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We propose a novel, unified approach to the development of compositional symbolic execution tools, bridging
the gap between classical symbolic execution and compositional program reasoning based on separation logic.
Using this approach, we build JaVerT 2.0, a symbolic analysis tool for JavaScript that follows the language
semantics without simplifications. JaVerT 2.0 supports whole-program symbolic testing, verification, and,
for the first time, automatic compositional testing based on bi-abduction. The meta-theory underpinning
JaVerT 2.0 is developed modularly, streamlining the proofs and informing the implementation. Our explicit
treatment of symbolic execution errors allows us to give meaningful feedback to the developer during whole-
program symbolic testing and guides the inference of resource of the bi-abductive execution. We evaluate the
performance of JaVerT 2.0 on a number of JavaScript data-structure libraries, demonstrating: the scalability of
our whole-program symbolic testing; an improvement over the state-of-the-art in JavaScript verification; and
the feasibility of automatic compositional testing for JavaScript.
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1 INTRODUCTION
Symbolic execution is a program analysis technique that systematically explores multiple program
paths by running a given program using symbolic values. It has successfully been used for both
program testing (e.g. [Cadar et al. 2008a,b; Godefroid 2007; Godefroid et al. 2005, 2008, 2010]) and
bounded verification (e.g. [Anand et al. 2007, 2009]). Still, it remains, to this day, mainly focused
on whole-program analysis. This is particularly evident in the context of dynamic languages: for
example, all major symbolic execution tools for JavaScript (JS) [Li et al. 2014; Saxena et al. 2010;
Sen et al. 2015; Wittern et al. 2017] require the entire program in order to function correctly. This
approach, however, is not aligned with the main use cases of JS: client-side Web applications often
execute multiple scripts coming from different origins in the context of the same Web page; and
server-side Node.js applications commonly import external modules.
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We believe that an analysis that can reason about JS programs as they are written in practice
needs to be compositional, in that it needs to be local, working on part of a program operating
on part of its state, and incremental, generating function summaries that can later be used in the
analysis of other functions. Program analysis based on separation logic (SL) [Ishtiaq and O’Hearn
2001; Reynolds 2002] is compositional [Harman and O’Hearn 2018; O’Hearn 2018] and has been
successfully applied to large real-world codebases. A prime example of this is Infer [Calcagno et al.
2015], a fully automatic compositional tool aimed at lightweight bug-finding for static languages
(C, C++, Java, Objective C), which is part of the code review pipeline at Facebook.

We propose a novel, unified approach to the development of compositional symbolic execution
tools, bridging the gap between symbolic execution and compositional program reasoning based
on SL. In doing so, we bring benefits to both worlds: symbolic execution tools gain access to succinct
summaries in the form of SL specifications, whereas SL proof systems become tightly linked to
efficient implementations based on symbolic execution. Using this approach, we build JaVerT 2.0,
a new verification and testing framework for JS [ECMA TC39 2011] that follows the language
semantics without simplifications. JaVerT 2.0 is underpinned by a compositional symbolic execution
tool for JSIL, our intermediate representation for JS [Fragoso Santos et al. 2018a,b]. JSIL comes with
a trusted compiler and, importantly, has the same memory model as JS by design, meaning that we
can easily lift the results of analyses on compiled JSIL code back to the original JS code.
JaVerT 2.0 supports: whole-program symbolic testing,1 which is two orders of magnitude faster

than our previous symbolic execution tool, Cosette [Fragoso Santos et al. 2018a]; verification, which
significantly improves on our previous semi-automatic verification tool, JaVerT [Fragoso Santos
et al. 2018b]; and, for the first time, automatic compositional testing based on bi-abduction. We
evaluate these three types of analysis, focussing on a number of simple data-structure libraries. Our
results demonstrate the scalability of our whole-program symbolic testing, an improvement over
the state-of-the-art in JavaScript verification, and the feasibility of automatic compositional testing
for JavaScript, minimising the annotation burden of the developer. Furthermore, we apply whole-
program symbolic testing to the real-world Buckets.js [Santos 2016] data structure library, which
has over 65K downloads on npm [npm, Inc. 2018]. We reproduce previously known bugs [Fragoso
Santos et al. 2018a], but also discover a new one. The times that we obtain are competitive, which
indicates that our analysis can scale to much larger codebases.

1.1 Overview
Syntax-directed program analyses tend to follow the semantics of the targeted languages, often
resulting in overly verbose, repetitive formalisms and implementations with substantial code
duplication. We propose a new approach for designing compositional symbolic execution tools that
factors out the overlap between the language semantics and the analysis, leading to streamlined
formalisms that are strongly connected to modular implementations with little code duplication.
We believe that this approach is language-independent; in this paper, we apply it to JSIL.

Our key insight consists of splitting the JSIL semantics into two components: a Semantics
Module and a state instantiation. Similar decompositions have arisen in the context of abstract
interpretation [Blazy et al. 2016; Darais et al. 2015; Horn and Might 2010], but we believe we are
the first to use it in the design of a symbolic execution tool.
The Semantics Module. The Semantics Module, described in detail in §3, is the bedrock for both

the formal development and the implementation of JaVerT 2.0. It describes the behaviour of JSIL

1We use the term symbolic testing to mean ‘static symbolic execution with boundedness guarantees’, in the style of Khurshid
et al. [2003] and Torlak and Bodík [2014]. The analysis explores all paths and unrolls loops up to a given bound. We discuss
this further and compare with related work in detail in §7.
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commands in terms of a state signature: that is, a set of general state functions, reminiscent of local
actions in SL [Calcagno et al. 2007; Dinsdale-Young et al. 2013], which capture the fundamental ways
in which JSIL programs interact with JSIL states (for example: evaluating an expression; allocating
a new object; or retrieving the value of an object property). This general state signature can then be
instantiated to obtain a specific JSIL semantics. In JaVerT 2.0, we provide three state instantiations
for the Semantics Module: concrete, instrumented, and symbolic, respectively obtaining the concrete,
instrumented, and symbolic semantics of JSIL.

BI-ABDUCTION
MODULE

SPECIFICATION
MODULE

Concrete
State

Symbolic
State

Instrumented
State

SEMANTICS
MODULE

General
State

Fig. 1. Unified Symbolic Analysis for JSIL

One of the main novelties of our pro-
posed architecture is its unique empha-
sis on error reporting. The Semantics
Module includes a general error report-
ing mechanism that accurately describes
the causes of failure whenever an er-
ror occurs. Among the supported error
types, specification errors play a crucial
role in the design of the system. They oc-
cur when the instantiated JSIL semantics
does not have enough information to ex-
ecute the command at hand: for example,
during a property lookup, the inspected
object property might be missing from
the state, in which case we do not know
whether or not it exists. Specification er-
rors carry important information that
describes how to trigger the error, and also information on how to correct it. This information is es-
sential for our analysis, as it allows us to provide meaningful error messages during whole-program
symbolic testing, but also guides the inference of resource of the bi-abductive execution.
The Concrete Semantics. The concrete semantics allows us to run JSIL programs concretely.

This is essential for ensuring that the Semantics Module captures the intended behaviour of the
language. It also allows us to test our infrastructure against the ECMAScript official test suite,
Test262 [ECMA TC39 2017], by first compiling it to JSIL and then executing it concretely. In this
way, we establish trust in the compilation.
The Instrumented Semantics. The frame property [Ishtiaq and O’Hearn 2001; Reynolds 2002]

is essential for local reasoning about programs that alter the heap state. Intuitively, the frame
property means that the output of a program does not change when the state in which it is run
successfully is extended. The JSIL semantics, however, just like JavaScript semantics, does not
observe the frame property: one can introduce bugs into a JSIL/JavaScript program by extending the
state in which the program was run. Our solution is to design an instrumented state instantiation,
and corresponding instrumented semantics [Fragoso Santos et al. 2018a], that exhibits the frame
property by explicitly keeping track of object properties that we know are not present. By having
the instrumented semantics as a proper interim stage between the concrete semantics and the
symbolic semantics, we obtain more modular reasoning and substantially simpler proofs than
previous approaches based on weak locality [Gardner et al. 2012, 2008].
The Symbolic Semantics. The symbolic semantics represents the core of our compositional

symbolic execution tool. It is obtained by lifting the instrumented state instantiation to the symbolic
level, following a standard approach [Torlak and Bodík 2013, 2014], and plugging the lifted state
instantiation into the Semantics Module. Unlike the majority of the existing bug-finding symbolic
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Module

State Implementation Semantics Specification Bi-Abduction
Specification

+
Bi-Abduction

Concrete
Concrete

Interpreter† − − −

Instrumented
Instrumented
Interpreter

Executable
Specifications − −

Symbolic
Whole-Program
Symbolic Testing† Verification† Automatic

Local Testing
Automatic

Compositional Testing†

Table 1. Use cases: combining modules and state instantiations. We label the implemented combinations

with † and those that do not yield useful results with −.

execution tools for JavaScript [Li et al. 2014; Saxena et al. 2010; Wittern et al. 2017] which target
specific bug patterns and are not rigorously formalised, the symbolic semantics underpinning
JaVerT 2.0 is general, fully formalised, and proven sound.
The Specification Module. The Specification Module, described in detail in §4, establishes

the connection between the JSIL SL assertion language and JSIL states, allowing us to use SL
specifications as procedure summaries during instrumented and symbolic execution. The Specifica-
tion Module extends a given state signature with a built-in mechanism for executing procedure
calls abstractly, using SL specifications. By plugging the instrumented state into the Specification
Module and the resulting state into the Semantics Module, we obtain an instrumented semantics
that supports executable specifications, meaning that SL specifications can be used to jump over
procedure calls. If, instead, we plug the symbolic state into the Specification Module and the
resulting state into the Semantics Module, we arrive at verification for JSIL, where one can write
inductive predicates and SL specifications to describe the behaviour of their programs and obtain
full functional correctness guarantees.
The Bi-Abduction Module. To support automatic compositional testing, we extend the JSIL

symbolic semantics with a bi-abductive mechanism [Calcagno et al. 2011] for automatically infer-
ring the missing resource of specification errors. Instead of creating the bi-abductive semantics
from scratch, we design the Bi-Abduction Module, described in detail in §5, which extends a given
state signature with a built-in mechanism for on-the-fly correction of specification errors dur-
ing execution. By plugging the symbolic state into the Bi-Abduction Module and the resulting
state into the Semantics Module, we obtain automatic local testing for JSIL. On the other hand, by
plugging the symbolic state into the Specification Module, the resulting state into the Bi-Abduction
Module, and then that state into the Semantics Module, we obtain automatic compositional testing
in the style of Infer [Calcagno et al. 2015], where one can get, without providing any annotations,
specifications that describe the behaviour of their functions up to a bound, and where specifications
of previously analysed functions can be re-used for the analysis of functions that call them.
Summary. In Table 1, we summarise the different ways in which we can combine the proposed
modules and state instantiations to obtain different types of analysis for JavaScript/JSIL. For a static
language, such as Java, the corresponding table would only contain the concrete and the symbolic
state instantiations, and the analyses at the instrumented level would lift to the concrete level.

2 USING JAVERT 2.0
JaVerT 2.0 is a tool for JavaScript developers, designed to assist them in the testing and verification
of their programs. It is not meant for analysing JavaScript code in the wild. We demonstrate how
JaVerT 2.0 can be used by developers for: (1) scalable whole-program symbolic testing; (2) semi-
automatic verification; and (3) fully automatic compositional testing.
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1 function evalExpr (store, e) {
2 if (typeof e !== "object") throw new Error ("E:Type");
3 switch (e.type) {
4 case "lit" : return e.val
5 case "var" : return store.get(e.name)
6 case "unop" :
7 var arg_v = evalExpr(store, e.arg);
8 return evalUnop (e.op, arg_v)
9 case "binop" :
10 var left_v = evalExpr(store, e.left);
11 var right_v = evalExpr(store, e.right);
12 return evalBinop (e.op, left_v, right_v)
13 default : throw new Error("Expr") }
14 }
15
16 function evalUnop (op, v) {
17 switch (op) {
18 case "-" : return -v
19 case "not" : return !v
20 case "abs" : return v < 0 ? -v : v
21 default : throw new Error ("UnOp") }
22 }
23
24 function evalBinop (op, v1, v2) {
25 switch (op) {
26 case "+" : return v1 + v2
27 case "-" : return v1 - v2
28 case "or" : return v1 || v2
29 case "and" : return v1 && v2
30 default : throw new Error("BinOp") }
31 }

Symbolic test 1:
1 var x = symb();
2 assume(typeof x !== "object");
3 try { evalExpr(store, x) } catch (e) {
4 assert(e.message === "E:Type")
5 }

Symbolic test 2:
1 var x = symb();
2 assume(typeof x === "object");
3 try { evalExpr(store, x) } catch (e) {
4 var msg = e.message;
5 assert (msg === "Expr" || msg === "UnOp" ||
6 msg === "BinOp");
7 }

Symbolic test 3:
1 var n = symb_number(), op = symb_string();
2 var lit = { type: "lit", val: n };
3 var e = { type: "unop", op: op; arg: lit };
4 assume (op !== "not");
5 try {
6 var ret = evalExpr(store, e);
7 var abs_ret = n < 0 ? -n : n;
8 assert (((op === "-") && (ret === -n)) ||
9 ((op === "abs") && (ret === abs_ret)));
10 } catch (e) {
11 assert(e.message === "UnOp")
12 }

Fig. 2. Expression Evaluator implementation (left); symbolic tests (right)

Our running example is a JS implementation of an expression evaluator, given in Figure 2 (left). It
contains three functions: evalExpr, for evaluating a given expression under a given store; evalUnop,
for applying a given unary operator to a given value; and evalBinop, for applying a given binary
operator to two given values. Expressions are evaluated with respect to a store, which is assumed
to be a key-value map exposing a method get for recovering the value associated with a given
key (we re-use the key-value map implementation of Fragoso Santos et al. [2018b]). For space
reasons, we omit the store initialisation in the symbolic tests of Fig. 2 (right). Expressions are
represented in memory as AST objects. For instance, the expression x + 1 corresponds to the object:
{ type: "binop", op: "+", left: { type: "var", name: "x"}, right: { type: "lit", val: 1} }.
Whole-Program Symbolic Testing. Developers commonly write unit tests to check that, given
some concrete inputs, their code produces the desired outputs. With JaVerT 2.0, developers can
write unit tests with symbolic inputs/outputs and use simple assertions to describe the properties
that the outputs must satisfy. JaVerT 2.0 allows users to symbolically execute such tests, providing
concrete counter models in case of failure which the developer can potentially use to correct the error.
Symbolic tests are more effective than concrete ones, as one single symbolic test often covers

a range of program executions that corresponds to a number of concrete unit tests. For instance,
consider Symbolic Test 1 in Figure 2 (right), which tests the behaviour of evalExpr on all non-object
inputs. We would need five concrete tests to perform the same check (corresponding to the cases
when the type of the input is equal to "undefined", "boolean", "number", "string", or "function").

