
Gillian, Part I: A Multi-language Platform

for Symbolic Execution

José Fragoso Santos
INESC-ID/Instituto Superior Técnico
Universidade de Lisboa, Portugal
Imperial College London, UK

jose.fragoso@tecnico.ulisboa.pt

Petar Maksimović
Imperial College London, UK
p.maksimovic@imperial.ac.uk

Sacha-Élie Ayoun
Imperial College London, UK

s.ayoun@imperial.ac.uk

Philippa Gardner
Imperial College London, UK
p.gardner@imperial.ac.uk

Abstract

We introduce Gillian, a platform for developing symbolic
analysis tools for programming languages. Here, we focus on
the symbolic execution engine at the heart of Gillian, which
is parametric on the memory model of the target language.
We give a formal description of the symbolic analysis and
a modular implementation that closely follows this descrip-
tion. We prove a parametric soundness result, introducing
restriction on abstract states, which generalises path condi-
tions used in classical symbolic execution. We instantiate
Gillian to obtain trusted symbolic testing tools for JavaScript
and C, and use these tools to find bugs in real-world code,
thus demonstrating the viability of our parametric approach.

CCS Concepts: • Theory of computation → Program

analysis; Program semantics; • Software and its engineer-

ing→ Formal language definitions.
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1 Introduction

Symbolic execution is a well-established analysis technique
for reasoning about programs [12, 13]. The development of
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symbolic analyses for modern programming languages, how-
ever, constitutes a substantial effort, and transferring such
analyses from one language to another often comes at a pro-
hibitive cost. For this reason, frameworks and tools that can
be re-used for multiple languages have been established, us-
ing essentially three approaches: symbolic-lifting frameworks,
such as Rosette [64, 65] and Chef [9], which automatically
lift a concrete interpreter for a target language (TL) into a
symbolic interpreter; semantic frameworks, such as K [22],
which provide a specification language for writing the TL
semantics and automatically generate various analysis tools
from this semantics; and multi-language IR-based tools, such
as Viper [38, 39], SAW [18] and Infer [14], which compile
high-level TLs into a relatively simple intermediate repre-
sentation (IR) where the symbolic analysis is performed.
All three approaches have had substantial successes in

academia and industry: for example, Rosette is regularly
applied to analysis of domain-specific languages [7, §5] and
has also been used to find bugs in parts of the Linux ker-
nel [41]; K has been instantiated to various languages, such
as Java, JavaScript, and C [6, 26, 44, 61], and is being used in
industry for symbolic analysis of Ethereum bytecode [27, 45];
and the industrial tools SAW and Infer are developed and
used in, respectively, Galois and Facebook.
In the first two approaches, a tool developer implements

the TL memory model using the data structures made avail-
able by the framework, such as lists and maps. The frame-
work provides general symbolic reasoning over these data
structures, and the challenge is for the developer to find a
way to use the data structures so that this general reasoning
is optimised for the specific TL. In the third approach, the
tools come with a fixed menu of memory models, for which
the symbolic reasoning is optimised, but offer no mechanism
for adding new memory models. With respect to correctness,
the general symbolic reasoning of the first two approaches
is correct-by-construction, whereas the correctness of the
specific symbolic reasoning in the third approach needs to be
argued on a case-by-case basis and is usually not discussed.
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We introduce Gillian, a novel IR-based multi-language
platform for the development of symbolic-execution tools:
like the first two approaches, Gillian gives a tool developer
the freedom to create a new memory model for a given TL;
like the third approach, it allows the tool developer to im-
plement language-specific symbolic reasoning for this TL.
The correctness of the resulting symbolic reasoning does not
come for free, but only requires simple lemmas associated
with the specific memory models.

At the core of Gillian is GIL, an intermediate language
parametric on the memory model of the TL: that is, on a
set of actions capturing the fundamental ways in which TL
programs interact with their memories. To instantiate Gillian
to a given TL, the tool developer needs to: (1) implement the
concrete and symbolic memory models of the TL in terms of
its actions1; and (2) provide a trusted compiler from the TL to
GIL instantiated with these actions, which preserves the TL
memory models and semantics. The resulting tool allows the
general developer to write standard symbolic unit tests [13,
65], with symbolic inputs and code annotations comprising
first-order assumptions and assertions. Gillian symbolically
executes these tests, exploring all paths and unrolling loops
up to a bound, providing either a true counter-model or a
bounded verification guarantee for the given assertions.

We believe that our use of a parametric IR formulti-langua-
ge tools is novel. It was partly inspired by tools developed for
abstraction interpretation [37, 58]. The nearest approach for
symbolic execution is likely that of the SAW tool [18], devel-
oped by Galois, which has several built-in memory models of
low-level languages, such as LLVM and JVM, but no parame-
terisationmechanism. Unlike most IR-based tools [14, 18, 38],
we emphasise the use of a trustworthy compiler preserving
the TL memory models and semantics: the TL and IR mem-
ory models being the same simplifies the analysis and error
reporting; and the control flow of the TL should simply be
replaced by the control flow of the GIL instantiation. This
emphasis was inspired in part by an analogous emphasis in
JaVerT [54, 55], a symbolic analysis toolchain for JavaScript.
We present the core parametric symbolic execution en-

gine of Gillian formally in §2, illustrating the definitions by
instantiating GIL with the actions and the memory model of
a simple While language with static objects.
Gillian comes with parametric soundness results and a

modular implementation that closely follows themeta-theory;
this strong connection is an important aim of our work. In
§3, we give our parametric soundness results, proving that
the symbolic analysis of Gillian has no false positives. These
results are made possible by our novel concept of restric-
tion, which generalises the well-known notion of path condi-
tions [1], allowing us to abstractly characterise what it means
for an individual symbolic execution trace to be sound in

1Strictly speaking, the symbolic memory model is sufficient. We found it
useful, however, to test the correctness of instantiations concretely.

symbolic testing. Moreover, restriction unifies various tech-
niques for directing concrete executions in soundness results,
such as strengthening the initial symbolic state with the path
condition of the final symbolic state [12, 13, 53] or with in-
formation about non-determinism arising from, for example,
randomness or allocation. The parametric soundness results
greatly simplify soundness proofs for new Gillian instantia-
tions, in that the tool developer only needs to formalise the
concrete/symbolic memory models of the TL and prove two
lemmas on the behaviour of the actions. We illustrate this
process for the simple While language.

Gillian can be used by tool developers to create symbolic
execution tools for a broad range of TLs, whether they be
toy (such as While), domain-specific, or real-world. In §4, we
instantiate Gillian to obtain two trusted symbolic execution
engines, Gillian-JS andGillian-C, for JavaScript and C, respec-
tively. These two languages are good examples for Gillian, as
their memory models differ substantially and there already
exist two established trustworthy compilers: the JaVerT com-
piler [55], which follows the JavaScript standard line-by-line
and is thoroughly tested; and the CompCert C compiler [34],
verified in Coq. Starting from these compilers, we obtain
trustworthy compilers from JavaScript and C to GIL, sup-
porting a significant subset of their respective languages.
We evaluate Gillian-JS and Gillian-C on the real-world data-
structure libraries, Buckets.js [56] and Collections-C [51],
respectively, by creating comprehensive symbolic test suites.
Our testing has discovered bugs in both libraries, with test-
ing times that indicate that the analysis can scale to larger
codebases, demonstrating that our parametric approach to
symbolic execution, firmly grounded in theory, is viable.
A Broader Overview of the Gillian Project. In addition
to symbolic testing, Gillian also supports full verification
based on separation logic and automatic compositional test-
ing based on bi-abduction [15]. These analyses come with
parametric soundness results and are implemented modu-
larly: verification is added on top of the symbolic testing
presented here, and automatic compositional testing on top
of verification. Importantly, the specifications resulting from
bi-abduction are precise and can be re-used in both correct-
ness analyses, such as verification, or incorrectness analyses,
such as the incorrectness logic of O’Hearn [43]. We aim to
publish the details of this work in future. Gillian is open-
sourced and is integrally available online at [63].

2 Parametric Symbolic Execution

At the core of Gillian is a symbolic execution engine for GIL,
the intermediate goto language of Gillian. We present the
formal GIL semantics, which the OCaml implementation
closely follows, in §2.1. The GIL semantics uses a general
notion of a state model, which can be seen as a formal in-
terface through which a programming language interacts
with its state. In §2.3, we demonstrate how specific concrete
and symbolic memory models can be automatically lifted
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to specific concrete and symbolic state models. As the run-
ning example, we use a simple While language with static
objects, giving its actions and a compiler to GIL in §2.2, and
its concrete and symbolic memory models in §2.4.

2.1 GIL Syntax and Semantics

GIL is a simple goto language with top-level procedures. It
is parametric on a set of actions, A ∋ α . Actions provide a
general mechanism for interacting with GIL states, allowing
us to formulate parametric soundness results and keep GIL
states opaque throughout the meta-theoretical development.

Syntax. The syntax of GIL is given below. GIL values,v ∈ V ,
include numbers, strings, booleans, uninterpreted symbols,
types, procedure identifiers, and lists of values. Types are
standard: they include, e.g., the types of numbers, strings,
booleans, and lists. GIL expressions, e ∈ E, include values,
program variables x , and various unary and binary operators.
The Syntax of GIL

v ∈ V ≜ n ∈ N | s ∈ S | b ∈ B | l, ς ∈ U | τ ∈ T | f ∈ F | v

e ∈ E ≜ v | x ∈ X | ⊖e | e1 ⊕ e2
c ∈ CA ≜ x := e | ifgoto e i | x := e(e ′) | return e | fail e |

vanish | x := α(e) | x := uSymj | x := iSymj

f (x){c} ∈ ProcA p ∈ ProдA : F ⇀ ProcA

GIL commands, c ∈ CA, include the standard variable as-
signment, conditional goto, and dynamic procedure call. The
procedure call is dynamic in that the identifier is a GIL ex-
pression; this allows us to model function calls of both static
and dynamic languages. Next, the return command termi-
nates the execution of the current procedure; fail terminates
the execution of the entire programwith an error; and vanish
silently terminates program execution without generating a
result. Finally, we have three GIL-specific commands: action
execution, x := α(e), which executes the action α ∈ A with
the argument obtained by evaluating e; and two analysis-
related commands, x := uSymj and x := iSymj , which use
Gillian’s built-in symbol generator to generate fresh symbols,
similarly to the gensym command of Lisp and Racket. We call
the symbols created using uSymj uninterpreted, and the sym-
bols created using iSymj interpreted. In the symbolic analysis,
uninterpreted symbols are used to represent instantiation-
specific constants (e.g., the JavaScript undefined and null)
or unique memory constituents (e.g., heap locations and ob-
jects); and interpreted symbols are used to represent logical
variables, as in the standard symbolic execution literature.
We explain this, together with the identifier j with which the
two commands are annotated, in detail in §2.1, §2.3, and §3.2.

