
Context Logic as Modal Logic:
Completeness and Parametric Inexpressivity

Cristiano Calcagno Philippa Gardner Uri Zarfaty
Department of Computing, Imperial College London

{ccris,pg,udz}@doc.ic.ac.uk

Abstract
Separation Logic, Ambient Logic and Context Logic are basedon a
similar style of reasoning about structured data. They eachconsist
of a structural (separating) composition for reasoning about dis-
joint subdata, and corresponding structural adjoint(s) for reasoning
hypothetically about data. We show how to interpret these struc-
tural connectives as modalities in Modal Logic and prove complete-
ness results. The structural connectives are essential fordescribing
properties of the underlying data, such as weakest preconditions
for Hoare reasoning for Separation and Context Logic, and secu-
rity properties for Ambient Logic. In fact, we introduced Context
Logic to reason about tree update, precisely because the structural
connectives of the Ambient Logic did not have enough expressive
power. Despite these connectives being essential, first Lozes then
Dawar, Gardner and Ghelli proved elimination results for Separa-
tion Logic and Ambient Logic (without quantifiers). In this paper,
we solve this apparent contradiction. We study parametric inexpres-
sivity results, which demonstrate that the structural connectives are
indeed fundamental for this style of reasoning.

Categories and Subject Descriptors D.2.4 [Software/Program
verification]: Correctness proofs, Formal methods, Validation

General Terms Languages, Theory, Verification

Keywords Logic, Expressivity, Structured Data, Contexts

1. Introduction
Separation Logic (SL) and Ambient Logic (AL) are related log-
ics for reasoning about heaps and trees respectively. O’Hearn,
Reynolds and Yang introduced SL [8, 11, 13] to develop local
Hoare reasoning about heap update, based on the general theory
of Bunched Logic (BL) due to O’Hearn and Pym [10]. Cardelli
and Gordon independently introduced AL [5] for reasoning about
static trees. AL has been used to reason about security properties of
firewalls and structural properties of XML [6]. We have integrated
these two lines of research. In [3], we showed that it is not possible
to use AL to reason about tree update (XML update). Instead, we
introduced the general theory of Context Logic (CL) for reasoning
about structured data, which generalises BL. We demonstrated that
the application of CL-reasoning to trees can be used as a basis for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

local Hoare reasoning about tree update, whilst the application of
CL-reasoning to heaps exactly corresponds to SL-reasoning.

These logics are based on a similar style of reasoning about
structured data. They each extend propositional connectives with
a structural (separating) composition for reasoning aboutdisjoint
subdata, and the corresponding structural adjoint(s).1 We show how
to interpret the structural connectives of BL and CL as modalities in
modal logic (ML). We present additional axioms for these modali-
ties to give a precise correspondence between the original presenta-
tion of BL and CL, and their ML-interpretations. These axioms are
well-behaved, in that they satisfy the conditions necessary for us
to apply a general completeness result about ML (Sahlqvist’s the-
orem). We thus prove that the CL-proof theory is sound and com-
plete with respect to the set of CL-models (and analogously for
BL). This work follows previous unpublished work by Calcagno
and Yang, who proved completeness for CL from first principles.

The structural connectives are essential for modular reason-
ing about programs, and for describing weakest preconditions and
safety properties. However, recent expressivity results for SL and
AL due to Lozes [9] appear to contradict this fundamental claim.
Lozes concentrates on expressivity for closed formulae, determin-
ing whether an arbitrary closed formula specifying asetof data in
one logic can be expressed by a formula in the other logic speci-
fying the same set of data. For example, Lozes has shown that SL
and Propositional Logic (PL) with simple atomic heap formulae
are equally expressive using this definition of expressivity. How-
ever, our experience says that SL is more expressive than PL,since
for example we can reason directly about disjointness and dynamic
update of linked lists. We solve this apparent mismatch between
the theoretical results and our practical experience by proving in-
expressivity results for stronger definitions of expressivity.

SL forms the basis of local Hoare reasoning about heap update.
An important part of the reasoning is to be able to express the
weakest preconditions, which provide completeness for straight-
line code and have a key role in some verification tools (to verify a
Hoare triple, first find the weakest precondition of a given postcon-
dition and then prove that the given precondition implies the weak-
est precondition). Our results show that the weakest preconditions
cannot be expressed in PL for heaps. To illustrate this, consider
the weakest precondition of allocation(n7→0)−∗ p, specifying that
whenever a cell with addressn and value0 is added to the given
heap then the resulting heap satisfies post-conditionp. Lozes’ result
says that, for every interpretation ofp as a set of data determined
by a closed formula, there is a corresponding PL-formula. How-
ever, these PL-formulae are highly non-uniform with respect to the
post-conditionp, and Lozes’ result says nothing about whether the
weakest precondition itself can be specified in PL. We show that
it is not possible, by studying expressivity for open formulae con-

1 In this paper, we do not consider quantification.

taining propositional variables. This notion of expressivity deter-
mines whether an arbitrary open formula in one logic, specifying
a function from sets to data to sets of data, can be expressed by a
formula in the other logic. There are two choices for the domain
of this function, either as sets of data specified by closed formulae
or as arbitrary sets of data. The first option is enough to determine
whether the weakest precondition can be specified in PL. It does not
however allow for natural extensions to SL, such as the addition of
inductive predicates. We therefore study the second option. We call
this type of expressivityparametric expressivity, and show that SL
is parametrically more expressive than PL for heaps by demonstrat-
ing that(n7→0) −∗ p cannot be expressed in PL.

Although the SL-adjoint−∗ is important for the weakest pre-
conditions and has a key role in some proofs [12], it is not typi-
cally used for specifying safety properties. For example, it plays
no role in the verification tool Smallfoot [1], which combines in-
ductive predicates with a cut-down decidable fragment of SL(with
quantification). A more fundamental SL-formula isp∗q specifying
that the heap can be split into two disjoint parts, one satisfying p
and the otherq. Lozes’ results imply that, for every interpretation
of p andq as sets of data corresponding to closed formulae, there
is a corresponding PL-formula. Again, the PL-formulae are highly
non-uniform. We show that it is not possible to express parametri-
cally this formula in PL. However, with the Smallfoot application
in mind, it is perhaps more interesting to determine a specific in-
expressivity result, that it is not possible to expressp ∗ q in PL
with the interpretation ofp aslist(3), denoting the existence of a
0-terminated linked list starting at address3, andq as list(4). To
do this, we study the notion ofstrong expressivitywhich states that,
for a specificinterpretation of the propositional variables as arbi-
trary sets of data, every formula with propositional variables in one
logic can be expressed in the other logic.

To prove our strong inexpressivity results, we use a standard
bisimulation technique from ML. For example, consider the heaps

h1 = [3 7→ n′, 4 7→ n′′, n′ 7→ 0, n′′ 7→ 0]

h2 = [3 7→ n′, 4 7→ n′, n′ 7→ 0, n′′ 7→ 0].

These heaps are distinguished by SL-formulap ∗ q, with the in-
terpretation ofp andq as the listslist(3) andlist(4) respectively,
sinceh1 can be split into the appropriate disjoint lists whereash2

cannot due to the sharing at addressn′. Our proof shows that there
is a PL-bisimulation relation relatingh1 andh2. Bisimulation has
the well-known property that it is contained in logical equivalence.
Thus, the heapsh1 andh2 are indistinguishable using PL.

Our original motivation for studying parametric inexpressivity
results came from studying CL for trees and AL. We introduced
CL to provide local Hoare reasoning about tree update [3], demon-
strating that it was not possible to base our Hoare reasoningon AL
since it had a missing adjoint. Whilst we believe that our argument
was convincing, it was an argument given by example rather than
by a formal inexpressivity result. Lozes’ expressivity results, fo-
cussing on the closed formulae, show that the argument is subtle
since AL (without quantifiers) is as expressive as the logic without
the structural adjoints [9, 6]. We prove that CL for trees is paramet-
rically more expressive than AL. Unlike the results for SL, we do
not know how to prove this directly. Instead, we prove a strong in-
expressivity result using an analogous proof method to thatoutlined
above. Since strong inexpressivity implies parametric inexpressiv-
ity, we have the result. In addition, we prove that CL for trees minus
the extra adjoint is parametrically as expressive as AL, thus show-
ing that the additional strength of the CL-reasoning does indeed
come from this additional adjoint. We also prove similar results for
CL for sequences and a variation of BL applied to sequences (∗ is
non-commutative). Sequences provide the simplest exampleof the

differences between CL- and BL-reasoning. Again, we prove our
parametric inexpressivity result via strong inexpressivity.

2. Context Logic and Bunched Logic
We review the general theory of CL and BL.

2.1 Context Logic

We introduced CL to reason about data update [3]. Local data up-
date typically identifies the portion of data to be replaced,removes
it, and inserts the new datain the same place. With CL, we reason
about both data and this place of insertion (contexts). CL consists
of data formula denoted byP , and context formulae denoted byK.
In each case, these include standard formulae from propositional
logic, and less familiar structural formulae for directly analysing
the data and context structure.

