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ABSTRACT

We introduce JuS (JavaScript under Scrutiny), a first step
towards a static-analysis tool for JavaScript based on a pro-
gram logic in the style of separation logic. In particular,
we focus on reasoning automatically about the JavaScript
variable store. Because of prototype-based inheritance and
with statements, even reasoning about variables is not triv-
ial in JavaScript. We evaluate our tool on examples from the
Firefox test suite which illustrate the scoping mechanism of
the JavaScript variable store.

Categories and Subject Descriptors

F.3.1 [Theory of Computation]: LOGICS AND MEAN-
INGS OF PROGRAMS Specifying and Verifying and Rea-
soning about Programs; D.2.4 [Software]: SOFTWARE
ENGINEERING Software/Program Verification

General Terms
Theory, Verification

Keywords

JavaScript, separation-logic, verification, tools

1. INTRODUCTION

JavaScript has become the most widely-used language for
client-side web programming. The dynamic nature of the
language makes current web code notoriously difficult to
write and use, leading to buggy programs and a lack of ad-
equate static-analysis tools. We believe that logical reason-
ing has much to offer JavaScript. In [12], Gardner, Maffeis
and Smith introduced a program logic for reasoning about a
subset of JavaScript, including challenging features such as
prototype inheritance and with. Here, we make the first step
towards automation: reasoning about JavaScript’s emulated
variable store.

Program Logic [12] We use a program logic based on sep-
aration logic. Separation logic has proven to be invaluable
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for reasoning about programs which directly manipulate the
heap, such as C and Java programs [4, 21, 5, 10]. A key
characteristic of JavaScript is that the entire state of the
language resides in the object heap, in a structure that im-
perfectly emulates the variable store of many other program-
ming languages. It is therefore natural to investigate the use
of separation logic to verify JavaScript programs.

In order to present an accurate account of JavaScript’s
emulated variable store, Gardner, Maffeis and Smith pro-
duced a new fundamental adaptation of separation logic.
The basic reasoning rules follow the semantics of JavaScript
extremely closely. As a result, the basic reasoning rules are
complex and difficult to use. To overcome this complexity
natural layers of abstraction are established on top of the ba-
sic reasoning which allow us to avoid many of the hairy cor-
ner cases of the language. When reasoning about principled
programs we can use these abstractions exclusively. When
reasoning about arbitrary programs we can break open the
abstractions and reason at a lower level.

Why do we care about the complicated JavaScript
variable store? Prototype-based inheritance and with state-
ments complicate the structure of the JavaScript emulated
variable store. If there were no with statement, our lives
would be much easier. In fact, the ECMAScript standard
is moving that direction by forbidding with statements in
ECMAScript 5 strict mode. So why do we still wish to rea-
son about them? There are three main reasons. First, we
currently work with a common subset of ECMAScript 3 and
ECMAScript 5. We are in the process of porting our work
to full ECMAScript 5, taking browser idiosyncrasies into
account (See [6] for details). Although the main browsers
currently support ECMAScript 5 strict mode, the major-
ity of code being written today is non-strict, and follows
programming patterns that were developed in the days of
ECMAScript 3. Second, even if there is a wide acceptance
of ECMAScript 5 strict mode, it is inevitable that EC-
MAScript 5 libraries will have to interface properly with
non-strict code. We therefore believe that there is a grow-
ing need for general-purpose, expressive analysis tools for
both strict and non-strict code. Third, power users some-
times need with. A good example is the Google Caja sand-
boxing system, which makes extensive use of ECMAScript 5
strict mode to provide the security properties required of the
sandbox. The sandboxed code must be written in a variant
of strict ECMAScript 5 called SES [19]. However, in order
to provide the required security properties the sandboxing
mechanism itself is forced to make use of with to sandbox
the SES code.



JuS: a Symbolic Execution Tool We introduce JuS, a
symbolic execution tool for JavaScript, consisting of a core
symbolic execution engine, an entailment engine and a col-
lection of “analysis strategies”. The symbolic execution en-
gine follows in the footsteps of other separation logic tools
such as Smallfoot [4], jStar [10], Space Invader [21] and
Abductor [8]. Symbolic execution is a standard technique
which simulates the concrete execution of a program on a
set of concrete states by tracking logical formulae (symbolic
states), rather than concrete values. During symbolic execu-
tion, we must often check entailment between formulae. We
delegate much of our entailment checking to the separation
logic theorem prover coreStar [7].

