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Abstract
We investigate the complexity and expressive power of a spatial logic for reasoning about graphs.

This logic was previously introduced by Cardelli, Gardner and Ghelli, and provides the simplest set-
ting in which to explore such results for spatial logics. We study several forms of the logic: the logic
with and without recursion, and with either an exponential or a linear version of the basic composition
operator. We study the combined complexity and the expressive power of the four combinations. We
prove that, without recursion, the linear and exponential versions of the logic correspond to signifi-
cant fragments of First-Order (FO) and Monadic Second-Order (MSO) Logics; the two versions are
actually equivalent to FO and MSO on graphs representing strings. However, when the two versions
are enriched with µ-style recursion, their expressive power is sharply increased. Both are able to
express PSPACE-complete problems, although their combined complexity and data complexity still
belong to PSPACE.

1 Introduction
Spatial logics have been used to specify properties of graphs, memory heaps, and trees. They are
characterized by the presence of the composition operator (sometimes called separation operator) for
reasoning locally about disjoint substructures. Such logics have been used to reason about code with
side effects [21], mobile processes [8], and semi-structured data [7, 6]. Our motivation for studying
expressivity results arose from two pieces of work: Cardelli, Gardner and Ghelli’s work [6] on using
a spatial logic for querying graphs, which postulates the connections with MSO and refers to some of
the results reported here, and Cardelli and Ghelli’s work [8] on the TQL language for querying XML
data which, although it has been implemented and tested [11], had no formal analysis of its expressive
power until now. In this paper, we concentrate on the spatial logic for reasoning about graphs, since
this is the simplest setting in which to study the combination of first-order logic connectives with spatial
connectives. In Section 2, we describe how our results transfer to the TQL project.
The complexity and expressive power of a query language based on a logic L are typically charac-

terized by the following problems:
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• the combined complexity of the model-checking problem of the underlying logic L: that is, the
complexity class that contains the set TruthsL = {(G,φ) : G ! φ};

• the expressivity of L: that is, the collection of all sets Gφ = {G : G ! φ}, for each sentence φ
in L;

• the data complexity of model-checking L, that is, the complexity class that contains all the sets
Gφ.

Model-checking is directly related to n-ary query-answering: that is, given G and φ with n free vari-
ables, finding all substitutions σ such that G ! φσ holds. By enumerating all substitutions over the
domain of G, query-answering can be reduced to model-checking modulo a polynomial factor (for n
fixed). Moreover, the evaluation of Boolean queries coincides with model-checking. Hence, the com-
bined complexity of model-checking is a measure of query evaluation cost. However, the data complex-
ity problem recognizes the fact that databases are usually much bigger than queries. It therefore makes
sense to study how the complexity of G ! φ depends on G when φ is fixed. Moreover, data complexity
is an upper bound for the set of the sets of graphs Gφ that can be expressed in the logic, and hence is a
way to describe its expressive power.
In this paper, we explore expressivity and complexity results for four versions of the spatial logic

for reasoning about graphs: the basic logic GL without recursion, the logic GLµ with least fixed-points
for positive formulae studied in [6], and the ‘linear’ sublogics LGL and LGLµ with a limited form of
the composition operator which we introduce below. We show that GL and GLµ have a high combined
complexity and expressive power, both in the realm of PSPACE. This high complexity derives from the
fact that the composition operatorφ|ψ specifies that a graph can be split into two parts: the part satisfying
φ and the part satisfying ψ. It therefore represents an existential quantification over the 2n subgraphs
of a graph of size n. Ghelli’s experience with TQL, however, shows that in practice the vast majority
of queries use a very limited ‘linear’ version of the composition operator, denoted by φ!ψ, where the
quantification only ranges over the n one-edge subgraphs of the graph. Indeed, the TQL implementation
supports the ! operator as primitive, and a core task of the TQL optimizer is to transform every instance
of the full composition into the linear composition, where possible. Full composition rarely survives
the optimization and, when it does, the query produced is often unusable even on very small databases.
For this reason, the TQL designers seriously considered the possibility of replacing | by ! altogether.
The logics LGL and LGLµ use this linear composition. We found that the analysis of their complexity
and expressive power is not only interesting in the context of the TQL project, but also for the strict
relationship of LGL with first-order logic; this relationship is discussed later.
Our main technical contributions are the following.

• Relation between GL and MSO We provide a translation of GL into monadic second-order
logic for graphs (MSO), which illustrates that GL is intermediate between first-order logic (FO)
and MSO for graphs. We provide examples of graph properties which are well-known to be
expressible in MSO, which are not expressible in FO, and which we show are expressible in GL.
Despite this, we conjecture that GL is strictly less expressive than MSO, as it seems unlikely that
one could express graph properties such as Hamiltonicity and 3-colourability in GL. Interestingly,
we are able to show that GL is as expressive as MSO on strings over a finite alphabet. We establish
this result using a translation of regular expressions into GL, with the translation of the Kleene
star operation requiring a creative use of the composition operator.

• Complexity of GL The translation of GL into MSO establishes that TruthsGL is in PSPACE.
We also establish PSPACE-completeness by a reduction from the validity of quantified Boolean
formulas. The result is not surprising, since we have already established that GL lies between FO
and MSO which are both PSPACE-complete; we include it for completeness.

2



• Expressivity of GL A simple consequence of the translation of GL to MSO is that, for every
φ ∈ GL, the set of graphs Gφ is in the polynomial hierarchy. This does not imply that all problems
in the polynomial hierarchy can be expressed in GL. We show that this expressivity upper-bound
is tight, in that GL can express complete problems at all levels of the hierarchy. This is achieved
by encoding quantified Boolean formulas as graphs.

• Complexity and expressivity of GLµ We show that the combined complexity of GLµ is also in
PSPACE. The upper bound is established by studying the complexity of an abstract version of the
algorithm used in the TQL system, which is similar to Winskel’s algorithm for model-checking
the µ-calculus [27].
We also compare the expressive power of GLµ to that of MSO. The former can define properties
that are not definable in MSO such as the parity of the set of edges. We also show that GLµ can
express a problem that is PSPACE-complete, and therefore unlikely to be expressible in second-
order logic (unless PSPACE collapses to the polynomial hierarchy), let alone MSO. The ability to
express a PSPACE-complete problem also gives us a very good characterization of the expressive
power of GLµ, because of the PSPACE upper bound. The proof is again through an encoding of
quantified Boolean formulas as graphs. As far as we are aware, this is the first result about the
expressive power of a spatial logic with recursion. On string graphs, GLµ is at least as expressive
as conjunctive context-free grammars, as defined in [22].

• Complexity and expressivity of LGL We show how the translation of GL into MSO can be
modified to produce an encoding of LGL into FO. We show that the combined complexity of this
logic is still PSPACE-complete. The expressive power is however much lower, being included in
LogSpace. On string graphs, the expressive power corresponds precisely to that of FO, since LGL
can express all and only the star-free languages.

• Complexity and expressivity of LGLµ Whilst LGL can be mapped to FO, we show that LGLµ

is very different from FO+LFP. In particular, LGLµ can specify evenness, which is the standard
example of a graph property which is not expressible in FO+LFP. We also show that LGLµ goes
well beyond the PTime limit of FO+LFP, by exhibiting a sentence that expresses a PSPACE-
complete property. On string graphs, LGLµ can express at least every conjunctive linear context-
free language, which is much richer than the class of regular languages.

Many of our results are obtained by adapting standard techniques, though not always in a straight-
forward fashion. However, we found some results to be of particular interest and quite surprising: the
expressive power of GL is the same as MSO when we only consider strings; the expressive power of
GLµ (and even of LGLµ) goes considerably beyond that of MSO, and the expressive power of LGLµ

goes beyond that of FO+LFP.

2 Graph Logic and Models
2.1 Graphs
In [6], graphs are defined as the denotations of terms of the grammar G ::= 0 | a(x1,x2) | G |G.
The term 0 denotes the empty graph, term a(x1,x2) denotes the graph consisting of just one edge from
node named x1 to node x2 with label a, and the composition G | G′ denotes the disjoint union of the
edges of G and G′ and the set-union of their nodes. Names x and labels a are observable in the logic,
which means that two graphs a1(x1,x1) and a2(x2,x2) can be distinguished by logical formulas, unless
a1 = a2 and x1 = x2. While a node label x uniquely identifies a node, edge labels do not identify
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edges, even on a specific pair of nodes, so that a graph a(x1,x2)|a(x1,x2) contains two edges, with the
same label, source, and destination. In the logic we can observe that the graph contains two edges, and
we can observe their label, source, and destination, but we have no way to observe the edge itself, i.e.
to distinguish the first edge from the second. Isolated nodes are not specified in the graph syntax This
style of presentation is not standard in graph theory1, but it arose from the field of process algebra, and
is reflected in the logic.
In the same paper [6], an equivalent presentation of graphs as relational structures is given. We

present here a streamlined version of these structures. We fix an infinite set of node names X and an
infinite set of edge labels A. A graph is then defined as a pair G = (E, edge) where E is a finite set
of edges and edge : E → A× X × X is a function that associates to each edge a label, a source node
and a target node. Two graphsG = (E, edge) andG′ = (E′, edge’) are graph-equal, denotedG ≡ G′,
whenever there exists a bijection σ : E → E ′ such that edge = edge’ ◦ σ. Notice that the ranges of
edge and edge’ are required to be identical in this definition, reflecting the fact that the node names
and edge labels can be observed.2 In informal reasoning, we will often identify two graphs which are
graph-equal.
We introduce some notation. The set of nodes of a graph is given by

nam(G) =def Π2(range(edge)) ∪Π3(range(edge))

and the set of labels by
lab(G) =def Π1(range(edge)),

whereΠi denotes the ith projection. As mentioned above, the graph compositionG1 | G2 is the disjoint
union of the edges and the set-union of the nodes: that is,

(E1, edge1) | (E2, edge2) =def (E′
1 ( E′

2, edge′1 ( edge′2),

where (E′
1, edge′1) and (E′

2, edge′2) are two arbitrary graphs such that (E ′
1, edge′1) ≡ (E1, edge1),

(E′
2, edge′2) ≡ (E2, edge2) and E′

1 ∩ E′
2 = ∅. We use ( to denote the union of two functions with

disjoint domain, and the union of two disjoint sets. This definition of graph composition is well-defined
up to graph equality.
A subgraph is, essentially, a subset of the edges of a graph. Formally, a graph (E ′, edge′) is a

subgraph of (E, edge) if and only if, for some graph (E1, edge1) which is graph-equal to (E, edge),
E′ ⊆ E1 and edge′ is edge1 restricted to E′.

2.2 The Logics GL and GLµ

In this section, we define the µ-Recursive Graph Logic GLµ. The basic Graph Logic GL is the obvious
fragment of GLµ without the recursion variables and recursion operator. GLµ extends first-order logic
with a composition operator and µ-recursion.
1According to standard terminology, every triple a(x1,x2) is actually a labeled three-vertex directed hyperedge, hence our

“graphs” would be described as vertex-labeled 3-uniform hypergraphs, or, more precisely, multi-directed-hypergraphs. Each
hypergraph is also bipartite, since the set of vertices is partitioned into those labelled in A and those labelled in X , and every
directed hyperedge is associated with a triple of vertices labelled in A × X × X . We prefer to call these structures just graphs,
and to define them from the ground up, with no reference to standard terminology.
2In [6], we consider a name hiding operator on graphs. This means that the graphs are defined using vertices and an explicit

function src mapping names to some of the vertices in the graph. All the results in this paper easily apply to this more complex
setting. It is only the translation of Graph Logic to monadic second-order logic presented in Section 3.1 that requires some
modification to cope with hiding, as we shall observe.

4



Definition 2.1 The GLµ-formulas are built from a set X of node names, a set A of label names, and
the countably infinite sets VX , VA, and VR, of node variables, label variables, and recursive formula
variables respectively. A formula is one of

0

T
α(ξ1, ξ2) where α ∈ A ∪ VA and ξi ∈ X ∪ VX

ξ1 = ξ2 or α1 = α2 where αi ∈ A ∪ VA and ξi ∈ X ∪ VX

φ | ψ or φ ∧ ψ or ¬φ where φ and ψ are formulas
∃x.φ or ∃a.φ where x ∈ VX , a ∈ VA and φ is a formula
R where R ∈ VR

µR.φ where R ∈ VR,φ is a formula, and R only appears positively in φ

As usual, a variable occurs positively in a formula iff it only appears under an even number of negations.

We use bold face for constants (a, x, . . . ), italics for variables (a, x, . . . ), and Greek letters for terms (α,
ξ. . . ) which are either constants or variables. The sets of the free and bound variables of a formula, fv(φ)
and bv(φ), are defined as usual. We use nam(φ) to denote the set of all node-name constants xi that
appear in φ, and lab(φ) to denote the label-name constants ai. For example, if φ = ∃x.a(x, y)|a(x,y),
then fv(φ) = {y, a}, bv(φ) = {x}, nam(φ) = {x,y}, and lab(φ) = {a}. We use nam(G,φ) to denote
the union of the name constants inG and in φ; similarly, lab(G,φ) denotes the label constants inG plus
those in φ.
To define the semantics, let G denote the set of all graphs over X , A. Let φ be a formula and

σ : VX ∪ VA → X ∪ A be an assignment of node and label names to the node and label variables
respectively. Extend σ in a canonical fashion to the domain VX ∪ VA ∪ X ∪A, by letting σ(z) = z for
z ∈ X ∪A. Finally, let ρ map recursion variables to elements of P(G). We now define [[φ]]σ;ρ, the set
of graphs satisfying φ under the assignments σ and ρ, as follows:

[[0]]σ;ρ = {(∅, ∅)} (the singleton containing the empty graph)
[[T]]σ;ρ = G
[[α(ξ1, ξ2)]]σ;ρ = {G : G ≡ ({e}, e .→ (σα,σξ1,σξ2))}
[[ξ1 = ξ2]]σ;ρ = G, if σξ1 = σξ2; ∅ otherwise
[[α1 = α2]]σ;ρ = G, if σα1 = σα2; ∅ otherwise
[[φ | ψ]]σ;ρ = {G : G ≡ (G1 | G2) for some G1 ∈ [[φ]]σ;ρ and G2 ∈ [[ψ]]σ;ρ}
[[φ ∧ ψ]]σ;ρ = [[φ]]σ;ρ ∩ [[ψ]]σ;ρ

[[¬φ]]σ;ρ = G \ [[φ]]σ;ρ

[[∃x. φ]]σ;ρ =
⋃

x∈X [[φ]]σ,x #→x;ρ

[[∃a. φ]]σ;ρ =
⋃

a∈A[[φ]]σ,a#→a;ρ

[[R]]σ;ρ = Rρ

[[µR.φ]]σ;ρ =
⋂
{S ∈ P(G) : [[φ]]σ;ρ,R#→S ⊆ S}

This definition can be shown to be well-defined by structural induction on formulas. For the re-
cursive case, observe that the set P(G) is a complete lattice, and that λS. [[φ]]σ;ρ,R#→S is a monotone
mapping. As a conquence, the intersection of the pre-fixpoints of the satisfaction interpretation is its
least fixpoint (Lemma 2.2).
We say that a formula is µ-closed if it contains no free recursion variable. For a µ-closed formula,

[[φ]]σ;ρ does not depend on ρ. Hence, for such formulas, we use [[φ]]σ as an abbreviation for [[φ]]σ;(),
and observe that it is also equal to [[φ]]σ;ρ for any other ρ. We use the notation G !σ;ρ φ to denote
that G ∈ [[φ]]σ;ρ, and, for µ-closed formulas, write G !σ φ to denote G ∈ [[φ]]σ ; we call G !σ φ the
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satisfaction relation of GLµ. When φ is a sentence, its interpretation does not depend on either σ or ρ,
and in this case we write G ! φ.