Definition 1 (CL-Formulae). The set of CL-formulae consists of
disjoint sets ofdata formulaeP and context formulaeK, con-
structed from a set of propositional variablesV = VP ∪ VK where
VP and VK are disjoint, countably infinite sets of propositional
data variables and context variables respectively. The formulae
are given by the grammars:

data formulae

P ::= K(P) | K ⊳ P structural formulae
P ∨ P | ¬P | false additive formulae
p, p1, p2, . . . prop vars inVP

context formulae

K ::= I | P ⊲ P structural formulae
K ∨ K | ¬K | False additive formulae
k, k1, k2, . . . prop vars inVK

The key formulae are the structural formulaeK(P), K ⊳ P ,
P1 ⊲ P2 andI . Theapplication formulaK(P) specifies that the
given data element can be split into a context satisfyingK applied
to data satisfyingP . For example, if we define the context formula
True, ¬False, then the formula True(P) states that some subdata
satisfies propertyP . The next two formulae are both (right) adjoints
of application. The formulaK ⊳ P is satisfied by the given data
if, wheneverwe insert the data into a context satisfyingK, then
the result satisfiesP . For example, the formula(True⊳ P) states
that, when the data is put in any context, the resulting data satisfies
propertyP . The analogous connectives for AL have been used to
describe security properties of trees (ambients). Meanwhile, P1 ⊲
P2 is a statement on contexts. It is satisfied by a given context if,
wheneverwe insert in the context some data satisfyingP1, then the
result satisfiesP2. Given the derived data formula true, ¬false,
the context formula(true⊲P2) states that, regardless of what data is
put in the context hole, the resulting data satisfies property P2. This
adjoint is essential for expressing weakest preconditionsfor update
commands, as we demonstrated in [3], and has no counterpart in
AL. The context formulaI specifies the empty context.

Definition 2 (CL-Model). A CL-modelM is a tuple (D, C, ap, I)
such that

1. D andC are sets;
2. ap ⊆ (C ×D)×D is a relation, calledapplication: we use the

notationap(c, d1) = d2 for ((c, d1), d2) ∈ ap;
3. I ⊆ C acts as a left identity toap: that is,

• ∀d ∈ D, ∃i ∈ I, d′ ∈ D. ap(i, d) = d′;
• ∀d, d′ ∈ D, ∀i ∈ I. ap(i, d) = d′ impliesd = d′.

We often callD thedata setandC the context set, because of
the form of our motivating examples. Of course, there are mod-
els which do not fit this structured data intuition. We prove com-
pleteness for these CL-models (theorem 23) and the analogous BL-
models (section 3.2).

Example 3.

• MonD = (D,D, ·, {e}) whereD is a partial monoid with
binary operation· : (D ×D) ⇀ D and unite ∈ D.

• Heap is an example ofMonD whereD = N+ ⇀fin N is the
set of finite partial functions denoting the heaps ande denotes
the empty heap. The domainN+ = N − {0} does not include
0 as it is reserved for the null location. Given heapsh, h′, the
heap compositionh · h′ is function union which is only defined
whendom(h) ∩ dom(h′) = ∅.

• TermΣ = (DΣ, CΣ, ap, { }) whereDΣ is the data set of
terms constructed from the n-ary function symbols in signature
Σ, CΣ is the corresponding set of contexts,ap denotes the
standard application of contexts to terms, anddenotes the
empty context.

• SeqA = (DA, CA, ap, { }) whereDA is the set of sequences
constructed from the elements in alphabetA, CA is the corre-
sponding set of contexts, andap and are as forTermΣ.

• TreeA is an example ofTermΣ with an additional equality
relation on terms. The terms are generated by the signatureΣ
constructed from the setsΣ0 = {0}, Σ1 = A andΣ2 = {|},
whereΣi denotes the function symbols of arityi. We use the
notationt | t′ for |(t, t′) anda[t] for a(t). Terms are considered
modulo an equality relation generated by the axioms0 | t ≡ t,
t | t′ ≡ t′ | t, (t | t′) | t′′ ≡ t | (t′ | t′′), and closed by the
obvious structural rules for the function symbols.

• RelD = (D,P(D × D), ap, {i}) whereD is an arbitrary
set,P(D × D) denotes the set of binary relations onD, ap
is relational application, andi is the identity relation.

Definition 4 (CL-Satisfaction Relation). Given a CL-modelM =
(D, C, ap, I), the CL-satisfaction relation�CL consists of two re-
lationsσ,M, d �P P and σ,M, c �K K whered ∈ D, c ∈ C
and interpretation functionσ : V → P(D∪K) maps data proposi-
tional variables to sets of data, and context propositionalvariables
to sets of contexts. The two relations are defined by induction on the
structure of the formulae: the cases for the propositional variables
and the boolean additive connectives are standard; the cases for
the structural connectives are

σ,M, d �P K(P) iff ∃c ∈ C, d′ ∈ D.
ap(c, d′) = d ∧ σ,M, c �K K ∧ σ,M, d′ �P P

σ,M, d �P K ⊳ P iff ∀c ∈ C, d′ ∈ D.
σ,M, c �K K ∧ ap(c, d) = d′ ⇒ σ,M, d′ �P P

σ,M, c �K I iff c ∈ I

σ,M, c �K P1 ⊲ P2 iff ∀ d, d′ ∈ D.
σ,M, d �P P1 ∧ ap(c, d) = d′ ⇒ σ,M, d′ �P P2

We sometimes omit the subscriptsP andK.

In section 4, we study applications of CL to heaps, sequencesand
trees, which extend CL with simple atomic formulae specific to
these models. Here, we use theSeqA model and the additional
zero formula0, denoting the empty sequence, to illustrate our CL-
reasoning. Consider the derived formula1 , ¬0 ∧ ¬(¬I)(¬0),
which states that the sequence only contains one element: that is,
it is non-empty and cannot be split into a non-empty context and
non-empty data. Now consider the judgement

σ, SeqA, s � (0 ⊲ p)(1),

whereσ(p) denotes the set of sequences with equal elements and
s denotes a sequence. This judgement only holds ifs is non-empty
and all the elements ins are equal except possibly one: for example,
it holds whens is b · a · b, but not whens is b · a · c.

We use the standard derived classical formulae for both dataand
context formulae: true,P ∧ P andP ⇒ P ; similarly for contexts,
writing True for the context formula that is always satisfied. We
shall also use the following derived formulae:

• ⋄P , True(P) specifies that somewhere propertyP holds;

• P1 ◮ P2 , ¬(P1 ⊲ ¬P2) specifies thatthere existssome data
element satisfying propertyP1 such that, when it is put in the
hole of the given context, the resulting data satisfiesP2;

• K ◭ P2 , ¬(K ⊳ ¬P2) specifies thatthere existsa context
satisfying propertyK such that, when the given data element is
put in the hole, the resulting data satisfiesP2.

We give a Hilbert-style proof theory, following the style for BL
in [10]. The axioms and rules for the structural operators state that
K⊳P2 andP1⊲P2 are right adjoints ofK(P1), andI is the identity
of application.

Definition 5 (CL-Proof Theory). The Hilbert-style CL-proof the-
ory consists of the standard axioms and rules for the booleanaddi-
tive connectives, and the following axioms and rules for thestruc-
tural connectives:

P ⊣⊢P I(P)

K1 ⊢K K2 P1 ⊢P P2

K1(P1) ⊢P K2(P2)

K(P1) ⊢P P2

K ⊢K P1 ⊲ P2

K ⊢K P1 ⊲ P2 P ⊢P P1

K(P) ⊢P P2

K(P1) ⊢P P2

P1 ⊢P K ⊳ P2

P1 ⊢P K ⊳ P2 K1 ⊢K K

K1(P1) ⊢P P2

We sometimes omit the subscripts in⊢P and⊢K, and sometimes
write⊢CL to refer explicitly to this CL-proof theory.

The proof theory given here emphasises the right adjoint proper-
ties of⊳ and⊲. In the next section, we show that this proof theory
is equivalent to the standard ML-proof theory plus an additional set
of axioms specific to CL. This alternative formulation emphasises
the derived connectives◮ and◭ instead.

2.2 Bunched Logic

We also present (a variant of) BL [10], its models and satisfaction
relation, and compare it to CL. We use the notation◦ and −◦,
instead of the standard∗ and−∗ for the multiplicative conjunction
and its adjoint. Our variation of standard BL does not require ◦ to
be commutative, since one of our key example models is sequences
where◦ denotes concatenation.