A useful feature of our tool is its collection of analysis
strategies, which are split into abstraction levels. We cur-
rently provide strategies associated with three abstraction
levels: the basic reasoning, the key store abstraction pre-
sented in [12], and a new Storelet abstraction which we focus
on in this paper. It should be a simple matter to add new
abstractions and their strategies. Each abstraction level of-
fers a naive strategy and a bi-abduction strategy. The naive
strategy requires that the verifier provides assertion anno-
tations to the program. The bi-abduction strategy allows
for automatic inference of assertions using the bi-abduction
technique introduced in [8]. Using the bi-abduction strat-
egy, user-supplied program specifications can be incomplete
or even empty. JuS discovers and adds the missing parts of
the specifications.

JuS focuses on accurate reasoning about the JavaScript

emulated variable store. It handles prototype-based inher-
itance, with and simple functions. Our treatment of func-
tions is enough to fully expose the complexities of the vari-
able store.
Case Study We evaluate our tool on examples from the
Firefox test suite which illustrate the scoping mechanism of
the JavaScript variable store. We demonstrate that JuS can
help to identify a state where most of these tests behave
differently in the presence of prototype poisoning compared
to naive starting states. Using abstractions to describe the
emulated variable store and incorporating the bi-abduction
technique, we show that our tool can infer general specifi-
cations for the examples. Such specifications state that, if
the input state satisfies the pre-condition and the program
terminates, then the resulting state will satisfy the post-
condition. This alleviates the need for many mundane unit
tests, while interactively investigating the shape of the pre-
condition suggests corner cases that could (and should!) be
profitably tested.

2. THE JAVASCRIPT VARIABLE STORE

When reasoning about other programming languages, the
behaviour of program variables is well understood and rel-
atively simple. Program variables are usually modelled us-
ing a “variable stack”. This stack is distinct from the pro-
gram heap which contains dynamically allocated objects. In
JavaScript there is no such clear distinction. What, in other
languages, would be the global-most “stack frame” is an ob-
ject in JavaScript. It is called the global object, and we are
free to manipulate pointers to it just as we would to any
other object. In addition, the with statement allows us to
insert arbitrary JavaScript objects into the JavaScript equiv-
alent of a variable stack. For these reasons, it is simplest to
think of JavaScript program variables as living in an emu-

lated variable store which exists entirely on the object heap.
Instead of stack frames, we have regular objects pressed into
service as scope objects. We maintain a list of pointers to
such objects, called a scope list. As we will see below, some
scope objects are created specifically for the purpose of vari-
able resolution and are called activation objects.

When we wish to access a variable, we start at the head of
the scope list and search until we either: (1) find an object
that contains a field whose name matches that of the vari-
able; or (2) reach the end of the list. This would be a simple
matter if it were not for the complication that JavaScript
is a “prototype-based” language. JavaScript objects may in-
herit properties and behaviour from other concrete objects at
runtime in much the same way that Java objects of a given
class may inherit behaviours from other classes known at
compile time. If the JavaScript object A inherits behaviour
from the object B, then B is said to be the prototype of A,
and A will contain a prototype pointer to B. Since B may
itself have a prototype, we will often refer to the prototype
chain of A. This is a list of prototype pointers beginning at
A, and containing references to all the objects from which
A may inherit behaviour. Since scope objects are objects in
the heap, they can have prototype chains. When we lookup
a variable, we must investigate not only the scope objects,
but also all the objects in their prototype chains. If we wish
to read a variable, we may find ourselves reading from the
prototype chain of a scope object, rather than reading di-
rectly from the scope object itself. On the other hand, if
we wish to write to a variable we should only write to ac-
tual scope objects, and never to their prototypes. Hence,
a simple variable assignment in JavaScript can be an over-
riding assignment which hides rather than over-writes the
old value.

To see these mechanisms in action, let us consider an ex-
ample taken from the Firefox test suite given in Figure 1.
This example expects the final value of the variable actual
to be 2. Let us see why this is the case when we start the
example in the initial state.