Lemma 2.2 For µ-closed formulas, the satisfaction relation G !σ φ satisfies the properties:

0 !σ G ⇔ G = (∅, ∅)
G !σ T
G !σ α(ξ1, ξ2) ⇔ G ≡ ({e}, e .→ (σα,σξ1,σξ2))
G !σ ξ1 = ξ2 ⇔ σξ1 = σξ2
G !σ α1 = α2 ⇔ σα1 = σα2

G !σ φ | ψ ⇔ ∃G1, G2. G ≡ G1 | G2 and G1 !σ φ and G2 !σ ψ
G !σ φ ∧ ψ ⇔ G !σ φ and G !σ ψ
G !σ ¬φ ⇔ G 0!σ φ
G !σ ∃x. φ ⇔ ∃x∈X . G !σ,x→x φ
G !σ ∃a. φ ⇔ ∃a∈A. G !σ,a→a φ
G !σ µR.φ ⇔ G !σ φ{R← (µR.φ)}

We also use derived operators: disjunction φ ∨ ψ, implication φ ⇒ ψ and universal quantifiers
∀x.φ and ∀a.φ are defined as usual. We also use the derived operator φ |⇒ ψ =def ¬(φ | ¬ψ). By this
definition,G !σ φ |⇒ ψ if, and only if, for every partition ofG intoG′, G′′, ifG′ !σ φ, thenG′′ !σ ψ.
The logic cannot distinguish graphs which are graph-equal (Lemma 2.3). On the other hand, for any

single finite graph there is a sentence that characterises that, and only that, graph up to graph-equality
(Lemma 2.4). Hence, logical equivalence coincides with graph-equality.

Lemma 2.3 For any two graphs G ≡ G′, for any sentence φ of GLµ, G ! φ ⇔ G′ ! φ. The
analogous result for GL is an immediate corollary.

Lemma 2.4 Every finite graph G has a characteristic sentence G in GL, and hence in GLµ. Formally,
for any finite graph G, let G be the sentence that contains one a(x,y) literal, separated by |, for each
edge in the graph that is labelled (a,x,y). Then: G′ ! G ⇔ G′ ≡ G.

2.3 The Range of Quantifiers
In GLµ, quantifiers are interpreted as ranging over the infinite sets of names X and A, even though the
number of edges in the graph G is finite. In MSO however, each graph carries the set of its own nodes,
connected or isolated, which is a finite subset X of X , and quantification only ranges over this finite
set of nodes, and similarly for labels a. In this section, we show that the two approaches are basically
equivalent. To this end, we define a variant G !σ

X,A φ of the satisfaction relation, where quantification
ranges overX ⊆ X and A ⊆ A, and prove that G !σ

X,A φ⇔ G !σ φ for ‘big enough’X and A.

Definition 2.5 The set of graphs [[φ]]X,A
σ;ρ is defined as in the definition of [[φ]]σ;ρ, apart from the existen-

tial cases, where quantification ranges over X and A instead of X and A:

[[∃x. φ]]X,A
σ;ρ =

⋃
x∈X [[φ]]X,A

σ,x #→x;ρ [[∃a. φ]]X,A
σ;ρ =

⋃
a∈A[[φ]]X,A

σ,a#→a;ρ

For µ-closed formulas, we use G !σ
X,A φ to denoteG∈ [[φ]]X,A

σ;() , which satisfies the properties:

G !σ
X,A ∃x. φ ⇔ ∃x∈X. G !

σ,x→x

X,A φ G !σ
X,A ∃a. φ ⇔ ∃a∈A. G !

σ,a→a

X,A φ

The standard GLµ interpretation is obtained in the special case whenX = X and A = A.
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We first prove a technical result that names and labels can be freely exchanged in the relativized
version of the logic (hence, in the standard version as well). We first define name exchange, where x
and x′ are two arbitrary node names. Label exchange {a ↔ a′} is defined the same way, apart from
the obvious modification of the first two lines; this is the reason why, in the α(ξ1, ξ2) case, we write
α{x↔ x′} instead of just α. Name exchange is defined by:

Terms: x{x↔ x′} =def x′, x′{x↔ x′} =def x, x′′{x↔ x′} =def x′′ if x′′ 0∈{x,x′}
a{x↔ x′} =def a

x{x↔ x′} =def x, a{x↔ x′} =def a,
Formulas: (ξ1 = ξ2){x↔ x′} =def (ξ1{x↔ x′}) = (ξ2{x↔ x′})

(α(ξ1, ξ2)){x↔ x′} =def (α{x↔ x′})((ξ1{x↔ x′}), (ξ2{x↔ x′}))
(∃x.φ){x↔ x′} =def ∃x.(φ{x↔ x′})
. . .

Graphs: (E, edge){x↔ x′} =def (E, (edge{x↔ x′})), where:
edge(e) = (a,x1,x2)
⇒ (edge{x↔ x′})(e) = (a{x↔ x′},x1{x↔ x′},x2{x↔ x′}) . . .

Sets: T {x↔ x′} =def {t{x↔ x′} : t∈T }

Substitutions: (){x↔ x′} =def ()
(σ, y → y){x↔ x′} =def σ{x↔ x′}, y → (y{x↔ x′})
(σ, a→ a){x↔ x′} =def σ{x↔ x′}, a→ (a{x↔ x′})
(ρ, R→ S){x↔ x′} =def ρ{x↔ x′}, R→ (S{x↔ x′})

Satisfaction is preserved by name and label exchange. We prove this result for formulas which may
contain free recursion variables, since that allows us to reason by induction on the formula size in the
µR.φ case.

Proposition 2.6 For arbitrary node names x and x′, labels a and a′, graph G, sets X and A, formula
φ in GLµ, and substitutions σ and ρ:

G∈ [[φ]]X,A
σ;ρ ⇔ G{x↔ x′}∈ [[φ{x↔ x′}]]X{x↔x

′},A{x↔x
′}

σ{x↔x′};ρ{x↔x′}

G∈ [[φ]]X,A
σ;ρ ⇔ G{a↔ a′}∈ [[φ{a↔ a′}]]X{a↔a

′},A{a↔a
′}

σ{a↔a′};ρ{a↔a′}

Proof Since the double application of {x↔ x′} is the identity, we can just prove the (⇒ ) direction.
The proof is by induction and by cases. It is long, but quite trivial. We present here the base case of
equality and the inductive case for recursion, for name exchange only. For readability, we abbreviate
t{x↔ x′} to t↔, where t may be a term, a formula, a graph, a substitution, or a set of such things.
When φ is ξ1 = ξ2, we must prove that σ(ξ1) = σ(ξ2) ⇔ σ↔(ξ1

↔) = σ↔(ξ2
↔). By injectivity

of ↔ on constants, we have σ(ξ1) = σ(ξ2) iff (σ(ξ1))
↔ = (σ(ξ2))

↔. The result follows, since
(σ(ξ))↔ = σ↔(ξ↔).
In the case φ = µR.ψ, we have to prove that G ∈ [[µR.ψ]]X,A

σ;ρ ⇒ G↔ ∈ [[(µR.ψ)↔]]X
↔,A↔

σ↔;ρ↔ .
By definition, we have to prove that, for any G, (a) ∀S. ([[ψ]]X,A

σ;ρ,R#→S ⊆ S ⇒ G ∈ S) implies (b)
∀S. ([[ψ↔]]X

↔,A↔

σ↔;ρ↔,R#→S ⊆ S ⇒ G↔ ∈ S). Let us assume (a) and (b’) [[ψ↔]]X
↔,A↔

σ↔;ρ↔,R#→S ⊆ S for
an arbitrary set S. If we can prove that (c) [[ψ]]X,A

σ;ρ,R#→S↔ ⊆ S↔, then G ∈ S↔ by (a), and hence
G↔ ∈ S follows immediately. So we only have to prove that (b’) [[ψ↔]]X

↔,A↔

σ↔;ρ↔,R#→S ⊆ S implies
(c) [[ψ]]X,A

σ;ρ,R#→S↔ ⊆ S↔. Assume (b’) and assume that a generic G belongs to [[ψ]]X,A
σ;ρ,R#→S↔ ; we have

to show that G∈S↔:
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G∈ [[ψ]]X,A
σ;(ρ,R#→S↔) ⇒ (induction on ψ) G↔∈ [[ψ↔]]X

↔,A↔

σ↔;(ρ,R#→S↔)↔ ⇒ G↔∈ [[ψ↔]]X
↔,A↔

σ↔;ρ↔,R#→S

⇒ (by (b’)) G↔∈S ⇒ G∈S↔

"

We are now ready to prove that, for any µ-closed GLµ formula φ, in order to check G !σ φ,
we can restrict quantification to any finite subset X of X provided it is ‘big enough’. We say that
X ⊆ X is big enough for (G,φ,σ), writtenX 6 (G,φ,σ), ifX ⊇ (nam(G,φ) ∪ (range(σ) ∩X )) and
X \ (nam(G,φ) ∪ range(σ)) contains k distinct names, where k is the nesting level of name quantifiers
in φ. The definition that A ⊆ A is big enough for (G,φ,σ), written A 6 (G,φ,σ), is similar.

Proposition 2.7 For any graph G, µ-closed GLµ formula φ, substitution σ, name set X and label set
A, such that dom(σ) ⊇ fv(φ), X 6 (G,φ,σ), and A 6 (G,φ,σ), we have

G !
σ φ ⇔ G !

σ
X,A φ

Proof The implication from right to left is immediate since X ⊆ X . To prove the other direction,
we use Lemma 2.2 and reason by cases on the shape of φ and by induction on its size, exploiting the
fact that, if ψ is a subformula of φ, then X 6 (G,φ,σ) implies X 6 (G,ψ,σ), and similarly for
A 6 (G,φ,σ). All cases apart from existential quantification are trivial.
Case φ = ∃x. ψ. By definition, we know that G !σ ∃x. ψ ⇔ ∃x ∈ X . G !σ,x→x ψ. We have now
to prove that ∃x′ ∈X. G !σ,x→x

′

ψ. Consider a witness x for ∃x ∈ X . G !σ,x→x ψ. If x ∈X we
are done. If x /∈ X , then it can be substituted by any of the k fresh names in X specifically given for
this purpose. Formally, let x′ be one of these fresh names. By Proposition 2.6, G !σ,x→x ψ implies
(a) G{x ↔ x′} !(σ,x→x){x↔x

′} ψ{x ↔ x′}. Since x /∈ X , and by freshness of x′, neither x nor x′

appear in nam(G,φ) nor in range(σ), hence (a) can be rewritten as G !σ,x→x
′

ψ. Observe now that
X 6 (G,ψ, (σ, x→ x′)), since X ⊇ (nam(G,ψ) ∪ (range(σ, x → x′) ∩ X )) holds since x′ ∈X and
X \ (nam(G,ψ) ∪ range(σ, x → x′)) has one name less than X \ (nam(G,φ) ∪ range(σ)) but ψ has
one quantification nesting level less than φ. Hence, by induction, from ∃x′ ∈X. G !σ,x→x

′

ψ, we get
∃x′∈X. G !

σ,x→x
′

X,A ψ and henceG !σ
X,A φ.

"

Corollary 2.8 For any sentence φ of GLµ, for anyX andA such thatX 6 (G,φ, ∅) andA 6 (G,φ, ∅),
G ! φ if, and only if, G !X,A φ.

2.4 Graph Logic and TQL Logic
The logic underlying the TQL query language, which we denote TL, is essentially the static fragment
of Cardelli and Gordon’s Ambient Logic without adjoints. It is a generalization of GLµ that is defined
on trees rather than graphs. This may sound strange, since trees are usually defined as a special case of
graphs, rather than a generalization of graphs. However, TQL trees are labelled over an infinite set of
labels, and hence three-level flat trees are already rich enough to represent our graphs, and, under this
representation, TL and GL have the same expressive power.
TQL trees are described by the grammar

T ::= 0 empty rooted tree
a[T ] one edge labelled a, root as the source node, target node the root of subtree T
T |T composition of two trees, joining the roots

For example, the term a[b[0] | b[0]] represents a tree with an edge labelled a joined to the root, and
two children just consisting of edges labelled by b. TL therefore has formula α[φ] instad of α(ξ,χ).
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Any GL graph a1(x1,x′
1) | . . . | an(xn,x′

n) can be faithfully represented by the three-level tree
a1[x1[x′

1[0]]] | . . . | an[xn[x′
n[0]]]. In the same way, any GL formula can be transformed into an

equivalent TL formula by substituting any atom αi(ξi, ξ′i) with αi[ξi[ξ′i[0]]], modulo some technical
work to enforce the disjointness of names from edge labels. Hence, TL can be described as a gener-
alization of GL to a set of models where the edge constructor a(x,y) is substituted with the subtree
constructor a[T ]. We decided to focus our study on GL, rather than TL, since the generalization of
α(ξ,χ) to α[φ] adds no interesting issues to model-checking complexity.

3 Graph Logic and MSO
We wish to compare the expressive power of GL to that of standard logics such as first- and second-
order logic, whose expressive power on finite graphs has been extensively studied (see [16]). Among
these, the logic that is closest to GL is monadic second-order logic (MSO) which is widely used as
a standard of expressivity on strings, trees and graphs. We show (in Section 3.1) that every formula
of GL is equivalent to a formula of MSO, subject to a minor qualification with regard to the range of
quantification. In terms of expressivity, this implies that the class of graphs defined by any formula
of GL is in the polynomial hierarchy. Whilst it seems unlikely that every property definable in MSO
is expressible in GL, we do illustrate the richness of GL by showing (in Section 3.2) how to express
properties such as graph connectivity, 2-colourability and the existence of two node-disjoint paths. None
of these properties is definable in first-order logic. The richness of GL is further illustrated in Section 4,
where we show that complete problems at every level of the polynomial hierarchy are expressible. There
is one important class of graphs for which we are able to show that GL is as expressive as MSO. This
is the class of string graphs, i.e. graphs encoding words over a given alphabet. It is known that on this
class MSO defines exactly the regular languages. We show that the same is true for GL in Section 3.3.

3.1 Monadic Second-Order Logic
We show that, for every formula of GL, there is an equivalent formula of monadic second-order logic
(MSO). We will use a version of MSO with three sorts of variables, corresponding to vertices, edges and
labels in the graphs. The logic will be interpreted in a three-sorted structure accordingly. Moreover, we
treat edge syntactically as a 4-ary relation, rather than a function. To be precise, the formulas of MSO
are built up from the set of names X , the labels A, a countable set of edges E , three sorts of first-order
variables VX , VA and VE , and a countable collection VS of set variables. A formula is one of:

edge(e,α, ξ1, ξ2) where e ∈ VE ,α ∈ A ∪ VA and ξi ∈ X ∪ VX

e1 = e2 or α1 = α2 or ξ1 = ξ2 where ei ∈ VE ,αi ∈ A ∪ VA, ξi ∈ X ∪ VX

e ∈ S where e ∈ VE and S ∈ VS

φ ∧ ψ or ¬φ where φ and ψ are formulas
∃e.φ or ∃x.φ or ∃a.φ where e ∈ VE , x ∈ VX , a ∈ VA and φ is a formula
∃S.φ where S ∈ VS and φ is a formula.

Formulas are interpreted over three-sorted structures (A, X, E, edge) such thatA ⊆ A,X ⊆ X ,E ⊆ E ,
and edge : E → A × X × X . The semantics is standard except that set variables are interpreted as
ranging over sets of edges. In this sense, this version of monadic second-order logic is akin to the logic
MS2 of [12].
In order to define a translation of GL-formulas to MSO-formulas, there is one issue that needs to be

addressed carefully. The node and label quantifiers in GL are interpreted over the infinite sets X andA.
However, in the standard semantics of MSO, the range of the first-order quantifiers is the set of nodes
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X and the set of labels A that are in the graph. However, we know by Corollary 2.8 that, without loss
of generality, the quantifiers in GL can be restricted to a finite set.
We are now ready to give the translation of formulas of GL into MSO. More generally, we give for

each formula φ of GL, a formula [[φ]]S of MSO which is to be read as “the translation of φ relativized to
the set of edges S”. In our translation, we use S = S ′ | S′′ as an abbreviation for the MSO formula:

(∀e. e ∈ S ⇔ (e ∈ S′ ∨ e ∈ S′′)) ∧ ¬(∃e. e ∈ S′ ∧ e ∈ S′′)

Definition 3.1 We define a translation [[ ]]S from GL-formulas to MSO-formulas by induction on the
structure of the GL-formulas:

[[0]]S =def ¬∃e. e ∈ S
[[α(ξ, ξ′)]]S =def ∃e ∈ S. [edge(e,α, ξ, ξ′) ∧ ∀e′ ∈ S. e = e′]

[[φ′ | φ′′]]S =def ∃S′, S′′. S = S′ | S′′ ∧ [[φ′]]S
′

∧ [[φ′′]]S
′′

[[ξ = ξ′]]S =def ξ = ξ′ [[α = α′]]S =def α = α′

[[¬φ]]S =def ¬[[φ]]S [[φ ∧ φ′]]S =def [[φ]]S ∧ [[φ′]]S

[[∃x.φ]]S =def ∃x. [[φ]]S [[∃a.φ]]S =def ∃a. [[φ]]S

A crucial property of this translation is the fact that every quantification over edges in [[φ]]S is actually
bounded over S. This observation is explicit in cases [[0]]S and [[α(ξ, ξ′)]]S , and follows inductively in
the other cases. It is formalized in the following lemma.