Definition 6 (BL-Formulae). The set of BL formulaeP is con-
structed from a countably infinite set of propositional variablesVP ,
and defined by the grammar:

P ::= 0 | P ◦ P | P ◦− P | P −◦ P structural formulae
P ∨ P | ¬P | false additive formulae
p, p1, p2, . . . prop vars inVP

The key formulae are the structural formulae0, P1 ◦ P2, P1 ◦− P2

andP1−◦P2. Thezeroformula0 specifies empty data. Thecompo-
sition formula splits the given data into two parts, the first satisfying
P1 and the secondP2. For example, the formula¬ 0 ◦¬ 0 specifies
that the given data can be split into two disjoint, non-emptyparts.
Unlike the original BL, we have two right adjoints, due to◦ be-
ing non-commutative:P1 ◦−P2 specifies that,wheneversome data
satisfyingP1 is placed to the left of the given data, then the result

satisfiesP2; the other adjointP1 −◦ P2 places data to the right. This
distinction has no effect in the heap model, but is importantin the
sequence model. As in CL, we define the negation duals of the ad-
joints asP1−•P2 , ¬(P1−◦¬P2) andP1•−P2 , ¬(P1◦−¬P2).

Definition 7 (BL-Model). A BL-modelM is a tuple (D, ·, e) such
that

1. D is a set;
2. · ⊆ (D×D)×D is an associative relation: we use the notation

d1 · d2 = d3 for ((d1, d2), d3) ∈ ·;
3. e ⊆ D acts as a left and right identity to· : that is,

• ∀d ∈ D, ∃e ∈ e, d′ ∈ D. e · d = d′

• ∀d ∈ D, ∃e ∈ e, d′ ∈ D. d · e = d′

• ∀d, d′ ∈ D, ∀e ∈ e. e · d = d′ or d · e = d′ impliesd = d′.

Any BL-modelM = (D, ·, e) can be transformed into a CL-model
MBL = (D,D, ·, e). We highlight specific BL-models for heaps,
sequences and trees, since we will use them throughout this paper.

Example 8.

• Heap = (D, ·, {e}) whereD, · ande are as in Example 3.
• SeqA = (DA, ·, {0}) whereDA is the set of sequences con-

structed from the elements in setA, · is sequence concatenation,
and0 is the empty sequence.

• TreeA = (DA, |, {0}) whereDA is the set of trees in Exam-
ple 3,| is horizontal tree composition, and0 is the empty tree.

Contrast these BL-models with the analogous CL-models given
in Example 3, which also emphasise the context structure. The heap
model is essentially the same, with the context set being thesame as
the data set. However, the sequence and tree models are different,
since the context set is more complex than the data set.

Definition 9 (BL-Satisfaction Relation). Given a BL-modelM =
(D, ·, e), the BL-satisfaction relation is of the formσ,M, d �BL P
whered ∈ D, andσ : VP → P(D). As before, it is defined by
induction on the structure of formulae. We only give the cases for
the structural connectives:

σ,M, d �BL P1 ◦ P2 iff ∃d1, d2 ∈ D.
d1 · d2 = d ∧ σ,M, d1 �BL P1 ∧ σ,M, d2 �BL P2

σ,M, d �BL 0 iff d ∈ e

σ,M, d �BL P1 −◦ P2 iff ∀ d1, d2 ∈ D.
σ,M, d1 �BL P1 ∧ d · d1 = d2 ⇒ σ,M, d2 �BL P2

σ,M, d �BL P1 ◦− P2 iff ∀ d1, d2 ∈ D.
σ,M, d1 �BL P1 ∧ d1 · d = d2 ⇒ σ,M, d2 �BL P2

Consider the BL-modelSeqA, the derived BL-formula1 , ¬0 ∧
¬(¬0◦¬0) specifying sequences of length one, and the BL-relation

σ, SeqA, s �BL (0 −◦ p) ◦ 1,

whereσ(p) again denotes the set of sequences with equal elements.
This relation only holds ifs is a non-empty sequence consisting
of equal elements except the last one which can be anything: for
example, the relation holds whens is b·b·a, but does not hold when
s is b ·a ·b andb ·a ·c. This simple example illustrates the difference
between BL- and CL-reasoning: BL-reasoning analyses the ends
of the sequences, whereas CL-reasoning also analyses the middle.
However, when the CL-model arises from a BL-model, there is a
strong relationship between BL-reasoning and and CL-reasoning.
We give this correspondence explicitly for heaps in Proposition 26.

The Hilbert-style BL-proof theory consists of analogous rules
to those given for the CL-proof theory (Definition 5), with an
additional axiom for the associativity of◦.

3. Connection to Modal Logic
We recall some general theory of ML, and show how CL and BL
fit within this formalism. We prove completeness results relating
the CL- and BL-proof theories with their respective models,by
appealing to a general theorem of ML due to Sahlqvist.

Definition 10 (ML-Signature). A ML-signature is a tripleΣ =
(S ,O, ρ : O → T), whereS is a set of sorts ranged over byS,
O is a set of modalities ranged over by∆, T is a set of types of
the form(S1, . . . , Sn) → S for Si, S ∈ S , andρ is a function. We
write ∆ : T whenρ(∆) = T .

Definition 11 (ML-Model2). Given a ML-signatureΣ = (S ,O, ρ),
a ML-modelMΣ generated fromΣ consists of a setMS for each
S ∈ S , and an interpretationM∆ ⊆ (MS1

×· · ·×MSn)×MS

for each modality∆ of type(S1, . . . , Sn) → S.

Example 12 (ML-signature for CL). Consider the ML-signature
ΣCL consisting of two sorts D, C with modalitiesap : (C, D) → D,
I : () → C, ◮: (D, D) → C and◭: (C, D) → D. Given a CL-
modelM = (D, C, ap, I), we can view it as a ML-modelMΣCL

,
whereMD = D, MC = C, the interpretationsMap and MI

are inherited from the CL-model, andM◮ and M◭ are given
by (c, d, d′) ∈ Map iff (d, d′, c) ∈ M◮ iff (c, d′, d) ∈ M◭ .
Hence, every CL-model can be interpreted as a ML-model. Notice
that not all ML-models over signatureΣCL are CL-models, since
theI modality need not have any relationship to theap modality.

Definition 13 (ML-Formulae). Given ML-signatureΣ = (S ,O, ρ)
and disjoint, countably infinite setsVS of propositional variables
for each sortS, the setPΣ of ML-formulae overΣ is given by

P ::= pS | P1 ∨ P2 | ¬P | falseS | ∆(P1, . . . , Pn)

wherepS ∈ VS and, for each∆ : (S1, . . . , Sn) → S, the formula
∆(P1, . . . , Pn) has sortS provided thePi have sortSi. We write
PΣS

for the set of formulae of sortS generated from signatureΣ.

Definition 14 (ML-Satisfaction Relation). Given ML-signature
Σ = (S ,O, ρ) and ML-modelMΣ, the ML-satisfaction relation
�ML consists of relations of the formσ,M, m �S P for each
sort S ∈ S , wherem ∈ MS , formulaP has sortS and, for each
propositional variablep′

S , σ(p′
S) ⊆ MS . It is defined by induction

on the structure of ML-formulae, with the modality case given by

σ,M, m �S ∆(P1, . . . , Pn) ⇔ ∀i ∈ {1, . . . , n}. ∃mi.

σ,M, mi �Si
Pi ∧ ((m1, . . . , mn), m) ∈ M∆.

The other cases are evident.

Example 15. Given CL-modelM and corresponding ML-model
MΣCL

from example 12, the CL- and ML-satisfaction relations
are equal in the following sense. Define a translation function
| | : P∪K → PΣCL

from CL-formulae to ML-formulae overΣCL,
by induction on the structure of the CL-formulae such that each
case follows the structure of the formulae except that|P1 ⊳ P2| ,

¬(|P1| ◭ ¬|P2|) and|P1 ⊲ P2| , ¬(|P1| ◮ ¬|P2|). We have

σ,M, d �CL P ⇔ σ,MΣCL
, d �ML |P |

σ,M, c �CL K ⇔ σ,MΣCL
, c �ML |K|

Recall that not all ML-models over signatureΣCL correspond
to CL-models. To get a precise correspondence with CL, we will
restrict the class of ML-models to those satisfying a certain set of
CL-axioms. We first describe the general theory.

Definition 16 (AX-Model). Given a ML-signatureΣ and a set of
axiomsAX ⊆ PΣ, anAX-model generated fromΣ is a ML-model
M generated fromΣ which also satisfiesσ,M, m �S P for all
m ∈ MS , P ∈ AX andσ.

2 Note that what we call a ML-model is typically called a frame in e.g. [2].

Definition 17 (AX-Proof Theory). Given a ML-signatureΣ and a
set of axiomsAX ⊆ PΣ, the ML-proof theory3 generated byAX
consists of the following axioms and rules:

⊢ P ⇒ Q ⊢ P

⊢ Q

P ∈ AX

⊢ P

P tautology

⊢ P
⊢ P

⊢ P [P ′/p]

△ : (S1, . . . , Sn) → S

⊢ △(p1, . . . , falseSi
, . . . , pn) ⇔ falseS

P () = △(p1, . . . , , . . . , pn)

⊢ P (pi ∨ p′
i) ⇔ P (pi) ∨ P (p′

i)

We sometimes write⊢AX to emphasise the setAX.

There is a well-known general completeness result for ML due
to Sahlqvist, which relates the AX-satisfaction relation and the AX-
proof theory as long as the axioms have a certain form. We state the
result here, since we use it to show completeness for CL.