When we start a JavaScript program, the scope list con-
tains only the global object. We denote it by l,. The global
object can have a prototype chain, which in the initial state
will normally terminate in the default object prototype. The
default object prototype is often referred to in JavaScript lit-
erature as “Object.prototype”. We denote it by l,,'. The
length of this initial prototype chain is implementation de-
pendent, but for this example it is sufficient to consider the
case where [,y is the prototype of l5. Figure 1 (a) shows such
an initial state. Objects are illustrated as boxes, a dark box
means that an object is currently in the scope list, proto-
type pointers are solid arrows, and other pointers are dashed
arrows. The most local scope object is depicted at the bot-
tom, while the most global object is at the top. Let us go
through the program step by step. On line 1 we assign the
value 1 to the variable a. First we need to find the first scope
object that contains or inherits a field a. Since the current
scope list consists only of [; we cannot find a anywhere in
the store. JavaScript objects are global by default, so we
create a as a field of the global object. Similarly, on line 2
the variable obj is also created as a field of the global object

n JavaScript “Object.prototype” really refers to the “proto-
type” field (which is mutable) of the variable “Object” (which
is mutable and can be shadowed). For this reason we use lop
to refer to the initial Object.prototype object.
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Figure 1: Example from the Firefox Test Suite.

and is assigned a newly created object that has a field a. All
objects created using { } notation have l,, as their proto-
type. Figure 1 (b) shows the heap after these first two lines.
When we execute the with statement, the given object is
added to the beginning of the scope list (Figure 1 (c)). We
execute the body of the with using the updated scope list
[L1,lg]. On line 5 we cannot find £ anywhere in the store,
so we add it to the global object. We create a new func-
tion object which has a field body that contains the body of
the function, and a field scope that saves the current scope
list. This scope field is JavaScript’s mechanism for closures.
When we finish executing the body of the with, we restore
the scope list. Line 10 is therefore executed in a scope that
contains only the global object as shown in Figure 1 (d). The
variable actual is not found anywhere in the store, so the
new field will be created in the global object. The variable £
is found as a field of the global object. It points to a function
object which can be called. The function body is executed
in the saved scope extended with a new object which con-
tains any local variables or parameters the function might
declare. We call this new object the activation object of the
function. In this example the function £ does not have any
parameters or local variables so the activation object shown
in Figure 1 (e) is empty. Since JuS focuses on the behaviour
of the emulated variable store, we keep function control flow
simple and model line 7 (the last line in a function) as an
implicit return statement. We look up the variable a in the
emulated variable store, and first find a value at location L;.
We return 2 which is assigned to variable actual. After the
function call we restore the scope list. Figure 1 (f) shows the
final heap. Activation object L3 will be garbage collected.

Even executing such a tiny example is complicated. In the
next section we describe reasoning about JavaScript using
the same example.

3. REASONING ABOUT THE JAVASCRIPT
VARIABLE STORE

In the last section we saw that if we execute our running
example in the standard initial state, the final value of the
variable actual is 2. This is the expected value of the Firefox
test. Does the example behave the same way no matter what
variables are defined in the initial emulated variable store?
What happens if we execute this example in a state that is
much more complicated to start with? Reasoning can help
answer these questions.

In [12] Gardner, Maffeis and Smith presented logic for
reasoning about JavaScript. We present JavaScript reason-
ing using the symbolic execution tool JuS. We show that:
(1) the tool can help in finding corner cases of the program
and hence can help in providing more comprehensive test
suites, (2) the tool can check and infer specifications of the
programs.

3.1 Exploring Corner Cases

It is good engineering practice to write tests which cover
all the corner cases of the code we write. But how are we to
know where our corner cases are? Or that we have covered
them all? In JavaScript, this is particularly challenging. In
this section we describe how JuS may be able to help.

Let us try JuS with our example from the previous section.
Figure 2 shows our example in the Eclipse IDE. We write
specifications in the source file as annotations: @toprequires
for pre-conditions and @topensures for post-conditions.

The first line of the pre-condition says that the current
scope list (cScope) contains only the global object ng. The
second line objlg(|@proto : lop) says that the global object

2In JuS the keywords of the assertion language are prefixed
with #. We omit it in the text.
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Figure 2: Example Using JuS

must exist, and its prototype @proto® must be l,, (the Ob-
ject.prototype object). With obj notation we can explicitly
say that certain fields of l; do not exist, by listing them to
the left of the vertical bar. For example, to say that x and
y do not exist: obj, (x,y|@proto : lop). As it is, the second
line of the pre-condition in Figure 2 says that [, must exist,
and must have the given value of Qproto, but may or may
not have any other fields. Similarly the third line of the
pre-condition says that the l,, object exists, and that its
prototype is null (it terminates the prototype chain). The
lines are separated by the * of separation logic, which says
that [, and l,, are disjoint objects. This pre-condition looks
similar to the initial state from Figure 1 (a). The differ-
ence is that JuS allows us to express uncertainty about the
existence of most of the fields of our starting objects. The
post-condition says that the field actual has been created in
the global object and that its value is 2 as this test expects
it to be. Notice that since JavaScript is a garbage collected
language, JuS allows us to omit descriptions of objects which
are no longer relevant to the program execution.