A GIL procedure is of the form f (x){c}, where f is its iden-
tifier, x is its formal parameter, and its body c is a sequence of
GIL commands. A GIL program, p ∈ ProдA, maps procedure
identifiers to their corresponding procedures.

Semantics. The semantics of GIL is parameterised by a state
model, S ∈ S, defined as follows.

Definition 2.1 (State Model). A state model, S ∈ S, is a
quadruple ⟨|S |,V,A, ea⟩, consisting of: (1) a set of states on
which GIL programs operate, |S | ∋ σ ; (2) a set of values
stored in those states, V ∋ v; (3) a set of actions that can be
performed on those states, A ∋ α ; and (4) a function for exe-
cuting actions on states, ea : A→ |S | → V⇀ ℘(|S | ×V). GIL
states must contain an internal representation of a variable
store, denoted by ρ, assigning values to program variables.

We write σ .α (v)⇝ (σ ′, v′) to mean (σ ′, v′) ∈ ea(α,σ , v),
and refer to σ ′ as the state output and to v′ as the value output
of action α on state σ with value inputv . We write − instead
of v when the action argument does not impact the action
behaviour, and omit the value output v′ if not used after-
wards. To streamline the semantics, we define the following
two types of action composition:

σ .(α2 ◦ α1) (v)⇝ (σ ′, v′) ⇐⇒
∃σ ′′, v′′. σ .α1 (v)⇝ (σ ′′, v′′) ∧ σ ′′.α2 (v′′)⇝ (σ ′, v′)

σ .(α2 ◦̄α1) ([v1, v2])⇝ (σ ′, [v′1, v
′
2]) ⇐⇒

∃σ ′′. σ .α1 (v1)⇝ (σ ′′, v′1) ∧ σ ′′.α2 (v2)⇝ (σ ′, v′2)

which allow us to chain actions in two different ways in the
GIL semantics. In particular, both compositions use the state
output of α1 as the state input of α2, but the first composition
uses the value output of α1 as the value input for α2, whereas
the second takes a pair of value inputs, using the first as the
value input of α1 and the second as value input of α2.

A state model S = ⟨|S |,V,A, ea⟩ is proper if and only if
its set of actions, A, includes the following distinguished ac-
tions and families of actions: (1) {setVarx }x ∈X , for assigning
a given value v to a given variable x in the store of a given
state σ , pretty-printed σ .setVarx (v); (2) setStore, for replac-
ing the entire store of a given state σ with a new store ρ,
pretty-printed σ .setStore(ρ)2; (3) getStore, for obtaining the
store of the given state σ , pretty-printed σ .getStore(−);
(4) {evale }e ∈E , for evaluating the expression e in a given
state σ , pretty-printed σ .evale (−), (5) assume, for extending
the given state with the information denoted by a given
value v, pretty-printed σ .assume(v); and (6) uSym and iSym,
for generating new uninterpreted and interpreted symbols,
and pretty-printed σ .uSym(v) and σ .iSym(v), respectively.
From now on, we work with proper state models.
The semantics of GIL is defined in Figure 1; it uses the

notions of call stacks, which keep track of the execution
context; outcomes, which capture the flow of execution; and
configurations, which keep track of the overall program state.
GIL Semantic Domains for S = ⟨|S |,V,A, ea⟩

cs ∈ CallS ≜ ⟨f ⟩ | ⟨f , x, ρ, i⟩ : cs cf ∈ Conf S ≜ ⟨σ , cs, i⟩
o ∈ O ≜ · | N(v) | E(v)

A call stack, cs ∈ CallS , is a non-empty list of stack frames.
A top-level stack frame, ⟨f ⟩, contains the identifier of the
2Precisely, setStore and getstore use lists of pairs, with each pair containing
a serialised program variable (e.g. as a string) and its corresponding value.
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Assignment
cmd(p, cs, i) = x := e

σ .(setVarx ◦ evale ) (−)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i+1⟩

IfGoto - True
cmd(p, cs, i) = ifgoto e j

σ .(assume ◦ evale ) (−)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, j ⟩

IfGoto - False
cmd(p, cs, i) = ifgoto e j

σ .(assume ◦ eval¬e ) (−)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i + 1⟩

Action
cmd(p, cs, i) = x := α (e)

σ .(setVarx ◦ α ◦ evale ) (−)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i+1⟩

Call
cmd(p, cs, i) = x := e(e′) σ .((getStore ◦̄ evale′ ) ◦̄ evale ) ([−, [−, −]])⇝ (σ ′, [f , [v, ρ′]])

cs
′ = ⟨f , x , ρ′, i+1⟩ : cs p(f ) = f (y){c } σ ′.setStore ([[y, v]])⇝ σ ′′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′′, cs′, 0⟩

Return
cmd(p, cs, i) = return e cs = ⟨−, x , ρ , j ⟩ : cs′

σ .evale (−)⇝ (σ ′, v) σ ′.(setVarx ◦̄ setStore) ([ρ , v])⇝ σ ′′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′′, cs′, j ⟩

Top Return
cmd(p, cs, i) = return e

cs = ⟨f ⟩ σ .evale (−)⇝ (σ ′, v)

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i ⟩N(v)

Fail
cmd(p, cs, i) = fail e
σ .evale (−)⇝ (σ ′, v)

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i ⟩E(v)

uSym
cmd(p, cs, i) = x := uSymj
σ .(setVarx ◦ uSym) (j)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i+1⟩

iSym
cmd(p, cs, i) = x := iSymj
σ .(setVarx ◦ iSym) (j)⇝ σ ′

p ⊢ ⟨σ , cs, i ⟩ ⇝ ⟨σ ′, cs, i+1⟩

Figure 1. GIL Semantics: p ⊢ ⟨σ , cs, i⟩ · ⇝ ⟨σ ′, cs′, j⟩o

procedure that started the execution. An inner stack frame,
⟨f , x, ρ, i⟩, contains: (1) the identifier f of the executing
procedure; (2) the variable x to which f ’s return value will
be assigned; (3) the store ρ of the caller of f ; and (4) the index
i to which control is transferred on termination of f .

GIL has three possible outcomes, o ∈ O: (1) continuation, ·,
signifying that the execution may proceed with the next
command; (2) return, N(v), signifying that there was a top-
level return with value v; and (3) error, E(v), signifying that
the execution failed with value v. In the rules, we elide the
continuation outcome whenever it is clear from the context.
The GIL semantics relates configurations and outcomes

under a given program. The transitions are of the form
p ⊢ ⟨σ , cs, i⟩ · ⇝ ⟨σ ′, cs′, j⟩o , read: given a program p, the
evaluation of the i-th command of the top procedure of the
call stack cs in the state σ generates the state σ ′, the call
stack cs

′ and the outcome o, and the next command to be
executed is the j-th command of the top procedure of cs′.

The rules of Figure 1 use the function cmd(p, cs, i), which
returns the i-th command of the top procedure of cs, given
the program p. Most are straightforward, given the descrip-
tion of actions of proper state models. The two conditional
goto rules correspond to the two goto branches, with each
rule assuming the condition under which its branch is taken.
Finally, fresh symbol generation remains opaque at this
level—one implementation will be shown in §2.3, in the con-
text of concrete and symbolic states.
GIL Allocation: Parametric Construction. The genera-
tion of fresh values is a common source of technical clutter
often omitted or hand-waved in the formal presentation of
program analyses. Gillian takes care of this issue for the tool
developer by having built-in fresh-value allocators [2].
Definition 2.2 (Allocator). An allocator, AL ∈ AL, is a
triple, ⟨|AL|,V, alloc⟩, consisting of: (1) a set |AL| ∋ ξ of
allocation records; (2) a set V of all values that are allowed
to be allocated; and (3) an allocation function:

alloc : |AL| → N→ ℘(V)⇀ |AL| × V,
pretty-printed as ξ .alloc (j) →Y (ξ

′,y), which takes an allo-
cation record ξ , an allocation site j, and an allocation range

Y ⊆ V, and returns a fresh value, y ∈ Y , together with the
appropriately updated allocation record, ξ ′.

Intuitively, an allocation record keeps track of already
allocated values, but also values that should be allocated in
the future. This approach is complementary to the free set
approach (e.g., [49]), which keeps track of values that can
still be allocated. An allocation site j is the program point
associated with either the uSymj or the iSymj command. We
show how allocators are used in §2.3 and discuss them in
detail in §3.2, in the context of our soundness results.