Definition 18 (Very Simple Sahlqvist Formulae). Given ML-
signatureΣ = (S ,O, ρ), a very simple Sahlqvist antecedentA
is a formula given by the grammar:

A ::= trueS | falseS | pS | A ∧ A | △(A1, . . . , An)

for pS ∈ VS and△ : (S1, . . . , Sn) → S. A very simple Sahlqvist
formula is an implication of the formA ⇒ P+, whereP+ is
a positive formula, in that every propositional letterpS appears
under an even number of negations.

Theorem 19(Sahlqvist (see [2])). For every axiom setAX con-
sisting of very simple Sahlqvist formulae, the ML-proof theory gen-
erated byAX is complete with respect to the class ofAX-models.

3.1 Context Logic as ML

We have shown that a CL-model can be viewed as a ML-model
over signatureΣCL (example 12), and that the corresponding sat-
isfaction relations agree (example 15). Now we identify an axiom
setAXCL over signatureΣCL, such that theAXCL-models cor-
respond exactly to the CL-models and the proof theories coincide.
Since theAXCL-axioms are Sahlqvist axioms, the general com-
pleteness result for ML (Theorem 19) implies completeness for CL.

Definition 20 (CL-Axioms). Given ML-signatureΣCL, the axiom
set AXCL over ΣCL consists of the following formulae, where
p, q ∈ VD andk ∈ VC :

1. I(p) ⇒ p
2. p ⇒ I(p)
3. q ∧ k(p) ⇒ True(p ∧ (k ◭ q))
4. q ∧ k(p) ⇒ (k ∧ (p ◮ q))(true)
5. p ∧ (k ◭ q) ⇒ True◭ (q ∧ k(p))
6. k ∧ (p ◮ q) ⇒ true ◮ (q ∧ k(p))

The axioms inAXCL are very simple Sahlqvist formulae. The
first two axioms correspond directly to the identity axiom ofCL.
The other axioms capture the relationship betweenMap,M◭ , and
M◮ , which simply permutes elements (Example 12). For example,
the third axiom species that, if the given data satisfiesq and can
be split into a context satisfyingk and subdata satisfyingp, then
there exists subdata satisfyingp and k ◭ q (think of the same
subdata). This axiom shifts the emphasis from the given datato
the subdata. The fifth axiom is a sort of converse. It states that, if
the given data satisfiesp andk ◭ q, then it is possible to enclose
it in a context (actually one satisfyingk), such thatq and k(p)
are satisfied. The third and fifth axiom together describe theexact
connection betweenMap andM◭ . Similarly, the fourth and sixth
axiom describe the exact connection betweenMap andM◮ .

3 This is called the normal modal proof theory in [2].

We have already illustrated how a CL-model can be interpreted
as a ML-model (Example 12). This ML-model is indeed aAXΣCL

-
model. Conversely, everyAXΣCL

-model gives rise to a CL-model.

Lemma 21.

1. Every CL-ModelM gives rise to anAXCL-modelMΣCL
.

2. EveryAXCL-modelM gives rise to a CL-modelMAXCL
.

3. The CL-modelM equals the CL-model(MΣCL
)AXCL

.
4. TheAXCL-modelM equals theAXCL-model(MAXCL

)ΣCL
.

5. The satisfaction relations agree.

Proof. Part 1 follows from Example 12 by observing that theAX-
axioms are satisfied byMΣCL

. The construction ofMAXCL
and

the proof of part 2 is given below. Parts 3 and 4 follow from the
constructions of the models. Part 5 is stated in more detail and
proved in Example 15. For part 2, letM be aAXCL-model, with
setsMD andMC, and interpretationsMap, MI , M◭ andM◮ .
The tupleMAXCL

= (MD,MC,Map,MI) is a CL-model. In
particular, axioms1 and2 give the condition thatMI is a left unit
of Map. Axioms 3 to 6 give the condition(c, d, d′) ∈ Map ⇔
(c, d′, d) ∈ M◭ ⇔ (d, d′, c) ∈ M◮ , which captures exactly the
relationship between connectivesap, ◭, ◮.

Finally, we connect the proof theory of CL andAXCL.

Lemma 22. Given arbitraryP1, P2 ∈ P andK1, K2 ∈ K,

P1 ⊢CL P2 iff ⊢AXCL
|P1| ⇒ |P2|

K1 ⊢CL K2 iff ⊢AXCL
|K1| ⇒ |K2|

Proof. For simplicity of notation we omit the explicit conversion
|P |. The proof consists of two parts:

1. the rules of⊢CL are derivable in⊢AXCL
;

2. the axioms inAXCL are derivable in⊢CL.

For each part we give one case in detail, the other cases follow
similarly. For the first part, we show that the following is derivable

⊢AXCL
K(P1) ⇒ P2

⊢AXCL
K ⇒ (P1 ⊲ P2)

First observe that

⊢AXCL
K ⇒ (P1 ⊲ P2) iff ⊢AXCL

¬((P1 ◮ ¬P2) ∧ K).

UsingAXCL-axiom 5, we obtain :

⊢AXCL
K ∧ (P1 ◮ ¬P2) ⇒ true◮ (¬P2 ∧ K(P1))

From the assumption⊢AXCL
K(P1) ⇒ P2 we have

⊢AXCL
true◮ (¬P2 ∧ K(P1)) ⇒ true◮ (¬P2 ∧ P2)

Since⊢AXCL
true◮ (¬P2 ∧ P2) ⇔ false, we have proved

⊢AXCL
¬((P1 ◮ ¬P2) ∧ K)

For the second part, we show that axiom3 is derivable, by
proving the following stronger version:

⊢CL q ∧ k(p) ⇒ k(p ∧ (k ◭ q))

Note that, for propositional variabler, we have:

⊢CL k(p) ⇔ k(p ∧ (r ∨ ¬r)) ⇔ k(p ∧ r) ∨ k(p ∧ ¬r)

If we replacer by ¬(k ◭ q), then our stronger version of axiom 3
follows from proving that

⊢CL q ∧ k(p ∧ ¬(k ◭ q)) ⇒ false

Since⊢CL p ∧ ¬(k ◭ q) ⇒ ¬(k ◭ q) and⊢CL ¬(k ◭ q) ⇔
k ⊳ ¬q by definition, we derive

⊢CL q ∧ k(p ∧ ¬(k ◭ q)) ⇒ q ∧ k(k ⊳ ¬q)

Finally, since⊢CL k(k ⊳ ¬q)) ⇒ ¬q, we conclude that

⊢CL q ∧ k(k ⊳ ¬q) ⇒ q ∧ ¬q ⇒ false

Theorem 23(Soundness and Completeness). The proof theory of
CL (Definition 5) is sound and complete with respect to the class of
CL-models (Definition 2).

Proof. Immediate from Theorem 19, using lemmas 21 and 22.

Using this result, it is also possible to prove completenessfor the
restricted class of functional CL-models: that is, those CL-models
whereap is a function. For each relational model, it is possible
to construct a functional model which satisfies the same formulae.
This proof is given in Zarfaty’s forthcoming thesis. In [3],we also
study CL with an additional zero formula0, since it has interesting
logical structure. It is possible to give additional axiomsfor 0, and
provide an analogous completeness result.

3.2 Bunched Logic as ML

We show how BL can be expressed in ML, by analogy with CL.
The ML-signatureΣBL consists of one sort D with the modalities
◦ : (D, D) → D, 0 : () → D, •− : (D, D) → D and
−• : (D, D) → D. The axiom setAXBL is:

1. 0 ◦ p ⇒ p

2. p ⇒ 0 ◦ p

3. (p ◦ q) ◦ r ⇒ p ◦ (q ◦ r)

4. p ◦ (q ◦ r) ⇒ (p ◦ q) ◦ r

5. q ∧ (r ◦ p) ⇒ true◦ (p ∧ (r •− q))

6. q ∧ (r ◦ p) ⇒ (r ∧ (p −• q)) ◦ true

7. p ∧ (r •− q) ⇒ true•− (q ∧ (r ◦ p))

8. r ∧ (p −• q) ⇒ true−• (q ∧ (r ◦ p))

The setAXBL is a set of very simple Sahlqvist formulae, and
hence we have an analogous completeness result to CL. We do not
know how to prove completeness for the functional BL-models,
because the construction of a functional model from a relational
model does not preserve associativity.

4. Applications of Context Logic
We shall study three applications of CL: heaps to give an example
where CL- and BL-reasoning are the same; sequences to give an
example where CL- and BL-reasoning is different; trees to provide
a more substantial example where the reasoning is different.

4.1 Heaps

CL for heaps is CL extended by specific modalities which can
be interpreted in the CL-modelHeap (Example 3). The extra
modalities specify the empty heap and heaps containing a specific
cell.