Our pre-condition is not enough to prove our post-condition.

If we ask JuS to check this specification, it gives an er-
ror that it cannot proceed. We can either strengthen our
pre-condition manually by providing additional information
about the variables used in the program, or ask JuS to infer
the missing parts of our specification. In this example we
ask JuS to fill in the gaps. JuS generates similar diagrams to
those in Figure 1. In Figure 2 we see such a diagram on the
right hand side. It corresponds to the given pre-condition
with additional information about the variables that was in-
ferred by the tool. Every box corresponds to an object with
its location name and its fields. We use notation (/) in the
tool to denote an absent field. Grey boxes denote scope ob-
jects. The fields that were inferred by the tool are shown in
red.

JuS has inferred the information it needed to proceed.
To symbolically execute the program and prove its post-

3We use #proto instead of #@proto in JuS.
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Figure 3: If Object.prototype Has Field f, JuS
Throws an Error.

condition it is enough to know that the fields a, obj, f,
actual do not exist in the global object and the field £ does
not exist in Object.prototype. Why should we care about
the value of f in Object.prototype? Let us see what happens
if Object.prototype has field £ when we start the program.

Figure 3 shows our modified pre-condition where we add
field £ to the Object.prototype and say that it has some
value 7X*. When we symbolically execute this example, we
get an error message, saying that the tool was expecting 7X
to be a location of a function it wanted to call.

Hence if we start our program in such a state, we end up
calling an arbitrary function that lives in Object.prototype.
This is known as “prototype poisoning” [1]. For a concrete
example, consider first executing
Object.prototype.f = function () "Evil function" and
then running our example. We will end up calling the Evil £
instead of the one that is defined in our example. Previously,
when we were defining the function f in lines 5-8, we were
in the state shown in Figure 1 (c). Since we could not find
variable £ anywhere in the store, we added it to the global
object. But if we have a field £ in I,y (see Figure 4 (a)), then
we define f in the scope object Li, since f is present in its
prototype chain. After we leave the body of the with state-
ment and call £, we call the function that lives in the lop,
since our current scope list consists only of the global object
(see Figure 4 (b)).

3.2 Storelet Abstraction

In the previous section we used JuS to explore very specific
pre-conditions in order to find corner cases. In this section,
we introduce a way to explore very general pre-conditions.
The key is to describe the JavaScript variable store in a
general way that covers as many sane concrete emulated
variable stores as possible.

When reading a variable we need to know (1) if that vari-
able exists and (2) assuming it exists, what value does it
have. When writing a variable we need to know enough to

42X denotes universally quantified logical variable.
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be able to read it again in future. In addition, recall that un-
declared variables are automatically created in I, and that
lop is essential for guarding against prototype poisoning. We
present the Storelet abstraction which gives us the informa-
tion we need about the bulk of the emulated variable store,
while keeping I, and l,, separate so we can handle their
special cases.

We explain StorelLet by example. Figure 5 shows a con-
crete variable store. A grey dashed box shows the boundary
of the formula Storelet(rs, 1s,),1,, (¥x : 3)(x[y : 2). The
StorelLet describes two sub-boxes. The first (lower) sub-
box is associated with the scope list LS (in this case equal
to [L1,Lz]) and the abstraction (y|x : 3). This means that if
we try to read x in this sub-box we will find the value 3. If we
try to read the variable y in this sub-box, we won’t find it.
This sub-box ends precisely when a prototype chain escapes
the StoreLet. In this example, we specify that the prototype
chain must escape to lop. Since we could not find y in our
first sub-box we are forced to look for it in the escaping pro-
totype chain. In this case we find y : 1 in l,p, and can read
the value 1 for the variable y. If y were not a member of [,
we would proceed to examine the second (upper) sub-box,
which is associated with the scope list LS2 (in this case equal
to [Ls]) and the abstraction (x|y : 2). Notice that in this ex-
ample we also know that x cannot be found in the second
sub-box. This is a meaningful description of the state in the
diagram, but is not helpful for reasoning about the program

a: (/) a:(/)

f: (/) f:()

obj : (/) obj : (/)
actual : (/) actual : (/)

Loa() :
) :
i obj:(/) 1
' actual: (/) 1

Figure 6: General Pre-condition

variable x, since this behaviour is dominated by the presence
of x in the first sub-box. To see how this kind of formula can
come about, consider running y=4 in this state. We would
end up with Storelet(s, 1s,),,,(|y @ 4% : 3)(x|y : 2), in
which the y : 4 in the first sub-box dominates the y : 2 in
the second sub-box.