2.2 While: Actions and Compilation to GIL

We show how to instantiate Gillian to a simple While lan-
guage with static objects. The first step in this process is to
identify the While actions and provide a trustworthy com-
piler from While to GIL. The While syntax is given below.
The Syntax of While

s ∈ CW ≜ x := e | if (e){s1}else {s2} | while (e){s} | s1; s2 |
x := f (e) | return e | assume e | assert e |
x :=

{
pi : ei |ni=1

}
| dispose e | x := e .p | e .p := e ′

While commands, s ∈ CW, include the variable assign-
ment, the if-then-else conditional, the while loop, sequence,
the static function call, the return command, assume and
assert commands for symbolic analysis, object creation and
disposal, and property lookup and mutation. For simplicity,
we assume that the semantics of expressions and the variable
store coincide for While and GIL.
To compile While to GIL, we first have to pick an appro-

priate set of actions, AW. Since we have four operations on
objects (allocation, disposal, lookup, and mutation) assign-
ing an action to each operations would be a reasonable first
attempt. However, as Gillian has a built-in allocator, we do
not need an action for object allocation. The set of actions
for While is, therefore, AW = {lookup,mutate, dispose}.
Part of our While to GIL compiler is given in Figure 2. It

is modelled as a function T : CW → N → CAW list × N,
mapping a While command s ∈ CW and a natural number
pc (read: program counter) to a sequence of GIL commands
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Assignment
T(x := e , pc) ≜
pc : x := e
· ← pc + 1

Assume
T(assume e , pc) ≜
pc : ifgoto e (pc + 2)
pc + 1 : vanish
· ← pc + 2

Assert
T(assert e , pc) ≜
pc : ifgoto e (pc + 2)
pc + 1 : fail e
· ← pc + 2

New
T(x :=

{
pi : ei |ni=1

}
, pc) ≜

pc : x := uSym
pc + i : − := mutate([x , pi , ei ]) |ni=1
· ← pc + n + 1

Lookup
T(x := e .p, pc) ≜
pc : x := lookup([e , p])
· ← pc + 1

Figure 2. The While to GIL Compiler (excerpt)

and the next available program counter, npc (denoted by
· ← npc in Figure 2). For instance, if T(s, pc) = (c, npc), then
the command s compiles to the sequence of GIL commands
given by c , labelled with indexes pc to npc − 1.
The compilation is straightforward; we explain the rules

given in Figure 2. The While assignment is compiled directly
to a GIL assignment. The assume command, assume e , com-
piles to a goto command, ifgoto e (pc + 2), which branches
on the value of the expression to be assumed, followed by a
silent cutting of the branch in which it does not hold by using
the GIL vanish command. The assert command, assert e , is
compiled to the same goto command that branches on e , but
this time, if the branch in which e does not hold is reached,
the execution terminates with an error via the GIL fail com-
mand. The compilation of the object creation command is
instructive, as it illustrates how uninterpreted symbols can
be used to represent unique object locations (which is their
primary use case) and also how actions are to the called. In
particular, we first create a fresh location for the new object
using the GIL uSym command, and then set its properties via
the mutate action, passing as its single parameter a GIL list
containing the object location, the property to be set, and the
expression denoting its value. Finally, the lookup of While
is compiled to a call to the corresponding action, lookup,
passing as elements in a GIL list the expression denoting the
location of the object, e , and the looked-up property, p.

2.3 Concrete and Symbolic States

Reasoning about programs can intuitively be separated into
reasoning about the variable store and about the memory

model of the programming language in question. Gillian sim-
plifies this process by providing built-in reasoning about the
variable store, leaving to the tool developer only to take care
of the concrete and symbolic memory models. In particular,
it is possible to lift a given memory to a GIL state by combin-
ing it with an appropriate variable store and allocator. In this
section, we illustrate this lifting for concrete and symbolic

memories, obtaining concrete and symbolic states.
Concrete memories store GIL values,v ∈ V , whereas sym-

bolic memories store logical expressions, ê ∈ Ê, generated
by the grammar ê ∈ Ê ≜ v | x̂ ∈ X̂ | ⊖ê | ê1 ⊕ ê2, where x̂
ranges over a set of logical variables, X̂. Symbolic memories
and states also depend on path conditions (boolean logical

expressions), π ∈ Π ⊆ Ê, used to bookkeep the constraints
on logical variables that led the execution to the current
symbolic state [1]. Concrete allocators allocate from the set
of GIL values, and symbolic allocators allocate from the set
of logical expressions.

Definition 2.3 (Concrete Memory Model). Given the set
of GIL values, V , a concrete memory model, M ∈ M, is a
triple ⟨|M |,A, ea ⟩, consisting of: (1) a set of concrete mem-
ories, |M | ∋ µ; (2) a set of actions A ∋ α ; and (3) the action
execution function: ea : A → |M | → V ⇀ ℘(|M | × V),
pretty-printed µ .α(v)⇝ (µ ′,v ′).

Definition 2.4 (Symbolic Memory Model). Given the set
of logical expressions, Ê, and the set of path conditions, Π,
a symbolic memory model, M̂ ∈ M̂, is a triple, ⟨|M̂ |,A, êa ⟩,
consisting of: (1) a set of symbolic memories, |M̂ | ∋ µ̂; (2) a
set of actions, A ∋ α ; and (3) an action execution function,
êa : A→ |M̂ | → Ê → Π ⇀ ℘(|M̂ | × Ê × Π), pretty-printed
µ̂ .α (ê, π )⇝ (µ̂ ′, ê ′, π ′).

We formally describe the liftings from concrete and sym-
bolic memory models to the appropriate state models below,
with JeKρ and JeKρ̂ denoting expression evaluation with re-
spect to a given concrete and symbolic variable store, and

Aproper = {setVarx }x ∈X ∪ {setStore, getStore}
∪ {evale }e ∈E ∪ {assume, uSym, iSym}.

Definition 2.5 (Concrete State Constr.). Given a concrete
allocator, AL = ⟨|AL|,V, alloc⟩, the concrete state construc-
tor, CSCAL : M → S, is defined as CSCAL(⟨|M |,A, ea ⟩) ≜
⟨|S |,V,Aproper ⊎A, ea⟩, where α ∈ A and:
|S | = |M | × (X ⇀ V) × |AL|

ea(setVarx , ⟨µ, ρ, ξ ⟩,v) ≜ {(⟨µ, ρ[x 7→ v], ξ ⟩, true)}
ea(setStore, ⟨µ,−, ξ ⟩, ρ) ≜ {(⟨µ, ρ, ξ ⟩, true)}
ea(getStore, ⟨µ, ρ, ξ ⟩,−) ≜ {(⟨µ, ρ, ξ ⟩, ρ)}
ea(evale , ⟨µ, ρ, ξ ⟩,−) ≜ {(⟨µ, ρ, ξ ⟩, JeKρ }
ea(assume,σ ,v) ≜ {(σ ,v) | v = true}
ea(uSym, ⟨µ, ρ, ξ ⟩, j) ≜ {(⟨µ, ρ, ξ ′⟩, ς) | ξ .alloc (j) →U (ξ

′, ς)}

ea(iSym, ⟨µ, ρ, ξ ⟩, j) ≜ {(⟨µ,σ , ξ ′⟩,v) | ξ .alloc (j) →V (ξ ′,v)}
ea(α, ⟨µ, ρ, ξ ⟩,v) ≜ {(⟨µ ′, ρ, ξ ⟩,v ′) | (µ ′,v ′) ∈ ea (α, µ,v)}

Definition 2.6 (Symbolic State Constr.). Given a symbolic
allocator, ÂL = ⟨|ÂL|, Ê, alloc ⟩, the symbolic state construc-

tor SSCÂL : M̂ → Ŝ is defined as SSCÂL(⟨|M̂ |,A, êa ⟩) ≜
⟨|Ŝ |, Ê,Aproper ⊎A, ea⟩, where α ∈ A and:

|Ŝ | = |M̂ | × (X ⇀ Ê) × |ÂL| × Π

ea(setVarx , ⟨µ̂, ρ̂, ξ̂ , π ⟩, ê) ≜ {(⟨µ̂, ρ̂[x 7→ ê], ξ̂ , π ⟩, true)}
ea(setStore, ⟨µ̂,−, ξ̂ , π ⟩, ρ̂) ≜ {(⟨µ̂, ρ̂, ξ̂ , π ⟩, true)}
ea(getStore, ⟨µ̂, ρ̂, ξ̂ , π ⟩,−) ≜ {(⟨µ̂, ρ̂, ξ̂ , π ⟩, ρ̂)}
ea(evale , ⟨µ̂, ρ̂, ξ̂ , π ⟩,−) ≜ {(⟨µ̂, ρ̂, ξ̂ , π ⟩, JeKρ̂ )}
ea(assume, ⟨µ̂, ρ̂, ξ̂ , π ⟩, π ′) ≜ {(⟨µ̂, ρ̂, ξ̂ , π ∧π ′⟩, true) | π ∧π ′ SAT}
ea(uSym, ⟨µ̂, ρ̂, ξ̂ , π ⟩, j) ≜ {(⟨µ, ρ, ξ̂ ′, π ⟩, ς) | ξ̂ .alloc (j) →U (ξ̂ ′, ς)}
ea(iSym(⟨µ̂, ρ̂, ξ̂ , π ⟩, j) ≜ {(⟨µ, ρ, ξ̂ ′, π ⟩, x̂) | ξ̂ .alloc (j) →

X̂
(ξ̂ ′, x̂)}

ea(α, ⟨µ̂, ρ̂, ξ̂ , π ⟩, ê) ≜ {(⟨µ̂ ′, ρ̂, ξ̂ , π ∧ π ′⟩, ê ′)
| (µ̂ ′, ê ′, π ′) ∈ êa (α, µ̂, ê, π )}
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C-Lookup
µ = _ ⊎ l .p 7→ v

µ .lookup ([l,p])⇝ (µ,v)

S-Lookup
µ̂ = _ ⊎ ê ′.p 7→ êv π ∧ ê = ê ′ SAT

µ̂ .lookup ([ê,p] , π )⇝ {(µ̂, êv , ê = ê ′)}

C-Mutate-Present
µ = µ ′ ⊎ l .p 7→ −
µ ′′ = µ ′ ⊎ l .p 7→ v

µ .mutate ([l,p,v])
⇝ (µ ′′,v)

S-Mutate-Present
µ̂ = µ̂ ′ ⊎ ê ′′.p 7→ − π ∧ ê = ê ′′ SAT

µ̂ ′′ = µ̂ ′ ⊎ ê ′′.p 7→ ê ′

µ̂ .mutate (
[
ê,p, ê ′

]
, π )

⇝ {(µ̂ ′′, true, ê = ê ′′)}

C-Mutate-Absent
(l,p) < dom(µ)
µ ′ = µ ⊎ l .p 7→ v

µ .mutate ([l,p,v])
⇝ (µ ′,v)

S-Mutate-Absent
π ′ = ê < locs(µ̂) ∨ ê ∈ locsp̄ (µ̂)
π ∧ π ′ SAT µ̂ ′ = µ̂ ⊎ ê .p 7→ ê ′

µ̂ .mutate (
[
ê,p, ê ′

]
, π )

⇝ {(µ̂ ′, true, π ′}

Figure 3. While: Concrete and Symbolic Actions (excerpt)

Both liftings construct the actions a state model exposes
with the help of the action execution function of the parame-
ter memory and the alloc function of the parameter allocator.
In both cases, the construction of the store-related functions
is straightforward. We describe the remaining cases below.

[EvalExpr]. In the concrete case, expression evaluation is
performed in the standard way. In the symbolic case, it
amounts to substituting all the program variables in e with
their associated logical expressions given by the store. In the
implementation, Gillian’s first-order solver applies a number
of algebraic identities to simplify the resulting expression.