Definition 24 (CL for Heap). CL for heaps, denotedCLHeap, is
given by the ML-signatureΣCL+Heap consisting ofΣCL extended
by the modalities:

0 : () → D, n →֒ m : () → D

for everyn ∈ N+ andm ∈ N. The CL-modelHeap is a model of
CLHeap with the the additional modalities interpreted as:

M0 = {e} wheree denotes the empty heap
Mn→֒m = {h ∈ D | h(n) = m}

We have the following derived formulae:

• P1 ◦P2 , (0 ⊲ P1)(P2) specifying that a heap can be split into
two disjoint parts, one satisfyingP1 and the otherP2;

• n 7→ m , (n →֒ m) ∧ ¬(¬0 ◦ ¬0) specifying that the given
heaph contains just one cell withh(n) = m;

• P1 −◦ P2 , (0 ⊲ P1) ⊳ P2 specifying that, whenever a heap
satisfyingP1 can be composed with the given heap, the result
satisfiesP2.

To illustrate the difference between◦ and∧, notice that the formula
(n 7→ m) ◦ (n 7→ m) is not satisfied by any heap, whereas the
formula (n 7→ m) ∧ (n 7→ m) specifies a one-cell heap. Also,
notice that logical equivalence ofCLHeap is heap equality. This
strength of analysis is typical for this style of logical reasoning.

BL for heaps is Separation Logic [11]. It is defined similarlyto
CLHeap, by extending the signatureΣBL to include modalities for
specifying the existence of heap cells.

Definition 25 (BL for Heap). BL for heaps, denotedBLHeap, is
given by the ML-signature

ΣBL+Heap = ΣBL ∪ {n →֒ m : () → D | n ∈ N+, m ∈ N}.

The BL-modelHeap is a model ofBLHeap, with the interpretation
of the additional modalities defined in Definition 24.

Again, we can derive the BL-formulan 7→ m denoting a one-
cell heap. In SL, this formula is primitive. We choosen →֒ m as
primitive here, because of a comparison with propositionallogic
given in Section 5, wheren →֒ m is the natural atomic formula.

From the derived CL-formulae given previously, we know that
BLHeap is a sublogic ofCLHeap. In fact, there is a collapse of the
CL-structure for the heap case, in thatCLHeap andBLHeap are
equivalent logics on data (Proposition 26). This result is strong, in
that it implies that the logics are parametrically as expressive as
each other on data (Definition 31).

Proposition 26. Let PΣCL+Heap,VP
denote the restriction of set

PΣCL+Heap
to those formulae with propositional variables inVP ,

and similarly for BL. There exists a bijectionb : PΣCL+Heap,VP
→

PΣBL+Heap,VP
which preserves the satisfaction relation: that is,

σ, d �CL P ⇔ σ, d �BL
bP

σ, c �CL K ⇔ σ, c(0) �BL
bK

Proof. The translation is defined inductively on the structure of data
and context formulae. We give the cases for the modalities:

K̂(P) , bK ◦ bP bI , 0

K̂ ◭ P , bK −• bP ̂P1 ◮ P2 , cP1 −• cP2

b0 , 0 n̂ →֒ m , n →֒ m

The proof follows by induction.

4.2 Sequences

CL for sequences generated by alphabetA is CL extended by spe-
cific modalities which can be interpreted in the CL-modelSeqA

presented in Example 3. The additional modalities specify the
empty sequence, sequences with just one elementa ∈ A, and
modalities for analysing sequence contexts.

Definition 27 (CL for SeqA). CL for Sequences generated by al-
phabetA, denotedCLSeqA

, is given by the ML-signatureΣCL+SeqA

consisting ofΣCL extended by the modalities:

0 : () → D, a : () → D, ◦r : (C, D) → C ◦l : (D, C) → C

for a ∈ A. The CL-modelSeqA is a model ofCLSeqA
with the

interpretation of the additional modalities given by:

M0 = {0} where0 denotes the empty sequence
Ma = {a} for eacha ∈ A
M◦r = {(c, s, c · s) | c ∈ CA, s ∈ DA}
M◦l

= {(s, c, s · c) | s ∈ DA, c ∈ CA}

We will use the notationK ◦ P for ◦r(K, P) and P ◦ K for
◦l(P, K), overloading◦ as the subscripts can be inferred.

We require the additional modalities◦r and ◦l for analysing se-
quence contexts, since unlike the heap case these cannot be derived
from application. We can derive a formula for sequence compo-
sition P1 ◦ P2 , (P1 ◦ I)(P2) which specifies that a sequence
can be split into two sequences, the left one satisfyingP1 and
the right oneP2. This is logically equivalent to(I ◦ P2)(P1).
We also derive the two corresponding right adjoints: the formula
P1 ◦− P2 , (P1 ◦ I) ⊳ P2 specifies that, whenever a sequence sat-
isfying propertyP1 is joined to the left of the given sequence, then
the result satisfiesP2; similarly for P1 −◦ P2 , (I ◦ P1) ⊳ P2. For
example, the formulaa−◦ P specifies that joininga to the right of
the sequence results in a sequence satisfyingP . In contrast, notice
that the formula(a ⊲ P)(0) specifies that, whenever ana is put
somewherein the given sequence, then the result satisfies property
P . Again, logical equivalence ofCLSeqA

is sequence equality.

Definition 28 (BL for SeqA). BL for sequences generated from
alphabetA, denotedBLSeqA

, is given by the ML-signature

ΣBL+Heap = ΣBL ∪ {a | a ∈ A}.

The BL-modelSeqA is a model ofBLSeqA
with the interpretation

of the additional modalities defined as given in Definition 27.

BLSeqA
is a sublogic ofCLSeqA

. Unlike the heap case, there
is no collapse of the CL-reasoning, and the question of whether
CLSeqA

is more expressive thanBLSeqA
is subtle. Consider the

CL-formula(0 ⊲ b ◦ c)(a). It is logically equivalent to the formula
a ◦ b ◦ c ∨ b ◦ a ◦ c ∨ b ◦ c ◦ a. Now consider the CL-formula
(0⊲ True(b))(a). It is equivalent to true◦ b ◦ true◦a ◦ true∨ true◦
a ◦ true◦ b ◦ true, which has very different structure to the previous
example. We shall see in section 5.2 thatCLSeqA

andBLSeqA

are equality expressive in the sense that every CL-formula without
propositional variables has an equivalent BL-formula. However,
they are notparametricallyas expressive, in the sense that the CL-
formula (0 ⊲ p)(a), for propositional data variablep, cannot be
expressed inBLSeqA

. By contrast,CLSeqA
without the◮ modality

is parametrically as expressive asBLSeqA
.

4.3 Trees

CL for trees generated by alphabetA is CL extended by specific
modalities which can be interpreted in the CL-modelTreeA pre-
sented in Example 3. The additional modalities correspond to the
empty tree, and modalities for analysing tree contexts.

Definition 29 (CL for TreeA). CL for trees, denotedCLTreeA
,

is given by the ML-signatureΣCL+TreeA
consisting ofΣCL ex-

tended by the additional modalities:

0 : () → D, µ : (C) → C, ◦ : (D, C) → C

whereµ ::= a | a⊥ for a ∈ A. The CL-modelTreeA is a model of
CLTreeA

with the interpretation of the additional modalities given

by:

M0 = {0} where0 denotes the empty tree
Ma = {(c, a[c]) | c ∈ C}
Ma⊥ = {(c, a′[c]) | c ∈ C, a′ ∈ A − {a}}
M◦ = {(t, c, t | c) | t ∈ D, c ∈ C}

We writeµ[K] for µ(K), andP ◦ K for ◦(P, K).

Apart from the0, the additional modalities describe ways of
analysing tree contexts: either tree contexts consist of a rootµ with
a subcontext underneath, or they can be split at the top levelinto
data and a context. The rootµ can either be the node labela ∈ A,
or a⊥ denoting any label which is nota. The a⊥ modalities are
not given explicitly in [3], since they are derivable with existential
quantification and label equality. They are important for our com-
parison with BL-reasoning, and also play a prominent role inlogic-
based query languages for XML (see XDUCE [7]). We only require
one modality◦ for splitting contexts, since our tree composition is
commutative. Analogous to the heap case, we have the derivedfor-
mulaeP1 ◦ P2 , (P1 ◦ I)(P2) andP1 −◦ P2 , (P1 ◦ I) ⊳ P2.