Lemma 3.2 For anyA ⊆ A,X ⊆ X , any two graphs (E, edge) and (E ′, edge′) such thatE∩E′ = ∅,
any formula φ∈GL and any substitution σ over VX and VA,

(A, X, E, edge) !
σ,S→E
MSO [[φ]]S ⇔ (A, X, E ( E′, edge( edge′) !

σ,S→E
MSO [[φ]]S

We are now ready to formalize the relation between φ and [[φ]]S .

Theorem 3.3 For any graphG = (E, edge), any formula φ ∈ GL, any substitution σ over VX and VA,
anyX ⊆ X and A ⊆ A such thatX 6 (G,φ,σ), A 6 (G,φ,σ):

G !
σ φ ⇔ (A, X, E, edge) !

σ,S→E
MSO [[φ]]S .

Proof By induction on the formula. We show the two interesting cases.
G = (E, edge) !σ φ′ | φ′′:
⇔ ∃E′, E′′, edge′, edge′′. E = E′ (E′′, edge = edge′ ( edge′′,

(E′, edge′) !σ φ′, (E′′, edge′′) !σ φ′′

⇔ (by induction)
∃E′, E′′, edge′, edge′′. E = E′ (E′′, edge = edge′ ( edge′′,
(A, X, E′, edge′) !

σ,S′→E′

MSO [[φ′]]S
′ , (A, X, E′′, edge′′) !

σ,S′′→E′′

MSO [[φ′′]]S
′′

⇔ (by Lemma 3.2)
∃E′, E′′, edge′, edge′′. E = E′ (E′′, edge = edge′ ( edge′′,
(A, X, E, edge) !

σ,S′→E′

MSO [[φ′]]S
′ , (A, X, E, edge) !

σ,S′′→E′′

MSO [[φ′′]]S
′′

⇔ (we assume that S, S ′ and S′′ are fresh variables)
∃E′, E′′ ⊆ E.

(A, X, E, edge) !
σ,S→E,S′→E′,S′′→E′′

MSO S = S′ | S′′

(A, X, E, edge) !
σ,S→E,S′→E′,S′′→E′′

MSO [[φ′]]S
′ ,

(A, X, E, edge) !
σ,S→E,S′→E′,S′′→E′′

MSO [[φ′′]]S
′′ ,

⇔ (A, X, E, edge) !
σ,S→E
MSO ∃S′, S′′. S = S′ | S′′ ∧ [[φ′]]S

′

∧ [[φ′′]]S
′′
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G !σ ∃x. ψ:
By definition, ∃x ∈X . G !σ,x→x φ. We reason as in the proof of Proposition 2.7 and show that this
implies that: ∃x∈X. G !σ,x→x φ (the (⇐) direction is trivial) and that X 6 (G,ψ, (σ, x→ x)). By
induction, this is equivalent to

∃x∈X. (A, X, E, edge) !
σ,x→x,s→E
MSO [[ψ]]E ⇔

∃x∈X. (A, X, E, edge) !
σ,s→E,x→x

MSO [[ψ]]E ⇔
(A, X, E, edge) !

σ,s→E
MSO ∃x. [[ψ]]E ⇔ (A, X, E, edge) !

σ,s→E
MSO [[∃x. ψ]]E .

"

The effect of Theorem 3.3 is that it immediately establishes upper bounds on the expressive power
of GL and the complexity of the model-checking problem. It is known by [17, 26] that a property of
relational structures is definable in second-order logic if, and only if, it is in the polynomial hierarchy
PH. Thus, we have:

Corollary 3.4 For any sentence φ ∈ GL, the set of graphs Gφ = {G : G ! φ} belongs to PH.

Proof In order to check whether G ∈ Gφ one only needs to build A and X which are big enough for
G,φ and check whether (A, X, E, edge) !S→E

MSO [[ψ]]S .
"

Moreover, for each level Σp
i of the polynomial hierarchy, there are properties definable in MSO that

are Σp
i -complete. We show in Section 4 that this is also the case for GL. On the other hand, there

are computationally simple properties that are not expressible in MSO which therefore could not be
expressible in GL either. For instance, the following is a direct consequence of Theorem 3.3:

Corollary 3.5 There is no formula φ of GL such that G ! φ if, and only if, G has an even number of
edges.

It is also known that the combined complexity of MSO is PSPACE-complete. That is, the decision
problem TruthsMSO = {(G,σ,φ) : φ ∈ MSO, G !σ

MSO φ} is PSPACE-complete. Since the transla-
tion given above is itself computable in polynomial time, it establishes that TruthsGL is in PSPACE.

Corollary 3.6 TruthsGL is in PSPACE.

In Section 4 we show that it is, in fact, PSPACE-complete.
Remark: As in [6], the logic GL analyses an algebra for graph descriptions that does not involve

name hiding. If name hiding is allowed, the operation of graph composition is subtly different. That is,
if G1 and G2 are graphs, their composition G1 | G2 is defined by taking the disjoint union of the sets
of edges and identifying nodes with the same name provided that the name is not hidden. Formulas of
GL can still be translated to MSO under this interpretation, if we include in our graph structures a unary
predicate Named for the set of nodes whose names are not hidden.

3.2 Expressing Properties with Graph Logic
We have seen that, in terms of expressive power, GL can be considered to be a fragment of monadic
second-order logic. A translation in the other direction is not possible for trivial reasons, because of
isolated nodes. For instance, in MSO, the sentence ∃x∀y∀a∀e(¬edge(e, a, x, y) ∧ ¬edge(e, a, y, x))
specifies that there is an isolated node in the graph, while in GL there is no distinction between isolated
nodes and nodes that are not in the graph at all. Thus, for the purpose of a translation, it would make
sense to restrict ourselves to sentences that are independent of isolated nodes. Still, we conjecture that
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there is no translation possible. That is, we conjecture that there areMSO sentences that are independent
of isolated nodes, but are still not equivalent to any sentence of GL. Establishing this conjecture is
difficult. To illustrate this difficulty, we show how we can express some natural MSO properties in GL.
Below we describe informally how these properties are expressed by GL sentences.
Connectivity. Graph connectivity is a problemwell-known to be definable in MSO, but not in first-order
logic (see [16]). We show that it is definable in GL. Consider the following formulas, which constrain
the in- and out-degrees of nodes:

In≥1(x) =def ∃a, y. a(y, x) | T Out≥1(x) =def ∃a, y. a(x, y) | T
In≥2(x) =def In≥1(x) | In≥1(x) Out≥2(x) =def Out≥1(x) | Out≥1(x)
In0(x) =def ¬In≥1(x) Out0(x) =def ¬Out≥1(x)
In1(x) =def In≥1(x) ∧ ¬In≥2(x) Out1(x) =def Out≥1(x) ∧ ¬Out≥2(x)

(1)

We will also use the formula Here(x), defined by Here(x) =def In≥1(x) ∨ Out≥1(x). Using this
formula we can identify those names that are actually in the graph. The formula ∀x. Here(x) ⇒ φ
specifies that φ holds for all names that are nodes in the graph. We henceforth use the abbreviation
∀x∈G. φ for ∀x. Here(x) ⇒ φ, and similarly ∀x1, . . . , xn∈G. φ.
Now, define the formula

Path(x, y) =def In0(x) ∧ Out0(y) ∧ ∀z∈G((z 0= x ⇒ In1(z)) ∧ (z 0= y ⇒ Out1(y))). (2)

If, for a graph G, G !σ Path(x, y), then G consists of a single path from σx to σy along with possibly
other simple cycles disjoint from this path. Thus,G !σ (Path(x, y) | T) holds if, and only if,G contains
a path from σx to σy. Indeed, if the formula is satisfied, then G = G1 | G2, where G1 consists of a
path and possibly some cycles, implying that G contains the required path. Conversely, if G contains a
path from σx to σy, it can be expressed as the composition of this path and the rest of the graph, thereby
satisfying the formula. Thus, we have that the formula ∀x, y∈G.(Path(x, y) | T) expresses that a graph
is strongly connected.
Disjoint Paths. Using the formula Path defined above, it is easy to construct a formula that expresses
the property that there are two edge-disjoint paths between distinguished nodes x to y in a graphG. The
formula is Path(x,y) | Path(x,y) | T. We show how to construct a formula that expresses that there are
two node-disjoint paths from x to y, which is a well-known NP-complete problem [18]. The formula
TwoPaths(x, y)

TwoPaths(x, y) =def Out≥2(x) ∧ In0(x) ∧ In≥2(y) ∧ Out0(y)
∧∀z∈G. ((z 0= x ∧ z 0= y ⇒ In1(z)) ∧ (z 0= x ∧ z 0= y ⇒ Out1(z)))

is true in a graphG if, and only if, G consists of two node-disjoint paths from x to y and possibly some
additional simple cycles. Thus, TwoPaths(x, y) | T expresses the existence of two node-disjoint paths
from x to y.
2-colourability. As a final example, we construct a formula that expresses that a graph is 2-colourable.
In this discussion we assume that the graph satisfies ¬(∃a, x. a(x, x) | T), hence has no self loops.
Similarly to the formulas In≥2 and Out≥2, we define the formula Deg≥n(x) to be the formula that
asserts that x has at least n neighbours (regardless of the direction of the edges). Thus, for instance

Deg≥2(x) =def (∃a, y. (a(y, x) ∨ a(x, y))) | (∃a, y. (a(y, x) ∨ a(x, y))) | T.

Also, define Deg=n(x) to be the formula Deg≥n(x) ∧ ¬Deg≥n+1(x). We also define the formulas

Cycles =def ∀x∈G. Deg=2(x)
Edges =def ∀x∈G. Deg=1(x).
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Note that, if every node in a graphG has exactly two neighbours, then G is the disjoint union of simple
cycles (ignoring directions on the edges). Similarly, if every node in G has exactly one neighbour, then
G is the disjoint union of simple edges. Thus, the sentences Cycles and Edges express, respectively,
that G is a disjoint collection of cycles and that G is a disjoint collection of edges. Also observe that a
collection of simple cycles can be decomposed into two graphs each of which is a disjoint collection of
edges if, and only if, all the cycles are of even length. Thus, the sentence Cycles ∧ ¬(Edges | Edges)
is satisfied by G if, and only if, G is a collection of cycles at least one of which is of odd length. It
is well-known that a graph is 2-colourable if, and only if, it contains no cycles of odd length. Thus,
2-colourability is defined by the sentence: ¬(∃a, x. a(x, x) | T) ∧ ¬[(Cycles ∧ ¬(Edges | Edges)) | T].
These examples illustrate the varied expressive power of GL. Nonetheless, it seems unlikely that GL

is as expressive as MSO. We conjecture that Hamiltonicity—the class of graphs that contain a Hamilto-
nian cycle—and 3-colourability are both inexpressible in GL. These can both be seen to be expressible
in MSO3. Intuitively, the MSO definition of these properties combines a monadic quantification with
a universal quantification on the nodes. For example, to say that a graph contains a Hamiltonian cycle
we would say that it contains a set of edges which form a simple cycle and every node in the graph
is on this cycle. In GL it is possible to select a set of edges that form a cycle using the | operator
but, having selected this set of edges, we are restricted to statements about this set or its complement.
We can no longer talk of all nodes in the original graph. Of course, this intuition does not prove that
Hamiltonicity is not expressible in GL. In order to separate the expressive power of MSO from that of
GL, we need a method that can demonstrate that a given property such as Hamiltonicity is not definable
in GL. A natural such methods is the use of Ehrenfeucht-Fraı̈ssé style games. Games for spatial logics
such as GL along these lines are introduced in [14], where we use them to show that adjunct operators
can be eliminated from the logic. Using these games we can show that GL cannot express that a graph
has an even number of edges, yielding a direct proof of Corollary 3.5. It remains a challenge to deploy
this game method to prove the inexpressibility of more complex problems, such as Hamiltonicity or
3-colourability.

3.3 Strings
One class of particularly simple finite graphs on which the expressive power of MSO has been well
characterized is the class of finite strings over a fixed alphabet A. It is well-known (by an old result of
Büchi [3]) that a set of strings is definable in MSO if, and only if, it is a regular language. It is natural
to consider a string over the alphabet A as a graph with labels from A (the precise encoding is given
below). We show that every regular language can be defined by a formula of GL. This shows that on
this natural class of graphs the expressive power of GL and MSO coincide.
In all this section we assume a fixed finite alphabet A ⊂ A.
A string graph over the finite alphabet A is either the empty graph or a graph of the shape

a1(x1,x2) | . . . | an−1(xn−1,xn),

where each of the labels ai is in A and the xi are distinct. Identifying the A-word a1 . . .an−1 with the
graph a1(x1,x2) | . . . | an−1(xn−1,xn), we can see each sentence φ of GL as defining a language—
namely the set of A-words that satisfy φ.

Definition 3.7 For each word w = a1 . . .an−1 ∈ A∗ and each sequence )x = x1, . . . ,xn of n distinct
names, we write G(w, )x) to denote the graph a1(x1,x2) | . . . | an−1(xn−1,xn). A string graph is any
graphG that is graph-equal to G(w, )x) for some w, )x.
3That is, in the version of MSO we have defined, which allows quantification over sets of edges. If second-order quantification

is restricted to sets of vertices, then Hamiltonicity is not definable [16, Cor. 6.3.5], though 3-colourability still is.
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Definition 3.8 For any sentence φ of GL, the correspondingA-language is defined as the set:

LA(φ) =def {w∈A∗ : ∀)x. G(w,)x) ! φ}.

We will only consider sentences with no name constants, hence the specific choice of the sequence
)x is irrelevant, hence we have that LA(φ) = {w∈A∗ : ∃)x. G(w,)x) ! φ}.
A language is definable in MSO if, and only if, it is regular (Büchi [3]). This classical result is

obtained in a setting where each label is represented by a different relation, which means that the MSO
formula cannot quantify over labels, while GL allows label quantification. This makes a difference if
one consider complexity issues, since formulas can be written in a more concise form. However, since
A is fixed and finite, label quantification does not affect the ability to define languages overA. Consider
a formula φ and a label set A+

φ such that A
+
φ 6 (GA,φ, ∅), where GA is a graph that contains every

label in A. By Corollary 2.8, for every string graph SA over A, SA ! φ if, and only if, SA !X,A φ,
hence LA(φ) does not change if we replace every label quantification in φ with a finite quantification
overA+

φ . It follows that any language definable in GL is regular.
We now show the converse, that every regular language is definable by a formula of GL. We do

this by translating regular expressions into formulas of GL. As usual, we write LA(r) for the language
denoted by a regular expression r. The crucial case in the translation is the Kleene star. The translation
to GL is based on the observation that a string graph is in the language LA(r∗) if, and only if, it can be
decomposed into two graphs, each of which is the disconnected sum of strings in LA(r).
In order to define the translation, we first introduce some auxiliary formulas to count the incoming

and outgoing edges. In addition to the formulas introduced at (1) and (2), we need:

In≤1(x) =def In0(x) ∨ In1(x)

Out≤1(x) =def Out0(x) ∨ Out1(x)

We can now introduce some additional predicates. NoCycles means that no subgraph of the current
graph is a cycle. SimplePath(x, y) means that the graph is just a simple path from x to y. Finally,
SetOfWords(φ) means that the graph is a set of disconnected simple paths, and each of these paths
satisfies the formula φ. The operator ⇒ binds more than |⇒, hence T |⇒ Φ ⇒ Ψ means “every
subgraph that satisfies Φ satisfies Ψ”.

NotEmptySetOfCycles =def (¬0) ∧ ∀x∈G. (In1(x) ∧ Out1(x))

NoCycles =def ¬(T | NotEmptySetOfCycles)
SimplePath(x, y) =def NoCycles ∧ Path(x, y)

Word =def ∃x, y. SimplePath(x, y)

Final(x) =def Here(x) ∧ Out0(x)

Initial(x) =def Here(x) ∧ In0(x)

SetOfWords(φ) =def NoCycles ∧ (∀x∈G. In≤1(x) ∧ Out≤1(x))

∧ (∀x, y∈G. (In0(x) ∧ Out0(y)

⇒ (T |⇒ SimplePath(x, y) ⇒ φ)))

We make the following observations with regard to the above formulas.