[Assume]. The functionσ .assume(v) assumes that the value v
holds in the state σ . In the concrete case, σ .assume(b) sim-
ply returns the singleton set containing the original state
when b = true and the empty set otherwise. In the sym-
bolic case, σ̂ .assume(π ′) returns σ̂ with its path condition
strengthened with π ′ if this new path condition is satisfi-
able, and the empty set otherwise. Revisiting the conditional
goto rules of Figure 1, we can observe that, in the concrete
semantics, the conditional goto deterministically takes the
appropriate branch, whereas in the symbolic semantics it
may branch if both π ∧ JeKρ̂ and π ∧ J¬eKρ̂ are satisfiable.

[uSym/iSym]. The uSym and iSym actions generate symbols
using the parameter allocator. In particular, both concretely
and symbolically, uSym picks a fresh uninterpreted symbol,
ς ∈ U. In contrast, iSym picks an arbitrary value concretely
and a fresh logical variable symbolically. In §3.2, we will see
that this choice corresponds to the standard interpretation
of logical variables in symbolic execution.

[Action]. Action execution on states amounts to calling
action execution on the parameter memory. As symbolic ac-
tions, unlike concrete actions, may branch, they additionally
generate a logical expression, π ′, describing the conditions
under which the chosen branch is taken. Hence, the path
condition of the obtained state is a conjunction of π ′ with
the path condition π of the original state.

2.4 While: Concrete and Symbolic Memories

The second (and final) step required to instantiate Gillian to
the While language is to create the While concrete and sym-
bolic memory models, which are then automatically lifted to
the appropriate state models, as per Definitions 2.5 and 2.6.
Concrete While memories, µ ∈ |MW | : U × S ⇀ V , par-

tially map uninterpreted symbols (corresponding to object
locations) and strings (corresponding to property names)
to GIL values. Analogously, symbolic While memories, µ̂ ∈
M̂W : Ê × S ⇀ Ê, partially map logical expressions and
strings to logical expressions. Property names are not lifted
to logical expressions in symbolic memories, as While ob-
jects have static properties. The set of While actions, AW =
{lookup,mutate, dispose}, was given previously in §2.2. We
give an excerpt of the concrete and symbolic action execu-
tion functions for While in Figure 3, focussing on lookup and
mutate; the rules for dispose are analogous. The concrete
rules are straightforward; we describe the symbolic rules:
[S-Lookup]. The symbolic lookup of a propertyp of an object
at location denoted by ê branches on all locations potentially
equal to ê given π and returns the appropriate values from
the memory. It also returns the learned constraint, ê = ê ′,
which will be added to the path condition of the state.
[S-Mutate]. The symbolic mutation of a property p of an
object at location denoted by ê first branches on whether
or not the object defines the property. For the former ([S-
Mutate-Present]), the action proceeds analogously to the
lookup. For the latter ([S-Mutate-Absent]), the action adds p
to the properties of ê , under the condition that ê is either a
new object or it does not define the property p, expressed
by π ′, where locsp̄ (µ̂) denotes the set of object locations in µ̂
that do not define the property p.

3 Parametric Soundness

Proving symbolic analyses sound is time-consuming and
often requires a considerable number of auxiliary lemmas
and definitions. The complexity of such proofs becomes un-
wieldy as we move towards real-world programming lan-
guages, detracting frommathematical rigour in favour of less
demanding, but also less trustworthy, informal arguments.
Gillian streamlines the development of soundness proofs for
its instantiations, by focussing the proof effort only on the
memory of the target language and the actions it exposes.

Ŝ

M̂ RM M

SRS

SSC L CSC

We propose a parametric proof in-
frastructure, illustrated on the right,
which consists of: (1) a set of soundness
relations between state models, RS;
(2) a set of soundness relations between
memory models, RM; and (3) a lifting mechanism, L, which,
given a relation inRM, generates a relation inRS. This infras-
tructure is underpinned by our novel concept of restriction,
introduced in §3.1, which generalises the notion of path con-
ditions used in symbolic execution. In §3.2, we show that
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σ̂1

σ̂2 RS σ2

σ1RS σ̂1

σ̂2 RS σ2

σ1RS

σ̂ ′2 σ̂ ′′2

σ̂1 ⇃σ̂2

σ̂2 RS σ2

σ1RS

Figure 4. Soundness Properties

proving the soundness of a given symbolic semantics w.r.t. a
given concrete semantics amounts to proving that the sound-
ness relation between the two corresponding memory mod-
els is in RM. Finally, in §3.3, we use our proof infrastructure
to show that the While symbolic analysis is sound.

3.1 Parametric Soundness

The standard approach for defining soundness can be coarsely
described as in the diagram of Figure 4 (left), where: (1) σ̂1 is
an abstract state over-approximating a concrete state, σ1;
(2) σ̂2 is the abstract state obtained by abstractly executing a
given command on σ̂1; and (3) σ2 is the state obtained by con-
cretely executing the same command on σ1. In this setting,
the abstract semantics is sound with respect to the concrete
one if σ̂2 also over-approximates σ2.
In the context of abstract analyses that may branch, this

characterisation of soundness cannot describe what it means
for a single abstract trace to be sound. For instance, in Fig-
ure 4 (mid), the abstract execution of a given command on σ̂1
results in two abstract states, σ̂ ′2 and σ̂

′′
2 . There, the only way

to provide a final abstract state that over-approximates the
final concrete state is to merge σ̂ ′2 and σ̂ ′′2 , which requires
reasoning about all possible abstract traces at the same time.

In symbolic execution literature [12, 13, 46], however, it is
possible to express soundness for a single symbolic trace by
strengthening the path condition of the initial symbolic state
with the path condition of the final state. This strengthening
directs the concrete execution by filtering out all initial con-
crete states for which the concrete execution diverges from
the execution path taken by the symbolic trace.

Inspired by this approach, we give a parametric character-
isation of soundness that allows us to describe what it means
for a single abstract trace to be sound, but also to recover the
standard definition of soundness when given the precise set
of all abstract traces or its over-approximation. We achieve
this by introducing the notion of restriction, which gener-
alises path conditions and provides a unified methodology
for directing concrete executions in soundness results. Using
this characterisation, we prove that the symbolic analysis
provided by Gillian is sound and has no false positives.
Restriction. Restriction is used for pinpointing the set of
concrete traces modelled by a given abstract trace; it is ap-
plied to states and allocators. Informally, the restriction of an
abstract state σ̂1 with abstract state σ̂2, written σ̂1 ⇃σ̂2 , denotes
the state σ̂1 strengthened with some information from σ̂2. In
symbolic execution, for example, that additional information
could be the path condition of σ̂2. In Figure 4 (right), we give

a more general intuition: if σ̂1 ⇃σ̂2 over-approximates σ1, then
σ̂2 must over-approximate σ2. This holds because σ̂1 has been
extended with the exact information needed to direct the
execution to σ̂2, meaning that the symbolic execution from
σ̂1 ⇃σ̂2 to σ̂2 will not branch and, consequently, the concrete
execution from σ1 and σ2 will follow that same path.

Definition 3.1 (Restriction). A restriction on a set X is a
binary associative function, ⇃: X → X ⇀ X , written x1 ⇃x2

for ⇃ (x1, x2), satisfying the following three properties:

Idempotence
x ⇃x= x

Right Commutativity
(x1 ⇃x2 )⇃x3= (x1 ⇃x3 )⇃x2

Weakening
x1 ⇃x2⇃x3

= x1

x1 ⇃x2= x1 ⇃x3= x1

Every restriction ⇃ induces a pre-order (X , ⊑), given by x2 ⊑

x1 ⇐⇒ x2 ⇃x1= x2.

These properties intuitivelymean that self-restriction does
not gain information, the order of applied restrictions does
not influence the accumulated information gain and, if x1
cannot gain information from the combined knowledge of x2
and x3, then it cannot gain information from either x2 or x3.

During symbolic execution, path conditions can only get
strengthened. Similarly, allocators can only get extended
with information about newly allocated values. This mono-
tonicity is captured generally by the following definitions.

Definition 3.2 (State Restriction). Given a state model, S =
⟨|S |,V,A, ea⟩, a state restriction ⇃ on S is a restriction opera-
tor on |S | that is monotonic w.r.t. action execution: that is,
σ .α (v)⇝ (σ ′,−) =⇒ σ ′ ⊑ σ , for α ∈ A.

Definition 3.3 (Allocator Restriction). Given an allocator
AL = ⟨|AL|,V, alloc⟩ , an allocator restriction ⇃ on AL is a
restriction on |AL| that is monotonic w.r.t. the allocation
function: that is, ξ .alloc (j) →Y (ξ

′,−) =⇒ ξ ′ ⊑ ξ .

Compatibility. To state our soundness results, we require a
pre-order relation on abstract states, which we will denote by
≤. Intuitively, σ̂2 ≤ σ̂1 means that the set of concrete states
described by σ̂2 is contained in those described by σ̂1. This
pre-order need not coincide with the pre-order ⊑ induced by
a given restriction ⇃: e.g., in symbolic execution, the fact that
the path condition of a state σ̂2 implies the path condition
of a state σ̂1 (i.e., σ̂2 ⊑ σ̂1) does not necessarily mean that
all the models of σ̂2 are contained in the models of σ̂1 (i.e.,
σ̂2 ≤ σ̂1), as these two states may describe different stores or
memories. We do, however, require the ≤ and ⊑ pre-orders
to be compatible, as per the following definition.

Definition 3.4 (Compatibility). A pre-order (X , ≤) is com-

patible with a restriction ⇃ on X iff the following hold:

⇃-≤ Compat
x1 ⇃x2 ≤ x1

≤-⇃ Compat
x2 ≤ x1

x2 ⊑ x1

Strengthening
x2 ≤ x1 x ′2 ⊑ x ′1
x2 ⇃x ′2 ≤ x1 ⇃x ′1

The first two properties state that restriction increases
≤-precision and that ≤-precision implies ⊑-precision. The
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third, given our intuition, states that if σ̂2 describes fewer
concrete states than σ̂1, then σ̂2 restricted with a stronger
path condition (that of σ̂ ′2) will describe fewer concrete states
than σ̂1 restricted with a weaker path condition (that of σ̂ ′1).
Expectedly, the pre-order ⊑ induced by ⇃ is compatible with ⇃.
Parametric Soundness.We describe the set of soundness
relations that we use to reason parametrically about the
soundness of symbolic execution on state models. To this
end, we first define a set of candidate soundness relations,
and then refine in Definition 3.5 to soundness relations. Later,
in Theorem 3.6, we prove that soundness relations are pre-
served by the GIL semantics.