Despite its simplicity, the code of the expression evaluator exposes a common JavaScript bug.
To understand the bug, consider Symbolic Test 2, which states that, when given an input of type
"object", evaExpr does not throw a JS native error. This is tested in lines 7-9, by asserting that if an
error is thrown, it must correspond to one of the errors thrown by the code itself. However, running
JaVerT 2.0 on this test returns a concrete counter-example for the assertion: e = null. Indeed, if
we run evalExpr with e set to null, the JS semantics throws a type error. This happens because, in
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predicate ExprVal(e:Obj, bnds:Set, v) :=
e |-> { type: "lit", val: v },
e |-> { type: "var", name: #x } * ((#x, v) in bnds),
e |-> { type: "unop", op: #op, arg: #arg } * ExprVal(#arg, bnds, #v) * UnOp(#op, #v, v),
e |-> { type: "binop", op: #op, left: #left, right: #right } * ExprVal(#left, bnds, #l)

* ExpVal(#right, bnds, #r) * BinOp(#op, #l, #r, v)

predicate UnOp(op, v1, v2) :=
(op = "-") * types(v1:Num) * (v2 = -v1),
(op = "!") * types(v1:Bool) * (v2 = not v1), ...

predicate BinOp(op, vl, vr, v) :=
(op = "+") * types(vl,vr:Num) * (v = vl+vr),
(op = "-") * types(vl,vr:Num) * (v = vl-vr), ...

Fig. 3. Specification of the Expression Evaluator - Predicate Definitions

JavaScript, typeof null evaluates to "object", meaning that the execution reaches line 4 of evalExpr,
causing the program to throw an error when trying to access the property "type" of null.

Finally, Symbolic Test 3 covers three different behaviours of the evalExpr and evalUnop functions
at the same time, effectively testing all possible behaviours of evalUnop on numeric inputs.
Writing unit tests is a mundane task that programmers do not generally do well. For instance,

the real-world Buckets.js library [Santos 2016], on which we evaluate JaVerT 2.0 in §6, comes with
a comprehensive, yet incomplete test suite that failed to detect two bugs. Symbolic tests reduce the
burden on the programmer, bringing immediate value to the software development process.

Verification. We illustrate how JaVerT 2.0 can be used to specify and verify the expression evaluator.
First, we design a predicate ExprVal(e, bnds, v), where e points to the AST of the expression we are
evaluating, and v is the value to which the expression evaluates under the store with bindings
given by bnds (a set of pairs of the form (x, v) where x is a variable name and v is its value). The
predicate definition is given in Fig. 3. It uses two auxiliary predicates: (1) UnOp(op, v1, v2), stating
that v2 is the result of applying the unary operator op to v1, and (2) BinOp(op, vl, vr, v), stating that
v is the result of applying the binary operator op to vl and vr. Predicate definitions are separated
by a comma and all logical variables are prefixed with a # and are implicitly existentially quantified.
We describe one base case and one recursive case of ExprVal; the remaining cases are similar.

• [Var] In the variable case, e points to an object with a property type with value "var" and a
property name with value #x (note that #x denotes an existentially quantified logical variable).
Finally, the definition requires that (#x, v) is contained in the set of bindings, bnds.

• [Binary Operator] In the binary operator case, e points to an object with properties type, op, left,
and right, with values "binop", #op, #left, and #right. The definition further requires that both
ExprVal(#left, bnds, #l) and ExprVal(#right, bnds, #r) hold, meaning that the result of evaluating
the AST pointed to by, respectively, #left and #right, in a store with contents bnds is equal to,
respectively, #l and #r. Finally, the definition requires that BinOp(#op, #l, #r, v) holds, meaning
that v corresponds to the application of the binary operator #op to #l and #r.

Having designed these predicates, we can now specify (and automatically verify) the functions
evalExpr, evalUnop, and evalBinop. JaVerT 2.0 supports two types of specifications (specs): normal
specs, for cases in which the function terminates normally; and error specs, for cases in which a
it terminates by throwing an error. In Figure 4 (left), we give all of the normal specs of evalExpr,
evalUnop, and evalBinop, as well as one error spec of evalExpr. We note that logical variables that
appear in the pre-condition maintain the same value in the post-condition. Also, normal specs
refer to the return value in the post-condition via the special variable ret, whereas error specs use
the special variable err. Despite the complexity of the JS semantics, these specs are fairly simple.
Below, we explain the two given specs of evalExpr.
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
ExprVal(e, #bnds, #v) *
KVMap(store, #bnds) *

ScopeEvalExpr()


evalExpr(store, e){
PRE * (ret = #v)

}
{

typeof(e) != Obj *
ScopeEvalExpr()

}
evalExpr(store, e){

PRE *
ErrorObject(err, "E:Type")

}
{

UnOp(op, l, #v)
}

evalUnop (op, l){
UnOp(op, l, #v) *

(ret = #v)

}
{

BinOp(op, l, r, #v)
}

evalBinop (op, l, r){
BinOp(op, l, r, #v) *

(ret = #v)

}

{ PRE }

2. if (typeof e !== "object")

{ PRE }{
e |-> { type:"unop", op:#op, arg:#arg } *

ExprVal(#arg, #bnds, #va) * UnOp(#op, #va, #v) *
KVMap(store, #bnds) * ScopeEvalExpr()

}
3. switch (e.type){

e |-> { type:"unop", op:#op, arg:#arg } *
ExprVal(#arg, #bnds, #va) * UnOp(#op, #va, #v) *

KVMap(store, #bnds) * ScopeEvalExpr()

}
7. var arg_v = evalExpr(store, e.arg){

e |-> { type:"unop", op:#op, arg:#arg } *
ExprVal(#arg, #bnds, #va) * UnOp(#op, #va, #v) *

KVMap(store, #bnds) * ScopeEvalExpr() * Scope(arg_v: #va)

}
8. return evalUnop (e.op, arg_v){

e |-> { type:"unop", op:#op, arg:#arg } * UnOp(#op, #va, #v) *
ExprVal(#arg, #bnds, #va) * KVMap(store, #bnds) *

ScopeEvalExpr() * Scope(arg_v: #va) * ret = #v

}
{ PRE * ret = #v }

Fig. 4. Specification of the Expression Evaluator - Function Specs

• [Normal Return] The pre-condition states that e points to the AST of an expression that evaluates
to #v in a store with contents #bnds and that store points to a key-value map with contents #bnds.
The post-condition states that the function maintains the pre-condition and returns #v.

• [Error Return] The pre-condition states that e is not an object, whereas the post-condition states
that the functions maintains the pre-condition and throws an error with message "Expr".

Both specs include in the pre-condition a predicate assertion ScopeEvalExpr() which describes all
the resources that function evalExpr can access via its scope chain and which it may need during
its execution. More concretely, those are the function objects corresponding to the three interpreter
functions and the JS Error constructor. This predicate may be different for every function literal
existing in the code. Unlike the original JaVerT tool [Fragoso Santos et al. 2018b], JaVerT 2.0 can
generate these scope predicates automatically, relieving users of the need to describe the contents
of the scope chains of the functions that they want to specify/verify.

Another important improvement of JaVerT 2.0 over JaVerT is that JaVerT 2.0 supports automatic
unfold/fold reasoning [Nguyen et al. 2007] over user-defined inductive predicates. Hence, while
JaVerT 2.0 requires no additional annotations to verify the specs given in Figure 4, JaVerTwould need
an unfold annotation before line 4 of the example and a fold annotation before every return/throw
statement. This greatly reduces the annotation burden on the developer. To better understand the
unfold/fold mechanism, let us consider the (partial) proof trace given in Figure 4 (right), which
starts from the pre-condition of the first spec of evalExpr, shown in the left column. For clarity, we
highlight in red the resources required for executing every JS statement.
• To symbolically execute line 2, JaVerT 2.0 does not need to unfold ExprVal(e, #bnds, #v), as the
type of e is exposed in the predicate definition (cf. Figure 3).

• In contrast, to symbolically execute line 3, JaVerT 2.0 needs to access the property type of the
object pointed to by e, folded inside the ExprVal(e, #bnds, #v) predicate. JaVerT 2.0 detects that
there is a predicate with e as an argument and unfolds it, obtaining four possible symbolic
states—one per definition of ExprVal. Here, we describe the proof trace corresponding to the
unop case, where the symbolic execution jumps to line 7 after evaluating the guard of the switch.
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• In line 7, instead of stepping inside the code of evalExpr, JaVerT 2.0 uses its specification to
symbolically execute the recursive call. The return value is then assigned to the JS variable arg_v,
which we capture via the assertion Scope(arg_v: #va). Note that, in JS, the scope is emulated in
the heap, so this assertion is not equivalent to arg_v = #va (cf. [Fragoso Santos et al. 2018b]).

• Finally, in line 8, JaVerT 2.0 uses the spec of evalUnop to symbolically execute the function call,
concluding that it returns the value denoted by #v, which, incidentally, is also the return value
of evalExpr. When evalExpr returns, JaVerT 2.0 needs to check that the current symbolic state
entails its post-condition. As part of solving this entailment, JaVerT 2.0 folds back the original
ExprVal(e, #bnds, #v) predicate assertion, obtaining the exact post-condition.

Automatic Compositional Testing. JaVerT 2.0 is the first tool that supports automatic composi-
tional testing for JS code. It receives as input a JS program and generates two sets of specs for each
function in the program: (1) success specs, describing behaviours that do not result in a JS native
error (e.g., TypeError or ReferenceError), and (2) bug specs, describing the behaviours for which a
JS native error is thrown. As this approach is compositional, some of the reported bug specs do
not happen in practice, as their pre-conditions are never realised by design. It is the job of the
programmer to identify which bug specs can actually happen and correct the program accordingly.
This is feasible because JaVerT 2.0 specs use abstractions that JavaScript developers can understand,
and hide almost all of the internals of the language. Below, we show two automatically generated
specs of evalExpr:{

e = null * ScopeEvalExpr()
}

evalExpr(store, e){
PRE * TypeError(err)

}


e |-> { type: "unop", op: "-", arg: #a } *
#a |-> { type: "lit", val: #n } *
types(#n:Num) * ScopeEvalExpr()


evalExpr(store, e){
PRE * (ret = -#n)

}
The bug spec on the left captures the expression evaluator bug, stating that when e equals null,

the program throws a TypeError. The right spec is a success spec, stating that when e points to the
AST of the expression −#n, the result of running evalExpr on e is, in fact, the value −#n. In both
cases, the behaviour of evalExpr is independent of the store, so it need not be featured in the spec.
As JaVerT 2.0 does not synthesise loop invariants or infer abstractions for recursive functions,

the automatically generated specs describe program behaviour up to a given bound. These specs can
be viewed as symbolic unit tests whose purpose is to find JS native errors. Just as for symbolic tests,
the pre-condition of a bug spec can be concretised, revealing a concrete execution triggering the
corresponding JS native error. On the other hand, success specs can be turned into actual symbolic
tests [Fragoso Santos et al. 2018a], meaning that, for example, after fixing the bug, we could collect
all the success specs to produce a comprehensive symbolic test suite for our expression evaluator.
The automatic compositional testing of JaVerT 2.0 has its limitations. The JS semantics has

significant internal branching (for example, due to type coercions), which can cause a search space
explosion during spec generation. To help guide the tool, users can explicitly give hints about the
intended use-cases of the functions to the bi-abduction engine. These hints are extremely simple to
write, are much less verbose than full-blown specs or handwritten symbolic tests, and can efficiently
guide the bi-abduction, as illustrated in §6, as well as serve as documentation for the code. For
example, if the parameter op of the procedure evalUnop(op, v) should always be a string by design,
we could give the hint assume(typeof op === "string") and cut the search space accordingly.

3 THE SEMANTICS MODULE
We present the Semantics Module of our unified analysis framework for JSIL. We give the syntax
of JSIL and comment on its expressivity (§3.1). We introduce the interface of the Semantics Module
(§3.2) and the general JSIL semantics (§3.3). Following our previous approaches [Fragoso Santos et al.
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2018a,b], we instantiate the Semantics Module to obtain the concrete and symbolic JSIL semantics
(§3.4–§3.5). We highlight our novel treatment of errors, essential for meaningful error reporting
for whole-program symbolic testing, as well as for the inference of resource of the bi-abductive
semantics, shown in §3.3.1 and §3.5.2.