In explaining the example in Figure 5, we noted that the
formula Storelet(rs, 1.s,),1,, (- - -)(- - -) demands that the first
prototype chain to escape the StoreLet should do so at the
end of the first sub-box, and should escape to l,p. In fact,
what the formula demands is that every prototype chain to
escape the StorelLet must escape precisely to lop, and that
the first such escape marks the boundary between the two
sub-boxes. Notice that while the concrete store in Figure 5
has the prototype of the object L3 escaping the Storelet,
this makes no difference to variable resolution. Once we
know where the first prototype escape happens, subsequent
escapes are of no consequence because their behaviour is
dominated by the first escape. This makes StorelLet ideal
for separating the bulk of the messy emulated variable store
from the objects I, and l,, which we wish to handle sepa-
rately.

We can give our example from the Firefox test suite (Fig-
ure 1) to JuS with no pre-condition at all and ask it to dis-
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Figure 7: JavaScript subset. L, F, and S define
syntax for literals, expressions, and statements. n,
m, x range over numerical literals, string literals,
and identifier references. Binary operator & can be
any of {+,-,===<,<=}.

cover as general pre-condition as it can. It returns the pre-
condition shown in Figure 6. This pre-condition describes
any variable store that does not contain the variables men-
tioned in the program. JuS is able to prove that, given this
pre-condition, the value of the variable actual will be 2 after
executing the program.

4. JUS: SYMBOLIC EXECUTION TOOL

JuS can be used within the Eclipse IDE, online® or as
a command line tool. The user provides a JavaScript pro-
gram and, optionally, a specification or partial specification
to JuS. JuS then returns a complete specification along with
diagrams if a specification could be found, or a proof failure
otherwise. Figure 7 shows the JavaScript subset supported
by JuS. We focus on JavaScript features that represent vari-
able resolution. Prototype-based inheritance, with, and sim-
ple functions are enough to fully expose the complexity of
the emulated variable store. For the specification language
we use a variant of separation logic introduced by Gardner,
Malffeis and Smith in [12].

The technical core of JuS is a symbolic execution engine,
which follows in the footsteps of other separation logic tools
such as Smallfoot [4], jStar [10], Space Invader [21] and
Abductor [8]. Symbolic execution is a standard technique
which simulates the concrete execution of a program on a
set of concrete states by tracking logical formulae (symbolic
states), rather than concrete values. Some symbolic execu-
tion rules, e.g. the rule for the while loop, require check-
ing entailment between formulae. We delegate much of our
entailment checking to the separation logic theorem prover
coreStar [7]. After symbolically executing the code, the last
step is to check that the resulting symbolic state entails any
given post-condition.

The key theoretical contributions made by JuS are the
Storelet abstraction, and associated symbolic execution and
bi-abduction rules. Reasoning about the grizzly details of
JavaScript is extremely difficult to do by hand, let alone
to automate. Most of the time we wish to reason at a
higher level, so long as we know it is safe to do so. We use
the StorelLet abstraction to provide this high-level reasoning,
which is sound even in the presence of other code which does
grizzly things with the low-level emulated variable store.

In the following sub-sections we provide some technical
details about how we automated reasoning with the StorelLet
abstraction.

Sat http://www.resourcereasoning.com/jstool.html

4.1 Technical Details

Symbolic Execution We implement symbolic execution
engine using a subset of the logic formulae from [12] as our
symbolic state, and the corresponding program logic rules as
our symbolic semantics. For example, the global assignment
rule that is used to symbolically execute the first line in our
example (Figure 1) is given in [12] as:

(Assign Global)
{P}e1{R *r = null-X}
{R}e2{Q * (15,X) — g *xr =V} Q= Sx*~(LS,V1,Vs)