1. G !Word if, and only if, G is a string graph.

2. G !σ SimplePath(x, y) if, and only if, G is a string graph and σ(x) is the initial node and σ(y)
the final node.
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3. G ! SetOfWords(φ) if, and only if, each connected component ofG is graph-equal to some string
graphG(w) such that G(w) ! φ.

We can now translate every regular expression r into an equivalent formula F(r). The critical case is
Kleene star. A word w belongs to LA(r∗) if it is the concatenation of a sequence of words w1, . . . , wn,
each belonging to LA(r). In this case, it is possible to split the corresponding graph G(w) into the two
subgraphs G1 and G2 which are not themselves words, but each is a set of disconnected words, each
of them individually in LA(r). G1 contains the subgraphs of G corresponding to wi for odd i and G2

contains those corresponding to wi for even i. On the other hand, if it is possible to split G(w) into two
such graphs, then w ∈ LA(r∗). This is expressed by the formula F(r∗) below. Observe that each of the
two graphsG1 and G2 may be empty.

F(ε) =def 0

F(a) =def ∃x, y. a(x, y)

F(r; r′) =def Word ∧ ∃x. (F(r) ∧ (0 ∨ Final(x))) | ((0 ∨ Initial(x)) ∧ F(r′))
F(r + r′) =def F(r) ∨ F(r′)
F(r∗) =def 0 ∨ [Word ∧ (SetOfWords(F(r)) | SetOfWords(F(r)))]

The following lemma establishes the correctness of the translation.

Lemma 3.9 For any r, w, )x = x1 . . .xn+1 with n = |w| : G(w,)x) ! F(r) if, and only if, w ∈ LA(r).

Proof The proof is by induction on the structure of the regular expression r. The case when r is ε is
trivial, as is the case of+. G ! F(r; r′) if, and only if,G !Word (i.e. it is a string graph) and can be split
in G1 and G2 such that, for some x, G1 ! F(r) ∧ (0 ∨ Final(x)) andG2 ! (0 ∨ Initial(x)) ∧ F(r′).
By induction,G1 and G2 correspond to words w∈r and w′∈r′. If either is empty, then G corresponds
immediately to w; w′. If both words are non empty, thenG corresponds to the concatenation of w′ after
w. In both cases, G corresponds to a word in r; r′. In the other direction, the proof that, for any w∈ r
and w′∈r′,G(w; w′,)x) ! F(r; r′) follows the same path. Just observe that, if bothw and w′ are empty,
the witness for ∃x is a name x that is not in the graph.
The crucial case is r∗. If w ∈ LA(r∗) then either w is ε, in which case G(w) ! F(r∗) or w =

w1 · · ·wn where each wi ∈ (LA(r) \ {ε}). We now define the graphsG1 andG2 by including inG1 all
edges corresponding to all positions in w which appear in wi for some odd i while G2 contains edges
corresponding to positions in w which appear in wi for some even i. Then, each of G1 and G2 consists
of a collection of disjoint string graphs corresponding to the words w1, . . . , wn. Thus, each of G1 and
G2 satisifies SetOfWords(F(r)) and thereforeG(w) ! F(r∗). For the converse, suppose the G ! F(r∗).
Then eitherG ! 0, in which case G ≡ G(ε) orG is a string graph corresponding to some word w with
G ≡ G1 | G2 and G1, G2 ! SetOfWords(F(r)). Thus, each connected component in each of G1 and
G2 is a string graph corresponding to a word in LA(r), each such word is a contiguous substring of w
and concatenating them all gives us back the original word. Thus, w ∈ LA(r∗). "

We can now establish the main theorem of this section.

Theorem 3.10 A language is definable in GL if, and only if, it is regular.

Proof If a language is regular, it is given by a regular expression r and therefore defined in GL by F(r)
by Lemma 3.9. In the other direction, if a language is defined by a sentence of GL, it is also defined by
a sentence of MSO and therefore, by Büchi’s theorem it is regular. "
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Büchi’s characterization of the expressive power of MSO on strings has been extended in several
different directions. For instance, it is known that the properties of finite trees that are definable in MSO
are exactly those that can be recognized by tree automata. It would be interesting to know whether this
could be used to extend the equivalence of GL and MSO from strings to trees.

4 Complexity and Expressivity of Graph Logic
The translation of GL toMSO given in Section 3.1 established upper bounds on the expressive power and
model-checking complexity of GL (Corollaries 3.4 and 3.6). In this section we establish lower bounds
that match these upper bounds by showing that the model-checking problem is PSPACE-complete and
that GL can express complete problems at every level of the polynomial hierarchy.

4.1 Combined complexity
We begin by showing that the set TruthsGL = {(G,σ,φ) : φ ∈ GL, G !σ φ} is PSPACE-hard, by a
reduction from validity of quantified Boolean formulas (QBF). We use a fixed graph in the reduction.
Translation from QBF is a canonical technique, used in [4, 9] to prove the same result for the separation
logic and the ambient logic. Indeed, the proof is based on the PSPACE-completeness of Boolean quan-
tification and does not depend on the presence of spatial operators such as | . We include it here for the
sake of completeness.
A quantified Boolean formula is a term generated by the grammar.

Φ ::= ∃P. Φ | ¬Φ | Φ ∧ Φ′ | P

where P ranges over propositional variables. The definitions of validity and satisfiability for QBF are
standard (see [23]). QBF formulas Φ are translated into GL formulas as follows, where for each P ,
xP ∈ VX is a different name variable, and t ∈ X is a name constant. The translation can be evaluated
in Logspace.

[[∃P. Φ]] =def ∃xP . [[Φ]] [[P ]] =def xP = t

[[¬Φ]] =def ¬[[Φ]] [[Φ ∧ Φ′]] =def [[Φ]] ∧ [[Φ′]]

Lemma 4.1 Satisfiability of closed QBF formulas can be reduced to the model-checking problem

TruthsGL = {(G,σ,φ) : φ ∈ GL, G !
σ φ}

for a fixed graphG.

Proof We take G to be the empty graph. Given an assignment σ of truth values to the propositional
variables in a QBF formula Φ, define σ′ to be any variable assignment such that σ(P ) = true ⇔
σ′(xP ) = t. An easy induction then shows that Φ is true under σ if, and only if, G !σ′

[[Φ]], hence the
closed formula Φ is satisfiable if, and only if, (0, ε, [[Φ]]) ∈ TruthsGL. "

Corollary 4.2 The model-checking problem for GL is PSPACE-complete.
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4.2 Expressivity and Data Complexity
Combined complexity describes how the complexity of model-checking depends on the size of both
the model and the formula. However, Graph Logic has been first proposed as the foundation for a
query language for semistructured data. In this context, data are much bigger than formulas, hence the
important question is how the cost of model-checking, hence of query-answering, increases with data
size, for each fixed query.
We present here the following data-complexity result: for each positive integer k, there is a sentence

φk such that the problem: ‘given G, decide whether G ! φk’ is hard for the kth universal level of
the polynomial hierarchy, i.e. Gφk

is Πp
k-hard. Since GL is closed under negation, we also obtain hard

problems for the existential levels of the hierarchy.
Combined with the fact that any Gφ belongs to PH (Corollary 3.4), this gives us a tight characteri-

zation of the expressive power of GL.
The canonical complete problem for Πp

k is the satisfiability of quantified Boolean formulas with
k alternations of quantifiers, beginning with a universal quantifier. We present a logspace-computable
reduction from such formulas to a class of graphs that is defined by a formula of GL.
To establish the ground work which we can then generalize to higher levels of the hierarchy, we

begin by an encoding of Boolean formulaswithout quantifiers into graphs. This enables us to reduce the
NP-complete problem of propositional satisfiability to a class of graphs defined by a formula φ of GL.
To be precise, we assume that we are given a Boolean formulaΦ in negation normal form i.e., negations
only appear in front of propositional variables. We define a functionG so thatG(Φ) is a graph encoding
the formulaΦ as a circuit. The graph has edge labels from among And, Or, Lit, Pos and Neg. It also has
a node named result. Informally, there is a node for each variable X occurring in Φ. This node has a
number of outgoing edges labelled Pos and Neg. There is one Pos edge for each positive occurrence of
X in Φ and one Neg edge for each negative occurrence ofX (i.e. occurrence of ¬X) in Φ. In addition,
there is a distinct node inG(Φ) for each subformulaΨ ofΦ. IfΨ isΨ1 ∨ Ψ2 the node has one outgoing
edge labelled Or and incoming edges from the nodes corresponding to Ψ1 and Ψ2, and similarly for
Ψ1 ∧ Ψ2. If Ψ is a literal X or ¬X , the outgoing edge is labelled Lit, and the incoming edge is the
Pos, or Neg, edge described in the previous sentence. The edge starting from the node that corresponds
to the whole formulaΦ ends into one further node, result. Thus, the graphG((X ∨¬Y ) ∧ (Z ∨ Y )) is
depicted in Figure 1. The tokens X , Y and Z in this figure are only used to identify nodes and do not
form part of the graph.

Figure 1: G((X ∨ ¬Y ) ∧ (Z ∨ Y ))

More formally, we define the translation G as follows. The translation is parametrized by a pair of
functions γ = (γv, γp). The function γv is an injective map taking each Boolean variable in Φ to a node.
The function γp is an injective map taking occurrences in the formula Φ to nodes. The codomain of γp

is disjoint from that of γv. As usual, an occurrence α is a string of 0’s and 1’s, possibly empty (ε), such

17



that, when α is associated to a formula rooted in a binary operator, α.0 and α.1 are associated to its two
subformulas; we also consider one special occurrence, denoted ε−. For an occurrence α 0= ε−, (Φ)α
denotes the subformula of Φ identified by α. The operator (α)− is defined as (α.0)− = (α.1)− = α,
(ε)− = ε−. The functions γv and γp do not use up space, since they are not stored in a table, but perform
some fixed bit-manipulation on the input to produce the output. As depicted in Figure 1, the function
[[Φ,α]]γ yields a DAG which is almost a tree, apart from the sharing of the nodes that correspond to
variables; this tree is rooted in γp(α−). We will often abbreviateG(Φ, γ) to G(Φ).

G(Φ, γ) =def [[Φ, ε]]γ{γp(ε−)← result}
[[Φ ∧ Φ′,α]]γ =def [[Φ,α.0]]γ | [[Φ′,α.1]]γ | And(γp(α), γp(α−))

[[Φ ∨ Φ′,α]]γ =def [[Φ,α.0]]γ | [[Φ′,α.1]]γ | Or(γp(α), γp(α−))

[[¬X,α]]γ =def Neg(γv(X), γp(α)) | Lit(γp(α), γp(α−))

[[X,α]]γ =def Pos(γv(X), γp(α)) | Lit(γp(α), γp(α−))

Proposition 4.3

1. For any occurrence α.α′ of Φ, the graph [[(Φ)α.α′ ,α.α′]]γ is a subgraph of [[(Φ)α,α]]γ , hence of
[[Φ, ε]]γ .

2. For any occurrence α of Φ, [[(Φ)α,α]]γ contains exactly one edge of the form (γp(α), γp(α−)).

3. For any occurrence α, if α.0 and α.1 are occurrences of Φ, then [[(Φ)α,α]]γ contains exactly two
edges that arrive at γp(α), one from γp(α.0) and the other from γp(α.1).

Given a graph of the form G(Φ), we wish to identify a subgraph that can serve as a witness to the
fact that Φ is satisfiable. To be precise, we say a subgraph S of G(Φ) is satisfying for the node z if the
following conditions hold:

1. there is no node x with both outgoing edges labelled Pos and outgoing edges labelled Neg in S;

2. for every edge Lit(x,y) in S, x has an incoming edge in S;

3. for every edge Or(x,y) in S, x has an incoming edge in S;

4. for every edge And(x,y) in S, x has two incoming edges in S; and

5. z has an incoming edge in S.

This enables us to prove the key lemma linking satisfiability of Φ and G(Φ). We first define
[[Φ,α,σ]]γ as the subgraph of [[Φ,α]]γ that only contains those edges that correspond to subformulas
that are made true by the assignment σ. The notation “if C then G” denotes the graphG if C holds and
the empty graph otherwise. σ ! Φ means that Φ holds under the assignment σ.

[[Φ ∧ Φ′,α,σ]]γ =def [[Φ,α.0,σ]]γ | [[Φ′,α.1,σ]]γ | if σ ! Φ ∧ Φ′ then And(γp(α), γp(α−))

[[Φ ∨ Φ′,α,σ]]γ =def [[Φ,α.0,σ]]γ | [[Φ′,α.1,σ]]γ | if σ ! Φ ∨ Φ′ then Or(γp(α), γp(α−))

[[¬X,α,σ]]γ =def if σ ! ¬X then (Neg(γv(X), γp(α)) | Lit(γp(α), γp(α−)))

[[X,α,σ]]γ =def if σ ! X then (Pos(γv(X), γp(α)) | Lit(γp(α), γp(α−)))

Proposition 4.4 For any occurrenceα.α′ of Φ, the graph [[(Φ)α.α′ ,α.α′,σ]]γ is a subgraph of [[(Φ)α,α,σ]]γ ,
hence of [[Φ, ε,σ]]γ .
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The next lemma implies that, if σ ! Φ, then the graph [[Φ, ε,σ]]γ is satisfying for γp(ε−).

Lemma 4.5 For any occurence α of any formula Φ, if σ ! (Φ)α, then [[(Φ)α,α,σ]]γ is a satisfying
subgraph of G(Φ, γ) for the node γp(α−).

Proof By induction on the size of (Φ)α. Conditions 1 and 2 hold by construction. Condition 4: by con-
struction, if an edgeAnd(x,y) is present in [[(Φ)α,α,σ]]γ , it must be equal toAnd(γp(β), γp(β−)), for
some β = α.α′ such that (Φ)β = (Φ)β.0 ∧ (Φ)β.1 and σ ! (Φ)β . Hence, σ ! (Φ)β.0 and σ ! (Φ)β.1,
hence, by induction, [[(Φ)β.0,β.0,σ]]γ and [[(Φ)β.1,β.1,σ]]γ are both satisfying for γp((β.0)−) =
γp((β.1)−) = γp(β), hence [[(Φ)β ,β,σ]]γ contains two distinct edges that enter γp(β), hence [[(Φ)α,α,σ]]γ

satisfies condition 4. Condition 3 is similar. Condition 5: by construction, σ ! (Φ)α implies that
[[(Φ)α,α,σ]]γ contains an edge l(γp(α), γp(α−)), where l is either And , Or , or Lit , depending on the
outermost constructor of (Φ)α.

"

Lemma 4.6 Φ is satisfiable if, and only if, there exists a set S of edges in G(Φ) that is satisfying for
result.

Proof Suppose Φ is satisfiable and let σ be an assignment of truth values to the variables of Φ that
makes Φ true. Then, [[Φ, ε,σ]]γ{γp(ε−)← result} is a satisfying graph for result by Lemma 4.5.
For the other direction, suppose S is a subgraph of G(Φ) which is satisfying for result. Define σ on

the variables in Φ by σ(X) = true if S contains an edge Pos(γv(X),y) and σ(X) = false otherwise.
We now claim the following about σ:

1. If S contains an edge Pos(γv(X),y) then σ(X) = true. This is just by the definition of σ.

2. If S contains an edge Neg(γv(X),y) then σ(X) = false . This follows immediately from the
previous and the fact that S cannot contain both Pos(x,y) and Neg(x,y) for any x.

3. If S contains an edge Lit(γp(α), γp(α−)) then the literal occurring at α is made true by σ. This
derives by the fact that S is satisfying, by the fact that a Lit edge only has Pos andNeg incoming
edges, and by facts (1) and (2);

4. If S contains an edge l(γp(α), γp(α−)), then (Φ)α is made true by σ. This is an easy induction
on the size of (ψ)α, using the previous claim for the base case l = Lit . In the And case, where
the edge is And(γp(α), γp(α−)), by construction (Φ)α = (Φ)α.0 ∧ (Φ)α.1, and, by Condition 4,
S contains two incoming edges into γp(α) which, by Proposition 4.3, arrive from γp(α.0) and
γp(α.1). By induction, both (Φ)α.0 and (Φ)α.1 are made true by σ, hence the thesis. TheOr case
is similar.

5. σ makes Φ true. This follows from the previous claim and the fact that S contains the edge that
leads from γp(ε) to result.