3.1 JSIL Syntax
JSIL is a simple goto language with top-level procedures and commands that operate on object heaps.

The Syntax of JSIL

λ ∈ Lit ::= n ∈ N | b ∈ B | s ∈ S | undefined | null | e ∈ E ::= λ | x ∈ X | x̂ ∈ X̂ | ⊖ e | e ⊕ e

empty | l ∈ L | τ ∈ T | f ∈ Fid | λ | {λ}
bc ∈ Bcmd ::= skip | x := e | x := new (e) | x := [e, e] | [e, e] := e | delete (e, e) | x := hasProp (e, e) |

x := getProps (e) | x := metaData (e)

c ∈ Cmd ::= bc | goto i | goto [e] i, j | assume (e) | assert (e) | x := arguments | return | throw |

x := e(e)with j | x := extern e(e)with j | x := apply (e, e)with j

proc ∈ Proc ::= proc f (x){c} p ∈ P ::= {proc}

JSIL literals include numbers, booleans, strings, the special values undefined, null, and empty,
object locations, types, procedure identifiers, and lists and sets of values. JSIL expressions, e ∈ Exp,
include literals, program variables x , symbolic variables x̂ , and various unary and binary operators.
JSIL basic commands are used for the manipulation of extensible objects and have no impact

on the control flow of the program. They include: the skip command; variable assignment; object
creation; property access, assignment, deletion, membership, and collection; and object metadata
collection, introduced in this paper and described shortly.
JSIL commands include basic commands, conditional and unconditional gotos, procedure calls,

commands for assuming and asserting facts about the execution of the program, and new commands
for argument collection, external procedure calls, procedure application, and procedure termination.
The goto commands are straightforward. The procedure call x := e(e)with j is dynamic: the proce-
dure identifer is obtained by evaluating the JSIL expression e . If the procedure terminates normally,
control proceeds to the next command, and to the j-th command otherwise. External procedure
calls can step outside the execution of a JSIL program, whereas procedure application receives the
procedure identifier and a JSIL list containing the procedure parameters. The argument collection
command returns the values of the arguments with which the current procedure was called.

A JSIL procedure is of the form proc f (x){c}, where f is its identifier, x are its formal parameters,
and its body c is a sequence of JSIL commands. Procedures can return either normally or in error
mode, using the return and throw commands, respectively. In both cases, the value that is returned
is the value of the dedicated variable ret. A JSIL program p ∈ P is a set of top-level procedures,
and its entry point is always the special procedure main.
JSIL as an IR for JavaScript Analysis. JSIL has all of the constructs needed to precisely capture
and reason about the entire ES5 standard. In particular: (1) the dynamic features of JS (extensible
objects, dynamic property access, and dynamic procedure calls) are native in JSIL; (2) the intricate
control flow patterns of JavaScript statements (e.g. switch and try−catch) can be expressed in the
JSIL goto-based control flow; (3) the eval statement and the Function constructor, which require
parsing of JS code, are modelled via external procedure calls; (4) functions that require a variable
number of arguments are modelled using procedure application; (5) the arguments object is modelled
with the help of the argument collection command; and (6) the internal properties of JS objects are
modelled using object metadata, streamlining the performance of JaVerT 2.0 on compiled JS code.
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3.2 The Semantics Module Interface
The Semantics Module operates on general JSIL states Σ ∈ S and general JSIL values v, p, l ∈ V.
For clarity, we use p and l to refer to general values denoting properties and locations, respectively.
Also, we use the special symbol � (read: none) to denote the absence of a property in an object,
write V� for the set V ∪ {�}, and range over it using v. We design the functions of the Semantics
Module Interface (SMI) so that the analysis, the proofs, and the implementations are modular and
streamlined, minimising redundancy wherever possible. We introduce the key SMI functions in
several groups, according to their use.

First, we require general states to contain a variable store P : X ⇀ V, mapping program variables
x ∈ X to general values. Stores have three functions associated with them:

• the store getter (GetStore), GS(Σ), which returns the store associated with the state Σ;
• the store setter (SetStore), SS(Σ,x , v), which returns the state obtained from Σ by updating the
value of x to v in the store of Σ; and

• the store replacer (ReplaceStore),RS(Σ, P), which returns the state obtained from Σ by replacing
its variable store by P.

Next, we have the SMI functions that operate only on JSIL expressions and values. These are:

• the expression evaluator, Ev(P, e), which returns the value of e under store P;
• assumption, Asm(Σ, e), which extends Σ by assuming that e evaluates to true; and
• the satisfiability checker (SATCheck), Sat(Σ, e), which returns true if e is satisfiable in the
state Σ, and false otherwise.

Finally, there are the SMI functions that describe the local actions of JSIL, that is, the fundamental
ways through which JSIL interacts with its memory model. We have:

• the object allocator, Alloc(Σ), which returns a value denoting a fresh location as well as the
new state that keeps track of that allocation;

• the object property collector (GetProperties), GP(Σ, e), which returns the set of property
names associated with the object denoted by e;

• the cell getter (GetCell), GC(Σ, e1, e2) ; Σ′, (l, p, v), which retrieves, potentially non-determini-
stically, the value associated with a given property of a given object: if GC(Σ, e1, e2) ; Σ′, (l, p, v)
holds, then: l = Ev(GS(Σ), e1), p = Ev(GS(Σ), e2), v denotes the value of the property p of the
object at location l, and Σ′ denotes a potential re-arrangement of Σ after property inspection
(discussed in more detail in §3.5);

• the cell setter (SetCell), SC(Σ, l, p, v), which returns the state obtained from Σ by creating/up-
dating the property p of the object at location l to have value v;

• the metadata getter (GetMetadata), GM(Σ, e), which returns the metadata of the object e; and
• the metadata setter (SetMetadata), SM(Σ, e, v), which sets the metadata of the object denoted
by e to the value v.

3.3 General JSIL semantics
Transitions for basic commands have the form ⟨Σ,bc⟩ ; O, meaning that the execution of the
basic command bc in the state Σ evaluates to the outcome O. The outcome O can either be a general
state Σ′ or a JSIL error ξ . We show the non-failing transitions of the semantics in Fig. 5, and delay
the presentation of errors to §3.3.1. These rules illustrate how the behaviour of JSIL basic commands
can be broken down using the functions of the SMI—in particular, the local actions. For example,
GetCell is used pervasively to factor out the common behaviour of almost all basic commands that
interact with objects: property access, assignment, deletion, and membership.
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Skip
⟨Σ, skip ⟩ ; Σ

Assignment
v = Ev(GS(Σ), e)

⟨Σ, x := e ⟩ ; SS(Σ, x, v)

Object Creation
v = Ev(GS(Σ), e) (Σ′, l) = Al loc (Σ) Σ′′ = SM(Σ′, l, v)

⟨Σ, x := new (e)⟩ ; SS(Σ′′, x, l)

Property Access
GC(Σ, e1, e2) ; Σ′, (−, −, v)

⟨Σ, x := [e1, e2]⟩ ; SS(Σ′, x, v)

Property Assignment
v = Ev(GS(Σ), e3)

GC(Σ, e1, e2) ; Σ′, (l, p, −)

⟨Σ, [e1, e2] := e3 ⟩ ; SC(Σ′, l, p, v)

Property Deletion
GC(Σ, e1, e2) ; Σ′, (l, p, v)

Σ′′ = SC(Σ′, l, p, �)

⟨Σ, delete (e1, e2)⟩ ; Σ′′

Property Membership
GC(Σ, e1, e2) ; Σ′, (−, −, v)

Σ′′ = SS(Σ′, x, v , �)

⟨Σ, x := hasProp (e1, e2)⟩ ; Σ′′

Property Collection
v = GP(Σ, e)

Σ′ = SS(Σ, x, v)

⟨Σ, x := getProps (e)⟩ ; Σ′

MetaData Collection
GM(Σ, e) = v

⟨Σ, x := metaData (x, e)⟩ ; SS(Σ, x, v)

Fig. 5. General semantics of basic commands, non-failing transitions : ⟨Σ,bc⟩ ; Σ′

Basic Command
cmd(i) = bc ⟨Σ, bc ⟩ ; Σ′

⟨Σ, cs, i ⟩C ; ⟨Σ′, cs, i+1⟩C

Assume
cmd(i) = assume (e)
Σ′ = Asm (Σ, e)

⟨Σ, cs, i ⟩C ; ⟨Σ′, cs, i+1⟩C

Assert - True
cmd(i) = assert (e)
Sat(Σ, ¬e) = false

⟨Σ, cs, i ⟩C ; ⟨Σ, cs, i+1⟩C

Goto
cmd(i) = goto j

⟨Σ, cs, i ⟩C ; ⟨Σ, cs, j ⟩C

Cond. Goto - True
cmd(i) = goto [e] j, k

Σ′ = Asm (Σ, e)

⟨Σ, cs, i ⟩C ; ⟨Σ′, cs, j ⟩C

Arguments
cmd(i) = x := arguments

cs = (−, v, −, −, −, −)
Σ′ = SS(Σ, x, v)

⟨Σ, cs, i ⟩C ; ⟨Σ′, cs, i+1⟩C

Return/Throw
cmd(i) = return /throw

cs = (−, −, P′, x, j, k ) :: cs′

P = GS(Σ) Σ′ = RS(Σ, P′)
Σ′′ = SS(Σ′, x, P(ret))

⟨Σ, cs, i ⟩⊤ ; ⟨Σ′′, cs′, j/k ⟩⊤

Procedure Call
cmd(i) = x := e(ei |ni=0)with j P = GS(Σ)

Ev(P, e) = f args(f ) = [xi |mi=0]
vi = Ev(P, ei )|ni=0 vi = undefined|mi=n+1

P
′ = [xi 7→ vi |

m
i=0] Σ′ = RS(Σ, P′)

⟨Σ, cs, i ⟩C ; ⟨Σ′, (f , vi |mi=0, P, x, i+1, j) :: cs, 0⟩
C

External Procedure Call
cmd(i) = x := extern e(ei |ni=0)with j P = GS(Σ)

Ev(P, e) = f vi = Ev(P, ei )|ni=0
Ψ(f ) = ϕ ϕ(p, vi |ni=0) = p

′, v, b
Σ′′ = SS(Σ′, x, v) k = if b then i + 1 else j

Ψ ⊢ ⟨p, Σ, cs, i ⟩C ; ⟨p′, Σ′′, cs, k ⟩C

Fig. 6. General semantics of commands, non-failing transitions (excerpt): Ψ ⊢ ⟨p, Σ, cs, i⟩C ; ⟨p′, Σ′, cs′, j⟩µ

For transitions of commands, we introduce execution modes, µ ∈ M, and call stacks, cs ∈ CS. JSIL
has four execution modes: C, denoting that the execution should proceed; N(v) and E(v), denoting,
respectively, that the execution terminated normally or in error mode, with return value v; and
F(ξ ), denoting that the execution has failed with an error ξ (discussed shortly). Call stacks are
non-empty lists of tuples of the form (f ,arдs,P,x , i, j), where: f is the identifier of the procedure
being executed; arдs is a list containing the values of the parameters with which this procedure
was called; P is the store of the caller of f ; x is the variable to which the return value of f will
be assigned; and i and j are, respectively, the indexes to which the control jumps when f returns
normally or with an error. We define the initial call stack, csmain, as [(main , [], ∅, ret, 0, 0)], where the
variable ret holds the output of the entire program. We model external procedure calls as semantic
functions ϕ ∈ Φ : P × Vn ⇀ P × V × B, which take as parameters the current program and a
list of values, and (possibly non-deterministically) produce a new program, a return value, and a
boolean indicating if the execution should continue normally or in error mode. These functions
are available via an external procedure table, Ψ : Fid ⇀ Φ. Transitions for commands are of the
form Ψ ⊢ ⟨p, Σ, cs, i⟩µ ; ⟨p ′, Σ′, cs′, j⟩µ

′ , meaning that, given an external procedure table Ψ and
starting from a program p, state Σ and execution mode µ, the evaluation of the i-th command of the
leading procedure of cs generates the program p ′, state Σ′, call stack cs′, and the next command
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Property Access - Error Propagation
GC(Σ, e1, e2) ; ξ

⟨Σ, x := [e1, e2]⟩ ; ξ

Property Access - Absent Property
GC(Σ, e1, e2) ; Σ′, (l, p, �)

⟨Σ, x := [e1, e2]⟩ ; RE((l, p) 7→ �)

Property Membership - Spec Error
GC(Σ, e1, e2) ; SE(pf , sc , pc )

⟨Σ, x := hasProp (e1, e2)⟩ ; SE
†(pf , sc )pc

Basic Command - Error Propagation
cmd(p, cs, i) = bc ⟨Σ, bc ⟩ ; ξ

⟨Σ, cs, i ⟩⊤ ; ⟨Σ, cs, i ⟩F(ξ )

Procedure Call - Id Type Error
cmd(i) = x := e(−)with − τ = typeOf (Ev(GS(Σ), e)) τ , Fid

⟨Σ, cs, i ⟩⊤ ; ⟨Σ, cs, i ⟩F(TE(e,Fid,τ ))

Fig. 8. General Semantics for Basic Commands and Commands, failing transitions (excerpt)

to be evaluated is the j-th command of the leading procedure of cs′, in execution mode µ ′. The
non-failing transitions for commands (except [Cond. Goto - False], for space reasons) are given in
Fig. 6. For clarity, we keep the program and the external procedure table implicit in the rules that
do not use them. Also, we write cmd(i) to denote the i-th command of the leading procedure of cs.

Pure Assertions:
p ::= true | false | v = v |

v ≤ v | ¬p | p ∨ p

Spatial Assertions:
s ::= emp | (v, v) 7→ v |

noProps(v, v) | MetaData(v, v)

Errors:
ξ ∈ Err ::= TE(v,τ1,τ2) | RE(s) |
AE(p) | SE(pf , sc ,pc ) | SE

†(sc ,pc )

Fig. 7. JSIL Errors

3.3.1 Treatment of Errors. The general JSIL semantics explicitly
handles errors that occur during the evaluation of a program. Their
syntax is shown in Fig. 7, and a selection of failing transitions for
JSIL basic commands and commands is shown in Fig. 8. We describe
errors using standard separation logic assertions. Pure assertions
are quantifier-free first-order formulae over general JSIL values,
whereas spatial assertions describe the JSIL heap: the emp assertion
describes the empty heap; the cell assertion, (vl , vp ) 7→ v, states
that the property denoted by vp of the object denoted by vl has the
value denoted by v; the no-properties assertion, noProps(vl , vps ),
states that the object denoted by vl has no properties other than
possibly those in the set denoted by vps ; and the metadata assertion, MetaData(vl , v), states that
the metadata of the object denoted by vl is equal to the value denoted by v.
We first focus on type errors, TE(v,τ1,τ2), and resource errors, RE(s), which correspond to

well-known errors that can occur during program execution. These errors can only be reported,
but not corrected, by our analysis. A type error, TE(v,τ1,τ2), occurs when a value v is expected to
have type τ1, but instead has type τ2. For instance, if we call a procedure with a number instead of
a procedure identifier, we will get a type error (Fig. 8, [Procedure Call - Id Type]). A resource error,
RE(s), occurs when a command requires a spatial resource, described by the list of assertions s ,
but we know with certainty that this resource is absent. For example, the rule [Property Access -
Absent Property] in Fig. 8 states that if we try to look up a property that we know does not exist
(indicated by the GetCell returning �), then we get the appropriate resource error.