Definition 30 (BL for TreeA). BL for trees generated from
alphabet A, denotedBLTreeA

, is given by the ML-signature
ΣBL+TreeA

consisting ofΣBL extended by the modalities:

µ : (D) → D, bµ : (D) → D, ⋄ : (D) → D b⋄ : (D) → D

The BL-modelTreeA is a model ofBLTreeA
with the interpreta-

tion of the additional modalities given by:

Ma = {(t, a[t]) | t ∈ D}
Ma⊥ = {(t, a′[t]) | t ∈ D, a′ ∈ A − {a}}
Mbµ = {(a′[t], t) | (t, a′[t]) ∈ Mµ}
M⋄ = {(t, c(t)) | t ∈ D, c ∈ C}
Mb⋄ = {(c(t), t) | (t, c(t)) ∈ M⋄}

BLTreeA
is a sublogic ofCLTreeA

. The BL-formula µ[P]
specifies a tree with top node described byµ. It is derivable in
CLTreeA

as (µ[P ◦ I])(0). The modalitiesa⊥ are essential to
express deep properties of trees in BL. For example, let1 denote
all the trees with one node. InCLTreeA

, this can be expressed as
¬(¬I(¬0))∧ ¬0. It is expressed inBLTreeA

asa[0] ∨ a⊥[0], and
is not expressible without thea⊥ modality. The BL-formulabµ[P]
is the adjoint. It specifies that, whenever a top node is addedto the
given tree with label specified byµ, the resulting tree satisfiesP .
It corresponds to the CL-formulaµ[I] ⊳ P . AL has the formula
ba[P], with ca⊥[P] derivable using existential quantification and
label equality. The BL-formula⋄(P) denotes that there is a subtree
satisfying P . Recall that this is expressible in CL as True(P).
Finally, the BL-formulab⋄(P) is the corresponding adjoint. It states
that the given tree can be put in a context such that the result
satisfiesP , and is expressible in CL as True⊳ P . AL has the
formulae⋄(P), but surprisingly not the corresponding adjoint. We
will see thatb⋄ plays an important role in an expressivity result
linking BL- and CL-reasoning without◮ (Theorem 40).

Just as for sequences, the CL-reasoning does not collapse for
trees, and the comparison betweenCLTreeA

andBLTreeA
is sub-

tle. Consider the CL-formula(0 ⊲ b[0])(a[true]), which specifies
that we can remove a subtree with root labela to obtain a tree with
one node labelledb. It corresponds to the BL-formulaa[true]◦b[0]∨
b[a[true]]. Now consider the CL-formula(0 ⊲ ⋄b[true])(a[true]).
It corresponds to the BL-formula⋄(b[⋄a[true]]) ∨ ⋄(⋄(b[true]) ◦
⋄(a[true])). Notice that the structure of the CL-formulae is sim-
ilar, but the structure of the derivable BL-formulae is quite dif-
ferent. In Section 5.3, we shall see thatCLTreeA

andBLTreeA

are not parametrically as expressive, in the sense that CL-formula
(0 ⊲ p)(a[true]) cannot be expressed inBLTreeA

. CLTreeA
with-

out the◮ modality is as expressive asBLTreeA
.

5. Parametric Expressivity
We present our expressivity results. We prove parametric inexpres-
sivity results comparing BL for heaps with and without the struc-
tural connectives, using a direct proof method. We prove strong
inexpressivity results for specific interpretationsσ, corresponding
to the extension of BL with list predicates. We also study para-
metric inexpressivity results comparing CL and BL for sequences
and trees. We cannot prove the parametric results directly for these
applications. Instead, we prove strong inexpressivity results, and
hence by implication the parametric results. In addition, we study
BL for bounded heaps, presenting logics which have the same
strong expressivity for every interpretationσ, but different para-
metric expressivity.

First some notation. Given ML-signatureΣ = (S ,O, ρ) and
AX-modelMΣ, we letLMΣ,V denote the modal logic determined
by Σ andMΣ with propositional variables inV. We useLMΣ,VS

to denote the restriction to propositional variables of sort S, and
LMΣ,{p} for the restriction to propositional variablep. We write
LMΣ,V (−△) for the logic without modality△. For example,
CLSeqA,VD (−{◮}) denotesCLSeqA

without modality◮ and with
the propositional variables restricted to sort D.

Definition 31 (Parametric Expressivity). Let Σ = (S ,O, ρ) and
Σ′ = (S ′, O′, ρ′) be two ML-signatures with sortS ∈ S ∩ S ′.
Consider two modelsM,M′ over the respective signatures such
thatMS = M′

S . Consider the logicsLM,VS
andLM′,VS

.

1. Logic LM′,VS
is as expressive asLM,VS

with respect to
sort S, written LM,VS

⊆S LM′,VS
, if and only if ∀P ∈

LM,VS
.∃P ′ ∈ LM′,VS

. ∀σ.∀m ∈ MS.

σ,M, m �S P ⇔ σ,M′, m �S P ′ .

We often writeLM,VS
⊆ LM′,VS

since the sortS is apparent.
2. Given σ, logic LM′,VS

is as σ-expressive asLM,VS
with

respect to sortS, written LM,VS
⊆S,σ LM′,VS

, if and only
if ∀P ∈ LM,VS

.∃P ′ ∈ LM′,VS
. ∀m ∈ MS.

σ,M, m �S P ⇔ σ,M′, m �S P ′ .

Again, we writeLM,VS
⊆σ LM′,VS

sinceS is apparent.

We write LM,VS
= LM′,VS

when LM,VS
⊆ LM′,VS

and
LM,VS

⊇ LM′,VS
, andLM,VS

=σ LM′,VS
analogously.

In fact, we concentrate on inexpressivity results, asking when a
logic is strictly more expressive than another. We say thatLM′,VS

is parametrically more expressive thanLM,VS
iff LM,VS

(
LM′,VS

. We say thatLM′,VS
is strongly more expressive than

LM,VS
iff there exists aσ such thatLM,VS

(σ LM′,VS
.

To prove our strong inexpressivity results we rely heavily on
the notion of bisimulation. Bisimulation has the property that, if
two elements of the models are bisimilar, then they cannot bedis-
tinguished from each other in the logic, and hence can be directly
used to prove strong inexpressivity.

Definition 32 (Bisimulation). A symmetric binary relation∼ =S
S∈S ∼S with∼S⊆ MS ×MS is abisimulationfor ML-model

MΣ if and only if, whenever((m1, . . . , mn), m) ∈ M∆ and
m ∼ m′, then there existm′

i ∈ MSi
such thatmi ∼Si

m′
i

for i = 1 . . . n and ((m′
1, . . . , m

′
n), m′) ∈ M∆. A bisimulation

∼ is compatiblewith interpretationσ if and only if, for all m,p,
m ∈ σ(p)∧ m ∼ m′ ⇒ m′ ∈ σ(p).

Proposition 33. Let ∼ be a bisimulation compatible withσ for
ML-modelMΣ. Thenm1 ∼S m2 implies σ,M, m1 �S P iff
σ,M, m2 �S P for all P ∈ PΣS

.

To show thatLM,VS
(σ LM′,VS

, our proof method consists
of finding a formulaP ∈ LM′,VS

of sortS and a bisimulation∼
for M compatible withσ, such thatP distinguishes two elements

which are identified by∼. Inexpressivity then follows from Propo-
sition 33 that no formula inPΣ can distinguish the two elements.

5.1 Heaps

We have the following results about heaps:

• BLHeap,VD = CLHeap,VD

• BLHeap,∅(−{−•} + {n→֒−}) = BLHeap,∅

• BLHeap,{p}(−{−•} + {n→֒−}) (BLHeap,{p}

The first result is a parametric expressivity result, showing that the
structure of CL collapses to BL in the heap case. This result follows
from Proposition 26. The second result is a non-parametric expres-
sivity result due to Lozes [9], which compares the expressivity of
closed formulae. It states that the adjunct−• can be eliminated if we
add formulaen→֒− to specify that addressn is allocated:n→֒−
specifies that there existsm such thatn→֒m. It is expressible using
−• as¬((n→֒0)−• true); the current heap cannot be extended with
cell n, son must already be allocated. Lozes’ result was initially
quite a surprise, since the adjuncts are used in an essentialway
to describe the weakest preconditions for Hoare reasoning based
on BL for heaps. We address this apparent contradiction here, by
proving the third result.

The third result is a parametric inexpressivity result, which we
prove by showing that formula(n7→0) −◦ p cannot be expressed
in BL for heaps without−•. This formula is interesting because
it expresses the weakest precondition of allocation. This inexpres-
sivity result says nothing about whether the formula is expressible
for a particular interpretation ofp. By Lozes’ results, we know that
it is expressible for every interpretation ofp as a closed formula.
We also prove a strong inexpressivity result using the same formula
and a natural interpretationσlist which interpretsp aslist(m): that
is, the heap contains a0-terminated linked list starting atm. This
result is interesting because lists are one of the typical inductive
predicates used in BL-reasoning.

Theorem 34(Parametric Inexpressivity).

BLHeap,{p}(−{−•} + {n→֒−}) (BLHeap,{p}

Proof. We define the notion of heap-reducing formulae, and prove
that all the formulae inBLHeap,{p}(−{−•}+ {n→֒−}) are heap-
reducing, whereas formula(n7→0) −◦ p is not. This captures our
intuition is that, without−•, the BL-modalities either leave the heap
alone or make it smaller, whereas formula(n7→0) −◦ p crucially
testsp on an extension of the initial heap with celln.

Given heaph, define a binary relation on interpretations by

σ ∼h σ′ iff ∀h′ ≤ h. h′ ∈ σ(p) ⇔ h′ ∈ σ′(p)

whereh′ ≤ h meansdom(h′) ⊆ dom(h) and∀n ∈ dom(h′).
h′(n) = h(n). We say that a formulaP is heap-reducing if and
only if, wheneverσ ∼h σ′, it follows thatσ, h |= P ⇔ σ′, h |= P .