"

We now wish to construct a formula of GL that is true in the graph G(Φ) exactly when Φ is sat-
isfiable. The conditions defining a satisfying subgraph are easily described by formulas of GL. They
are given as formulas below. We use them to define a formula GSat defining the graphs G(Φ) which
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encode satisfiable Boolean formulas.

Consistent =def ∀x, y, z.¬(Pos(x, y) | Neg(x, z) | T)
LitTrue =def ∀x, y. (Lit(x, y) | T) ⇒ In≥1(x)

OrTrue =def ∀x, y. (Or(x, y) | T) ⇒ In≥1(x)

AndTrue =def ∀x, y. (And(x, y) | T) ⇒ In≥2(x)

GSat =def (Consistent ∧ LitTrue ∧ OrTrue ∧ AndTrue ∧ In≥1(result)) | T

This gives us the NP-completeness result.

Theorem 4.7 The set {G : G ! GSat} is NP-complete.

Proof The formula GSat translates into an existential MSO sentence and hence the set of graphs it
defines is in NP. The existential MSO quantifier comes from the translation of the outermost |, while the
internal occurrences of | can all be translated as first-order quantifications, as detailed in Section 6. The
hardness follows from the fact that the functionG is a reduction from satisfiability of Boolean formulas
in negation normal form. "

Note that, dual to the notion of a satisfying subgraph S ofG(Φ), we can define a falsifying subgraph
S as one such that:

1. there is no node x with both outgoing edges labelled Pos and outgoing edges labelled Neg in S;

2. for every edge Lit(x,y) in S, x has an incoming edge in S;

3. for every edge Or(x,y) in S, x has two incoming edges in S;

4. for every edge And(x,y) in S, x has an incoming edge in S; and

5. result has an incoming edge in S.

Entirely analgously to Lemma 4.6 we can show that a graph G(Φ) admits a falsifying subgraph if,
and only if, there is an assignment σ that makes the formula Φ false. The change to the proof of the
Lemma is that S is obtained from σ by choosing edges corresponding to the subformulas of Φ that are
made false by σ. Thus, by altering the formulas AndTrue and OrTrue, we define the formulas GFal
and GVal .

LitFalse =def ∀x, y. (Lit(x, y) | T) ⇒ In≥1(x)

OrFalse =def ∀x, y. (Or(x, y) | T) ⇒ In≥2(x)

AndFalse =def ∀x, y. (And(x, y) | T) ⇒ In≥1(x)

GFal =def (Consistent ∧ LitFalse ∧ OrFalse ∧ AndFalse ∧ In≥1(result)) | T
GVal =def ¬GFal .

That is, for any Boolean formula Φ, G(Φ) ! GVal if, and only if, Φ is valid. This gives us the
following result.

Theorem 4.8 The set {G : G ! GVal} is co-NP-complete.

We now extend the construction above to encode quantified Boolean formulas as graphs and express
their validity in GL. This enables us to prove that, for each k, there exists a formula φk such that
the problem: ‘given G, decide whether G !σ φk’ is Πp

k-hard. The standard hard problem for a class
Πp

k of the polynomial hierarchy is the validity of a quantified Boolean formula with k alternations of
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quantifiers, i.e. a formula like the following one (where no quantifier appears in Φ and the last quantifier
is ∃ if k is even, as we assume below, and is ∀ if k is odd):

∀Xk
1 . . . Xk

ik
.∃Y k−1

1 . . . Y k−1
ik−1

. . . . ∀X2
1 . . . X2

i2
.∃Y 1

1 . . . Y 1
i1

.Φ.

We encode such formulas into graphs which have edge labels And, Or, Pos, Neg, Lit, and a node
named result as before. In addition, there is, for each 1 ≤ i ≤ k, a label Switchi. A node γv(X)
has an incoming edge labelled Switch i if, and only if, X is quantified in the ith quantifier block. With
variables thus marked with an index, we are able to construct a formulaGVal k, using alternations of |
and negation, to express that the formula encoded byG(Φ) is valid. The quantifier blocks are numbered
from the inside out as this makes it easier to define the formulas inductively.
In defining the formulasGValk, there is one important departure from our previous definitions. The

formulas GSat and GVal were carefully crafted to make limited use of the operator |. To be precise,
in each occurrence of the operator φ | ψ, the formula ψ is either atomic (of the form α(ξ,χ)) or it is
the formula T. The reason for doing this is elaborated in Section 6. This restriction was made possible
by exploiting the monotonicity of the Boolean operators ∧ and ∨ and for this reason we assumed
that the Boolean formula Φ was in negation normal form. Thus, a satisfying subgraph S of G(Φ) may
not contain all edges corresponding to subformulas made true by an assignment σ but the existence of
such an S is sufficient. In restricting to S we may discard more edges than we need to as long as S
still satisfies the necessary conditions. However, when we deal with alternations of quantifiers in QBF,
we must ensure, while choosing a subset of the edges representing an assignment to the variables in
quantifier block i that we do not discard any of the edges corresponding to inner blocks. For this, we
use the following formulas:

Discardk =def ∀x, y, a.(a(x, y) | T) ⇒ (a = Switchk ∨ a = Pos ∨ a = Neg)
∧∀x, y.[((Neg(x, y) ∨ Pos(x, y)) | T) ⇒ ∃z.(Switchk(z, x) | T)]
∧Consistent

Consistentk =def ∀x, y.[¬(Switchk(x, y) | T)]
∧ [(Neg(x, y) ∧ Pos(x, y)) ⇒

∨
i<k ∃z.(Switchi(z, x) | T)]

These formulas are best explained by thinking of constructing in stages, for decreasing values of k,
a truth assignment that satisfies the formula Φ. The truth assignment is represented in the graph by
discarding the edges corresponding to the literals that are made false. The formula Discard k will be
true of the set of edges that are discarded at stage k. It ensures that we only discard edges corresponding
to variables that are in the kth block and that we do not discard both Pos and Neg edges from the
same node (the formulaConsistent has been defined before Theorem 4.7). Note that it requires that the
edges Switchk marking the nodes are also discarded. This is no loss as they are no longer needed. The
formula Consistentk should be true of the graph formed by the edges that are not discarded at stage k.
It requires that we keep only Pos or only Neg edges for variables in the kth block by saying that every
node with both Pos and Neg outgoing edges is marked by an edge Switch i for some i < k.
We can now inductively define the formulasGValE k andGValAk. These are intended to express the

validity of a quantified Boolean formulawith k quantifier blocks starting with an existential (respectively
a universal) quantifier.

GValE 1 =def GSat

GValA1 =def GVal

GValE k+1 =def Discardk+1 | (Consistentk+1 ∧ GValAk)

GValAk+1 =def Discardk+1 |⇒ (Consistentk+1 ⇒ GValEk)].
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Lemma 4.9 If Φ is a quantified Boolean formula with k blocks of quantifiers beginning with an exis-
tential (resp. universal) quantifier, then G(Φ) ! GValE k (resp. GValAk) if, and only if, Φ is valid.

Proof The proof is by induction on k. We aim to prove a stronger statement as inductively we need to
consider the case where Φ has free Boolean variables. For such a Φ and an assignment σ of truth values
to its free variables, let G(Φ,σ) be the graph obtained from G(Φ) by removing all Neg edges leaving a
node γv(X) for all freeX such that σ(X) = true and removing all Pos edges leaving a node γv(X) for
all free X such that σ(X) = false; the other edges are as in G(Φ). We show that G(Φ,σ) ! GValE k

(resp. GValAk) if, and only if, σ makes Φ true.
For the case k = 1, if all quantifiers are existential then Φ = ∃ )X.Ψ is valid if, and only if, the

quantifier-free Ψ is satisifiable by an assignment (σ,σ′) that extends σ, which we claim is expressed
by G(∃ )X.Ψ,σ) ! GSat . Hence, we have to prove that (a) the existence of a satisfying subgraph
S of G(∃ )X.Ψ,σ) implies satisfiability of Ψ by some (σ,σ′) and (b) if (σ,σ′) ! Ψ then the graph
[[Φ, ε, (σ,σ′)]]γ{γp(ε−)← result} is satisfying, and it is a subgraph ofG(∃ )X.Ψ,σ). Part (b) is identical
to the proof of Lemma 4.5, and the construction of [[Ψ, ε, (σ,σ′)]]γ ensures the absence of the Pos and
Neg edges that are removed from G(∃ )X.Ψ) to obtain G(∃ )X.Ψ,σ). To prove part (a) we consider, as
in the proof of Lemma 4.6, the substitution (σ,σ′) that extends σ by assigning true toXi if S contains
an edge Pos(γv(Xi),y), and false otherwise. This assignment enjoys the properties listed in the proof
of Lemma 4.6. Specifically, items (1) and (2) hold, by construction, on the variables assigned by σ and
on the variables assigned by σ′. The other properties are proved as in Lemma 4.6. Observe that the
existence of a subgraph that is satisfying is independent of the presence of Switch i nodes.
Similarly if all quantifiers are universal, σ ! Φ is expressed by G(Φ,σ) ! GVal .
For the inductive case, note that G(Φ,σ) ! GValE k+1 if, and only if, G(Φ,σ) ≡ G1 | G2

where G1 ! Discardk+1 and G2 ! Consistentk+1 ∧ GValAk. The definitions of Discardk+1 and
Consistentk+1 ensure that for each variable Y k+1

i in quantifier block k + 1 of Φ, either all Pos edges
out of γv(X) are in G1 and all Neg edges in G2 or vice versa. Moreover, all Switchk+1 edges are in
G1. Thus, G2 ≡ G(Φ′,σ′) for some σ′ that extends σ by assigning a truth value to each variable Y k

i ,
where Φ′ is the formula obtained from Φ by removing the outermost block of quantifiers. Since, by
induction hypothesis, G(Φ′,σ′) ! GValAk if, and only if, σ′ makes Φ′ true, the result follows. The
case of GValk+1 is dual. "

Theorem 4.10 For each k there exist GL formulas φk and ψk that characterize sets of graphs that are
complete for Πp

k and Σp
k, respectively.

Proof Take φk to be GValAk and ψk to be GValE k. "

One consequence of this result is that the alternation of | with negation forms an infinite hierarchy of
expressive power in GL. Hence, it is not possible to obtain a normal form similar to the conjunctive or
disjunctive normal forms of boolean operators, characterized by a fixed number of alternations between
| and negation. While implementing the TQL optimizer, we looked hard for such a normal form; it is
useful to know that this is not worth pursuing any more.

Corollary 4.11 Unless the polynomial hierarchy collapses, the alternation of | and negation forms a
strict hierarchy in GL.

5 Graph Logic With Recursion
It is instructive to compare GLµ with other logics of recursion, such as LFP, the extension of first-
order logic with an operator for forming the least fixed points of relational expressions (see [16] for an
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exposition). For a relational variableR and a formula φ in which R only appears positively, LFP allows
the expression µR.φ which defines the least relation R such that, R = [[φ]]σ;ρ,R#→R. Just as the graph
composition operator of GL can be simulated by a monadic second-order quantifier one might think that
recursion can be simulated by the fixed-point operator of LFP. There is, however, a crucial difference.
In order to model-check an LFP-recursive sentence, a fixed-point has to be computed in the lattice of
the relations on the model domain. Model-checkingG ! µR.φ in GLµ requires the computation of the
fix-point of a map λS. [[φ]]σ;ρ,R#→S defined on the lattice of sets of subgraphs ofG.4 The evaluation of a
fixed-point in LFP in a graph G amounts to finding the least fixed-point of a monotone function on the
lattice of k-ary relations on G. The size of this lattice is exponential in the size of G and the length of a
maximal chain is bounded by nk where n is the size of G. This is what guarantees that the fixed-point
can be evaluated in a polynomial number of steps. In contrast, evaluating a fixed-point in GLµ is to
find the least fixed-point of a monotone operator on the lattice of sets of subgraphs of G. This lattice
is of size doubly exponential in the size of G and has chains of length exponential in the size of G.
This suggests that evaluating a fixed-point may require an exponential number of steps. This is amply
illustrated by the result in Section 5.2 that exhibits a PSPACE-complete problem that is definable in the
logic. This is why the result in Section 5.1 showing that the model-checking complexity of the logic is
still in PSPACE is quite interesting.

5.1 Combined Complexity
The set {(G,σ,φ) : φ ∈ GLµ, G !σ φ} is PSPACE-hard, by results in Section 4. We now exhibit
a PSPACE algorithm to decide the problem, establishing a tight upper bound on its complexity. The
way the algorithm deals with recursion is analogous to Winskel’s algorithm for model-checking the µ-
calculus [27]. The algorithm is given in Table 1. There, get(stack ,”ξ”) returns ξ if it is a constant, and
finds its associated value in stack if ξ is a variable. In the line for α(ξ1, ξ2), G[i] is the i-th edge of G,
encoded as a triple (i, j, k), representing the indexes of the label, the first, and the second node.
We assume that no variable in the formula is bound in two distinct places. We associate a counter

to each variable and a bitmask to each | operator in the formula. We have a variable bitmap mask
that specifies which edges in the graph are included in the current subgraph. To check whether φ | ψ
holds, we let the corresponding bitmask sm iterate over all the submasks of the current mask m. For
each value of sm we check φ against the subgraph identified by sm and ψ against its complement wrt
m, minus(m, sm). φ | ψ holds if and only if we find a value for sm such that both checks succeed.
Actually, we cannot have a different variable for each |, since the algorithm is written to work for
formulas of any size. Hence, sm is just a local variable of the procedure that checks the | case, which will
be automatically saved on the call stack when a subroutine is called, and restored when the subroutine
exits.
To check whether ∃x.φ holds, we let the corresponding counter x enumerate all the names that

appear either in the graph or in the formula, plus one fresh name for each variable in the formula. By
Proposition 2.7, ∃x.φ holds if and only if we find a value for x such that φ model-checks. As above, we
do not have a different counter for each variable x, but we use a stack. In this case we push a pair “x”=x
on an explicit stack every time a quantification ∃x is met. We do not use the call stack for x because
later, to check whether α(ξ1, ξ2) holds, we will have to substitute all the variables among α, ξ1, ξ2 with
their value, and we can retrieve those values by exploring the explicit stack.
4It is well-known that recursive formulas can be model-checked either by repeatedly substituting the recursion variable with

its definition, Prolog-style (top-down evaluation, typical of programming languages) or by actually computing the fix-point that
corresponds to the formula, Datalog-style (bottom-up evaluation, typical of deductive databases). Our informal discussion as-
sumes the bottom-up implementation. It would be difficult to discuss top-down implementations in such general terms, since they
can be based on quite different terminating conditions.
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inputs: G, ψ; other global variables: stack, and the implicit call stack;
Evaluate(ψ,G) =
let mask= 1112 . . . 1n where n = sizeof(G);
return(eval(ψ,mask ));

eval (¬φ, mask ) =
return(not eval (φ,mask ));

eval (0,mask ) =
return(mask== 01 . . . 0n);

eval (T, mask ) =
return(true);

eval (ξ1 = ξ2, mask ) =
return(get(stack ,”ξ1”) == get(stack ,”ξ2”));

eval (α1 = α2,mask ) = similar to previous case
eval (φ ∧ ψ,mask ) =
if (eval (φ, mask ) andif eval (ψ,mask )) {return(true);}
else {return (false);}

eval (∃x.φ, mask ) =
for i in 1..n do
push(〈”x” = i〉, stack );
if eval (φ, mask ) {pop(stack); return(true);}
pop(stack)

return(false);
eval (∃a.φ, mask ) = similar to previous case
eval (φ | ψ, mask ) =
for submask in submasks(mask ) do
if (eval (φ, submask ) and eval (ψ, minus(mask ,submask ))) {return(true);}

return (false);
eval (α(ξ1, ξ2), mask ) =
if ( (mask== 0 . . . 01i0 . . . 0) and
(G[i] == (get(stack ,”α”),get(stack ,”ξ1”),get(stack ,”ξ2”) ) {return(true);}

else {return(false);}
eval (µR.ψ,mask ) =
push(〈”R” = mask〉, stack );
res = eval (ψ, mask );
pop(stack); return(res);

eval (R,mask )
ifmask== get(stack ,”R”) {return(false)}
else { find µR.φ in the input formula ψ

and return(eval(µR.φ,mask )); }

Table 1: The model-checking algorithm for GLµ
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To model-check µR.φ, we first push on the stack a pair “R”-current mask. Then, when R is met,
we first check whether the current mask is still equal to that associated to R on the stack. If the current
mask is a strict subset of that stored in R, we substitute R with µR.φ and continue. If it is equal to that
stored in R, then this branch can only loop forever,5 hence false is returned.
We prove that this algorithm runs in polynomial space and that it is correct.