An assertion error, AE(p), is an analysis-related error that occurs when the pure constraint p
that we are attempting to assert does not hold in the current state.
As our symbolic execution is compositional, we can reason about partial programs running

in partial states. This gives rise to another type of error, specific to our analysis, which is the
specification error. Specification errors (spec errors, SE(pf , sc ,pc )), occur when we do not have
information about a required spatial part of the state. They carry three pieces of information: the
failing constraint, pf , which tells us how to trigger the error; and two correctives, sc (spatial) and pc
(pure), which together tell us how to correct the error. This information is essential for our analysis:
it allows us to provide meaningful error messages during whole-program symbolic testing; and it
guides the inference of resource of the bi-abductive execution. We revisit spec errors in §3.5.2.
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SetCell - Positive Update
σ = (ρ, h,m)

h′ = h[(l, p) 7→ v]

SCc(σ , l, p, v) ≜ (ρ, h′,m)

SetCell - Negative Update
σ = (ρ, h,m)

h = h′ ⊎ (l, p) 7→ −

SCc(σ , l, p, �) ≜ (ρ, h′,m)

GetCell - Found
σ = (ρ, h,m)

l = Evc (ρ, e1) p = Ev(ρ, e2)
h = − ⊎ (l, p) 7→ v r = (l, p, v)

GC(σ , e1, e2) ;c σ , r

GetCell - Not Found
σ = (ρ, h,m)

l = Evc (ρ, e1) p = Ev(ρ, e2)
(l, p) < dom(h) r = (l, p, �)

GC(σ , e1, e2) ;c σ , r

GetProperties
σ = (ρ, h,m) l = Evc (ρ, e)

l ∈ dom(h) ∪ dom(m)

h ◁l = { p1, ..., pm }

GP
c
(σ , e) ≜ { p1, ..., pm }

SAT Check
b = Evc(GS(σ ), e)

Satc(σ , e) ≜ b

Assume - Success
Evc(GS(σ ), e) = true

Asmc(σ , e) ≜ σ

Assume - Type Error
Evc(GS(σ ), e) = v τ = typeOf (v) τ , Bool

Asmc(σ , e) ≜ TE(v, Bool, τ ))

Fig. 9. Concrete JSIL semantics, selected transitions

In the general semantics, spec errors are either propagated (e.g. Fig. 8, [Property Access - Error
Propagation]) or are silenced, denoted by SE

†(sc ,pc ), in the case of the property assignment,
membership check, and property collection (e.g. Fig. 8, [Property Assignment - Missing Error]).
The need for silent specification errors arises due to a dissonance between our analysis, which
is compositional and based on separation logic, and the semantics of JSIL. We discuss this in detail
in §3.5.2, after introducing the concrete and the symbolic JSIL semantics.

We note that our modular approach to the general JSIL semantics greatly reduces the number of
failing transitions for basic commands and commands. For example, if we weren’t using GetCell,
we would have to repeat all of its possible failing cases for every rule that uses it.
Notation. In the following, we denote a function with an empty domain by ∅, and for a function
f : A⇀ B, we denote its domain extension/update by f [a 7→ b] and the union of two functions
with disjoint compatible domains by f1 ⊎ f2.

3.4 Concrete JSIL Semantics
The instantiation of the Semantics Module to the concrete case is straightforward. Concrete JSIL
values, v ∈ V , correspond to JSIL literals. A concrete JSIL state, σ = (ρ,h,m), consists of: a store ρ;
partially mapping program variables to JSIL values; a heap h, partially mapping pairs of object
locations and property names (strings) to JSIL values; and a metadata tablem, partially mapping
object locations to JSIL values. We write ⟨σ ,bc⟩ ;c σ

′ for the concrete semantic judgement for
JSIL basic commands and ⟨p,σ , cs, i⟩µ ;c ⟨p

′,σ ′, cs ′, j⟩µ
′ for JSIL commands.

We provide a selection of definitions for the SMI functions in Fig. 9. Expression evaluation is
standard (symbolic variables cannot be evaluated). Allocation returns the unchanged state, together
with a fresh location obtained from an oracle. The SetCell positive update is standard; the SetCell
negative update removes the given property of a given object from the heap. These two rules
are never applicable at the same time, as v , �. GetCell, given an object denoted by e1 and a
property name denoted by e2, returns the associated value if the object has the property, and �
otherwise. GetProperties returns the set of properties of a given object. SatCheck amounts to
returning the value of the evaluated (boolean) expression. Assumption succeeds if the assumed
(boolean) expression evaluates to true and does not change the state. Finally, we show an error
case, in which Assumption is called with a non-boolean expression, resulting in a type error.
Instrumented JSIL Semantics. JSIL, like JavaScript, does not observe the frame property, meaning
that it is possible to cause a JSIL program to behave incorrectly by extending the state in which
it was run successfully. On the other hand, our analysis is compositional, meaning that we must
reason about programs given partial state information, which is challenging for languages without
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Allocation
σ̂ = (ρ̂, ĥ, d̂, m̂, π )
l̂ = GenSym(L̂)

d̂ ′ = d̂ [l̂ 7→ {}]

Al locs(σ̂ ) ≜
((ρ̂, ĥ, d̂ ′, m̂, π ), l̂ )

Assumption
σ̂ = (ρ̂, ĥ, d̂, m̂, π )
b̂ = Evs(ρ̂, e)
Sats(σ̂ , π ∧ b̂)

Asms(σ̂ , e) =
(ρ̂, ĥ, d̂, m̂, π ∧ b̂)

SetCell
σ̂ = (ρ̂, ĥ, d̂, m̂, π )
ĥ′ = ĥ[(l̂, p̂) 7→ v̂]

SCs(σ̂ , (l̂, p̂), v̂) ≜
(ρ̂, ĥ′, d̂, m̂, π )

GetCell - Found
σ̂ = (ρ̂, ĥ, d̂, m̂, π )

l̂, p̂ = Evs(ρ̂, e1), Evs(ρ̂, e2)
π ⊢ p̂ = p̂′ ĥ(l̂, p̂′) = v̂

GC(σ̂ , e1, e2) ;s

(ρ̂, ĥ, d̂, m̂, π ), (l̂, p̂′, v̂)

GetCell - Not Found
σ̂ = (ρ̂, ĥ, d̂, m̂, π )

l̂, p̂ = Evs(ρ̂, e1), Evs(ρ̂, e2)
π ⊢ p̂ < d̂ (l̂ )

ĥ′ = ĥ ⊎ (l̂, p̂) 7→ �
d̂ ′ = d̂ [l̂ 7→ d̂ (l̂ ) ⊎ {p̂ }

GC(σ̂ , e1, e2) ;s

(ρ̂, ĥ, d̂, m̂, π ), (l̂, p̂, �)

GetCell - Branch - Found
σ̂ = (ρ̂, ĥ, d̂, m̂, π )

l̂, p̂ = Evs(ρ̂, e1), Evs(ρ̂, e2)
ĥ(l̂, p̂i ) = v̂ ĥ ◁ l̂ = {p̂1, . . . , p̂n }

π ⊢ d̂ (l̂ ) = {p̂1, . . . , p̂n }
π ′ = π ∧ (p̂ = p̂i ) Sats(σ̂ , π ′)

GC(σ̂ , e1, e2) ;s

(ρ̂, ĥ, d̂, m̂, π ′), (l̂, p̂i , v̂)

GetProperties
σ̂ = (ĥ, d̂, ρ̂, −, π ) l̂ = Evs(ρ̂, e)

ĥ ◁ l̂ = {p̂0, . . . , p̂n }
ĥ = − ⊎

(
(l̂, p̂i ) 7→ v̂i

)
|mi=0

π ⊢ d̂ (l̂ ) = { p̂0, ..., p̂m }

∀0≤i≤n v̂i , � ∀n<i≤m v̂i = �

GP
s
(σ̂ , e) ≜ { p̂0, ..., p̂n }

Fig. 10. Symbolic JSIL semantics, selected non-failing transitions

the frame property. We deal with this issue as is done in [Fragoso Santos et al. 2018a]: we instantiate
the Semantics Module with an instrumented state, obtaining a JSIL semantics that observes the
frame property by explicitly keeping track of absent object properties. Due to lack of space, we do
not present this semantics in detail, but do discuss its relevant design decisions in the next section.

3.5 Symbolic JSIL Semantics
We instantiate the Semantics Module to the symbolic JSIL semantics, which enables whole-program
symbolic testing of JSIL programs. We instantiate general values to symbolic values, v̂ ∈ V̂ ≜ v | x̂ |

⊖ v̂ | v̂ ⊕ v̂ , and write n̂, b̂, ŝ , l̂ , and p̂, to denote, respectively, symbolic numbers, booleans, strings,
locations, and property names. A symbolic JSIL state, σ̂ = (ρ̂, ĥ, d̂,m̂,π ), consists of a symbolic
store ρ̂, symbolic heap ĥ, a symbolic domain table d̂ , a symbolic metadata table m̂, and a path
condition π . Symbolic stores and metadata tables are obtained from their concrete counterparts by
allowing symbolic values in place of concrete ones. Symbolic heaps, ĥ ∈ Ĥ : ((L ⊎ L̂)×V̂)⇀ V̂�,
map pairs of object locations (both symbolic and concrete) and symbolic values to symbolic values
extended with �. This means that symbolic heaps can explicitly track absent object properties.
We denote the set of properties an object at location l̂ has in the heap ĥ by ĥ◁l̂ . Symbolic domain
tables partially map object locations to sets of properties that the objects may have. Heaps and
domain tables are connected via the heap-domain invariant, maintained by the semantics: for a
given location l̂ , if d̂(l̂) is defined, then ĥ◁l̂ ⊆ d̂(l̂). This means that the object at location l̂ can have
at most the properties that are in d̂(l̂), and all other properties are known to be absent. Path condi-
tions [Baldoni et al. 2018] bookkeep the constraints on the symbolic variables that led the execution
to the current symbolic state. We write ⟨σ̂ ,bc⟩ ;s σ̂

′ for the symbolic semantic judgement for JSIL
basic commands and ⟨p, σ̂ , ĉs, i⟩µ ;s ⟨p

′, σ̂ ′, ĉs ′, j⟩µ
′ for JSIL commands. For clarity, we conflate

JSIL logical values with logical values, and JSIL logical operators with boolean logical operators.
We give a selection of definitions for the SMI functions in Fig. 10. Expression evaluation is standard

(symbolic variables evaluate to themselves). Allocation creates a fresh location and updates the
domain table accordingly. Assumption evaluates the (boolean) expression passed as parameter and
adds it to the current path condition. SetCell simply updates the heap.

The essence of the symbolic semantics lies in the interaction between GetCell, the heap, and the
domain table. In the four GetCell rules, we are looking up the value of the property p̂ of the object at
location l̂ . In the [GetCell - Found] rule, we can prove that p̂ is equal to one of the properties already
in the heap, and we return the corresponding value. In this case, we do not require knowledge about
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Symbolic Values
Iε (v) ≜ v
Iε (x̂ ) ≜ ε (x̂ )

Symbolic Heaps
Iε ((−, −) 7→ �) ≜ ∅

Iε ((l̂, p̂) 7→ v̂) ≜ (Iε (l̂ ), Iε (p̂)) 7→ Iε (v̂)

Symbolic States
Iε (ĥ) = h Iε (ρ̂) = ρ

Iε (m̂) =m Iε (π ) = true

Iε (ĥ, d̂, ρ̂, m̂, π ) ≜ (h, ρ,m)

Type Error
Iε (TE(v̂, τ1, τ2)) ≜

TE(Iε (v̂), τ1, τ2)

Resource Error
Iε (RE(s)) ≜ RE(Iε (s))

Assertion Error
Iε (p) = false

Iε (AE(p)) ≜ AE(false)

Specification Error
Iε (p) = true

Iε (SE(−, s, p)) ≜ RE(Iε (s))

Fig. 11. Interpretation: Symbolic to Concrete (relevant cases)

the domain of l̂—it may, but need not be defined. In the [GetCell - Not Found] rule, the domain of l̂
is defined and we can prove that p̂ is not in the domain. Then, we know with certainty that the
property does not exist, and return �. This rule reveals an important property of GetCell: after
executing GetCell, the inspected cell is guaranteed to exist in the heap. Here, the inspected none-cell
is migrated from the domain to the heap, and the domain is extended to maintain the heap-domain
invariant. This choice localises reasoning about resource to the GetCell only. As a consequence, the
SetCell is trivial; otherwise, we would have to repeat the reasoning of the GetCell in SetCell as well.
In the case that neither of the two above-mentioned entailments can be proven, the symbolic

semantics can still try to branch on p̂ being equal to any of the properties of the object in the heap
([GetCell - Branch - Found]) and also on it not being equal to any of them. This branching can
occur only if we have full knowledge about the object at l̂ , meaning that its properties that are in
the heap must be equal to those that are in its domain.
Another state function that requires full knowledge about the object is GetProperties, which

returns the set of the properties of a given object. To do this correctly, we need to filter out the
none-cells that might be in the heap.

3.5.1 Interpretation: from the Symbolic to the Concrete. Before we present error reporting and the
theoretical results, we connect the symbolic and the concrete JSIL semantics. There are two main
sources of tension: (1) the symbolic semantics can deal with symbolic variables, the concrete one
cannot; and (2) symbolic states can be partial (i.e. may have no information about object properties),
whereas concrete states are not (i.e. object properties are always either present or absent).