Given formulaP in BLHeap,{p}(−{−•}+{n→֒−}), we show
that P is heap-reducing by induction on the structure ofP . Case
p is immediate from the definition ofσ ∼h σ′. The only other
interesting case isP1 ◦ P2. Supposeσ ∼h σ′ andσ, h |= P1 ◦ P2.
There existshi for i = 1, 2 such thath = h1 · h2 andσ, hi |= Pi.
Sincehi ≤ h, we haveσ ∼hi

σ′ for i = 1, 2 and henceσ′, hi |=
Pi by the induction hypothesis. We conclude thatσ′, h |= P .

Let P ′ be(n7→0) −◦ p. We show thatP ′ is not heap-reducing.
Defineσ(p) = {h | h : N+ ⇀fin N} andσ′(p) = {e} wheree is
the empty heap. Thenσ ∼e σ′ andσ, e |= P ′, butσ′, e 6|= P ′.

We now prove our strong inexpressivity result, that−• cannot
be eliminated with interpretationσlist(p) = list(m). With this
interpretation, the formula(n7→0)−◦p is satisfied by a list segment

starting atm and stopping with dangling pointern. This cannot be
expressed without−◦, since only whole lists can be observed.

Theorem 35(Strong Inexpressivity).

BLHeap,{p}(−{−•} + {n→֒−}) (σlist BLHeap,{p}

Proof. Consider the BL-formulaP , (n7→0) −◦ p, and interpre-
tation σlist(p) = list(m) for m 6= n. We show that there is no
formulaP ′ in BLHeap,{p}(−{−•} + {n→֒−}) that is equivalent
to P usingσlist. Expecting a contradiction, suppose that such aP ′

exists, and letL ⊆ N be the finite number of constants mentioned
in P ′. Consider the restriction ofBLHeap to constants inL, written
BLHeapL

. We choose a bisimulation∼ which identifies two heaps
when they have the same domain, coincide on values inL, and are
identical if one of them contains a list starting atm:

h1 ∼ h2 iff dom(h1) = dom(h2) and
∀i, j ∈ L. h1(i) = j iff h2(i) = j and
if h1 |= list(m) or h2 |= list(m) thenh1 = h2.

Notice thatσlist(p) is compatible with∼, since if h1∼h2 and
h1 |= list(m) thenh2 |= list(m). Assume for the moment that
∼ is indeed a bisimulation. With this assumption, we show that
we do indeed obtain a contradiction. Takem′ /∈ L ∪ {n, m} and
consider the heapsh1 = [m 7→ m′, m′ 7→ n] andh2 = [m 7→
m′, m′ 7→ m′]. Note thath1∼h2 and σ, h1 |= (n7→0) −◦ p
but σ, h2 6|= (n7→0) −◦ p. Assuming that∼ is a bisimulation
for BLHeapL,{p}(−{−•}+{n→֒−}), Proposition 33 implies that
σlist, h1|=BLP ′ iff σlist, h2|=BLP ′. We have therefore proved that
there cannot be a BL-formulaP ′ which is equivalent toP .

Finally, we must prove our assumption that∼ is a bisimulation
for the modalities{0, ◦} ∪ {i→֒j, i→֒− | i, j ∈ L}. We only look
at the◦ modality; the other cases are trivial. Assumeh1 = h′

1 · h′′
1

andh1∼h2. We must show that∃h′
2, h

′′
2 such thath2 = h′

2 · h′′
2

andh′
1∼h′

2 andh′′
1∼h′′

2 . Chooseh′
2, h

′′
2 as the unique splitting of

h2 such thatdom(h′
2) = dom(h′

1) anddom(h′′
2) = dom(h′′

1). We
showh′

1∼h′
2; the caseh′′

1∼h′′
2 is identical by symmetry. The first

and second conditions in the definition of∼ are immediate. For the
third condition, assumeh′

1 |= list(m), which impliesh1 |= list(m)
since h′

1 is a sublist ofh1. By definition of h1∼h2, we have
h1 = h2, henceh′

1 = h′
2 which is the desired conclusion.

Lozes also shows that, with an additional modalitysizer for
determining the size of heaps, the◦-modality can be removed. We
show that◦ is essential for parametric reasoning. The results are:

• BLHeap,∅(−{◦,−•} + {sizer}) = BLHeap,∅(−{−•})

• BLHeap,{p,q}(−{◦,−•}+{sizer}) (BLHeap,{p,q}(−{−•}).

The results also hold with modalityn→֒−. Thus, BL is as ex-
pressive as PL with atomic formulae0, sizer andn→֒−, but not
parametrically so. We believe this parametric inexpressivity result
demonstrates what has been always known intuitively, but byex-
ample only, that the◦-modality is essential for modular reasoning.

We give a direct proof of our parametric inexpressivity result
for ◦ based on the trivial observation that, without◦ and−•, all the
modalities leave the current heap unchanged. The modalitysizer,
for eachr ∈ N+, is interpreted byh |= sizer iff |dom(h)| ≤ r.
We do not requiresize0 as it corresponds to the zero formula0.

Theorem 36(Parametric Inexpressivity).

BLHeap,{p,q}(−{◦,−•} + {sizer}) (BLHeap,{p,q}(−{−•})

Proof. The proof is analogous to that of Thm. 34. A formulaP is
heap-invariantiff, when h ∈ σ(p) ⇔ h ∈ σ′(p) for all p, then
σ, h |= P ⇔ σ′, h |= P . The formulae inBLHeap,{p,q}(−{◦,−•}+
{sizer}) are heap-invariant, butp ◦ q is not.

We also prove a second strong inexpressivity result, that◦ cannot
be eliminated with fixed interpretationσlist, which interpretsp and
q as list(m1) and list(m2) respectively form1 6= m2. The ◦
modality is essential for specifying the property that the two lists
are in the heap and their tails never meet.

Theorem 37(Strong Inexpressivity).

BLHeap,{p,q}(−{◦,−•}+{sizer}) (σlist
BLHeap,{p,q}(−{−•})

Proof. The structure of the proof is analogous to Theorem 35.
Consider the BL-formulap ◦ q. As in Theorem 35, we restrict our
attention to BL-formulae mentioning at most a finite setL ⊆ N of
constants and the propositional variablesp, q.

Consider the interpretationh ∈ σlist(p) iff h satisfieslist(m1),
andh ∈ σlist(q) iff h satisfieslist(m2). Define relation∼ by:

h1 ∼ h2 iff |dom(h1)| = |dom(h2)| and
σ, h1 |= P ⇔ σ, h2 |= P for

P ∈ {p, q} ∪ {i→֒j | i, j ∈ L}

∼ is compatible withσ and is a bisimulation for the modalities
{0, sizer} ∪ {i →֒ j | i, j ∈ L}. Takeh1 = [m1 7→ n′, m2 7→
n′′, n′ 7→ 0, n′′ 7→ 0] andh2 = [m1 7→ n′, m2 7→ n′, n′ 7→
0, n′′ 7→ 0] for distinct n′, n′′ /∈ L ∪ {m1, m2}. Thenh1 ∼ h2

andσ, h1 |= p ◦ q, butσ, h2 6|= p ◦ q.

From the previous examples, one might be tempted to concludethat
whenever a parametric inexpressivity result holds, a corresponding
strong inexpressivity result holds too. In fact, this is notthe case as
we demonstrate using bounded heaps. In bounded heaps,−• cannot
be eliminated parametrically for reasons identical to the unbounded
case. However, given a specific interpretationσ, any formula is
equivalent to a disjunction of characteristic formulae without−•.

Theorem 38. Let Heapk denote the restriction of heaps, and
correspondingly formulae, to locations≤ k. The following hold:

1. BLHeapk,{p}(−{−•} + {n→֒−}) (BLHeapk,{p}

2. BLHeapk,{p}(−{−•}+ {n→֒−}) =σ BLHeapk,{p} for all σ.

Proof. The proof of part 1 is identical to the proof of The-
orem 34. For part 2, we in fact prove a stronger claim: for
any set of heapsH ⊆ Heapk, there exists a formulaPH ∈
BLHeapk,∅(−{0, ◦,−•}) such thath |= PH ⇔ h ∈ H . We
show that the conclusion then follows from the claim. Given any
σ andP ∈ BLHeapk,{p}, let H = {h | σ, h |= P}. ThenP is
equivalent toPH , by definition. To prove the claim, we first define,
given heaph, the characteristic formulaPh as

^

n,m≤k.h(n)=m

n→֒m ∧
^

n,m≤k.h(n) 6=m)

¬(n→֒m)

Clearlyh′ |= Ph ⇔ h = h′, andPh ∈ BLHeapk,∅(−{0, ◦,−•}).
To conclude, we definePH =

W
h∈H Ph.