Theorem 5.1 Evaluate(ψ, G) always terminates and can be executed with polynomial space.

Proof Let n be the maximumof the number of edges and the number of nodes inG. The algorithm uses
the call stack and the variable stack. Each recursive call pushes its local variables, the return address,
and the call parameters on the call stack. The worst case is that of |, where we have one local variable
that is n bits long (submask ) plus the mask parameter that is n bits long as well. Hence, each stack
frame on the call stack is linearly bounded by the input size. The same is true for the stack variable,
where each stack frame has either n size (if it is a mask) or log(n) size, in the ∃x/a.φ cases. Moreover,
each procedure call performs at most one push, and always pops what it pushed, hence the stack variable
never contains more frames than the call stack. Hence we have only to show that the call stack growth
is bounded by a polynomial. This bound implies termination as well, since all the for loops in the code
are bounded.
Every frame in the call stack contains a bit mask. This mask is always equal to, or included in, the

one of the preceding frame. Let a stack-chunk be a sequence of stack frames which all contain the same
mask. The stack will always be composed by at most n+1 stack-chunks, where n is the size of the input
graph, since n + 1 is the length of the longest chain of n-bit masks ordered by strict inclusion. A single
stack-chunk may contain two frames that correspond to the evaluation of the same R variable only if
the second one is the last frame on the stack, since the first evaluation of R with mask m is followed
by an evaluation of µR.ψ which pushes 〈R = m〉 on stack, so that the next evaluation of R with mask
m returns immediately. Hence, any stack-chunk contains at most k + 1 recursion-variable frames, if
k is the number of recursive variables in φ. Finally, the sub-chunk included between two consecutive
recursion-variable frames cannot contain more than l frames, where l is the longest path in the syntax
tree of φ, since any other case but R walks one step down along φ. This gives an O(nkl) bound on the
number of frames of the call stack. "

Theorem 5.2 Evaluate(ψ, G) = true if, and only if, G ! ψ.

Proof We prove the correctness of the algorithm by presenting a proof system and showing that it is
sound with respect to the semantics. We then show that the algorithm faithfully implements the proof
system.
Consider the proof system of Table 2. The formula G in rule (0= µ) is the sentence that is only

satisfied by G (up to graph-equality), defined in Lemma 2.4. X(G,φ,σ) is a subset of X such that
X 6 (G,φ,σ), so that, by Proposition 2.7, quantification need be checked only on X(G,φ,σ). σ is a
substitution, i.e. an ordered sequence of pairs x .→ x, a .→ a, R .→ φ, where no variable is bound twice;
{x .→ c} · σ is the substitution obtained by removing any x .→ c′ pair from σ, and adding the new pair
x .→ c at the beginning of σ. xσ is just the element that σ associates with x. φ · σ applies all pairs in σ
to φ one after the other, hence φ · ({x .→ c} · σ) is equal to (φ{x← c}) · σ.
To study the correspondence between the algorithm and the proof system, we first define a map-

ping Σψ(s) that maps a stack s into a substitution, using ψ in the translation of bindings (R = m).
Essentially, a pair (R = m) in the stack is translated into a mapping R .→ ((µR.φ) ∧ ¬(G∩m)) that
5The fact that R is still associated with the same mask implies that the rest of the stack retains its old content as well. We do

not discuss this fact here, because it is the kernel of the proof of Theorem 5.2.
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expresses the termination condition that characterizes our algorithm. G∩m is the subgraph ofG identi-
fied by the maskm. The empty stack becomes the empty substitution. Stacks are reversed because the
last element of the stack is the first substitution to be applied.

Σψ(s, R = m) = {R .→ (µR.φ ∧ ¬G∩m)} · (Σψ(s)) if µR.φ is a subterm of ψ
Σψ(s, x = x) = {x .→ x} · (Σψ(s))
Σψ(s, a = a) = {a .→ a} · (Σψ(s))

We will prove soundness of the algorithm w.r.t. the proof system, and soundness of the proof system
w.r.t. satisfaction, as specified below, where evalψ,G,s(φ, mask ) is the result of calling eval (φ, mask )
when input formula is ψ, input graph is G, and current stack is s.

evalψ,G,s(φ, m) = true ⇒ G∩m; Σψ(s) = φ (1a): soundness of eval , case true
evalψ,G,s(φ, m) = false ⇒ G∩m; Σψ(s) 0= φ (1b): soundness of eval , case false
φ · σ is closed, G;σ = φ ⇒ G ! φ · σ (2a): soundness of =
φ · σ is closed, G;σ 0= φ ⇒ G ! ¬(φ · σ) (2b): soundness of 0=

Properties (1a) and (1b) are easy to prove by induction on the depth of the call stack of the algorithm,
and by cases. We show the cases for recursion.

evalψ,G,s(R, m) = false , where R = m′ is in s ⇒
eitherm′ = m, or evalψ,G,s(µR.φ,m) = false
in the second case, by induction G∩m; Σψ(s) 0= µR.φ
in the first case, bym = m′ G∩m; Σψ(s) = G∩m′

hence G∩m; Σψ(s) 0= ¬G∩m′

in both cases, we can apply rule (0= ∧ ): G∩m; Σψ(s) 0= (µR.φ) ∧ ¬G∩m′

R(Σψ(s)) = (µR.φ) ∧ ¬G∩m′, hence: G∩m; Σψ(s) 0= R(Σψ(s))
by (0= R): G∩m; Σψ(s) 0= R

evalψ,G,s(R, m) = true, where R = m′ is in s ⇒
m′ 0= m and evalψ,G,s(µR.φ,m) = true
by induction G∩m; Σψ(s) = µR.φ
bym 0= m′ G∩m; Σψ(s) = ¬G∩m′

hence G∩m; Σψ(s) = (µR.φ) ∧ ¬G∩m′

R(Σψ(s)) = (µR.φ) ∧ ¬G∩m′, hence: G∩m; Σψ(s) = R(Σψ(s))
by (= R): G∩m; Σψ(s) = R

evalψ,G,s(µR.φ,m) = false ⇒
evalψ,G,(s,R=m)(φ, m) = false ,
by induction G∩m; Σψ(s, R = m) 0= φ
by definition, Σψ(s, R = m) = ({R .→ ((µR.φ) ∧ ¬G∩m)} · Σψ(s))
hence, by rule (0= µ) G∩m; Σψ(s) 0= µR.φ

evalψ,G,s(µR.φ,m) = true: the proof is identical

Soundness of the proof system (property (2a) and (2b)) is proved by induction on the size of a proof,
and by cases on the last rule applied. All cases are trivial but (0= µ), (= µ), (0= R) and (= R).
Cases (0= µ) and (= µ) follow by induction once we prove that, for any pair φ, σ, such that

fv(φ · σ) ⊆ {R},

G ! ¬(φ · ({R .→ ((µR.φ) ∧ ¬G)} · σ)) ⇒ G ! ¬((µR.φ) · σ)
G ! (φ · ({R .→ ((µR.φ) ∧ ¬G)} · σ)) ⇒ G ! ((µR.φ) · σ)
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which are equivalent to the following, where we abbreviate [[φ]]();() by [[φ]]:

G /∈ [[φ · ({R .→ ((µR.φ) ∧ ¬G)} · σ)]] ⇒ G /∈ [[(µR.φ) · σ]] (3a)
G ∈ [[φ · ({R .→ ((µR.φ) ∧ ¬G)} · σ)]] ⇒ G ∈ [[(µR.φ) · σ]] (3b)

We will exploit the following properties, proved in [6]:

[[φ{R← ψ}]]σ;ρ = [[φ]]σ;ρ{R#→[[ψ]]σ;ρ} (4a)

[[µR.φ]]σ;ρ = fixpoint(λS. [[φ]]σ;ρ{R#→S}) (4b)

the function λS. [[φ]]σ;ρ{R#→S} (4c) is monotone in S

We can rewrite [[φ·({R .→ ((µR.φ) ∧ ¬G)} · σ)]] as follows, whereM = [[(µR.φ)·σ]], andF (φ,σ)
is defined as λS. [[(φ · σ)]]();{R#→S}

[[φ · ({R .→ ((µR.φ) ∧ ¬G)} · σ)]] =

[[(φ{R← ((µR.φ) ∧ ¬G)}) · σ]] =

[[(φ · σ){R← (((µR.φ) · σ) ∧ ¬G)}]] = by (4a)

[[(φ · σ)]]();{R#→[[(((µR.φ)·σ)∧¬G)]]} =

[[(φ · σ)]]();{R#→M\G} =

F (φ,σ)(M \ G)

We have now to prove thatG /∈ F (φ,σ)(M \G) ⇒ G /∈M (5a) andG ∈ F (φ,σ)(M \G) ⇒ G ∈
M (5b). M is a fixed point of the monotone function F (φ,σ) (by (4b) and (4c)), hence F (φ,σ)(M \
G) ⊆ F (φ,σ)(M) ⊆ M , which immediately gives us (5b). From G /∈ F (φ,σ)(M \ G) we conclude
F (φ,σ)(M \ G) ⊆ (M \ G); M is defined as the intersection of all pre-fixpoints, of F (φ,σ) hence
M ⊆ F (φ,σ)(M \ G) ⊆ (M \ G), henceG /∈M , c.v.d.
Cases (0= R) and (= R) follow immediately once we prove that R · σ = (Rσ) · σ (recall that R · σ

is not just Rσ). To this aim, observe that σ = (σ′ · {R .→ Ψ} · σ′′), (with dom(σ′), {R}, and dom(σ′′)
mutually disjoint) and henceR·σ = Ψ·(σ′′) and, from the assumption thatR·σ is closed, we deduce that
fv(Ψ) ⊆ dom(σ′′), hence fv(Ψ)∩ dom(σ′ · {R .→ Ψ}) = ∅, hence (Rσ) ·σ = Ψ · (σ′ · {R .→ Ψ} · σ′′)
is equal to Ψ · (σ′′), c.v.d. "

5.2 Expressivity
While recursion does not take the combined complexity out of PSPACE, it adds expressive power to
the logic. As a simple example, here is a formula that characterizes the graphs with an even number of
edges, which is not expressible in either MSO or LFP.

µR. 0 ∨ ((∃a, x, y. a(x, y)) | (∃a, x, y. a(x, y)) | R ) (3)

In this section we show that we can express a PSPACE-complete problem in this language. This is
achieved by an encoding of quantified Boolean formulas (QBF) as graphs. The encoding is similar to
the one in Section 4.2 except, in order to work with a finite set of labels, we do not have different edge
labels for the different number of quantifier alternations. Instead, we have two labels, Forall and Exist,
in addition to Switch, and the alternation of edges with these labels leading up to a node γv(X) indicates
the quantifier type and index of the Boolean variable X . Similarly to Section 4.2, quantified variables
are guarded by an incoming Switch label, while free variables have no incoming Switch edge. The
translation of a formula ψ is parametrized over a boolean assignment σ defined over fv(ψ). Quantified
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(! ∧ )
G; σ ! φ ∧ G; σ ! ψ

G; σ ! φ ∧ ψ

( #! ∧ )
G; σ #! φ ∨ G; σ #! ψ

G; σ #! φ ∧ ψ

(! ¬)
G; σ #! φ

G; σ ! ¬φ

( #! ¬)
G; σ ! φ

G; σ #! ¬φ

(! ∃)
∃x∈X(G,σ, ψ). G; {x '→ x} · σ ! φ

G; σ ! ∃x.φ

( #! ∃)
∀x∈X(G,σ, ψ). G; {x '→ x} · σ #! φ

G; σ #! ∃x.φ

(! α(ξ, ξ′))
G = ασ(ξσ, ξ′σ)

G; σ ! α(ξ, ξ′)

( #! α(ξ, ξ′))
G #= σ(ξσ, ξ′σ)

G; σ #! α(ξ, ξ′)

(! ξ = ξ′)
ξσ = ξ′σ

G; σ ! ξ = ξ′

( #! ξ = ξ′)
ξσ #= ξ′σ

G; σ #! ξ = ξ′

(! | )
∃G′, G′′. G = G′|G′′ ∧ G′; σ ! φ ∧ G′′; σ ! ψ

G; σ ! φ | ψ

( #! | )
∀G′, G′′. G = G′|G′′ ⇒ (G′; σ #! φ ∨ G′′; σ #! ψ)

G; σ #! φ | ψ

(! R)
G; σ ! Rσ

G; σ ! R

( #! R)
G; σ #! Rσ

G; σ #! R

(! µ)
G; ({R '→ ((µR.φ) ∧ ¬G)} · σ) ! φ

G; σ ! µR.φ

( #! µ)
G; ({R '→ ((µR.φ) ∧ ¬G)} · σ) #! φ

G; σ #! µR.φ

Table 2: Proof system forG = φ andG 0= φ

Figure 2: Gµ(ψ = (∀X, Y.∃Z.((Z∨¬W )∧(W ∨¬X))∧((X∨¬Y )∧(Y ∨¬Z))),σ = (W .→ true))
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variables have both Pos and Neg outgoing edges. A free variable Z has its Pos edges iff σ(Z) = true,
and has its Neg edges otherwise (see Figure 2 for an example).
Formally, we define a translation Gµ(Ψ,σ, γ) which maps a QBF formula Ψ and an assignment

σ of truth values to the free variables of Ψ to a graph. As in the translation G(Φ, γ) of Section 4.2,
the translation is parametrized by a pair of functions γ = (γv, γp) giving nodes corresponding to the
variables and the occurrences in Ψ respectively. SupposeΨ is

Ψ = ∀X1
1 . . . X1

i1
.∃Y 2

1 . . . Y 2
i2

. . . .∃Y n
1 . . . Y n

in
.Φ dom(σ) = fv(Ψ) = {Z1, . . . , Zm}

The graph Gµ(Ψ,σ, γ) is then described by the following term. The notation G \ S denotes the graph
G after the edges in S are removed.

Gµ(Ψ,σ, γ) =def Forall(x0,x1)
| Switch(x1, γv(X1

1 )) | . . . | Switch(x1, γv(X1
i1

))
| Exist(x1,x2)
| Switch(x2, γv(Y 2

1 )) | . . . | Switch(x2, γv(Y 2
i2

))
| Forall(x2,x3)
| . . .
| Exist(xn−1,xn)
| Switch(xn, γv(Y n

1 )) | . . . | Switch(xn, γv(Y n
in

))
| G(Φ, γ) \ {Neg(γv(Z),x) : σ ! Z} \ {Pos(γv(Z),x) : σ 0! Z}

Theorem 5.3 There exists a GLµ formula that characterizes a set of graphs that is PSPACE-complete.

Proof To be precise we define a formula GValµ that is true in a graph Gµ(Ψ,σ, γ) if, and only if, Ψ
is made true by the assignment σ. The formula is a variation of the formulas constructed in Section 4.2.
For this purpose, we need to introduce variants of the formulas Discard k and Consistentk that do not
use k different forms of the Switch label. These are defined as follows.

Discard ′(z) =def ∀x, y, a.(a(x, y) | T) ⇒ ((a = Switch ∧ x = z) ∨ a = Pos ∨ a = Neg)
∧∀x, y.[(Neg(x, y) ∨ Pos(x, y) | T) ⇒ (Switch(z, x) | T)]
∧Consistent

Consistent ′(z) =def ∀x, y.[¬(Switch(z, y) | T)]
∧ [(Neg(x, y) ∧ Pos(x, y)) ⇒ ∃z′ 0= z.(Switch(z′, x) | T)]

Note that the formula Discard ′(z) is parametrized by the free variable z which is intended to ensure
that at each stage, all discarded Switch edges are for the same quantifier block.
The formulaGValµ is now defined as follows.

µR. ¬(∃x, y. (Forall(x, y) ∨ Exist(x, y)) | T) ∧ GVal
∨ (∃x, z. QRoot(x) ∧ (Exist(x, z) | (Discard ′(z) | (Consistent ′(z) ∧ R))))
∨ (∃x, z. QRoot(x) ∧ (Forall(x, z) | (Discard ′(z) |⇒ (Consistent ′(z) ⇒ R))))

where QRoot(x) is defined as:

QRoot(x) =def ¬∃x′. (Forall(x′, x) ∨ Exist(x′, x)) | T

The formulaQRoot identifies the node xi which corresponds to the quantifier block currently being
evaluated. Thus, a graphGµ(Ψ,σ, γ) satisfiesGValµ if, and only if, either (1) it satisfiesGVal in which
case all truth assignments are satisfying or (2) there is an Exist edge leaving xi and removing it there is
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some way of consistently discarding Pos and Neg edges from the variables pointed to by xi+1 so that
the resulting graph satisfies GValµ or (3) there is a Forall edge leaving xi and every consistent way of
discarding Pos and Neg edges from the variables pointed to by xi+1 leaves a graph satisfyingGValµ.