Given two state models, Ŝ = ⟨|Ŝ |, V̂, A, êa⟩ and S = ⟨|S |,V,
A, ea⟩,3 a candidate soundness relation between Ŝ and S is a
triple ⟨⇃,∼s ,∼v ⟩, consisting of: (1) a state restriction ⇃ on |Ŝ |;
(2) a binary relation ∼s ⊆ |Ŝ | × |S |, where σ̂ ∼s σ means that
σ̂ is an over-approximation of σ ; and (3) a ternary relation
∼v⊆ |Ŝ | × V̂ × V, where σ̂ ⊢ v̂ ∼v v means that, given the
information in σ̂ , v̂ is an over-approximation of v. In the
following, we use the pre-order on |Ŝ | induced by ∼s ; more
concretely, we write σ̂1 ≤∼s σ̂2 to mean that the set of states
of |S | represented by σ̂1 is contained in the set of states of
|S | represented by σ̂2: that is, {σ | σ̂1 ∼s σ } ⊆ {σ | σ̂2 ∼s σ }.
We elide the ∼s in ≤∼s when it is clear from the context.

Definition 3.5 (Soundness Relation). A candidate sound-
ness relation ⟨⇃,∼s ,∼v ⟩ between two statemodels Ŝ = ⟨|Ŝ |, V̂,
A, êa⟩ and S = ⟨|S |,V,A, ea⟩ is a soundness relation, RS ∈ RS,
if and only if the following constraints hold:
State Action - Restricted Soundness (SA-RS)
σ̂ .α (v̂)⇝ (σ̂ ′, v̂ ′) ∧ σ̂ ′′ ≤ σ̂ ⇃σ̂ ′ ∧ σ̂ ′′ ∼s σ ∧ σ̂ ′′ ⊢ v̂ ∼v v

∧σ .α (v)⇝ (σ ′,v ′) =⇒ σ̂ ′ ⇃σ̂ ′′∼s σ
′ ∧ σ̂ ′ ⇃σ̂ ′′⊢ v̂

′ ∼v v ′

State Action - Restricted Completeness (SA-RC)
σ̂ .α (v̂)⇝ (σ̂ ′, v̂ ′) ∧ σ̂ ′′ ≤ σ̂ ⇃σ̂ ′ ∧ σ̂ ′′ ∼s σ ∧ σ̂ ′′ ⊢ v̂ ∼v v

=⇒ ∃σ ′,v ′. σ .α (v)⇝ (σ ′,v ′)

Weakening (W)
σ̂ ⊑ σ̂ ′ ∧ σ̂ ⊢ v̂ ∼v v =⇒ σ̂ ′ ⊢ v̂ ∼v v

We discuss the three constraints in detail below.
[SA - Restricted Soundness]. Given previous soundness
results for symbolic execution [12, 13, 53], one might expect
the following, simpler constraint:

SA - Restricted Soundness - Simple (SA-RS-S)
σ̂ .α (v̂)⇝ (σ̂ ′, v̂ ′) ∧ σ̂ ⇃σ̂ ′∼s σ ∧ σ̂ ⇃σ̂ ′⊢ v̂ ∼v v
∧σ .α (v)⇝ (σ ′,v ′) =⇒ σ̂ ′ ∼s σ

′ ∧ σ̂ ′ ⊢ v̂ ′ ∼v v ′

which requires that if we execute a given action both symbol-
ically and concretely and have that the concrete input state/-
value is over-approximated by the symbolic input state/value
strengthened with the final path condition, then the concrete
output state/value must also be over-approximated by the
symbolic output state/value.
3We purposefully overload the notation for symbolic and concrete states
(Ŝ/S and σ̂ /σ ) to mean that states in Ŝ are more abstract than those in S .

This constraint is, however, not strong enough to guaran-
tee that the composition of two constraint-abiding actions
is still constraint-abiding. For that, we need the more gen-
eral, strictly stronger constraint given in the definition, from
which [SA-RS-S] can be obtained by picking σ̂ ′′ = σ̂ ⇃σ̂ ′ .

The more general constraint allows us to strengthen the
input symbolic state with any path condition that implies

the final path condition (σ̂ ′′ ≤ σ̂ ⇃σ̂ ′), and not just the final
path condition itself. This is essential for proving that, given
two actions α1 and α2 that satisfy restricted soundness, their
composition, α2 ◦ α1, also satisfies restricted soundness. In
particular, in the proof, we have to strengthen the symbolic
state given to α1 with the path condition resulting from the
execution of α1 followed by α2, not just the execution of α1.

[SA - Restricted Completeness]. This constraint states
that every abstract action has a concrete counterpart. The
details are analogous to the [SA-RS] constraint.

[Weakening]. In the context of symbolic execution, σ̂ ⊢
v̂ ∼v v intuitively means that there exists a logical envi-
ronment ϵ that satisfies the path condition of σ̂ and maps
v̂ to v . Given that σ̂ ⊑ σ̂ ′, meaning that the path condition
of σ̂ is stronger than that of σ̂ ′, ϵ must also satisfy the path
condition of σ̂ ′, from which the conclusion follows.

Finally, we note that both forms of action composition in-
troduced in §2.1 preserve the action constraints, [SA-RS] and
[SA-RC]. Put formally, if α1,α2 ∈ A satisfy [SA-RS] and [SA-
RC], then so do α2 ◦ α1 and α2 ◦̄α1. This is essential for prov-
ing that the GIL semantics also preserves these constraints,
given that, at its core, the semantics essentially associates
every command to a composition of specific actions.
GIL Soundness. Theorem 3.6 states that the GIL semantics
preserves soundness relations. To state it, we lift restriction
to configurations: ⟨σ , cs, i⟩ ⇃⟨σ ′,−,−⟩ ≜ ⟨σ ⇃σ ′, cs, i⟩, Similarly,
we lift ∼v , ∼s , and ≤∼s to call stacks and configurations.
Finally, we use⇝n to denote an n-step execution and⇝∗ to
denote the reflexive-transitive closure of⇝.

Theorem 3.6 (GIL Soundness). Let ⟨⇃,∼s ,∼v ⟩ be a sound-

ness relation between Ŝ = ⟨|Ŝ |, V̂,A, êa⟩ and S = ⟨|S |,V,A, ea⟩
and ≤ the pre-order induced by ∼s . Then, the following hold:

GIL - Restricted Soundness

p ⊢ ĉf ⇝n ĉf
′
∧ (ĉf ⇃ĉf ′) ∼s cf ∧ p ⊢ cf ⇝n cf ′ =⇒ ĉf

′
∼s cf

′

GIL - Restricted Completeness

p ⊢ ĉf ⇝n ĉf
′
∧ (ĉf ⇃ĉf ′) ∼s cf =⇒ ∃ cf ′ . p ⊢ cf ⇝n cf ′

These properties state that if we have an abstract n-trace
such that the initial concrete configuration cf is over-approxi-
mated by the initial abstract configuration strengthened with
information from the final abstract configuration, ĉf ⇃ĉf ′ ,
then all concrete n-traces starting from cf will have their
final configuration over-approximated by the final abstract
configuration, and at least one such n-trace must exist. As a
consequence, any bugs found by the abstract execution must
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also exist in the concrete execution, meaning that the sym-
bolic execution of Gillian has no false positive bug reports.
Trace Composition. The set of abstract traces that satisfy
the criteria given in Theorem 3.6 is, in fact, broader than
those captured by the⇝∗ relation. In particular, at any point
during trace construction, we can extend the current configu-
ration with additional information that does not conflict with
what is already known. We capture this via a relaxed closure
operator for trace construction,⇝Z, for which we can easily
prove a soundness result analogous to Theorem 3.6:

Reflexivity
cf ⇝Z cf

One-Step
cf1 ⇝ cf2

cf1 ⇝
Z cf2

Composition
cf1 ⇝

Z cf ′1 cf2 ⇝
Z cf ′2

cf ′1 ⇃cf2= cf2

cf1 ⇝
Z cf ′2

In the context of symbolic states, cf ′1 ⇃cf2= cf2 means that,
at any point during the construction of the symbolic trace,
we may safely add more information to the current path
condition. This gives us permission to arbitrarily drop paths
in the analysis by need, a technique commonly used for
achieving better scalability of symbolic execution tools.

Relaxed trace composition also allows us to use symbolic
execution summaries [25] and separation-logic specifica-
tions [3]. The latter, however, are useful only if the memory
model satisfies the frame property [50], allowing us to frame
off the irrelevant part of the caller state.

3.2 Concrete-Symbolic Soundness

We establish a set of soundness relations between symbolic
and concrete memory models, RM, and a set of soundness re-
lations between symbolic and concrete allocators, RAL, and,
in Theorem 3.10, prove that, together, they can be automati-
cally lifted to soundness relations between the corresponding
symbolic and concrete state models, RS. Given this theorem
and Gillian’s built-in allocators, a tool developer needs only
to provide a soundness relation connecting their symbolic
memory to their concrete memory in order to prove the
soundness of the resulting GIL symbolic analysis.
Memory Interpretation. Recall the definitions of concrete
and symbolic memory models from §2.3. The interpretation
of a symbolic memory model M̂ = ⟨|M̂ |,A, êa ⟩ w.r.t. a con-
crete memory modelM = ⟨|M |,A, ea ⟩ is given by a memory
interpretation function I that takes a logical environment,
ε : X̂ ⇀ V , mapping logical variables to concrete values,
and a symbolic memory µ̂ ∈ |M̂ |, and generates a concrete
memory µ ∈ |M |. Memory interpretation functions must
link symbolic memory actions to concrete memory actions
so that they satisfy the appropriate restricted soundness and
completeness properties on actions. We write JêKε to denote
the interpretation of the logical expression ê under ε .