{PYel = e2{Q* (Ij,X) = Va xr = Va}

We explain this rule by describing how JuS implements it.
First we recursively symbolically execute el. This will likely
involve traversing the emulated variable store in search of
some variable. If the return value in the resulting symbolic
state is of the form null-X, it means the variable we were
searching for was X, and we did not find it®. In general,
the reference notation L-X denotes the field X of the object
L. In this case the null location means we could not find
the variable we were looking for, so we should create one in
ly. Next we symbolically execute e2 to discover what value
to write to our new variable. We must ensure the result
of e2 contains the required resources in its symbolic state.
The key to this is the v predicate, which we describe in the
next paragraph. Finally, we update the symbolic state as
specified by the rule, writing our value V3 over the empty
space @ that used to occupy the new field of l,. If in this
process we find that some required resource is not present,
the procedure is stuck. The user must either provide more
hints or activate bi-abduction (also explained below).
Reasoning About Store Traversal The program logic
developed by Gardner, Maffeis and Smith [12] makes use of
inductive predicates o, 7, and =y to describe the heap traver-
sals which are central to JavaScript’s variable handling. In
JuS, we model these traversals using symbolic execution pro-
cedures op, mp, and yp. These correspond to the three dis-
tinct traversals that may be involved in a variable access.
The op procedure traverses the scope list and returns the
first scope object to either contain or inherit a given field.
The mp procedure is used by the op procedure to traverse
prototype chains. It returns the first object in a given pro-
totype chain to contain a given field. If a call to op(LS, x)
returns some location L, we can use it to construct a refer-
ence L-x. For writing to variables, this is all we need, since
variable writes may be over-riding assignments as discussed
in Section 2. However, if we wish to read a given variable,
we must traverse the prototype chain again to find its actual
value. This is performed by «p. These procedures closely
follow the structure of the corresponding predicates o, 7
and « in [12], and the semantics given in [14]. If we wish to
know if some symbolic state contains the resources described
by 7(...), we execute yp(...) in that symbolic state. If yp
returns normally, then we know the resource is present.

As we introduce the StorelLet abstraction, we allow the
scope list to contain not only object locations, but also ab-
stract StorelLet identifiers (stli,stlz). In the logic, these
Storelet identifiers correspond to the two partial scope lists
that the StorelLet covers. Each identifier can therefore be
thought of as addressing a sub-box of a storelet. The Storelet

5if the return value was otherwise, we jump to another case



op(stlh : LS,x) £ op(LS,x) if mp(stl;,x) = null
op(stl; : LS,x) £ stl if 7p(stly,x) # null
wp(stl,x) = stl if (x,v)€EF:¥
np(stli,x) 2 7wp(Li,x)  if X €X
mp(stl,x) = stlo if x €xA7mp(Li,x) =null A(x,u) €EW: T
wp(stl,x) £ null if x € xA7mp(Li,x) = null A (stl; = null Vx € Z)
~vp(stl;-x) £ yndefined if mp(stly,x) = null
vp(stli-x) £ v if wp(stli,x) =sth A (x,v) €7: 7V
vp(stli-x) £ v if wp(stli,x) =stlo A (x,v) €w: T
~vp(stly -x) £ vp(L-x) if wp(stli,x) = LAL ¢ {null,stl,stly}

Figure 8: Definitions of op, 7p, and vyp for StoreLet where P = P’ x StoreLet g1, st1,),1, (X | 7: 7)(Z |

predicate is designed to make it easy to extend op, mp,
and yp to cover it. Recall the informal description of the se-
mantics of JavaScript variables and Storelets in Section 3.2.
First we check the first sub-box, then the escaping proto-
types, then the second sub-box. JuS maintains the invari-
ant that whenever Storelet identifiers appear in a scope list,
they must appear in adjacent pairs and in the right order.
The op, mp, and p traversals are therefore easily recur-
sively defined. We give these extended procedure definitions
in Figure 8. Recall a key difference between our symbolic
and concrete states: in a given concrete state, a particular
field is either present in a particular object or it is not; in a
given symbolic state there is a third possibility - we may not
know whether a particular field is present. Notice at every
step in the mp recursion, we check whether we know that
a given field is present, or not present in a given object or
StorelLet sub-box. If it is present, we have found it. If it is
not present, we continue the search. If we cannot decide,
we are stuck, and must appeal to the user to either provide
more information or enable bi-abduction.