We resolve (1) by introducing concretisation functions, ε : X̂ ⇀ V , which map symbolic variables
to concrete values. We extend their domain to JSIL expressions, basic commands, commands, and
programs in the standard way. To deal with (2), we define interpretation functions, Iε : V̂ ⇀ V ,
which map symbolic values to concrete values. An interpretation functions is parameterised by a
concretisation function. We extend the domain of Iε to include symbolic stores, symbolic heaps,
symbolic metadata tables, assertions, path conditions, symbolic states, errors, call stacks, and
execution modes, most of which is straightforward. We highlight the important cases in Fig. 11.
When it comes to symbolic values, Iε leaves concrete values unchanged and evaluates symbolic
variables using ε . When interpreting symbolic heaps, none-cells are forgotten, since the concrete
state has no information about absent properties, whereas cells with positive information are
interpreted component-wise. Symbolic states are also interpreted component-wise, noting that
domain tables are forgotten, as they have no counterpart in the concrete semantics, and also that
the interpretation of the path condition must equal true, effectively meaning that our symbolic
state needs to be satisfiable. We delay the interpretation of errors to the next subsection, together
with a formal correspondence result between the symbolic and the concrete semantics.

3.5.2 Errors in the Symbolic JSIL Semantics. We focus on specification errors, which are crucial
for error management and reporting in our analysis. Given a spec error, SE(pf , sc ,pc ), the failing
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GetCell - Missing Property (New)
σ̂ = (ρ̂, ĥ, d̂, m̂, π )

Evs(ρ̂, e1) = l̂ Evs(ρ̂, e2) = p̂
ĥ ◁ l̂ = {p̂1, . . . , p̂n } pf = p̂ ∈ d̂ (l̂ ) ∧ p̂ < {p̂1, . . . , p̂n }

Sat(σ̂ , pf ) v̂ = GenSym(V̂�) s = [(l̂, p̂) 7→ v̂]

GC(σ̂ , (e1, e2)) ;s SE(pf , s, pf )

GetCell - Missing Property (Existing)
σ̂ = (ρ̂, ĥ, d̂, m̂, π )

Evs(ρ̂, e1) = l̂ Evs(ρ̂, e2) = p̂
ĥ ◁ l̂ = {p̂1, . . . , p̂n } pf = p̂ ∈ d̂ (l̂ ) ∧ p̂ < {p̂1, . . . , p̂n }

Sat(σ̂ , pf ) Sat(σ̂ , p̂ = p̂i )

GC(σ̂ , (e1, e2)) ;s SE(pf , emp, p̂ = p̂i )

Fig. 12. Symbolic JSIL semantics, selected failing transitions

constraint, pf , is the constraint under which the error is triggered, whereas the spatial corrective, sc
and the pure corrective, pc , describe how to correct the error. In particular, the spatial corrective
holds the missing resource and the pure corrective connects that resource to the rest of the state. The
way to conceptualise the correctives is: if we are in the state σ̂ and we got a spec error SE(pf , sc ,pc ),
then if we were to extend σ̂ with sc and pc , the spec error would no longer occur. This design is
tightly coupled with the inference of resource of the bi-abductive semantics, as described in §5.
To understand spec errors better, consider the two failing GetCell transitions shown in Fig. 12.

In both cases, we are looking up the property p̂ of the object at location l̂ , the location exists in
the heap, we have full knowledge about the object, and it is possible to have no information about
the property (Sat(σ̂ ,pf )). Then, we can correct the error in two ways. First, the property p̂ could
indeed be a new property ([GetCell - Missing Property (New)]), in which case we add it to the heap
with an arbitrary value (possibly equal to �), together with the information that it is new. This case
reveals an insight: if the spatial corrective is not empty, the failing constraint is the pure corrective.
Second, the property p̂ could be equal to one of the existing properties, but we might not be able to
prove it ([GetCell - Missing Property (Existing)]). Still, if that is possible (Sat(σ̂ , p̂ = p̂i )), we could
extend the state with p̂ = p̂i and the error would not occur. In this case, the spatial corrective is
empty, as there is no missing resource—it has been resolved by the pure corrective.
Interpretation of Errors. Type errors, resource errors, and assertion errors are preserved by
interpretation (cf. Fig. 11). This is intuitive: for instance, if a symbolic value is of a certain type, then
we must be able to choose concrete values for its symbolic variables and still maintain that type.

Specification errors in the symbolic semantics, in contrast, correspond to resource errors in the
concrete semantics. This is because information about resource is treated differently between the
two semantics: in the symbolic world, if we have no information, we actually know nothing about
the resource; in the concrete world, this means that the resource is absent.

proc f(o) {
. . .
[o, ”p”] := 0
. . .
}

Finally, silent spec errors do not have an interpretation, as they do not transfer from
the symbolic to the concrete semantics, due to a mismatch between separation logic
and languages with extensible objects. Consider the JSIL procedure f on the right,
which receives an object o and assigns to its property "p". As we are in separation logic,
the pre-condition of f must have information about (o, ”p”); otherwise, the symbolic
analysis will signal a specification error. Now, when we try to produce a corresponding concrete
error, the obtained concrete state will also have no information about (o, ”p”). However, the concrete
property assignment will succeed, adding the new property to the object, as it does not require the
resource to be present (cf. Fig. 5, Fig. 9, [GetCell - Not Found] rule). This would not be the case
with languages such as Java, where properties cannot be added to objects after creation.
Bounded Soundness and Verification. In order to state the soundness and verification theorems,
we give the requirements that external procedures must meet.

Definition 3.1 (Well-Behaved External Procedures). An external procedure table Ψ is well-behaved,
writtenWBs (Ψ), if and only if, for every procedure ϕ ∈ dom(Ψ), it holds that:

ϕ(p, v̂i |
n
i=0) = p

′, v̂, b̂ =⇒ ∀ε . ϕ(ε(p),Iε (v̂i )|ni=0) = ε(p ′),Iε (v̂),Iε (b̂)
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We can now formally connect the symbolic and the concrete JSIL semantics. Theorem 3.2 states
that if external procedures are well-behaved, then all executions in the symbolic JSIL semantics that
do not conclude with a silent specification error can be interpreted concretely. In the statement of
the theorems, all variables that are not existentially quantified are implicitly universally quantified.
Also, for a given symbolic state σ̂ , we denote its path condition by σ̂ .π .

Theorem 3.2 (Bounded Soundness).

WBs (Ψ) ∧ Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ;∗
s ⟨p ′, σ̂ ′, ĉs ′, j⟩µ ∧ µ , F(SE†(−,−)) =⇒

∀ε . Iε (σ̂ ′.π ) = true =⇒ Ψ ⊢ ⟨ε(p),Iε (σ̂ ),Iε (ĉs), i⟩
C ;∗

c ⟨ε(p ′),Iε (σ̂
′),Iε (ĉs

′), j⟩Iε (µ)

Onward, we write Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ↠s {⟨pk , σ̂k , ĉsk , jk ⟩
µk |nk=0} to mean that the following state-

ments hold: (1) ∀ 0 ≤ k ≤ n. Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ;∗
s ⟨pk , σ̂k , ĉsk , jk ⟩

µk ∧ µk , F(SE†(−,−)); and
(2)

∨n
k=0 σ̂k .π =⇒ σ̂ .π . Informally, Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ↠s {⟨pk , σ̂k , ĉsk , jk ⟩

µk |nk=0} means that the
set {⟨pk , σ̂k , ĉsk , jk ⟩µk |nk=0} contains all possible configurations reachable from ⟨p, σ̂ , ĉs, i⟩.

Theorem 3.3 (Verification).

WBs (Ψ) ∧ Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ↠s {⟨pk , σ̂k , ĉsk , jk ⟩
µk |nk=0} =⇒∀ε . Iε (σ̂ ′.π ) = true =⇒ ∃k . Ψ ⊢ ⟨ε(p),Iε (σ̂ ),Iε (ĉs), i⟩

C ;∗
c ⟨ε(pk ),Iε (σ̂k ),Iε (ĉsk ), jk ⟩

Iε (µk )

Finally, the verification theorem states that if we have explored all possible execution paths
starting from a given configuration and there are no silent specification errors, then the execution
of the program starting from any interpretation of the initial symbolic state will result in an
interpretation of one of the final symbolic states. As the whole-program symbolic execution does
not support loop invariants, JSIL programs that contain unbounded loops cannot be verified.
Meaningful Error Reporting. Our goal is to report meaningful errors to the user during whole-
program symbolic testing. Let us assume that the analysis terminated with an error in the final
configuration ⟨−, σ̂ ,−,−⟩F(ξ ). Then, we give back to the user: (1) the description of the error ξ ; and
(2) a concretisation ε of the symbolic variables of σ̂ that triggers the error.2

We believe that this information is useful for users doing whole-program symbolic testing: it
allows them to potentially gain insight into the nature of the error in the more familiar, concrete
setting. The errors that can occur here are: type errors, resource errors, and assertion failures.
As the execution is whole-program, we cannot witness spec errors or silent spec errors. Given
Theorem 3.2, this means that the error will always be reproducible at the concrete level.

Providing meaningful error messages during verification is a much more difficult task, as they
would need to be lifted from JSIL to JavaScript properly in the context of specifications, predicate
manipulation, and unification (cf. §4). This is part of our further work, as outlined in §8.

4 THE SPECIFICATION MODULE
We introduce a new treatment of separation logic (SL) assertions, by defining them in terms of
the general local actions of the Semantics Module. This allows us to: use SL specifications during
symbolic execution to jump over procedure calls instead of re-executing a procedure at each call
site; and use symbolic execution to verify SL specifications efficiently instead of re-implementing an
SL proof system from scratch. In this way, we bridge the gap between classical symbolic execution
and SL proof systems, bringing benefits to both worlds. We accomplish this by designing the
Specification Module, which receives a state signature as input and generates a new state signature
with a built-in mechanism for executing procedure calls abstractly, using SL specifications.

2This concretisation can be obtained from, for example, an SMT solver. We use Z3 of De Moura and Bjørner [2008].
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Interpretation of SL-Assertions. When designing a Separation Logic for a given programming
language, one normally first chooses an assertion language and connects it to the concrete states
of the programming language via a satisfiability relation [Reynolds 2002]; therefore, an assertion
can be viewed as the set of concrete states that satisfy it. Here, we define the meaning of assertions
abstractly using the signature of general JSIL states. In this way, we effectively establish the
connection between our assertion language and the concrete, instrumented, and symbolic states of
the language using the same definition.
JSIL Assertions are given by the grammar P ,Q ::= emp | p | s | P ∗ Q , where emp denotes

the empty heap and p and s range over pure and spatial assertions, respectively, as defined in
§3.3.1, but lifted to expressions instead of general values. We refer to assertions distinct from emp
and − ∗ − as simple assertions. We describe the semantics of JSIL assertions w.r.t. general states
using two functions: Produce(Σ, P ,θ ) and Consume(Σ, P ,θ ), both of which take as parameters a
general state Σ, an assertion P , and a substitution θ , mapping the logical variables in P to general
values. Produce returns a new general state Σ′, obtained by adding the resource of P to Σ, whereas
Consume(Σ, P ,θ ) returns a new general state Σ′ obtained by consuming the resource of P from Σ,
and a new substitution θ ′ extending θ with the bindings for the logical variables in P . Importantly,
if Consume(Σ, P ,θ ) = (Σ′,θ ′), then Produce(Σ′, P ,θ ′) = Σ. Using these two functions, we solve
the standard frame inference problem (FIP) at the general level.

Argument IN OUT

x̂ {x̂} {x̂}
[e1, ..., en ] ∪ni=1(in(ei )) ∪ni=1(out(ei )))
e1 + e2 in(e1) ∪ in(e2) ∅

· · · · · · · · ·

(e1, e2) 7→ e3 in(e1) ∪ in(e2) out(e3)
noProps(e1, e2) in(e1) ∪ in(e2) ∅

MetaData(e1, e2) in(e1) out(e2)
e1 = e2 in(e1)/in(e2) out(e2)/out(e1)

Unification Plans. When linking an assertion P to
a state Σ, one has to find appropriate bindings for
the logical variables in P . To do this, we introduce
unification plans (UPs, Definition 4.1). Informally, a
UP is an ordering of the simple assertions in P that
guarantees that Consume need not backtrack at run-
time. To construct UPs, we define in-variables (ins)
and out-variables (outs) for each assertion and JSIL
expression, resembling predicate parameter modes
of Nguyen et al. [2008]. Intuitively, the out-variables
of an assertion are those that can be computed using the in-variables and the current state. For
instance, given the assertion (e1, e2) 7→ e3, if we know the bindings for e1 and e2, we can compute the
bindings for e3. For logical expressions, the out-variables are those that can be computed given the
value of the whole expression, whereas the in-variables are those that we need to know to compute
the value of the whole expression. For instance, out([x̂1, x̂2, x̂3]) = {x̂1, x̂2, x̂3}, as we can compute
the values of x̂1, x̂2, and x̂3 if given the entire list. In contrast, for example, out(x̂1+ x̂2) = {}, because
we cannot compute the values of either x̂1 or x̂2 solely from the value of x̂1 + x̂2. We note that it
is not always possible to generate a UP for an SL-assertion, and onward consider only assertions
that admit a UP. In the implementation, we cater for assertions that cannot be turned into UPs by
requiring the user to manually provide a substitution for their unification. This is a design choice
that allows tractable verification in the presence of assertions that represent JavaScript heaps.