"

5.3 Strings
We now briefly examine the expressive power of GLµ in the same way as we showed in Section 3.3
that GL defines exactly the regular languages. Since GLµ can express mutually recursive equations,
it can easily be shown to express context-free grammars (CFGs) and context-free languages (CFLs).
However, CFLs are not closed under intersection, while GLµ features conjunction, hence we should
look for a wider class, which should at least include the closure of CFLs under finite intersection. We
prove here that GLµ can express conjunctive context-free languages, which strictly generalize the finite
intersection of CFLs.
Conjunctive context-free grammars (C-CFGs) have been introduced in [22]; they generalize context-

free grammars (CFGs) by adding an operation of language intersection. A context-free grammar can be
defined as a finite set of mutually recursive equations (one equation for each variable) with the form:

X = w1 + . . . + wn

where each wi is generated by the grammar w ::= a | X | w; w. A variable X denotes a component
of the minimal solution of the system, w1 + w2 is language union, a is the singleton language {a}, and
w; w′ is language concatenation. Conjunctive CFGs are obtained by adding an operation of language
intersection& inside the equations, which have now the following shape:

X = (w1
1& . . .&w1

n1
) + . . . + (wm

1 & . . .&wm
nm

).

C-CFGs are strictly more expressive than CFGs. For example, the language {aibici} is not a
context-free language, but can be expressed by the following grammar, whereA; X generates {ai;bj ; cj}
and Y ; C generates {ai;bi; cj} [22]:

S = (A; X)& (Y ; C)
A = a; A + ε
X = b; X ; c + ε
Y = a; Y ;b + ε
C = c; C + ε

This language is just the intersection of two CFLs; in Section 6.4 we exhibit a C-CFL which is not
expressible as the intersection of any finite set of CFLs.
A C-CFG equation can be translated into a GLµ equation, as follows; a and w1; w2 are translated as

in Section 3.3, whileX is translated as X .

X = (F(w1
1) ∧ . . . ∧ F(w1

n1
)) ∨ . . . ∨ (F(wm

1 ) ∧ . . . ∧ F(wm
nm

))

It is well-known that µ-recursion can express systems of mutually recursive equations; for example,
a system X = φ(X, Y ), Y = ψ(X, Y ) can be expressed as µX. φ(X, µY. ψ(X, Y )). Hence, every
C-CFG can be translated into an equivalent GLµ sentence, hence any C-CFL can be expressed in GLµ.
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6 Linear Graph Logics
6.1 Linear Graph Logic
The high data complexity of GLµ derives from the composition operator | which quantifies over all
subgraphs of the current graph, hence has an essentially second-order nature. In practice, however, most
uses of the composition operator are limited to splitting a graph one edge at a time. That is, formulas
which use the operator often fit the following pattern: ∃ (α(ξ, ξ ′) ∧ · · · ) | φ. We formalize this by
defining a restricted version of the composition operator, denoted !, which we call linear composition.
Its semantics is defined by the following rule:

G !
σ φ ! φ′ ⇔ G ≡ (a(x,y) | G′) and a(x,y) !

σ φ and G′
!
σ φ′.

The operator can also be seen as a derived operator in GL by the following definition:

φ ! φ′ =def (φ ∧ ∃a, x, y. a(x, y)) | φ′.

Essentially, this could be seen as a modal operator, parametrized by φ. That is, a graphG satisfies φ ! φ′

if, and only if, there is an edge inG which satisfies φ and such that the graph obtained by removing that
edge satisfies φ′.
We write LGL for linear graph logic, the language obtained from GL by replacing the | operator

by ! and LGLµ for its extension with recursion. We begin by examining the expressive power and
complexity of LGL.
The translation of GL into MSO given in Section 3.1 is easily adapted to show that LGL translates

into first-order logic. In order to do this, we need to eliminate all uses of the second-order variables
from that translation.
Towards this end we define three translations, each of them transforming a GL formula about a graph

G = (E, edge) into a FO formula about a structureG+ = (A, X, E, edge) (we are here identifying the
function edge inGwith its relational encoding inG+). [[φ]]0 holds inG+ iff φ holds in the empty graph;
[[φ]]∗e , where e is one edge variable, holds inG+ iff φ holds in the the graphG restricted to the only edge
e; [[φ]]F , where F is a set of edge variables, holds in G+ iff φ holds in G after the edges denoted by F
have been removed from G (see the statement of Lemma 6.1; F denotes the forbidden edges). Hence,
for example, [[φ ! φ′]]F holds if there exists one edge e that can be removed from G \ F such that both
[[φ]]∗e and [[φ′]]F∪{e} hold.
The translation is defined by induction. The operators ¬, ∧ , ∃ and = are mapped to themselves by

all of the three translations, hence we only report the [[ ]]F case for them. The notation ∃e 0∈ F.φ abbre-
viates the first-order formula ∃e.(

∧
f∈F e 0= f) ∧ φ. The notation ∀e 0∈ F.φ abbreviates ∀e.(

∧
f∈F e 0=

f) ⇒ φ.

[[¬φ]]F =def ¬[[φ]]F [[φ ∧ φ′]]F =def [[φ]]F ∧ [[φ′]]F

[[∃x.φ]]F =def ∃x. [[φ]]F [[∃a.φ]]F =def ∃a. [[φ]]F

[[ξ = ξ′]]F =def ξ = ξ′ [[α = α′]]F =def α = α′

[[α(ξ, ξ′)]]F =def ∃e 0∈ F. [edge(e,α, ξ, ξ′) ∧ ∀e′ 0∈ F. e = e′]

[[0]]F =def ¬∃e. e 0∈ F

[[φ ! φ′]]F =def ∃e 0∈ F. [[φ]]∗e ∧ [[φ′]]F∪{e}

[[α(ξ, ξ′)]]∗e =def edge(e,α, ξ, ξ′) [[0]]∗e =def F [[φ ! φ′]]∗e =def [[φ]]∗e ∧ [[φ′]]0

[[α(ξ, ξ′)]]0 =def F [[0]]0 =def T [[φ ! φ′]]0 =def F

The next lemma implies that, for any sentence φ, (A, X, E, edge) !FO [[φ]]∅ ⇔ (E, edge) !GL φ.
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Lemma 6.1 For any formula φ, substitution σ defined on all free variables of φ, for anyG = (E, edge)
and G+ = (A, X, E, edge) such that X 6 (G,φ,σ), A 6 (G,φ,σ), for any set of edge variables
F ∪{e}, for anyF ⊆ E, e∈E, the following equivalences hold, where edge\F removes the edges in F
from the domain of edge, (E, edge) \ F = (E \ F, edge \ F), and, similarly, (E, edge) ∩ e intersects
both E and edge with {e}.

G+ !
σ,F #→F

FO [[φ]]F ⇔ G \ F !σ
GL φ

G+ !
σ,e#→e

FO [[φ]]∗e ⇔ G ∩ e !σ
GL φ

G+ !σ
FO [[φ]]0 ⇔ 0 !σ

GL φ

Proof By induction and by cases. We omit cases that are trivial or very similar to those we present.

G+ !
σ,F #→F

FO [[φ ! φ′]]F ⇔ G+ !
σ,F #→F

FO ∃e 0∈ F. [[φ]]∗e ∧ [[φ′]]F∪{e}

⇔ There exists e∈E \ F such that G+ !
σ,F #→F,e#→e

FO [[φ]]∗e and G+ !
σ,F #→F,e#→e

FO [[φ′]]F∪{e}

⇔ There exists e∈E \ F such that G+ !
σ,e#→e

FO [[φ]]∗e and G+ !
σ,F #→F,e#→e

FO [[φ′]]F∪{e}

(Since no variable in F appears in [[φ]]∗e .)
⇔ There exists e∈E \ F such that G ∩ e !σ

GL φ and G \ F \ {e} !σ
GL φ′

⇔ There exists e∈E \ F such that (G \ F) ∩ e !σ
GL φ and (G \ F) \ {e} !σ

GL φ′

⇔ G \ F !σ
GL φ ! φ′

G+ !
σ,F #→F

FO [[α(ξ, ξ′)]]F ⇔ G+ !
σ,F #→F

FO ∃e 0∈ F. [edge(e,α, ξ, ξ′) ∧ ∀e′ 0∈ F. e = e′]
⇔ There exists e∈(E \ F) such that G+ !

σ,F #→F,e#→e

FO edge(e,α, ξ, ξ′) and forall e′∈(E \ F) e = e′

⇔ (e,σα,σξ,σξ′)∈edge and E \ F = {e}
⇔ G \ F !σ

GL α(ξ, ξ′)

G+ !
σ,F #→F

FO [[0]]F ⇔ G+ !
σ,F #→F

FO ¬∃e. e 0∈ F ⇔ There does not exist e∈(E \ F) ⇔ G \ F !σ
GL 0

G+ !
σ,F #→F

FO [[¬φ]]F ⇔ G+ !
σ,F #→F

FO ¬[[φ]]F

⇔ Not G+ !
σ,F #→F

FO [[φ]]F ⇔ Not G \ F !σ
GL φ ⇔ G \ F !σ

GL ¬φ

G+ !
σ,F #→F

FO [[φ ∧ φ′]]F ⇔ G+ !
σ,F #→F

FO [[φ]]F ∧ [[φ′]]F

⇔ G+ !
σ,F #→F

FO [[φ]]F and G+ !
σ,F #→F

FO [[φ′]]F

⇔ G \ F !σ
GL φ and G \ F !σ

GL φ′

⇔ G \ F !σ
GL φ ∧ φ′

G+ !
σ,F #→F

FO [[∃x.φ]]F ⇔ G+ !
σ,F #→F

FO ∃x.[[φ]]F

⇔ There exists x in X s.t. G+ !
σ,F #→F,x #→x

FO [[φ]]F

⇔ There exists x in X s.t. G \ F !
σ,x #→x

GL φ
⇔ There exists x in X s.t. G \ F !

σ,x #→x

GL φ. (Reasoning as in the proof of Proposition 2.7)
⇔ G \ F !σ

GL ∃x.φ

G+ !
σ,e#→e

FO [[φ ! φ′]]∗e ⇔ G+ !
σ,e#→e

FO [[φ]]∗e ∧ [[φ′]]0

⇔ G ∩ e !σ
GL φ and 0 !σ

GL φ′ ⇔ G ∩ e !σ
GL φ ! φ′

G+ !
σ,e#→e

FO [[α(ξ, ξ′)]]∗e ⇔ G+ !
σ,e#→e

FO edge(e,α, ξ, ξ′)
⇔ (e,σα,σξ,σξ′)∈edge ⇔ G ∩ e !σ

GL α(ξ, ξ′)

G+ !
σ,e#→e

FO [[0]]∗e ⇔ G+ !
σ,e#→e

FO F ⇔ G ∩ e !σ
GL 0, with G = (E, edge) and e∈E,

G+ !
σ,e#→e

FO [[φ ! φ′]]0 ⇔ G+ !
σ,e#→e

FO F ⇔ 0 !σ
GL φ ! φ′

G+ !
σ,e#→e

FO [[α(ξ, ξ′)]]0 ⇔ G+ !
σ,e#→e

FO F ⇔ 0 !σ
GL α(ξ, ξ′)

G+ !
σ,e#→e

FO [[0]]0 ⇔ G+ !
σ,e#→e

FO T ⇔ 0 !σ
GL 0
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The translation establishes an upper bound on the expressive power of LGL. Any property that is
expressible in first-order logic is decidable in LogSpace and therefore this is still true for LGL.

Proposition 6.2 For every sentence φ of LGL, Gφ = {G : G ! φ} is in LogSpace.

On the other hand, the model-checking complexity of LGL is still PSPACE-complete. This follows
from the observation that the proof of PSPACE-hardness of GL model checking in Section 4.1 does not
use the composition operator | at all.

Proposition 6.3 The model-checking problem for LGL is PSPACE-complete.

6.2 Linear Graph Logic and Strings
Just as GL is as expressive as MSO on string graphs, we show that on these graphs LGL has the same
expressive power as FO, being able to express any star-free language.
Star-free languages are those regular languages that are denoted by expressions in the following

grammar, where a belongs to a fixed alphabetA, and r denotes the complement of r with respect to A∗:

r ::= ε | a | r; r | r + r | r

Star-free languages are exactly the languages that can be described by FO over ordered structures [20].
The encoding we provided in Section 3.3 cannot be reused here, since concatenation was translated
using the full power of the | operator. However, it is easy to adapt the construction in [24] to prove that
every star-free language can also be described by a term of the following grammar:

r ::= ε | a; r | r + r | r

These expressions can be translated to LGL as follows. We parametrize here the translation with respect
to the first node “x” in the graph, which simplifies case a; r; this could not be done in Section 3.3
because of the ∗ case.

F(ε, x) =def 0

F(a; r′, x) =def ∃y. a(x, y) ! F(r′, y)

F(r + r′, x) =def F(r, x) ∨ F(r′, x)

F(r, x) =def ¬F(r, x)

The following lemma establishes the correctness of the translation.

Lemma 6.4 For any expression r over the alphabetA, w∈A∗, )x = x1 . . .xn+1 with n = |w|, x :

G(w,)x) !x #→x1 F(r, x) if, and only if, w ∈ L(r).

Proof The proof is by induction on the structure of the regular expression r and by cases. All cases are
trivial. "
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6.3 Recursive Linear Graph Logic
Given that LGL is no more expressive than first-order logic, one might be tempted to think that its
extension with recursion LGLµ could be translated into LFP, the extension of first-order logic with a
least fixed-point operator. However, a simple example shows that LGLµ can express properties that are
not definable in LFP. Consider the following formula.

µR. (0 ∨ (T ! T ! R))

This formula expresses that a graph has an even number of edges. We know this property is not definable
in LFP.
Though the length of inductions in LGLµ may be bounded by the size of the graph G on which

they are evaluated, there are two significant ways in which these inductions are different from the fixed-
points definable in LFP. For one, the recursion variables in LGLµ range over sets of subgraphs of G, so
the number of possible evaluations is still exponentially larger than for the recursion variables in LFP
which range over subsets of G. Secondly, the operator ! affords a kind of nondeterministic choice. The
particular edge that is chosen is not determined and may violate symmetries of the graph. This property
is crucially used in the definition of evenness given above.
Indeed, it turns out that the local nondeterminism afforded by the ! operator, combined with induc-

tions of polynomial length is sufficient to express properties that are even PSPACE-complete. We show
this by establishing that a limited form of the | operator is definable in LGLµ, namely when the | is only
applied to a pair of formulas where one of the formulas is T.

Lemma 6.5 If φ is a formula of GL that is equivalent to a formula of LGLµ, then the formula φ | T also
has an equivalent formula in LGLµ.

Proof If φ′ is the formula of LGLµ that is equivalent to φ, then φ | T is equivalent to

µR.(φ′ ∨ (T!R)).

"

We now observe that, in the definition of the formula GSat in Section 4.2, the only uses of the |
operator are linear (i.e. they can be equivalently replaced by !) or they are of the form φ | T. This gives
us the following lemma.

Lemma 6.6 There is a formula of LGLµ equivalent to GSat .

The following theorem is now immediate from the lemma.

Theorem 6.7 There is a formula φ of LGLµ such that the set Gφ = {G : G ! φ} is NP-complete.

As the logic LGLµ is closed under negation, we also have the following corollary.

Corollary 6.8 There is a formula φ of LGLµ such that the set Gφ = {G : G ! φ} is co-NP-complete.