Bi-abduction JuS uses the bi-abduction technique to infer
specifications of programs. The key concept, first introduced
in [8] is that of requesting additional resource. Suppose we
are part way through symbolically executing the program
el ; e2 and have discovered a specification {P}e1{R * F'}.
We then continue our symbolic execution by analysing e2.
The rules for symbolically executing e2 may require addi-
tional resources to those given by R and F. Suppose we can
prove that {R x AF}e2{Q} holds. In this case we must re-
quest the additional resource AF' from our environment. If
the environment can provide that resource separately from
the resource required by el at the beginning of the pro-
gram, then we know el will not alter it. We call AF' the
“anti-frame” and we call F' the “frame” of e2. Our final
specification is {P * AF}el ; e2{Q * F'}.

A key contribution of JuS is extending this bi-abduction
procedure to handle the JavaScript emulated variable store.
We augment the procedures op, mp, and vp with the abil-
ity to request additional resource in the event that they get
stuck. The interesting case is that of wp, which performs
the leg-work of both op and yp. We give the augmented 7,
in Figure 9. The first two lines handle the case when we
are searching for field x in location L, and are uncertain
whether the field exists in that location or not. The first
line handles the sub-case where we know that the location
L has a particular prototype which we could explore if we
knew for certain that x was not present in L. We request

W:u)

the additional resource (L,x) — &, which corresponds to
the knowledge that x does not exist in the object L. The
second line deals with the sub-case where we have no knowl-
edge about the prototype of L. Even if the prototype exists,
we do not know where it might point and hence would have
no way of continuing our search. In this case, we had bet-
ter request resource corresponding to the knowledge that x
does exist in L, since that way we can safely stop our proto-
type traversal here. The third line is triggered when we are
searching a prototype chain and do not know if it continues
or not. We request resource corresponding to the knowl-
edge that it does not. The last line describes our recursive
step: we proceed under the assumption that our request
for additional resource was granted, and we accumulate any
additional requests made down the line.

4.2 Limitations of JuS

JuS closely follows the program logic introduced in [12] in
focusing on the intricacies of JavaScript emulated variable
store. JuS currently does not handle features such as type
conversions, exception handling (throw, try, catch state-

ments), some control flow statements (continue, break, return,

label, for, for in, switch), higher order functions and
eval, special native JavaScript Objects, or DOM. JuS mod-
els functions as having implicit return statements as the last
statement in the function. Work is already underway to
extend the semantics and program logic underlying JuS to
cover these features (See [6] for more information), and sepa-
ration logic tools for languages such as C and Java [8, 10, 17,
18] handle many of these features for those languages. We
will take advantage of this wealth of related work in future
versions of JusS.

JuS would certainly benefit from further integration with
SAT-solvers and other such entailment-checking technolo-
gies. For example, JuS currently has only extremely lim-
ited support for discovering and checking proofs that require
arithmetic. In Section 6 we will discuss intermediate veri-
fication languages as one promising way of providing this
integration. We currently require that loop invariants are
annotated but infer program specifications using abduction.
In future we expect to be able to use abduction to infer loop
invariants, using a similar approach to Abductor [8].

5. CASE STUDY

We tested JuS using a bundle from the Firefox test suite”.

"https://developer.mozilla.org/en-US/docs/SpiderMonkey/1.8.5



TAl'p(L7 X)
#p(L,x)
frp(L, x)
abduct[P’]

1> 1l 1> >

#p(L, x) returns values L’ and P’, such that 7p,pr(L,x) = L'.

abduct[(L, x) — 2]

abduct[Iv.(L, x) — v]

abduct[(L, @proto) — null]

r, (P x P")

if (L,x)+— _ €’ PA3L.(L,Qproto) — L/

[

if (L,x)+—_€’ PA(L,@proto) — _€’ P

if (L,x) — & A (L, @proto) — _ €’ P
if fl’p,«p/ (L,X) =T, P”

(L,x) — _ €’ P means we can infer neither (L,x) — & nor 3v.(L,x) — v from P.

Figure 9: Extending the Definition of 7p to 7p to Support Bi-abduction.