Definition 4.1 (Unification Plan). A unification plan up is a sequence of simple assertions qi |ni=0
such that for all 0 ≤ i ≤ n, it holds that: in(qi ) ⊆

(
∪i−1
j=0 out(qj )

)
Produce and Consume. In Figure 13, we show the Produce algorithm on the left and a fragment
of the Consume algorithm on the right. For clarity, we define these algorithms in terms of UPs
rather than assertions. The Consume algorithm uses the function UE (Σ, e, v,θ ) for unifying a
JSIL expression e against a general value v, either extending the input substitution θ with the
appropriate bindings, in case of success, or generating a pure assertion describing the failure. Both
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1: function Produce(Σ, up, θ )
2: match up with
3: | [ ] : return Σ
4: | (e1, e2) 7→ e3 :: up′ :
5: let Σ′ = SC(Σ,θ (e1),θ (e2),θ (e3)) in
6: return Produce(Σ′, up′, θ )
7: | noProps(e1, e2) :: up′ :
8: let Σ′ = SP(Σ,θ (e1),θ (e2)) in
9: return Produce(Σ′, up′, θ )
10: | MetaData(e1, e2) :: up′ :
11: let Σ′ = SM(Σ,θ (e1),θ (e2)) in
12: return Produce(Σ′, up′, θ )
13: | (x = e) :: up′ :
14: let Σ′ = SS(Σ,x ,θ (e)) in
15: return Produce(Σ′, up′, θ )
16: | p :: up′ : let Σ′ = Asm(Σ,θ (p)) in
17: return Produce(Σ′, up′, θ )
18: end function

1: function Consume(Σ, up, θ )
2: match up with
3: | [ ] : return Succ (θ , Σ)
4: | (e1, e2) 7→ e3 :: up′ :
5: match GC(Σ,θ (e1),θ (e2)) with
6: | Σ′, (l, p, v) :
7: let Σ′′ = RC(Σ, l, p) in
8: matchUE (Σ

′′, e3, v,θ ) with
9: | Succ (θ ′) : return Consume(Σ′′, up′, θ ′)
10: | Fail (πf ) : return SE(πf , [],¬πf )
11: | ξ : return ξ
12: | (e1 = e2) :: up′ :
13: let v̂2 = Ev(P,θ (e2)) in
14: matchUE (Σ, e1, v̂2,θ ) with
15: | Succ (θ ′) : return Consume(σ̂ , up′, θ ′)
16: | Fail (πf ) : return SE(πf , [],¬πf )
17: | ...

18: end function

Fig. 13. Interpretation of Assertions via Produce and Consume

algorithms are tail-recursive: if given an empty unification plan, they both return, if not, they
produce/consume the first simple assertion in the given unification plan, and continue recursively.

The Produce and Consume algorithms reveal the connections between assertions and the local
actions of the state. For example, the cell assertion (e1, e2) 7→ e3 is connected to the GetCell, SetCell,
and RemoveCell3 local actions. One way to think about these three functions is as a getter (GetCell),
a setter (SetCell), and a remover (RemoveCell) of the cell assertion. Other assertions can also be
associated with local actions: e.g., pure assertions are managed using Assume and SatCheck.
While the Produce algorithm is fairly straightforward—it uses the setters of the state (SetCell,

SetProperties, SetMetadata, SetStore, and Assume) to generate the footprint of the given assertions—
the Consume algorithm is more involved. For instance, when consuming a cell assertion, the
algorithm proceeds as follows: (1) it applies the current substitution θ to e1 and e2 (the ins of the
cell assertion), obtaining two expressions with no existentially quantified logical variables; (2) it
applies GetCell to the resulting expressions, obtaining the values l, p, and v, respectively denoting
the location, property name, and value corresponding to the cell assertion in the current state Σ;
(3) it removes the cell assertion from the state, using the RemoveCell function; and (4) it unifies
the obtained value v against e3 using the auxiliary function UE ; if the unification succeeds, the
algorithm continues; if it does not, it produces a specification error describing the failure.

Fig. 14. Symbolic State

We now illustrate how the Consume algorithm works using
the example of the assertion below, shown in the symbolic
state depicted in Figure 14.

(e, "type") −> "unop" ∗ (e, "arg") −> #x ∗
(#x, "type") −> "lit" ∗ (#x, "val") −> #y

Notice that any unification plan for the assertion above
needs to place the assertion (e, "arg") −> #x prior to the assertions (#x, "type") −> "lit" and
(#x, "val") −> #y, since we need to find the binding for #x before consuming the cell assertions
that have location #x. Therefore, one possible unification plan for this assertion would be as follows:
(1) (e, "type") −> "unop"; (2) (e, "arg") −> #x, obtaining the binding for #x; (3) (#x, "type") −> "lit";

3RemoveCell (RC ) originates from the Specification Module and removes a given cell from the state.
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and (4) (#x, "val") −> #y, obtaining the binding for #y. In the end, the final substitution returned by
the algorithm is θ = [#x 7→ #a, #y 7→ #v].

Apply Spec
spec = fl : {P} f (x0, ...,xm ) {Q} P

′ = [xi 7→ vi |
m
i=0]

P = GS(Σ) Σ1 = RS(Σ,P′)
(θ , Σ2) = Consume(Σ1, P) Σ3 = Produce(Σ2,Q)

v = Ev(GS(Σ3), ret) Σ′ = RS(Σ3,P)

ApplySpec(Σ, spec, v) = (Σ′, v,fl)

Applying Specifications. JSIL Logic specifica-
tions have the form fl : {P} f (x) {Q}, where
P and Q are the pre- and post-conditions of
the procedure with identifier f and parame-
ters x . Each spec is associated with a return flag
fl ∈ {nm, er}, indicating if the procedure termi-
nates via a return or a throw . We give the rule for the function ApplySpec(Σ, spec, v), for applying
the spec spec to the state Σ, using the arguments given by v. ApplySpec returns a triple (Σ′, v,fl),
consisting of the final state Σ′, the return value v, and the return flag fl. The rule is applied as follows:
(1) we replace the calling state store P with a new store P′, mapping the procedure parameters to
the call arguments, obtaining a new state Σ1; (2) we consume the precondition of the spec from
the state Σ1, obtaining both the bindings for the logical variables in the precondition, θ , and the
frame state Σ2 (corresponding to Σ1 minus the resource of the precondition); (3) we produce the
post-condition of the spec in the state Σ2 using the bindings computed in step (2), and, finally,
(4) we restore the calling store P and return the value of ret in the final store of the procedure.

Procedure Call - Use Spec
cmd(i) = x := e(ei |

n
i=0)with j P = GS(Σ)

f = Ev(P, e) spec = Spec(f ) v = Ev(P, ei |
n
i=0)

(Σ′, v,fl) = ApplySpec(Σ, spec, v)
k = if fl = nm then i+1 else j

⟨Σ, cs, i⟩C ;spec ⟨SS(Σ′,x , v), cs,k⟩C

We extend the Semantic Module so that, when
parameterised with a state signature that sup-
ports abstract specification execution, it uses the
ApplySpec function for executing procedure calls
when specifications are provided. We show the new
procedure call rule, applied as follows: (1)we evalu-
ate the expression denoting the procedure name and obtain its spec; (2) we evaluate the parameters
of the procedure; (3) we use the ApplySpec function to compute the final state, return value, and
flag; and (4) we transfer control to the next command, when fl = nm, or the j-th command, when
fl = er; in both cases, the value of x in the store is set to the returned value.

Verification. By plugging the symbolic state instantiation into the Specification Module and the
resulting state instantiation into the Semantics Module, we obtain a symbolic semantics with
support for abstract execution of procedure calls with SL-specifications. We denote this semantics
relation by ;spec(s) and re-state the Verification Theorem (Theorem 3.3) in terms of it. In the
following, we use ⟨p,σ , cs, i⟩ ⇓Ψ

c
to mean that the concrete execution starting with configuration

⟨p,σ , cs, i⟩ with external procedure table Ψ terminates.
Theorem 4.2 (Verification).

WBs (Ψ) ∧ Ψ ⊢ ⟨p, σ̂ , ĉs, i⟩C ↠
spec(s)

{⟨pk , σ̂k , ĉsk , jk ⟩
µk |nk=0} =⇒

∀ε . Iε (σ̂ ′.π ) = true ∧ ⟨ε(p),Iε (σ̂ ),Iε (ĉs), i⟩ ⇓
Ψ
c
=⇒

∃k . Ψ ⊢ ⟨ε(p),Iε (σ̂ ),Iε (ĉs), i⟩
C ;∗

c ⟨ε(pk ),Iε (σ̂k ),Iε (ĉsk ), jk ⟩
Iε (µk )

Observe that, in contrast to the symbolic semantics of §3, ;spec(s) has support for recursive
procedures with SL-specifications. Hence, we can use ;spec(s) to verify JSIL programs that contain
unbounded loops (using recursion). Given a specification fl : {P} f (x) {Q}, the verification of
JaVerT 2.0 proceeds as follows: (1) It associates each parameter in x with a fresh logical variable,
obtaining a substitution θ ; (2) It converts the precondition P to a symbolic state using the Produce
algorithm and θ ; (3) It runs the abstract symbolic execution on the initial symbolic state, obtaining a
set of possible final states; (4) It uses the Consume algorithm to unify the post-condition Q against
every possible final state and fl.
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5 THE BI-ABDUCTION MODULE
Automatic compositional testing mandates symbolic execution of procedures for which we have
no specifications. To accommodate this, we extend the JSIL symbolic semantics with a bi-abductive
mechanism [Calcagno et al. 2009b] for automatically inferring the missing resource whenever a
specification error occurs. Instead of creating a new bi-abductive symbolic analysis from scratch, we
design a newmodule that receives a state signature as input and generates a new state signature with
a built-in mechanism for on-the-fly correction of specification errors during execution. Following
this approach, we can reuse both the JSIL Semantics Module and our implementation of the symbolic
state, obtaining a modular implementation of the bi-abductive analysis with clear meta-theoretical
results. This is made possible by the design decisions underpinning our system.
Bi-abductive state. Given a general state Σ, the Bi-Abductive Module constructs a bi-abductive
state Σbi of the form (Σ, Σaf ), where Σ (the main state) describes the state at a given execution
point, and Σaf (the anti-frame) describes the resources that need to be added to the original initial
state so that the program can reach that execution point without faulting. The main state and the
anti-frame have the same type: for our analysis, they are both symbolic states.

Assume - Success
Asm (Σ, e) = Σ′ Asm (Σaf , e) = Σ′af

Asm ((Σ, Σaf ), e) = (Σ′, Σ′af )

GetCell - Found
Σbi = (Σ, Σaf )
GC(Σ, e1, e2) ; Σ′, (l, p, v)

GC(Σbi , e1, e2) ;
bi

(Σ′, Σaf ), (l, p, v)

GetCell - Type Error
GC(Σ, e1, e2) ; TE(e, τ1, τ2)
GC((Σ, Σaf ), e1, e2) ;

bi
TE(e, τ1, τ2)

GetCell - Spec Error
Σbi = (Σ, Σaf )
GC(Σ, e1, e2) ; SE(−, s, p)
Σ′ = Produce(Σ, s ∗ p)
Σ′af = Produce(Σaf , s ∗ p)
GC((Σ′, Σ′af ), e1, e2) ;

bi
Σ′bi , (l, p, v)

GC(Σbi , e1, e2) ;
bi

Σ′bi , (l, p, v)

Fig. 15. Selected Bi-abductive Rules

Bi-abductive Rules. The construction of the bi-abductive
signature is guided by our general error treatment. Selected
rules are presented in Fig. 15. Successful transitions of the
state functions are lifted directly (cf. [Assume - Success], [Get-
Cell - Found]), and so are type/resource errors (cf. [GetCell
- Type Error]), as they cannot be corrected (e.g. an expres-
sion’s type cannot be changed once it has been established).
Similarly, if we know for sure that a given cell does not exist
in a given state, we cannot extend that state with that cell.

Spec errors, SE(−, s,p), are corrected using the spatial and
pure correctives, s and p, respectively. For instance, the rule
[GetCell - Spec Error] is applied as follows: (1) we execute
the GetCell function with the supplied arguments on the
main state, Σ, obtaining a spec error SE(−, s,p); (2) we use
the correctives to extend the main state and the anti-frame
using the Produce function of §4; and (3) we recursively
call GetCell on the extended state (Σ′, Σ′

af ). This call will
succeed, given the design of our error reporting mechanism.

1 t := [e, "type"];
2 goto [t = "lit"] lit r1;
3 lit: ret := [t, "val"];
4 return;
5 r1: goto [t = "unop"] uo r2;
6 uo: arg := [e, "arg"];
7 arg_v := "evalExpr"(store, arg);
8 op := [e, "op"];
9 ret := evalUnop(op, arg_v);
10 return;
11 r2: ...

Fig. 16. Expr. Evaluator (JSIL fragment)

Example. To illustrate the inner workings of the bi-
abductive symbolic execution, we appeal to the expression
evaluator example shown in §2. In Fig. 16, we give a sim-
plified compilation of part of the code of evalExpr. It first
checks whether the expression e denotes a literal (lines 1, 2),
in which case it returns the respective value (lines 3 and 4);
otherwise, it checks if e denotes a unary operator (line 5),
in which case, it evaluates the respective argument (lines 6
and 7) and returns the result of evalUnop (lines 9 and 10).