Definition 3.7 (Memory Interpretation). Given a symbolic
memory model M̂ = ⟨|M̂ |,A, êa ⟩ and a concrete memory
model M = ⟨|M |,A, ea ⟩, a memory interpretation function

I : (X̂ ⇀ V)⇀ |M̂ | → |M | must satisfy:

Memory Action - Restricted Soundness (MA-RS)
µ̂ .α (ê, π )⇝ (µ̂ ′, ê ′, π ′) ∧ µ = I(ε, µ̂) ∧ Jπ ∧ π ′Kε = true

∧ µ .α (JêKε )⇝ (µ ′,v) =⇒ µ ′ = I(ε, µ̂ ′) ∧v = Jê ′Kε

Memory Action - Restricted Completeness (MA-RC)
µ̂ .α (ê, π )⇝ (µ̂ ′, ê ′, π ′) ∧ µ = I(ε, µ̂) ∧ Jπ ∧ π ′Kε = true

=⇒ ∃ µ ′,v . µ .α (JêKε )⇝ (µ ′,v)

Amemory interpretation function I induces a relation RI
between symbolic and concrete memories, such that µ̂ RI µ
iff there is a logical environment ϵ for which I(ε, µ̂) = µ;
we denote the set of such relations by RM.

Allocator Interpretation. Recall the definitions of concrete
and symbolic allocators from §2.3. The interpretation of a
symbolic allocator, ÂL = ⟨|ÂL|, Ê, alloc ⟩, with respect to a
concrete allocator, AL = ⟨|AL|,V, alloc ⟩, is given by an al-
locator interpretation function, IAL , that receives as input
a logical environment, ε , and a symbolic allocator record,
ξ̂ ∈ |ÂL|, and generates a concrete allocator record, ξ ∈ |AL|.
Analogously to the actions of memory models, allocator in-
terpretation functions must link symbolic allocation to con-
crete allocation in such a way that they satisfy the restricted
soundness and completeness properties on alloc.

Definition 3.8 (Allocator Interpretation). Given a symbolic
allocator ÂL = ⟨|ÂL|, Ê, alloc ⟩ and a concrete allocatorAL =
⟨|AL|,V, alloc ⟩, an allocator interpretation function IAL :
(X̂ ⇀ V)⇀ |ÂL| → |AL| must satisfy:

Allocator - Restricted Soundness (AL-RS)
ξ̂ .alloc (j) →Y (ξ̂

′, ê) ∧ ξ̂ ′′ ⊑ ξ̂ ⇃ξ̂ ′ ∧ ξ .alloc (j) →JY Kε (ξ
′,v)

∧ ξ = IAL(ε, ξ̂
′′) =⇒ ξ ′ = IAL(ε, ξ̂

′ ⇃ξ̂ ′′) ∧ v = JêKε

Allocator - Restricted Completeness (AL-RC)
ξ̂ .alloc (j) →Y (ξ̂

′, ê) ∧ ξ̂ ′′ ⊑ ξ̂ ⇃ξ̂ ′ ∧ ξ = IAL(ε, ξ̂
′′)

=⇒ ∃ξ ′,v . ξ .alloc (j) →JY Kε (ξ
′,v)

where JY Kε is shorthand for {JyKε | y ∈ Y }.

The constraint ξ̂ ′′ ⊑ ξ̂ ⇃ξ̂ ′ is analogous to the constraint
σ̂ ′′ ≤ σ̂ ⇃σ̂ ′ , required for state action soundness in Defini-
tion 3.5. The set of soundness relations between symbolic
and concrete allocators, RAL, is defined analogously to RM.

Parametric Lifting. We introduce a lifting mechanism for
obtaining candidate soundness relations between symbolic
and concrete state models given appropriate memory/alloca-
tor interpretation functions, and prove that those candidate
relations are soundness relations as per Definition 3.5.

Definition 3.9 (Lifted Relation). Given a memory interpre-
tation function I : (X̂ ⇀ V)⇀ |M̂ | → |M | and an allocator
interpretation function IAL : (X̂ ⇀ V)⇀ |ÂL| → |AL|, the
lifted candidate soundness relation L(I,IAL) = ⟨⇃,∼s ,∼v ⟩
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for SSCAL(M̂) with respect to CSCAL(M) is defined by:

⟨µ̂, ρ̂, ξ̂ , π ⟩ ⇃
⟨−,−, ξ̂ ′,π ′⟩ ≜ ⟨µ̂, ρ̂, ξ̂ ⇃ξ̂ ′, π ∧ π ′⟩

σ̂ ∼s σ ≜ ∃ ε . (σ , ε) ∈ Mod(σ̂ )

⟨−,−,−, π ⟩ ⊢ ê ∼v v ≜ ∃ ε . JπKε = true ∧ JêKε = v

where:
Mod(⟨µ̂, ρ̂, ξ̂ , π ⟩) ≜

{
(⟨µ, ρ, ξ ⟩, ε) | JπKε = true∧

µ = I(ε, µ̂) ∧ ρ = Jρ̂Kε ∧ ξ ⊑ IAL(ε, ξ̂ )
}

Theorem 3.10 (Correctness of Lifting). Given a memory in-

terpretation functionI : (X̂ ⇀ V)⇀ |M̂ | → |M | and an allo-
cator interpretation function IAL : (X̂ ⇀ V)⇀ |ÂL| → |AL|,
the lifted relation L(I,IAL) is a soundness relation between

SSCAL(M̂) and CSCAL(M).

Combining Theorems 3.10 and 3.6, we conclude that lifted
relations are preserved by the GIL semantics.

3.3 While: Sound Symbolic Analysis

The While interpretation function, IW : (X̂ ⇀ V) ⇀

|M̂W | → |MW |, is defined straightforwardly as follows:

Empty
IW(ε, ∅) ≜ ∅

Cell
l = JêKε v = Jê ′Kε
IW(ε, ê .p 7→ ê ′) ≜

l .p 7→ v

Union
µi = IW(ε, µ̂i )|

2
i=1

IW(ε, µ̂1 ⊎ µ̂2) ≜
µ1 ⊎ µ2

Lemma 3.11 states that IW preserves the actions of While,
AW = {lookup,mutate, dispose}. Its proof is a straightfor-
ward case analysis on the rules of Figure 3, and is much
simpler than the custom inductive proofs on semantic deriva-
tions that underpin standalone soundness proofs.

Lemma 3.11 (While Memory Interpretation). The While in-

terpretation function, IW, is a memory interpretation function.

Combining Lemma 3.11 and Theorems 3.6 and 3.10, we
obtain that the While symbolic semantics satisfies restricted
soundness and completeness w.r.t its concrete semantics.

4 Case Studies: JavaScript and C

We instantiate Gillian to obtain symbolic testing tools for
JavaScript and C. Each instantiation requires a trusted com-
piler from the target language to GIL, and an OCaml imple-
mentation of its concrete and symbolic memory models. We
discuss the coverage and trustworthiness of the resulting
tools, and evaluate them by performing symbolic testing
for the real-world data-structure libraries, Buckets.js [56]
and Collections-C [51], detecting bugs in both, in times that
indicate that our analysis should scale to larger codebases.
We also discuss the workload for each instantiation, and con-
clude with an evaluation of the overall usability of Gillian.

4.1 Gillian-JS

Compiler.TheGillian-JS compiler fromECMAScript 5 Strict
(ES5 Strict) to GIL uses the JaVerT compiler [54] to compile

ES5 Strict to JaVerT’s intermediate goto language, JSIL, and
a straightforward compiler from JSIL to GIL, developed here.
The JaVerT compiler includes implementations of the inter-
nal and built-in functions of ES5 Strict in JSIL, which get
compiled to GIL. The coverage of the Gillian-JS compiler is
broad, inherited from JaVerT. It covers the entire core lan-
guage except the regular expression literal, and the majority
of the built-in libraries. It does not support: the Date, RegExp
and JSON libraries; parts of the String library that use regular
expressions; and global object functionalities related to URIs
and parsing of numerics. Additionally, indirect eval is not
supported, as it is meant to be executed as non-strict code,
and all Function constructor code runs as strict-mode code.
The trustworthiness of the Gillian-JS compiler is estab-

lished following the methodology introduced for JaVerT [54,
55]: it preserves the ES5 Strict memory model; it follows
the standard faithfully line-by-line with the control flow
of JavaScript trivially compiled to the control flow of GIL;
and it is thoroughly tested against Test262 [19], the official
JavaScript test suite. Here, we filter the latest version of the
test suite for the tests applicable to ES5 Strict, identifying
9013 and passing 9005 tests. The failing tests are all due to a
discrepancy between how Unicode characters are treated in
JavaScript (either UCS-2 or UTF-16) and OCaml (sequences
of bytes). A detailed breakdown is available online [63].
Memory Models. Our OCaml implementation of the mem-
orymodels comes from JaVerT 2.0 [55], and is adapted slightly
to the setting of Gillian. Here, we give the theoretical account,
which the implementation closely follows; for space reasons,
we focus only on the part relevant for symbolic execution.4

A concrete JS memory, µ ∈ |MJS |, is a pair comprising
a concrete heap and a concrete metadata table. A concrete
heap, h : U × S ⇀ V , maps object locations and property
names to values, with object locations represented by unin-
terpreted symbols and property names by strings. A concrete
metadata table,m : U ⇀ V , which maps objects to values
that hold useful information about these objects, and is used
for modelling the internal properties of JS objects [55].
A symbolic JS memory, µ̂ ∈ |M̂JS |, is a pair comprising a

symbolic heap and a symbolic metadata table. A symbolic
heap, ĥ : Ê × Ê ⇀ Ê, maps pairs of logical expressions
to logical expressions. Unlike for While, where objects are
static, property names also have to be logical expressions,
since JavaScript has dynamic property access. Analogously,
the signature of symbolic metadata tables is m̂ : Ê ⇀ Ê.
Our JS memory model has eight actions, which include

retrieval/update/deletion of object properties and metadata,
and the creation and deletion of objects. Below, we give

4The full memory model that we use also includes a mechanism for captur-
ing property absence, as in [53–55], which ensures that the JS semantics
respects the frame property [50] in the presence of extensible objects. This
mechanism is required for the verification and bi-abduction aspects of
Gillian, which are out of scope for this paper.
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one of the rules for the symbolic getProp action, which re-
ceives a symbolic object location and a property name, and
retrieves the symbolic value of the property. This rule is
non-deterministic; it allows the execution to branch on the
looked-up property êp of object êl equalling an arbitrary
property êi of an arbitrary object ê ′l in the heap, if that equal-
ity is permitted by the path condition. Note how the branch-
ing condition, êp = ê ′p ∧ êl = ê ′l , is passed back to the state.
SGetProp - Branch - Found
µ̂ = (ĥ, d̂, _) ĥ = _ ⊎ (ê ′l .êi 7→ ê) π ∧ (êl = ê ′l ∧ êp = ê ′p ) SAT

µ̂ .getProp (
[
êl , êp

]
, π )⇝ (µ̂, ê, êl = ê ′l ∧ êp = ê ′p )

Evaluation. There are currently no benchmarks with which
to assess tools that provide symbolic testing of JavaScript.
Therefore, as in [53, 55], we evaluate the symbolic testing
of Gillian-JS using the real-world Buckets.js library, a self-
contained data-structure library widely used by developers,
with more than 65K downloads on npm [42]. Buckets.js con-
tains approximately 1K lines of JavaScript code, uses almost
every JS-specific feature, and comes with a unit test suite.
It implements a variety of data structures, including linked
lists, sets, multi-sets, maps, queues, and stacks.