We can do better, however. The formulaGValµ in Section 5.2 cannot be expressed directly in LGLµ

because the coherence of the set of edges that is discarded at each stage is expressed as:

. . . ∨ (∃x, z. QRoot(x) ∧ (Exist(x, z) | (Discard ′(z) | (Consistent ′(z) ∧ R))))

. . . ∨ (∃x, z. QRoot(x) ∧ (Forall(x, z) | (Discard ′(z) |⇒ (Consistent ′(z) ⇒ R))))
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where the | between Discard ′(z) and (Consistent ′(z) ∧ R) is crucially non-linear, and cannot be
substituted by T | (Consistent ′(z) ∧ R) or T | ⇒ (Consistent ′(z) ⇒ R), since the subgraph
discarded as T may otherwise contain a non consistent set of edges, or edges which should not be
discarded at the current stage. We can solve this problem by adopting a different encoding, where the
coherence of the discarded part can be tested by looking, essentially, at the non-discarded part alone.
We have first to ensure that, for each variable, a single Pos is discarded iff all Pos edges are dis-

carded, and similarly forNeg . Toward this aim, instead of having all Pos edges of eachX starting from
the same node, we link all of them along a linear list, labelled by occ and delimited by start and end
edges, labelled occs and occe , as follows (Figure 3) (this encoding is not minimal, but is designed to be
easy to reason about):

occs(x,x′) | occ(x′,x1) | Pos(x1, γp(α1)) | . . .
| occ(xn−1,xn) | Pos(xn, γp(αn)) | occe(xn,x′′)

Figure 3: An occurrence list

Now, it is easy to require the integrity of such structures, hence ensuring that either all Pos edges
for a variable are removed, or none of them is.
We use hereafter the operator φ ! ⇒ ψ, defined as ¬(φ ! ¬ψ), i.e., if any edge satisfying φ is

removed, then the rest of the graph satisfies ψ. For readability, we abbreviate (∃z. α(ξ, z)), where z
is a fresh variable, with α(ξ, ), and similarly for α( , ξ). α/β(ξ,χ) abbreviates α(ξ,χ) ∨ β(ξ,χ),
so that the first line below abbreviates ((∃z. occs(z, x)) ∨ (∃z. occ(z, x))) ! ⇒ (((∃z. occ(x, z)) ∨
(∃z. occe(x, z))) | T). The condition below accounts for both Pos and Neg lists.
The four lines can be read as: (1) any occs or occ edge is followed by a occ or an occe edge; (2)

any occ or occe edge is preceded by a occ or an occs edge; (3) any occ edge has it associated Pos/Neg
edge and (4) vice versa. If a graph contains a set of occurrence lists, for any of these lists, any subgraph
that satisfies this predicate either contains the whole list with all of its Pos/Neg edges or it contains no
piece of the list, hence none of the associated Pos/Neg edges.

OccOK = ∀x. occs/occ( , x) !⇒ ((occ/occe)(x, ) | T)
∧ (occ/occe(x, ) !⇒ (occs/occ( , x) | T))
∧ (occ( , x) !⇒ (Pos/Neg(x, ) | T))
∧ (Pos/Neg(x, ) !⇒ (occ( , x) | T))

For any quantifier block, we build a similar list of all the variables in the corresponding block; there
is an intermediate node yi for each variable of that block, and the Neg and Pos occurrence lists for
that variable both start from that node. The top-down evaluation of the sentence proceeds by peeling
the quantifier blocks off, starting from the outermost. At the beginning every variable has both its Neg
and Pos lists. When a quantifier block is evaluated we discard half of these lists. To ensure an orderly
execution of this procedure, every quantifier block is provided with two linear lists, labelled by var and
dvar , which go through the same nodes y, y′, yi, and y′′, and each intermediate node yi starts both
the Pos and the Neg occurrence lists of the corresponding variable. Hence, for every quantifier block
we build the following structure (where the first edge may be either a Exist or a Forall ; this is depicted
in the upper part of Figure 4, where the var and the dvar lists are represented by vertical dotted edges,
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Figure 4: Coherence before and after the removal of a quantifier edge

and the occ lists are represented by horizontal dotted edges).

Exist(z,y) | var s(y,y′) | dvar s (y,y′)
| var (y′,y1) | dvar(y′,y1) | occs(y1, . . .) | occs(y1, . . .) | . . .
| . . .

| var (yn−1,yn) | dvar(yn−1,yn) | occs(yn, . . .) | occs(yn, . . .) | . . .
| vare(yn,y′′) | dvare(yn,y′′)

Before evaluating a quantifier block, its dvar list has to be present and intact, and every intermediate
node yi has to start two occurrence lists. After a quantifier block has been discarded, the corresponding
dvar list must completely disappear, and wherever a Pos list starts no Neg list must start. However, the
var edges will not be discarded, and they will ensure that at least one among the Pos and Neg lists will
stay. We first describe the integrity condition for the dvar variable list. The first two conditions ensure
the integrity of the list. The third and fourth force the dvar list to stay or to go when the corresponding
quantifier block stays or goes. The last two conditions specify that one variable has both its occurrence
lists if, and only if, the dvar list that corresponds to its quantifier block is still in place (Figure 4).

DVarOK = ∀x. dvar s/dvar( , x) !⇒ ((dvar/dvar e)(x, ) | T)
∧ (dvar/dvare(x, ) !⇒ (dvar s/dvar( , x) | T))
∧ (dvar s (x, ) !⇒ Forall/Exist( , x) | T)
∧ (Forall/Exist( , x) !⇒ dvar s (x, ) | T)
∧ (dvar ( , x) !⇒ (occs (x, ) ! (occs (x, ) | T))
∧ (occs (x, ) !⇒ occs(x, ) !⇒ (dvar ( , x) | T))

We now describe the integrity condition of the var variable list, which ensures the presence of at
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least one of the two occurrence lists for any traversed node.

VarOK = ∀x. var s/var( , x) !⇒ ((var/var e)(x, ) | T)
∧ (var/vare(x, ) !⇒ (var s/var( , x) | T))
∧ (var ( , x) !⇒ (occs(x, ) | T))
∧ (occs (x, ) !⇒ (var ( , x) | T))

We introduce now the abbreviation φ !∗ ψ =def µR. ψ ∨ (φ ! R) which means: there exists a set
of edges G1, each satisfying φ, such that G \ G1 satisfies ψ:

G ! φ !∗ ψ ⇔ ∃G1, G2. G1 | G2 ≡ G ∧ (∀e∈G1. G1 ∩ e ! φ) ∧ G2 ! ψ

For example, as already observed, T !∗ ψ is equivalent to ψ | T. We also use the dual abbreviation
φ !∗⇒ ψ =def ¬(φ !∗ ¬ψ) characterized by the dual property:

G ! φ !∗⇒ ψ ⇔ ∀G1, G2. G1 | G2 ≡ G ⇒ (∀e∈G1. G1 ∩ e ! φ) ⇒ G2 ! ψ.

The operator φ !∗ ψ is still less expressive than φ | ψ, since G1 can only be examined edge by edge,
which is a very strong limitation. Nevertheless, its use will simplify the expression of our sentence.
We are now ready to express validity of the encoding of any QBF formula. Informally, at each

iteration step, one of the following conditions holds:

1. no quantification is left and the QBF formula is valid

2. an existential quantification is outermost and, after removing its edge and the corresponding dvar
list, one can find a way of choosing half of the corresponding occ occurence lists, so that, after
their removal, what remains is still valid

3. a universal quantification is outermost and, after removing its edge, the corresponding dvar list,
and half of the corresponding occ occurence lists, what remains is valid, independently of the
removed occ lists, provided that the remaining graph is consistent.

Disposable =def ∃x, y. occs/occ/occe/dvar s/dvar/dvare/Pos/Neg(x, y)
Consistent ′′ =def OccOK ∧ VarOK ∧ DVarOK
GValLµ =def µR. (¬(∃x, y. (Forall/Exist(x, y)) | T) ∧ GVal)

∨ (∃x. QRoot(x) ∧ (Exist(x, ) ! (Disposable !∗ (Consistent ′′ ∧ R))))
∨ (∃x. QRoot(x) ∧ (Forall(x, ) ! (Disposable !∗⇒ (Consistent ′′ ⇒ R))))

Hence, we have the following theorem.

Theorem 6.9 There exists an LGLµ formula that characterizes a set of graphs that is PSPACE-complete.

6.4 Recursive Linear Graph Logic and Strings
We prove here that LGLµ can express every conjunctive linear context-free language (CL-CFLs), which
is a class that includes regular language, some non-regular languages, and even some languages that
cannot be expressed by any CFG.
A conjunctive linear CFG is a conjunctive CFG, as defined in Section 5.3, where no word wi

j con-
tains more than one recursion variable [22]. Such grammars admit a normal form where every word wi

j
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has either the shape a; X ;b or the shape a. The logic LGLµ can express mutual recursion, union, and
intersection as seen in Section 5.3, and linear language concatenation a; X ;b can be expressed as

∃x, y, x′, y′. a(x, y) ! b(y′, x′) ! ((0 ∨ (Initial(y) ∧ Final(y′))) ∧ X)

CL-CFGs include right-linear context-free grammars as a special case, hence LGLµ can express
every regular language, but their expressive power is greater. For example, the grammar S ::= ε | aSb

is linear, and denotes the language anbn which is not regular. The grammar

S = C & D
C = a; C;a + a; C;b + b; C;a + b; C;b + c

D = (a; A)& (a; D) + (b; B)& (b; D) + c; E
A = a; A;a + a; A;b + b; A;a + b; A;b + c; E;a
B = a; B;a + a; B;b + b; B;a + b; B;b + c; E;b
E = a; E + b; E + ε

denotes the language {w; c; w : w∈{a;b}∗} which is not context-free, and cannot be expressed as the
intersection of any finite set of CFLs [22].
We do not know whether LGLµ can express any language beyond this family.

6.5 GLµ vs. LGLµ

The proof of Theorem 6.9, and the possibility to define the operators φ | T and φ !∗ ψ in LGLµ, seem
to indicate that the expressive power of GLµ and LGLµ are very similar. Even in the case of strings, we
proved that LGLµ can encode CL-CFGs, but we have no upper bound that may be used to show that
LGLµ cannot encode any C-CFGs. Hence, we leave the actual separation between LGLµ and GLµ as
an open problem.

7 Related Work
We describe the related work on the complexity and expressivity of spatial logics. There is also a vast
literature on the expressive power of first-order logic and monadic second-order logic. We refer to
standard techniques arising from that work throughout the paper.

7.1 Previous Literature
Until recently, people working on spatial logics have restricted their attention to the combined complex-
ity problem, since their motivation has been to develop either local Hoare reasoning about heap update
or modal reasoning about process algebras. In contrast, our motivation arose from TQL project, and
hence we study both complexity and expressivity.
Calcagno et al. studied the complexity of model-checking and validity for the separation logic,

which is used to describe properties about mutable data structures stored in a heap [4]. They prove the
undecidability of validity for the logic with quantifiers, and then focus on the quantifier-free fragment.
Their most interesting result is decidability of validity for the quantifier-free fragment in the presence
of the composition adjunct operator ‘magic wand’, which is surprising since for the adjoint case the
satisfaction relation requires a universal quantification over heaps. The analogous decidability result is
also show to hold for the quantifier-free static Ambient Logic [5], by adapting the technique used for the
separation logic. More recently, Dal Zilio et al. have given a translation from the quantifier-free static
Ambient Logic extended with Kleene star to a logic based on Presburger arithmetic, which provides a
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different proof of the decidability result but more importantly yields a decision procedure [13] which is
much more efficient.
These decidability results concern logics with adjuncts but no quantification. In contrast, we study

versions of the spatial logic for graphs that include quantifiers but do not include the adjoint oper-
ator ‘magic wand’. The combination of quantifiers and adjoints makes model-checking, and query-
answering, undecidable. Quantification seems far more useful than ‘magic wand’ for querying trees,
and this is the reason why TQL logic includes quantifiers but not the adjoint. When different uses of
the logic are considered, the relative importance of adjoints and quantifiers is less easy to assess. Magic
wand is used in an essential way to describe the weakest preconditions for O’Hearn and Reynold’s
Hoare logic for reasoning about heap update, although again it is not clear whether it is useful to specify
properties of heaps. Lozes [14, 19] has proved that, in static Ambient Logic where quantification is only
allowed on private names, every property expressible with ‘magic wand’ is also expressible without. In
contrast, in [14], we prove that expressive power does increase when ‘magic wand’ is added to static
Ambient Logic with quantification on public names. In both cases, the addition of ‘magic wand’ makes
model-checking undecidable [10] in the presence of quantifiers.
Boneva, Talbot, and Tison study a logic without adjuncts and without quantification. They call it

STL, and it is an extension of quantifier-free static Ambient Logic with µ-recursion [2]. Hence, STL is
a quantifier-free version of the logic GLµ that we study here. Absence of quantifiers means that they
cannot use trees to encode graphs, as we did in Section 2.4, which makes STLmuch less expressive than
GLµ. They show that µ-recursion makes validity undecidable, contrasting with the results of [5, 13]
which prove that validity in the logic with adjuncts and Kleene star, instead of recursion, is decidable, as
described above. They also give complexity and expressivity result: they define an automata translation
for this logic, and show how the logic can be syntactically restricted in order to match the expressive
power of MSO and Presburger-MSO, which is an extension of MSO defined in [25]. Of course, they
compare STL with MSO without quantification over names. Finally, they state that their automata
approach can be used to prove that the data complexity of this quantifier-free logic is PTime, in sharp
contrast with our PSPACE-completeness result for GLµ.
Charatonik et al. studied the complexity of model-checking for the full ambient logic [9], which

includes the reasoning about processes using spatial and temporal modalities. They prove that model-
checking is PSPACE-complete for the logic with and without modalities, and with no adjunct. We do
not consider modalities in this paper, since this work focusses on querying static graphs.

7.2 A Parallel Paper
A recent paper by Boneva and Talbot [1], independently presents similar results to those presented
here and in [15]. The authors of [1] start from the same motivation as us—the characterization of
the expressive power of TQL—which explains the similarity of the methods employed. Whilst we
study the problem using GL, they target the full TQL logic and data model. They study three different
fragments of TQL logic: TL, TL∃, and TL∃

ν . The first is quantifier-free, hence is weaker than GL and
non-comparable to LGL. The second includes both first-order and tree-quantification, hence is more
expressive than MSO and GL. The third is similar to GLµ, but stronger in that it includes both µ-
recursion and tree-quantification. Despite these differences, the results about TL∃ are quite similar to
our results about GL (model-checking is in PSPACE, and TL∃ can express complete problems at every
level of the polynomial hierarchy), and their results about TL∃

ν are very similar to our results about
GLµ (model-checking is in PSPACE, and PSPACE-complete problems can be expressed). Their proof
technique is based on a translation of quantified Boolean formulas, but the translation is different. Their
proof of the PSPACE complexity of TL∃

ν model-checking is based on a version of Winskel’s algorithm,
as is ours. They do not study the linear version of |, nor the expressive power of their fragments of TQL
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over strings.

8 Conclusions
We have investigated the complexity and expressive power of the spatial logic for graphs introduced by
Cardelli, Gardner and Ghelli. The graph composition operator | in this logic has a natural translation
into second-order logic using an existential quantifier over sets of edges. This allows us to translate the
logic GL to monadic second-order logic MSO, establishing upper bounds on the complexity of GL. We
show that these bounds are optimal by showing, in particular, that complete problems at all levels of
the polynomial hierarchy are expressible in GL. It seems unlikely that GL is as expressive as MSO in
general. We are, however, able to show the surprising result that GL is as expressive as MSO when we
restrict ourselves to strings, as it is able to define all regular languages. It remains to be seen whether this
result can be extended to graphs that are trees. We have also shown that GLµ, the logic GL extendedwith
µ-recursion, has interesting expressive power. It allows us to define recursions of exponential length and
to express PSPACE-complete problems. Nonetheless, the model-checking complexity of the full logic,
with | and recursion, remains within PSPACE.
Finally, we studied LGL with its restricted form of linear composition. We show that it relates to FO

much in the same way as GL relates to MSO. There is a natural translation into FO, hence qualifying
LGL as a fragment of FO, but the combined complexity of the two logics is the same, and their expres-
sive power on strings is the same since both are able to express star-free regular languages. However, the
recursion operator adds much more to LGL than LFP adds to FO: we can express PSPACE-complete
problems and a family of languages which are non-regular in LGLµ. The expressive power of LGLµ

seems quite similar to that of GLµ, and their separation is an open problem; we do not even know
whether LGLµ can express every property that can be expressed in GL.
Some of our results are collected in Figure 5.

Logic Complexity Some expressible Data complexity Logical Expressivity
L of TruthsL properties upper bound upper bound on strings
LGL PSPACE-compl Any FO property LogSpace FO = FO
GL PSPACE-compl QBF with depth≤ k PH MSO = MSO
LGLµ PSPACE-compl Evenness, QBF PSPACE ≥ CL-CFGs
GLµ PSPACE-compl Evenness, QBF PSPACE ≥ C-CFGs

Figure 5: Summary of results
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