Fig. 17 shows a bi-abductive symbolic execution trace corresponding to the execution of the code
snippet in Fig. 16. The symbolic states are shown before and after each executed JSIL command. We
highlight parts of the anti-frame in yellow when added for the first time, and onward in white. We
note that, in general, the anti-frame can be modified by the execution—in this particular example,
it is not. In the bottom half of the diagram, we elide parts of the store for space reasons.
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op	:=	[e,	“op”]

ret	:=	“evalUnop”	(op,	arg_v)

“type” :	#t “arg”	:	#arg “op” :	#op

“type”	:	“lit” “val”	:	#v

#e

#arg
𝒉

𝝅 #t	!=	“lit” #t	=	“unop”

types(#v	:	Num) #op	=	“-”

𝝆 .	.	. arg_v	:	#v op:	#op ret	:	-#v

“type” :	#t “arg”	:	#arg “op” :	#op

“type”	:	“lit” “val”	:	#v

#e

#arg
𝒉

𝝆

𝝅 #t	!=	“lit” #t	=	“unop”

.	.	. t	:	#t arg	:	#arg arg_v	:	#v op:	#op

“type” :	#t “arg”	:	#arg

“type”	:	“lit” “val”	:	#v

#e

#arg
𝒉

𝝆

𝝅 #t	!=	“lit” #t	=	“unop”

.	.	. t	:	#t arg	:	#arg arg_v	:	#v

arg_v :=	“evalExpr”	(store,	arg)

“type” :	#t “arg”	:	#arg#e𝒉

𝝆

𝝅 #t	!=	“lit” #t	=	“unop”

.	.	. e	:	#e t	:	#t arg	:	#arg

arg :=	[e,	“arg”]

“type” :	#t#e𝒉

𝝆

𝝅 #t	!=	“lit” #t	=	“unop”

store	:	#s e	:	#e t	:	#t

goto [t	=	"unop"]	uo	r2

“type” :	#t#e𝒉

𝝆

𝝅 #t	!=	“lit”

store	:	#s e	:	#e t	:	#t

goto [t	=	”lit"]	lit	r1

“type” :	#t#e𝒉

𝝆 store	:	#s e	:	#e t	:	#t

t	=	[e,	“type”]

𝝆 store	:	#s e	:	#e

Fig. 17. Bi-abductive Symbolic Execution

The execution starts without resource, with the proce-
dure parameters, store and e, assigned fresh symbolic vari-
ables, #s and #e, in the store. We execute x := [e, "type"]
and get a spec error as the heap is empty: we correct it
by adding the inspected cell (with a fresh value #t) to the
main state/anti-frame, and continue.We reach the command
goto [t = "lit"] lit r1where the execution branches, as we
have no knowledge of #t. We show the execution of the neg-
ative branch, where #t != "lit", adding the constraint to the
path condition of the main state/anti-frame. Next, we reach
another branching point, goto [t = "unop"] uo r2, and show
the positive branch, registering that #t = "unop". We then
obtain the argument of the unary operator, arg := [e, "arg"],
bi-abducing the property "arg" of the object #e. Next, we
run into a recursive call: arg_v := "evalExpr"(store, arg).We
then suspend this bi-abduction until we have explored the
other branches and collected the base cases of the function.
Once re-activated, this bi-abduction will branch on all of
them—we show the literal case, which has the spec:{

(e, "type") 7→ "lit" * (e, "val") 7→ #v
}

evalExpr(store, e){
PRE * ret = #v

}
To satisfy this pre-condition, we add to the anti-frame

the object at location #arg, with properties "type" (with
value "lit") and "val" (with value #v). The post-condition
extends the store with the pair (arg_v, #v). Next, we get the
unary operator, bi-abducing the property "op" of #e, and
evaluate it on the obtained value, branching on the specs of
the procedure evalUnop. Here, we apply the following spec:{

op = "-" * types(v:Num)
}

evalUnop(op, v){
PRE * ret = -v

}
extending the anti-frame to meet the pre-condition and the
store with the information from the post-condition, obtain-
ing ret = −#v. Finally, we return, constructing a new spec
of evalExpr, integrating the information from the original
state and the bi-abduced anti-frame:

(e = #e) * (#e, "type") 7→ "unop" * (#e, "op") 7→ "-"
* (#e, "arg") 7→ #arg * (#arg, "type") 7→ "lit"

* (#arg, "val") 7→ #v * types(#v:Num)


evalExpr(store, e){

PRE * ret = -v
}

The bi-abductive symbolic execution discussed above generates a success spec. The value of
success specs lies in the fact that they can be converted into concrete/symbolic tests [Fragoso
Santos et al. 2018a], effectively providing the user with a comprehensive concrete/symbolic test
suite for the analysed program and bringing immediate value to the software development process.
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Soundness Theorem. The Bi-abductive Soundness Theorem (Theorem 5.1) connects successful
bi-abductive executions to successful parameter-state executions. Concretely, given a bi-abductive
execution ⟨p, (Σ, Σaf ), cs, i⟩

µ ;∗
bi

⟨p ′, (Σ′, Σ′
af ), cs

′, j⟩µ
′ , we construct a parameter-state execution

by extending the initial state Σ with the missing resource computed during that execution, Σ′′
af (we

denote state extension by ◦). Informally, the state Σ′′
af corresponds to the initial anti-frame Σaf

subtracted from the final one, Σ′
af .

Theorem 5.1 (Bi-abductive Soundness Theorem).

⟨p, (Σ, Σaf ), cs, i⟩
µ ;∗

bi ⟨p
′, (Σ′, Σ′

af ), cs
′, j⟩µ

′

∧ µ ′ , F(ξ ) =⇒

∃Σ′′
af . Σ

′
af = Σaf ◦ Σ

′′
af ∧ ⟨p, Σ ◦ Σ′′

af , cs, i⟩
µ ;∗ ⟨p ′, Σ′, cs′, j⟩µ

′

By plugging the symbolic state instantiation into the Specification Module, the resulting state
instantiation into the Bi-abduction Module, and the resulting state instantiation into the Semantics
Module, we obtain a symbolic semantics with support for abstract execution of procedure calls and
automatic inference of resource. We denote this semantics relation by ;bi (spec(s)). We can use this
relation to bi-abduce SL-specifications for a procedure f (x) up to a given bound as follows:
(1) We construct an initial bi-abductive configuration ⟨p, (σ̂0, ∅), ĉs0, i⟩, where σ̂0 = (ρ̂0, ∅, ∅, ∅, true),

ρ̂0 = [xi 7→ x̂i |
n
i=0], and ĉs0 = [(main , [], ∅, ret, 0, 0)]. Observe that the initial store ρ̂0 maps each

parameter of f , xi , to a freshly generated logical variable x̂i .
(2) We execute the procedure f using ;bi (spec(s)).
(3) For each execution trace ⟨p, (σ̂0, ∅), cs0, i⟩

C ;∗
bi (spec(s))

⟨p, (σ̂ ′, σ̂af ), ĉs0, j⟩
N(v̂) terminating in

normal mode, we construct a specification nm : {σ̂0 ◦ σ̂af } f (x) {σ̂ ′ ∧ ret = v̂}. Analogously,
for each execution trace ⟨p, (σ̂0, ∅), cs0, i⟩

C ;∗
bi (spec(s))

⟨p, (σ̂ ′, σ̂af ), ĉs0, j⟩
E(v̂) terminating in

error mode, we construct a specification er : {σ̂0 ◦ σ̂af } f (x) {σ̂ ′ ∧ ret = v̂}.

6 EVALUATION
We evaluate the three styles of analysis JaVerT 2.0 supports: whole-program symbolic testing,
verification, and automatic compositional testing, focussing on a number of simple data-structure
libraries. The results demonstrate scalability of whole-program symbolic testing, an improvement
over our previous work on JS verification, and creation of useful specifications using bi-abduction,
minimising the annotation burden of the developer. In addition, we perform whole-program
symbolic testing of the real-world Buckets.js [Santos 2016] data structure library, which has over
65K downloads on npm [npm, Inc. 2018]. We reproduce our previously reported bugs [Fragoso
Santos et al. 2018a], but also discover a new one, in times that are almost two orders of magnitude
faster, suggesting scalability of our whole-program symbolic testing to much larger codebases. As
in [Fragoso Santos et al. 2018a,b], we perform the entire evaluation on a machine with an Intel Core
i7-4980HQ CPU 2.80 GHz, DDR3 RAM 16GB, and a 256GB solid-state hard-drive running OSX.
JS-2-JSIL Coverage and Correctness. Before we proceed to the evaluation, we briefly discuss
the coverage and correctness of the JS-2-JSIL compiler used in JaVerT 2.0. JS-2-JSIL has full support
for the entire core of ES5 Strict, as well as most of the associated built-in libraries. We do not
implement the Date, RegExp, and JSON libraries, which are orthogonal to the core. As discussed in
§3, JSIL has all of the constructs required to support full ES5; that extension is technical in nature.
Additional constructs are likely to be needed to support ES6. We test JS-2-JSIL against the official
ECMAScript test suite, Test262 [ECMA TC39 2017], using both the concrete and the symbolic
JSIL interpreters.4 Out of the 10469 tests for ES5 Strict, we identify 8797 tests appropriate for our

4We test the symbolic JSIL interpreter to ensure that it behaves the same as the concrete interpreter on Test262.
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Name JS loc/
JSIL loc Funcs Specs Spec

Chars
Pred
Chars

Executed
JSIL cmds

LCmds
(POPL’18) LCmds Time

(POPL’18) Time

BST 69/877 5 5 1,573 438 1,577 19 0 7.38s 7.41s
DLL 14/373 3 3 807 225 705 N/A 0 N/A 3.27s
ExprEval 25/557 3 7 1,196 1,814 1,540 N/A 0 N/A 4.95s
IDGen 16/289 4 4 642 276 364 0 0 0.73s 1.28s
KV-Map 23/427 4 9 899 1,812 1,583 8 6 3.37s 5.54s
PriQ 42/789 7 10 2,373 1,241 1,467 5 0 7.14s 8.62s
SLL 12/262 3 3 807 225 550 N/A 0 N/A 2.48s
Sort 22/319 2 2 845 279 556 6 0 1.78s 2.16s
Test262 113/1237 7 16 620 0 1,844 0 0 3.46s 3.63s

Table 2. Verification Results

coverage, of which we pass 100%. We note that we execute eval statements concretely, but do not
reason about them symbolically. Such analyses, as well as many similar ones (for example, those
reasoning about regular expressions) could be incorporated on top of JaVerT 2.0 via the external
procedure call mechanism of JSIL. This highlights the modularity of our framework.

6.1 Case Studies
We evaluate JaVerT 2.0 on simple data-structure libraries: singly- and doubly-linked lists, binary
search trees, key-value maps, priority queues, and sorted lists. We also include the expression
evaluator, an identifier generator, and several examples taken from the Test262 test suite.

Results: Verification.We fully specify and verify the case studies, with the results shown
in Table 2. For each case study, we give the number of: JS/JSIL lines of the implementation;
associated functions; specifications; characters of the specifications and supporting predi-

cates; executed JSIL commands; and required logical commands for JaVerT [Fragoso Santos et al.
2018b] and for JaVerT 2.0. Finally, we contrast the JaVerT and JaVerT 2.0 times.
The results show two tangible improvements over JaVerT. First, all examples except KV-Map

no longer require any logical commands, with the KV-Map needing fewer. Second, even though
the fold/unfold mechanism is automatic in JaVerT 2.0, the obtained times are comparable. On
the other hand, these results once again affirm that verification comes at a price. The required
predicate bootstrap and the specifications are intricate and lengthy (cf. Table 2: spec chars, pred
chars), requiring developers to be well-versed in both JavaScript semantics and program logic.

Results: Whole-Program Symbolic Testing.We write symbolic tests that achieve full
line coverage for each of the case studies. The results are given in Table 3 (left). We report
the obtained times, together with the number of: tests; characters of the tests; and executed

JSIL commands. What is immediately evident is that, when compared to verification, the number of
executed commands is substantially higher, whereas the times are shorter. The former is due to the
fact that whole-program symbolic testing does not use summaries and every procedure is executed
on each call. This also contributes to the latter, together with the fact that there is no predicate
manipulation. We highlight that our entailment engine is able to discharge the majority of queries
for whole-program symbolic testing, minimising solver time to the point where it is negligible.
This is partly what contributes to its speed and scalability, further demonstrated in §6.2.

The symbolic tests of JaVerT 2.0 are useful for debugging JS code and are more intuitive for
developers to write than specifications. In particular, Tables 2 and 3 (left) show that fewer characters
are required for symbolic tests with full line coverage than for the verification bootstrap and speci-
fications. In addition, it took us less time to write the symbolic tests than it did to write the specs.
On the other hand, in the general case, symbolic testing does not offer full correctness guarantees.
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Name Tests Test
Chars

Executed
JSIL cmds Time

BST 6 1,663 86,405 2.21s
DLL 6 625 19,975 0.54s
ExprEval 10 1,568 46,664 2.17s
IdGen 3 242 6,070 0.29s
KV-Map 5 539 56,494 1.65s
PriQ 5 797 38,661 0.99s
SLL 6 559 17,759 0.49s
Sort 6 675 22,693 0.73s

Name S/E/B
specs Time Hints S/E/B

specs Time

BST 27/0/5 11.46s 7 27/0/0 9.48s
DLL 10/0/3 2.38s 3 10/0/0 2.25s
ExprEval 269/142/3 82.35s 8 71/54/1 38.35s
IDGen 4/0/0 0.37s 1 3/0/0 0.35s
KV-Map 9/12/10 3.75s 6 4/2/0 1.81s
PriQ 15/1/12 7.45s 8 15/1/0 6.15s
SLL 6/0/2 1.35s 2 6/0/0 1.43s
Sort 8/0/2 2.64s 4 8/0/0 1.91s

Table 3. Results for whole-program symbolic testing (left) and bi-abduction (right)

Results: Automatic Compositional Testing.We automatically construct specifications
for the case studies using bi-abduction. As in whole-program symbolic testing, these
specifications capture correctness up to a bound. In the left-hand part of Table 3 (right),

we give the number of success, error, and bug specs (S/E/B specs) created by fully automatic
bi-abduction, as well as the obtained times. We remind the reader that these specifications describe
a superset of the intended behaviours of the function, and may contain false positive bug reports
that need to be examined by the developer or filtered via a separate automated phase.
The obtained times reflect the substantial internal branching of the JavaScript semantics; in

particular, the numerous implicit coercions may cause a state search explosion, as observed in the
ExprEval example. As stated in §2, to contain this, the developer can give hints to indicate how the
function is to be used. These hints are extremely simple and amount to stating that a given variable
or object property has a given type. In the right-hand part of Table 3 (right), we give the number of
hints required to isolate the intended behaviours of our examples, the number of the obtained specs
(which are now all applicable), and the obtained times, which are, in most cases, noticeably faster.

We believe that these results constitute a solid first attempt at bi-abduction for real-world dynamic
languages. We see great room for improvement w.r.t. the speed, by minimising the footprint of the
generated specs and containing the JS semantics in a principled way via executable specs.