Loc Verification Time (s) Poi Inference Time (s)
0iso- -
Test Code | Spec Pars./ | Symb. coreStar | ning Pars./ | Bi- coreStar
Diag. | Exec. Diag. | abd.
Section A 8 5 1.265 0.044 0.026 y 1.144 | 0.049 0.074
Section B 8 5 1.238 | 0.037 0.028 n 1.195 | 0.046 0.079
Section C 8 5 1.199 0.042 0.031 y 1.171 | 0.050 0.080
Section D 11 5 1.198 | 0.042 0.035 y 1.188 | 0.051 0.084
Section E 9 5 1.196 | 0.039 0.027 y 1.262 | 0.050 0.076
Section F 13 5 1.237 0.049 0.099 y 1.278 | 0.064 0.077
Sections G&H 8 6 1.122 | 0.028 0.073 y 1.400 | 0.035 0.120

Figure 10: Results of the Case Study

The purpose of this bundle is to test scope list and identi-
fier resolution (ECMA Section 10.1.4), the with statement
(ECMA Section 12.10) and function definition (ECMA Sec-
tion 13). Two of the eight tests in the bundle (G and H)
make use of introspection features that JuS does not sup-
port. These tests differed from each other only in their use of
this introspection, which was used exclusively to test the ex-
pected final state of the program. For this study we omitted
these introspecting lines, and directly inspected the post-
condition of the test instead.

Figure 10 shows our results. First we gave very concrete
specifications that reflect the initial state for each test, and
checked if our symbolic execution returned the expected re-
sults. All tests passed. It took less than 1.4 seconds to check
each test. Most of this time was spent in communicating
with the parser (which is written in Java, while the JuS core
is written in OCaml), and in drawing diagrams. The sym-
bolic execution itself took about 0.04 seconds. The calls to
the coreStar theorem prover to check entailment took about
0.05 seconds for a test.

Next, we explored each test for corner cases as illustrated
in Section 3.1. Unsurprisingly, we found prototype poison-
ing attacks which cause all but one of the tests to fail. This
does not mean that the tests were poorly written — even well
written JavaScript code is often vulnerable to such attacks.
Finally, we asked JuS to infer general specifications with
no help. The inferred specifications were similar in spirit to
those in Figure 6 and described what we need to know about
our initial state to ensure that the test will not be poisoned
and that the result will be the expected one. It took about
1.4 seconds to infer these specifications, including 0.05 sec-
onds for bi-abduction and 0.08 seconds for coreStar to check
entailments.

6. CONCLUSIONS AND FUTURE WORK

We have presented JuS: the first symbolic execution tool

for JavaScript using separation logic. While JuS is still in
very early stages of development, it has good support for
the intricacies of the JavaScript emulated variable store,
and can handle tricky with examples automatically. It sup-
ports fully automatic bi-abductive reasoning, and a much
more interactive mode of program exploration described in
Section 3.1. In order to make bi-abduction possible for
the JavaScript emulated variable store, we have created the
StorelLet abstraction, and presented an adoption of the exist-
ing bi-abduction procedure which supports Storelet specifi-
cally, and complex layers of abstraction in general.

Our approach is based on the program logic of [12], and
the semantics of [15] and [6]. Another option would have
been to use the Ass semantics of Guha et al. [13] as was the
approach of both Fournet et al. [11] and Chugh et al. [9] in
their dependant types work. We believe the heap-centric se-
mantics of [15] better suits the separation logic approach
and leads to a more natural treatment of examples that
expose the tricky nature of JavaScript’s emulated variable
store. There are also a number of more abstract models of
JavaScript, which have proven useful to study selected lan-
guage features [22, 2, 20], but which are not sufficiently con-
crete for our purpose. We wish to reason about JavaScript
from a sound semantic footing — justified both by reference
to the ECMAScript specification and by empirical evidence
of browser behaviour — and with a clear path to reasoning
about the whole language.

Another interesting approach is to use an intermediate
verification language (IVL). For example, the Javanni ver-
ifier [16] translates JavaScript programs to Boogie [3] and
makes use of the verification infrastructure provided by Boo-
gie. The tricky part is to have a correct translation of com-
plicated JavaScript features, such as variable dereferencing
and higher order functions. It is not clear from their paper
if they address these problems. In future work we are plan-
ning to develop an IVL which JavaScript (with all its tricky
parts) could be converted to. The IVL will be designed to
make JavaScript verification easier, for example, by having



mp, op, and yp procedures built-in into the IVL.

This is just the beginning of the scrutiny under which
we intend to place JavaScript. We are actively working on
support for reasoning about higher order functions, eval,
and DOM integration. We aim to produce a tool which can
both (1) automatically infer specifications for many well-
written programs; and (2) interactively guide a programmer
through the process of discovering the corner cases in, and
specifications for, more complex programs. This will allow
the successors of JuS to be profitably used in conjunction
with test-based engineering practices, by (1) alleviating the
need for many boring tests; and (2) helping direct engineers
towards interesting corner cases which they may wish to
explore in their test suites.
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