Table 1. Buckets.js

Name #T GIL
Cmds

Time
(J2)

Time
(GJS)

array 9 330,147 5.02s 2.58s

bag 7 1,343,393 10.50s 4.81s

bst 11 3,751,092 18.67s 10.37s

dict 7 401,575 4.25s 1.88s

heap 4 1,492,204 5.70s 2.93s

llist 9 588,714 7.56s 4.00s

mdict 6 1,106,650 8.94s 3.77s

pqueue 5 2,312,226 8.60s 3.87s

queue 6 407,106 4.58s 2.09s

set 6 2,178,222 16.49s 4.46s

stack 4 306,449 3.28s 1.66s

Total 74 14,217,778 93.59s 42.42s

We re-use our sym-
bolic test suite for
Buckets.js [53, 55, 62].
which has 100% line
coverage, and whose
symbolic tests were
purposefully written
to cover multiple ex-
ecution traces. We
run the test suite
using Gillian-JS, ob-
taining results pre-
sented in Table 1.
We report, per data-
structure: the number
of symbolic tests (#T );
the number of executed GIL commands; the times of
JaVerT 2.0 [55] (J2); and the times of Gillian-JS (GJS).
The Gillian-JS times are roughly twice as fast as those of
JaVerT 2.0, because of our improvements to the symbolic
execution engine (e.g., more efficient use of OCaml features,
such as hashtables), and the first-order solver (e.g., better
simplifications and better caching of results). Our testing has
not found any additional bugs in Buckets.js, but was able to
detect the two bugs found in our previous work [53, 55].
Workload. The Gillian-JS compiler comprises 7694 lines of
OCaml, and the implementations of the concrete and sym-
bolic memory models of ES5 Strict comprise 1620 lines of
OCaml. As we re-used the JaVerT compiler [54], the asso-
ciated workload was minimal: out of the 7694 lines, only
347, for the compiler from JSIL to GIL, are entirely new. We
adapted the Gillian-JS memory models from JaVerT 2.0 so

that they match the expected interface signatures and the
slightly different treatment of the errors. As Gillian-JS was
developed in parallel with the core of Gillian, we cannot say
precisely how long it took us to create it: we estimate that
a tool developer experienced in the intricacies of JavaScript
would be able to implement the compiler from scratch in
approximately three months, and the memory models within
a month. Finally, the writing of the symbolic tests for Buck-
ets.js took us approximately two weeks.

4.2 Gillian-C

Compiler. The Gillian-C compiler uses the verified C com-
piler, CompCert [34], from a large fragment of ISO C 99
to C#minor, an intermediate representation of CompCert,
and a compiler from C#minor to GIL, developed here, which
trivially compiles the control flow constructs and restates
memory management in terms of the identified actions of
the C memory model. We compile to C#minor for two main
reasons: C#minor still preserves the memory model of C; and
this compilation deviates from the C standard only by fixing
the order of argument evaluation. The former is essential for
the Gillian approach, while the latter means that the analy-
sis of Gillian-C does not lose the potential to catch various
common bugs, such as those due to undefined behaviour.

Gillian-C covers the features supported by CompCert, im-
plemented by needwith the goal of analysing the Collections-
C library. This effectively means that we do not support
several arithmetic operators, and that, when it comes to the
functions of the standard library, we have implemented only
calloc, free, malloc, memcpy, memmove, memset, and strcmp.We
will implement other operators and library functions, as well
as operating-system calls, by need. We also plan to formalise
GIL in Coq and re-use the proof techniques of CompCert to
obtain a fully certified Gillian-C compiler.
Memory Models. We use the OCaml implementation of
the extracted concrete memory model of CompCert [34],
adding a thin layer on top for encoding C values in GIL, and
provide an OCaml implementation of the symbolic memory
model, taking inspiration from CompCertS [4], an extension
of CompCert with symbolic values. Here, we give a theo-
retical account. In both models, the memory is a collection
of separated blocks where each block is an array of a given
size. Pointers are represented as block-offset pairs: that is, a
pointer [l, off ] points to the off -th element of the memory
block l . For clarity, we elide the details of the memory models
related to concurrency, which Gillian does not support.
A concrete C memory, µ ∈ |MC |, is a pair comprising

a concrete heap and a concrete permission table. In Com-
pCert, C values, such as integers, floats, and pointers, are
stored in memory as sequences of byte-sized memory values,
allowing for fine-grained memory access. In particular, a C
memory value, mv ∈ V , is either: a byte, b ∈ [0, 255]; the
special value undefined, denoting uninitialised memory; or
a three-element list [l, off ,k], denoting the k-th byte of the
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pointer [l, off ]. A concrete heap, h : U × Z⇀ V , maps cells
(block-offset pairs) to C memory values, with blocks encoded
as uninterpreted symbols and offsets as integers. A concrete
permission table, d : U × Z ⇀ N, maps cells to their per-
missions, which describe the allowed operations for a given
cell (e.g. Readable and Writable). We model permissions as
integers, in ascending order of permisiveness.
A symbolic C memory, µ̂ ∈ |M̂C |, is a pair comprising a

symbolic heap and a symbolic permission table. A symbolic
heap, ĥ : (Ê × Ê) ⇀ Ê, models symbolic blocks and off-
sets using logical expressions, and symbolic memory values,
m̂v ∈ Ê, using three-element lists, [ê,k,n], which denote the
k-th out of n bytes of the C value represented by the logi-
cal expression ê; as we always statically know the size of a
value, the k and n will always be concrete. This unified treat-
ment of memory values, introduced by CompCertS [4], could
also be applied to the CompCert concrete memory model.
Analogously to symbolic heaps, the signature of symbolic
permission tables is p̂t : Ê × Ê ⇀ Ê.
SLoad - Valid Access

µ̂ = (ĥ, p̂t) π ⊢ êl = ê ′l ∧ êo = ê ′o π ⊢ ê ′o mod al = 0
(π ⊢ p̂t(ê ′l , êo + i) ≥ Readable)|sz−1

i=0
(ĥ(ê ′l , êo + i) = [ê

′, i, sz − 1])|sz−1
i=0 ê = decodeSymb(ê ′, type)

µ̂ .load ([[sz, al, type], êl , êo ] , π )⇝ (µ̂, ê, true)

Table 2. Collections-C

Name #T GIL
Cmds Time

array 22 109,290 4.21s

deque 34 106,737 6.57s

list 37 730,655 13.02s
pqueue 2 15,726 0.64s

queue 4 39,828 0.65s

rbuf 3 27,284 0.52s

slist 38 325,383 7.18s

stack 2 5,211 0.28s

treetbl 13 618,326 2.98s

treeset 6 108,583 3.29s

Total 161 2,097,023 39.34s

The CompCert C memory
model has sixteen actions,
which account for the man-
agement of the global envi-
ronment, the heap, and the
permission table. Above, we
present one rule for the sym-
bolic load action, which re-
trieves a value from the mem-
ory. When loading/storing a
value, a memory chunk has
to be provided to indicate the
size, alignment, and type of
the value to be read from/writ-
ten to the memory. We present
chunks as three-element lists: mch = [sz, al, type]. The load
function receives a memory chunk, the location, and the
offset. First, it ensures that the value is correctly aligned and
readable. Next, it confirms that the read part of the memory
represents the symbolic value ê ′. Finally, it decodes ê ′ using
its type. The decoding understands, e.g., if the result should
be an integer or a float, and of which precision.
Evaluation.We evaluate Gillian-C by symbolically testing
Collections-C [51], a real-world data-structure library for C
with almost 2K stars on GitHub. It has approximately 5.2K
lines of code and uses C-specific constructs and idioms, such
as structures and pointer arithmetic. The data structures it
provides include, for example, arrays, lists, treetables, hashta-
bles, ring buffers and queues.

We write an extensive symbolic test suite for Collections-
C, with results shown in Table 2. We report, per data struc-
ture: (1) the number of symbolic tests (#T); (2) the number of
executed GIL commands; and (4) the obtained testing times
for Gillian-C. Our testing has revealed the following issues,
which have been fixed by the developers of Collections-C:
1. a buffer overflow bug in the implementation of dynamic

arrays, caused by an off-by-one index;
2. usage of undefined behaviours (pointer comparison, in

particular) that can lead to buggy behaviours in the pres-
ence of compiler optimisations;

3. several bugs in the concrete test suite: in particular, com-
paring freed pointers, unchecked function returns, and
incorrect checks with serendipitously correct values;

4. over-allocation in the ring-buffer data structure, but with
correct behaviour of the associated functions.