6.2 Whole-Program Symbolic Testing of Real-world Libraries: Buckets.js

Name JS loc/
JSIL loc

Test info
(#/sloc/cloc)

Executed
JSIL cmds

Time
(PPDP’18) Time

array 71/1942 9/166/329 214,219 181.36s 5.02s
bag 237/7194 7/78/265 831,017 520.72s 10.50s
bst 326/8052 11/216/759 2,436,519 3605.98s 18.67s
dict 84/2374 7/116/170 247,952 109.13s 4.25s
heap 128/4001 4/92/626 1,005,906 1318.37s 5.70s
llist 153/3138 9/149/370 373,247 216.21s 7.56s
mdict 184/5496 6/118/189 686,171 527.17s 8.94s
queue 183/4233 6/111/146 246,470 124.02s 4.58s
pqueue 154/5067 5/70/283 1,469,179 1749.15s 8.60s
set 124/3902 6/86/271 1,311,103 380.74s 16.49s
stack 176/4079 4/91/104 188,132 105.65s 3.28s

Total N/A 74/1293/3512 9,010,615 8853.90s 93.59s

Table 4. Whole-program symbolic testing of the Buckets.js library

We analysed the Buckets.js data struc-
ture library of Santos [2016], widely
used by JavaScript (JS) developers,
with more than 65K downloads on
npm [npm, Inc. 2018]. This library is
ideal for our analysis, as it uses al-
most all essential JS features, has an
associated unit test suite, and does
not have any external dependencies.
We reuse the Buckets.js symbolic

test suite of Fragoso Santos et al.
[2018a], which has 100% line cover-
age. We successfully reproduce the
bugs reported therein and discover
an additional bug, discussed shortly.
We present our results in Table 4. For
each data structure in Buckets.js, we report: (1) the number of JS/JSIL lines of the implementation;
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(2) the number of symbolic tests, their number of lines, and the number of lines of the corresponding
concrete tests shipped with the library; (3) the total number of JSIL commands executed in the
symbolic tests; (4) the times reported by Fragoso Santos et al. [2018a]; and (5) our obtained times.

The data highlights a tangible benefit of symbolic over concrete testing: developers can obtain full
coverage with fewer lines of code. We focus on our obtained times, almost two orders of magnitude
faster than those of Fragoso Santos et al. [2018a]. These times indicate the maturity of our symbolic
testing framework and the scalability of the analysis—effectively, we were able to symbolically
analyse a real-world JS library containing 1.3K lines of code with 100% line coverage, fully adhering
to the semantics of the language, running millions of JSIL commands, in one and a half minutes.

Bug: Linked lists. We discovered a bug in the implementation of the Buckets.js linked list library.
In particular, our symbolic tests for the ElementAtIndex(n) and removeElementAtIndex(n) functions,
which, respectively, inspect and remove the n-th element of the list, revealed unexpected behaviour
when n was a positive, non-integer number. In practice, the ⌈n⌉-th element was returned, instead
of an error message indicating improper indexation. This bug was left undetected by the concrete
unit tests of Buckets.js because of their incomplete coverage, and by our symbolic testing done
in Fragoso Santos et al. [2018a] because that analysis relied on integer, rather than real arithmetic.

7 RELATEDWORK
The literature covers a wide range of verification tools based on whole-program symbolic analy-
sis [Boyapati et al. 2002; Claessen et al. 2015; Claessen and Hughes 2000; Dolby et al. 2007; Milicevic
et al. 2007; Runciman et al. 2008; Seidel et al. 2015], and separation logic (SL) tools [Berdine et al.
2005; Calcagno et al. 2015, 2011; Distefano and Parkinson 2008; Jacobs et al. 2011; Yang et al.
2008], mainly aimed at static languages. We first describe existing work on symbolic execution
and logic-based verification for JavaScript. We then describe the analysis techniques most related
to JaVerT 2.0: bi-abduction in the context of SL and incremental techniques for bounded model
checking (BMC) and symbolic execution (SE).
This paper is strongly influenced by our previous work on JS verification (JaVerT) [Fragoso

Santos et al. 2018b] and symbolic execution (Cosette) Fragoso Santos et al. [2018a]. JaVerT and
Cosette share part of their infrastructure, but have different purposes. JaVerT is the first verification
toolchain for dynamic languages based on SL. Cosette is a framework for whole-program symbolic
testing of JS programs, also used for specification-driven bug-finding. JaVerT 2.0 unifies and
significantly improves these analyses. It improves JaVerT by providing built-in support for automatic
unfold/fold reasoning over user-defined inductive predicates. It improves Cosette by providing a
native implementation of a symbolic execution for JSIL which is two orders of magnitude more
performant than the original Cosette implementation. Finally, JaVerT 2.0 is the first tool to support
fully automatic compositional testing based on bi-abduction for dynamic languages.

Symbolic Execution for JavaScript. The majority of the existing bug-finding symbolic execution
tools for JavaScript are whole-program and target specific bug patterns, such as security vulnera-
bilities related to the misuse of strings [Saxena et al. 2010], malformed Web API requests [Wittern
et al. 2017], and DOM API specific bugs [Li et al. 2014]. These tools are fully automatic and aim at
code in the large, primarily focusing on scalability and coverage issues. The work closest to ours
is Jalangi [Sen et al. 2015], a general-purpose symbolic execution tool for JavaScript, which, for
scalability reasons, does not follow the semantics of the language precisely. In contrast, JaVerT 2.0
is trustworthy: it does follow the semantics of JavaScript and its theoretical underpinnings are
formalised and proven sound, which allows us to use its symbolic execution engine both for testing
and verification. Moreover, JaVerT 2.0 is not limited to targeting a specific category of bugs—its
bug-finding aspect is general.
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Logic-based Verification for JavaScript. KJS [Ştefănescu et al. 2016] is a symbolic verifica-
tion tool for core ES5 obtained by instantiating the general K framework with the semantics of
JavaScript [Park et al. 2015]. Like JaVerT 2.0, KJS can be used to verify functional correctness prop-
erties of small data structure libraries. However, KJS specifications are complex and error-prone,
explicitly exposing all language internals. Furthermore, KJS is not compositional, as it does not
allow partial descriptions of JavaScript objects. Finally, KJS does not implement any form of error
reporting, making verification bugs extremely difficult to pinpoint and correct.

Swamy et al. [2013] use the Dijkstra monad and its type inference algorithm to prove the absence
of runtime errors for a small fragment of JavaScript (ES3). Concretely, they translate that fragment
to F* and generate verification conditions that check for the absence of runtime errors. JaVerT 2.0
aims at similar errors, but supports a large, rigorously defined subset of JavaScript (ES5).

Both [Ştefănescu et al. 2016] and [Swamy et al. 2013] provide strong correctness guarantees, but
have scalability limitations and their tools have not been applied to real-world code. For instance, the
Buckets.js library would be out of their reach, as they do not come with abstractions to accurately
describe, e.g. JS arrays, for-in loop invariants, and higher-order functions. For fully automatic and
whole-program symbolic testing, JaVerT 2.0 does not require such abstractions, and can, therefore,
be used for analysing substantially larger, more complex codebases.

Bi-abduction. Introduced by Calcagno et al. [2009b], bi-abduction was initially used to compute
lightweight specifications for heap-manipulating programs operating on standard data structures,
such as lists. It was later implemented as part of Infer [Calcagno and Distefano 2011; Calcagno et al.
2015], an industrial-strength bug-finding tool targeting memory safety of C, Java, Objective C, and
C++ programs. Infer attempts to build a compositional proof of a given program by joining together
the proofs of its constituents. Failed proof attempts are turned into bug reports and presented to
the user. Infer has some limitations with respect to proof generation: for example, it can only Infer
[sic] loop invariants involving a restricted number of data structures, such as lists and list segments.
This, however, is of little practical consequence as Infer is mainly used as a bug-finding tool.

Additionally, bi-abduction has been applied to different forms of program reasoning, including:
automatic verification of concurrent systems [Calcagno et al. 2009a]; inference of pure information
about weakly-specified data structures, such as size, sum or height [Trinh et al. 2013]; and automatic
synthesis of higher-order predicates for polymorphic data structures [Le et al. 2014].
All the aforementioned works in the literature describe bi-abduction in the context of simple

imperative languages. We are the first to study the use of this technique in the context of a real-
world highly complex dynamic language, such as JavaScript. Furthermore, we are the first to define
the bi-abductive mechanism in terms of the error reporting mechanism of the underlying analysis,
streamlining its implementation and meta-theoretical results.

Bounded Model Checking. Bounded Model Checking (BMC) is a program analysis technique
whose main purpose is bug-finding. Introduced by Biere et al. [1999] and widely applied successfully
since by, for example [Cho et al. 2013; Clarke et al. 2004; Lal et al. 2012; Sinha et al. 2012], BMC
normally works by first unrolling loops up to a given bound syntactically, then compiling the
unrolled program to first-order constraints, and, finally, passing these constraints to an SMT solver,
which checks their satisfiability. JaVerT 2.0 also unrolls loops up to a given bound for whole-program
symbolic testing and automatic compositional testing, albeit not syntactically.

A BMC analysis is whole-program as a rule, in the style of our whole-program symbolic testing.
To our knowledge, the only BMC work that considers incrementality is that of Cho et al. [2013],
in which the authors introduced Blitz, a scalable bounded model checker for C code. Blitz
scales because, unlike other BMC-based tools, it analyses the program bottom-up, starting from the
functions in which there are assertions to be verified, rather than starting from the main function. For
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each such function f , Blitz first constructs violation pre-conditions: that is, first-order summaries
under which the assertion is violated. Then, it analyses the callers of f and attempts to construct
their pre-conditions for which the violation pre-condition of f would hold at the call site of f . This
process is then repeated further up the call graph until the main function is reached. In this way,
Blitz is able to construct BMC instances incrementally. This is similar to the way in which our
bi-abduction specifications propagate up the call graph.
Symbolic Execution. Symbolic execution tools can be broadly divided into two main groups:
static and dynamic. Static SE tools, such as [Anand et al. 2007, 2009; Khurshid et al. 2003; Torlak and
Bodík 2014], explore the entire symbolic execution tree up to a pre-established bound, providing
bounded verification guarantees in the style of BMC and our Theorem 3.2. Dynamic SE tools, such
as [Cadar et al. 2008a,b; Godefroid 2007; Godefroid et al. 2005, 2008, 2010; Ramos and Engler 2015],
pioneered by dart [Godefroid et al. 2005], normally work by pairing up a concrete execution with
a symbolic execution in order to allow the symbolic execution to fall back to the concrete execution
whenever it produces symbolic formulae that are not supported by the underlying constraint solver.
Dynamic SE tools are mainly aimed at automatic test generation and generally do not provide any
verification guarantees. There is a vast corpus of research on both static and dynamic SE tools,
see [Cadar et al. 2011] and [Cadar and Sen 2013] for comprehensive surveys on the topic. Here, we
describe the use of summaries and automatic inference of resource in both approaches.
• Summaries: smart [Godefroid 2007] was the first dynamic SE tool with support for summaries. It
tests functions in isolation in a bottom-up manner, encodes test results as first-order constraints
and re-uses these constraints as summaries in the testing of other functions. smash [Godefroid
et al. 2010] is a unified SE framework for testing and verification of C programs. Like smart,
smash is incremental: it analyses one function at a time, building first-order verification and
testing summaries that can be later used in the analysis of other functions. Its key innovation is
the tight integration of verification and testing summaries, allowing the SE engine to use both
types of summary in a demand-driven manner. In both tools, summaries consist of first-order
formulae relating inputs to outputs and do not describe the heap. Furthermore, they are mainly
used as a mechanism for improving performance in the context of whole-program analysis, and
are not used by either tool to report errors for functions in isolation.

• Inference of resource: [Khurshid et al. 2003] were the first to propose lazy initialisation as a
means of supporting dynamically allocated data structures in Java programs during SE, without
requiring an a priori bound on input sizes. Lazy initialisation works by initialising heap resource
on an “as-needed” basis in a similar style to our bi-abductive module. Lazy initialisation has later
been applied to static/dynamic SE of C and Java programs [Deng et al. 2012, 2007; Sen and Agha
2006] with more general data types including references and arrays.
Further refinements of lazy initialisation include: under-constrained symbolic execution [Engler
and Dunbar 2007] and bounded lazy initialisation [Geldenhuys et al. 2013; Rosner et al. 2015].
Both techniques aim at reducing the number of spurious errors reported to the user due to
lazily initialised values. Under-constrained SE keeps track of all lazily initialised values during
SE and only reports a bug involving these values if it can prove that the bug occurs for every
possible concretisation of all lazily initialised values. Bounded lazy initialisation improves on
lazy initialisation by taking advantage of precomputed relational bounds on the interpretation of
object fields to reduce the number of explored spurious structures at SE time.
Recently, [Ramos and Engler 2015] have created uc-klee, an extension of klee [Cadar et al. 2008a]
with support for under-constrained SE, which contains an interface for users to manually silence
spurious errors by lazily specifying input preconditions using simple C code. This technique is
similar to our use of hints for the bi-abductive analysis in the form of simple assume statements.
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8 CONCLUSIONS AND FURTHERWORK
We have introduced a unified approach for developing compositional symbolic execution tools
for JavaScript, marrying classical symbolic execution and compositional program reasoning based
on separation logic. The key insights of this approach are: (1) a modular design of the analysis
framework, leading to a streamlined formalism with clear meta-theoretical results, strongly con-
nected to the implementation; (2) an explicit treatment of execution errors, enabling meaningful
error reporting and driving the bi-abductive inference of resource; and (3) a mechanism for re-
using separation-logic specifications within symbolic execution. Using this approach, we have
created JaVerT 2.0, a trustworthy JavaScript verification and testing framework that supports whole-
program symbolic testing, verification, and automatic compositional testing. We have successfully
evaluated the range of JaVerT 2.0 analyses on a number of simple data-structure libraries. We have
also used whole-program symbolic testing to detect bugs in real-world JavaScript code.
There are numerous avenues for further work. Examples include: extending the coverage of

JaVerT 2.0 to full ES5 and/or more recent versions of the standard; extending JSIL logic with
support for higher-order reasoning; designing a heuristic mechanism for invariant synthesis; and
improving our underlying first-order solver with more advanced reasoning capabilities for strings,
sets, multisets, maps, and other mathematical structures. In the near future, we plan to:

• improve our error reporting in the context of verification by developing an interactive error
diagnosis mechanism, possibly using ideas from Dillig et al. [2012];

• automatically convert the bi-abduced specifications to a concrete test suite for the given
program, which the user could then run in their JS engine of choice to corroborate the results
of JaVerT 2.0;

• improve the performance of the bi-abductive analysis by: using well-crafted heuristics in the
inference of missing resource, simplifying the generated specifications, and containing the JS
semantics in a principled way via executable specifications.

Finally, we will investigate the generalisation of the meta-theory of JaVerT 2.0 by making it
additionally parametric on the memory model of the targeted language. In this way, we would be
able to move beyond JavaScript/JSIL to languages such as C, Java, or WebAssembly.
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