the ACM on Programming Languages,
7(OOPSLA1), 2023. doi:10.1145/3586045.

ECOOP 2023

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3527325
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1007/978-3-030-81688-9_38
https://arxiv.org/abs/2208.07200
https://arxiv.org/abs/2107.05225
https://doi.org/10.1145/3371078
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/3586045

	1 Introduction
	2 Exact Separation Logic by Example
	3 The Programming Language
	4 Exact Separation Logic
	4.1 Assertion Language
	4.2 Specifications
	4.3 Program Logic
	4.4 Soundness

	5 Examples: ESL in Practice
	5.1 List Predicates
	5.2 Writing UX/EX Abstract Specifications
	5.3 More ESL Proofs: Iterative list-length
	5.4 Beyond List Examples: Binary Search Trees

	6 Related Work
	7 Conclusions