5. a bug in the string hashing function for hashtables that
could lead to performance loss.
These initial results show that Gillian-C can handle the

complexity of C’s memory model on a real-world, albeit
modest-in-size, example. Once Gillian-C is more mature, we
will compare its coverage and performance against appro-
priate C tools, such as CBMC [32] and KLEE [10].
Workload. Gillian-C uses the CompCert compiler from ISO
C 99 to C#minor, and the concrete memory model of Com-
pCert. We additionaly wrote the compiler from C#minor to
GIL (1451 lines of OCaml); the compiler runtime, consist-
ing of GIL implementations of unary/binary operators and
standard library functions (1121 lines of GIL); a wrapper
around the CompCert concrete memory model (304 lines
of OCaml); and the entire symbolic memory model (1618
lines of OCaml). This development took us approximately
six weeks: three for the compiler/runtime; and three for the
memory models. Additionally, the writing of the symbolic
tests for Collections-C took us approximately two weeks.
Current Limitations. As Gillian-C is a proof-of-concept
tool, it comes with several limitations. For example, we do
not reason about allocation of symbolic size and do notmodel
the cases in which memory allocation fails. The former is
an open research problem that we plan to address taking
inspiration from similar work done for Frama-C [31]. We
also do not yet model all of the undefined behaviour (UB) of
C: we model the UB for static and dynamic memory man-
agement well, as demonstrated by the discovered bugs in
Collections-C, but need to improve substantially on the UB
related to arithmetic. Further, as our first-order solver cannot
reason about hash functions, we cannot test the hashtbl and
hashset data structures of Collections-C. We have, however,
written the appropriate tests, some of which surprisingly
passed, revealing the above-mentioned bug. We are working
on applying the approach of KLEE [30] in order to solve this
issue. Finally, we do not support any concurrency-related
features of C, as Gillian only handles sequential programs.
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4.3 Usability

To instantiate Gillian to a new target language (TL), a tool
developer must provide a trusted compiler from the TL to
GIL, and OCaml implementations of the concrete and sym-
bolic memory models of the TL. Thus, they must have an
in-depth understanding of the language standard, a working
knowledge of OCaml, and a basic understanding of the in-
terface of the Gillian memory models. We are working on
developing a template language and auxiliary functions that
would streamline this process.

To use existing instantiations of Gillian, a general devel-
oper writes symbolic tests in the style of Rosette and KLEE;
a tutorial can be found online [63]. Our experience with the
creation of symbolic test suites for Buckets.js and Collections-
C suggests that the use of Gillian by general developers is
within reach. However, in order for this to materialise, we
first have to improve its debugging and error reporting mech-
anisms, as the produced logs are lengthy and the information
is not lifted back from GIL to the TL; the latter, in particular,
will be easier to achieve for Gillian than for other IR-based
tools, as the TL memory model is maintained by the compi-
lation. We are also working on enabling Gillian to be used in
IDEs as well as in a continuous-integration setting, so that
developers would be able to get real-time feedback and auto-
matically run symbolic test suites as their codebase changes.

5 Related Work

We centre our discussion on: (1) symbolic lifting frame-
works; (2) semantic frameworks; (3) multi-language tools
with symbolic intermediate representations (IRs); (4) para-
metric frameworks for abstract interpretation; and (5) spe-
cific symbolic execution tools for JavaScript and C. The aim
of Gillian is similar to the framework approach of (1), (2) and
(4) in that an independent tool developer instantiates Gillian
with a particular target language (TL), using a symbolic IR
in the style of the multi-language tools of (3).

Symbolic Lifting Frameworks. Symbolic-lifting frame-
works, such as Rosette and Chef, automatically lift a con-
crete TL interpreter into a symbolic interpreter. Rosette [64,
65] extends Racket [47] with solver-aided facilities for creat-
ing symbolic values and expressing constraints on those val-
ues. With Rosette, the concrete TL interpreter is written in
Racket and is then symbolically interpreted using Rosette’s
core symbolic execution engine. Rosette has been success-
fully applied to domain-specific languages [7, §5], and has
found bugs in parts of the Linux kernel [41]. Chef [9] takes
a specially-packaged TL interpreter as input and analyses TL
programs by symbolically executing the interpreter’s binary.
Chef has been applied so far to dynamic languages, such
as Python and Lua. However, the authors comment that its
applicability is limited to languages with moderately-sized
interpreters. Chef would, therefore, not be an appropriate
tool for analysis of, for example, Java programs.

Semantic Frameworks. Semantic frameworks, such as K
[22], Ott [60], Lem [40] and Redex [21], provide specifica-
tion languages in which users can write the semantics of
their TL and automatically generate various tools from this
semantics, ranging from interpreters and compilers for mul-
tiple backends to sophisticated program analysers. Among
these frameworks, K has the agenda closest to ours, as it
automatically generates tools that support various forms of
program analysis, including symbolic execution and deduc-
tive verification. K has so far been instantiated to a num-
ber of programming languages, including JavaScript and
C [26, 44, 61], and is also used in industry for the symbolic
analysis of Ethereum bytecode [27, 45].

IR-BasedMulti-LanguageTools. IR-basedmulti-language
symbolic analysis tools, such as the academic tools Viper [38,
39] and CoreStar [8], and Facebook’s Infer [14], compile
high-level TLs into simpler IRs on which the analysis is per-
formed. None of these tools is parametric on the TL memory
model. Instead, to extend a tool to a new TL, the in-house
tool developer must encode the TL memory model into the
IR memory model, the difficulties of which depend on how
close the memory models and the TL are. Moreover, the
correctness of the compilers used by IR-based tools is often
not justified. In our approach, the memory models of the TL
and the IR are the same by design, and the compiler from
the TL to the IR is required to be trustworthy. This both
simplifies correctness proofs and allows us to have optimal
performance by tailoring the symbolic reasoning for each TL.
The SAW tool [18], developed by Galois, is based on a

slightly different approach, which is probably closest to ours.
SAW uses several built-in memory models of low-level lan-
guages, such as LLVM and JVM. It has a modular implemen-
tation where an in-house tool developer can extend the tool
with a new low-level memory model, but offers no mecha-
nism for instantiation with a user-provided memory model.

Parametric Frameworks forAbstract Interpretation. A
key insight of Gillian is to make GIL parametric on the TL
memory model, splitting its semantics into the control-flow/
variable store component provided by the platform and the
memory component implemented by the tool developer. Sim-
ilar decompositions have arisen in the context of abstract
interpretation [16], but we believe we are the first to use it
in the design of a general symbolic execution tool.
We can coarsely divide the existing parametric abstract

interpretation frameworks into two groups: those based on
small-step semantics [17, 28, 29, 37, 59] and those based on
co-inductive big-step semantics [5, 58]. Small-step frame-

works follow a general methodology, first proposed in [37],
for deriving sound and computable abstract interpreters from
a given concrete interpreter written in small-step style. This
methodology has not been fully automated so far, with its ap-
plication requiring non-negligible developer effort. Big-Step
frameworks follow an alternative approach, first outlined
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in [58], which introduces a methodology for designing ab-
stract interpreters based on co-inductively defined big-step
semantics. Following similar ideas, Bodin et al. [5] developed
a general skeletal semantics framework in Coq, for creating
concrete and abstract big-step semantics connected with a
general consistency result, leaving the user to prove only a
number of language-dependent lemmas. This work, however,
has only been applied to a simple While language, making
its broader applicability difficult to assess.

Symbolic Execution Tools for JavaScript and C. Most
existing symbolic execution tools for JavaScript aim at bug-
finding and target specific types of bugs, such as security vul-
nerabilities related to the misuse of strings [57], malformed
Web API requests [66], DOM-API-specific bugs [35], or bugs
involving regular expressions [36]. These tools aim at code
in the large, primarily focussing on scalability and coverage.
None of them, however, follows the JS semantics precisely,
often ignoring the full complexity of the standard to achieve
better scalability. In contrast, Gillian-JS is a general symbolic
execution tool: the concrete and symbolic JS memory mod-
els have been implemented directly, the Gillian-JS compiler
precisely follows the JS semantics and the resulting tool has
been fully tested. In this respect, the work closest to ours is
JaVerT 2.0 [55], whose trusted compiler is, in fact, inherited
by Gillian-JS. While Gillian-JS and JaVerT 2.0 are built on the
same principles, Gillian-JS is approximately twice as fast, due
to improvements made in the symbolic execution engine.

There are many mature symbolic execution tools for C [10,
11, 23–25, 48], the majority of which follows the dynamic/-

concolic discipline pioneered by Dart [23]. Such tools pair
up symbolic execution and concrete execution to allow the
symbolic execution to fall back to the concrete whenever it
produces symbolic formulae unsupported by the underlying
constraint solver. They often combine symbolic execution
with additional techniques, such as re-use of summaries [25]
and lazy initialisation [11, 20, 48] to achieve better cover-
age/performance. Gillian also supports summary re-use for
verification and lazy initialisation in the form of bi-abduction.
This discussion, however, is out of the scope of this paper.

6 Conclusions and Further Work

We have introduced Gillian, a multi-language platform for
the development of symbolic analysis tools, based on our
intermediate goto language GIL. We have demonstrated that
our novel parametric approach is viable by instantiating
Gillian to obtain symbolic testing engines for JavaScript
and C. Both instantiations have been used to find bugs in real-
world code in times that indicate that the analysis of Gillian
can scale to larger codebases. Our work on Gillian-JS is ma-
ture, building on previous work in the JaVerT project [54, 55].
In contrast, our work on C is on-going. We plan to improve
Gillian-C based on CompCert, to explore a different Gillian-
C based on Cerberus [33] by compiling its simpler Core

language to GIL, and to compare with specialist C tools such
as CBMC [32] and KLEE [10] using established benchmarks.
We are also investigating the possibility of using Gillian to
analyse Rust programs.

We have given a formal account of the GIL semantics that
links closely to the modular OCaml implementation; this
connection was an important aim for us. We have given a
parametric definition of soundness, and have used it to prove
that the symbolic analysis of Gillian is sound and has no false
positives. This was made possible by our novel concept of
restriction, which we believe is fundamental for abstract
reasoning about the soundness of symbolic execution tools.

We believe that our experience with Gillian-JS and Gillian-
C demonstrates that instantiating Gillian for a given target
language is substantially easier for the tool developer than
building an equivalent tool from scratch. To make Gillian
instantiations more accessible to the general developer, we
plan to improve its error reporting mechanisms and develop
interactive tools (e.g. a trace visualiser and a code-stepper)
for the debugging of analysed programs.
Gillian is open-sourced and is available online [63]. It

already supports semi-automatic verification based on sepa-
ration logic and automatic compositional testing based on
bi-abduction [52], unified by the underlying symbolic ex-
ecution presented here. These additional analyses will be
described in a separate paper. In future, we hope to support
incorrectness reasoning introduced in [43], encouraged by
our identification of trace composition in §3.2. We also plan
to extend Gillian with support for reasoning about complex
language features, such as events and concurrency, as well as
with additional forms of analysis, such as concolic execution;
Gillian’s modular design lends itself well to these extensions.
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