5.2 Sequences

We have the following results for sequences for infinite alphabetA:

• BLSeqA,∅(−{−•, •−}) = BLSeqA,∅ = CLSeqA,∅

• BLSeqA,VD(−{−•, •−}) = CLSeqA,VD(−{◮, ◭})

• BLSeqA,VD = CLSeqA,VD(−{◮})

• BLSeqA,{p} (CLSeqA,{p}.

The first result is a standard expressivity result showing that BL
and CL for sequences without propositional variables are equally
expressive. The proof will appear in a forthcoming paper. The sec-
ond result is a parametric expressivity result. It shows that, without
adjuncts, BL for sequences is as expressive as CL for sequences.

The third result shows that full BL is parametrically as expressive
as CL without the◮ modality. The fourth result illustrates that the
importance of CL-reasoning lies in the◮ modality, by showing that
CL for sequences is parametrically more expressive than BL for se-
quences. Unlike the heap case, we are unable to give a direct proof
of the parametric result. We give a proof of strong inexpressivity,
and hence prove parametric inexpressivity.

Our first parametric expressivity result for sequences shows
that, without adjuncts, CL-application can be specified by BL-
composition. The proof shows that any context formula can be
expressed as the disjunction of formulae of the formP1 ◦ I ◦ P2,
and the application(P1 ◦ I ◦ P2)(P) corresponds toP1 ◦ P ◦ P2.

Theorem 39(Parametric Expressivity).

BLSeqA,VD(−{−•, •−})=CLSeqA,VD (−{◮, ◭})

Proof. Note that propositional variables are restricted to sort D,so
the context formulae ofCLSeqA,VD(−{◮, ◭}) are

K ::= I | K ∨ K | ¬K | False| K ◦ P | P ◦ K.

We define a canonical subset

K ::= K ∨ K | P ◦ I ◦ P

and show that

(1) every CL-formulaK is equivalent to a canonical formulaK;
(2) every application formulaK(P) is equivalent to the substitu-

tion formulaK[P/I].

The result follows. Given an arbitrary CL-formula, first replace
the context subformulae by canonical formulae, then replace the
application subformulae by the equivalent substitution formulae.
The resulting formula is a BL-formula equivalent to the original
CL-formula.

To show (1), we define a translationtr from context formulae
to the canonical formulae by:

tr(I) , 0 ◦ I ◦ 0

tr(K1 ∨ K2) , tr(K1) ∨ tr(K2)

tr(¬K) , Not(tr(K))

tr(False) , false◦ I ◦ false
tr(K ◦ P) , Addl(tr(K), P)

tr(P ◦ K) , Addr(P, tr(K))

whereNot(K), Addr(P, K) andAddl(K, P) are defined below
by induction on the structure of the canonical formulae.

Before definingNot, we define a functionAnd on canonical
formulae such thatAnd(K1, K2) is equivalent toK1 ∧ K2:

And(K1 ∨ K2, K3) , And(K1, K3)∨And(K2, K3)

And(P1◦I◦P2, P3◦I◦P4) , (P1 ∧ P3) ◦ I ◦ (P2 ∧ P4)

We now define functionNot:

Not(K1 ∨ K2) , And(Not(K1), Not(K2))

Not(P1 ◦ I ◦ P2) , (¬P1) ◦ I ◦ true∨ true◦ I ◦ (¬P2)

Addr(P, K) andAddl(K, P) are defined similarly toAnd.
(2) is proved by induction onK. For caseK1 ∨ K2, note that

(K1 ∨ K2)(P) is equivalent toK1(P) ∨ K2(P) and, by the
induction hypothesis, it is equivalent toK1[P/I]∨K2[P/I]. Case
P1 ◦ I ◦ P2 is immediate since(P1 ◦ I ◦ P2)(P) is equivalent to
P1 ◦ P ◦ P2.

As an example, consider theCL-formula (¬I)(P) satisfied by
any sequence having a strictly smaller subsequence satisfying P .
We havetr(¬I) = Not(tr(I)) = Not(0 ◦ I ◦ 0) = (¬0) ◦
I ◦ true∨ true ◦ I ◦ (¬0). Therefore(¬I)(P) is equivalent to

(¬0)◦P ◦ true∨ true◦P ◦(¬0), which is satisfied by any sequence
containing a subsequence satisfyingP composed with a nonempty
sequence on at least one side.

Our next result shows that CL for sequences minus◭ is para-
metrically as expressive as BL for sequences.

Theorem 40(Parametric Expressivity).

BLSeqA,VD =CLSeqA,VD(−{◮})

Proof. As in the proof of Theorem 39, we define a canonical subset:

K ::= K ∨ K | P ◦ I ◦ P

The only difference compared with Theorem 39 is that now data
formulae may contain the adjoint formulaeK ◭ P . Given an arbi-
trary CL-formula, first replace the context subformulae by canon-
ical formulae, as in (1) of Theorem 39, then replace the applica-
tion subformulae by the equivalent substitution formulae as in (2).
We must show how to eliminate the adjoint formulaeK ◭ P ,
by induction on the structure ofK. When K is P1 ◦ I ◦ P2,
then (P1 ◦ I ◦ P2) ◭ P is equivalent toP1 •− (P2 −• P).
When K is K1 ∨ K2, then (K1 ∨ K2) ◭ P is equivalent to
(K1 ◭ P) ∨ (K2 ◭ P).

Finally, we show that CL for sequences is parametrically more
expressive than BL for sequences. This additional expressivity for
CL must lie in the use of the◮ modality. Intuitively, BL can only
add elements to either side of a given sequence, whilst◮ can add
elements wherever the hole happens to be. We initially searched
for a direct proof of this result, trying to identify a property analo-
gous to the heap-reducing formulae of theorem 34 which captured
this difference between adding elements to the side or the middle
of sequences. BL-formulae can however affect the middle of the
sequence, by using◦ and−• to remove the whole sequence and
adding any desired sequence. We do not know if such a direct re-
sult is possible. Here, we prove our parametric expressivity result
via a strong inexpressivity result using bisimulation.

Theorem 41(Parametric Inexpressivity). Let A be an infinite al-
phabet. ThenBLSeqA,{p} (CLSeqA,{p}.

Proof. We consider BL and CL for sequences containing formulae
with at most one propositional variablep. Consider CL-formula
P , (0 ⊲ p)(a) for somea ∈ A. Expecting a contradiction,
assume thatP is equivalent to data formulaP ′, and letA′ ⊆ A
be the finite set of letters occurring inP ′. FormulaP says that
p holds after removing an elementa somewhere from the current
sequence. By contrast, BL can only observe subsequences obtained
by removing letters from either side, not from the middle. With BL,
we can only compare adjacent pairs of elements. With CL, we can
compare arbitrary pairs of elements. We must find an interpretation
functionσ, and a bisimulation relation∼ which is compatible with
σ and captures this intuitive difference in expressivity.

We choose an interpretationσ which states that the interpreta-
tion of p is the set of all sequences with equal elements. To express
this formally, we first introduce some notation. Letα, β denote se-
quences, letαi denote thei-th element of sequenceα, and let|α|
denote the length of the sequence. We defineσ by

σ(p) , {α | ∀i ∈ 1..|α| − 1. αi = αi+1}

In addition, we define a bisimulation relation which observes ele-
ments in the setA′ and equality of adjacent elements:

α ∼ β iff ∃n. |α| = |β| = n ∧
∀i ∈ 1 . . . n − 1. αi = αi+1 ⇔ βi = βi+1 ∧
∀i ∈ 1 . . . n, a′ ∈ A′. αi = a′ ⇔ βi = a′

Clearly ∼ is compatible withσ. Assume for the moment that
it is indeed a BL-bisimulation. With this assumption, we prove

the inexpressivity result we seek. Consider two sequencesα1 =
a′ · a · a′ andα2 = a′ · a · a′′, wherea′ 6= a′′ are not inA′.
Observe thatα1 ∼ α2, as adjacent letters are distinct in both
sequences,σ, α1 |= (0⊲ p)(a) butσ, α2 6|= (0⊲ p)(a). Assuming
∼ is a bisimulation forBLSeqA′ ,{p}, Proposition 33 implies that
σ, α1|=BLP ′ iff σ, α2|=BLP ′ for all BL-formulae P ′. We have
therefore proved that there cannot be a BL-formulaP ′ which is
equivalent toP .

Finally, we must show that∼ is indeed a bisimulation for
all the modalities ofBLSeqA′ ,{p}. We only look at the◦ and
−• modalities; the other cases are analogous or trivial. For the ◦
modality, assumeα ·β = γ andγ ∼ γ′. We must show that∃α′, β′

such thatα′ ·β′ = γ′ andα ∼ α′ andβ ∼ β′. Chooseα′, β′ as the
unique splitting ofγ′ such that|α′| = |α| and|β′| = |β|. Clearly
α ∼ α′ andβ ∼ β′, since adjacent elements inα′ andβ′ are also
adjacent inγ′. For the−• modality, assumeα · β = γ andα ∼ α′.
We need to show that∃β′, γ′ such thatα′ · β′ = γ′ andβ ∼ β′

andγ ∼ γ′. Sinceα andα′ might end in different letters, we must
construct aβ′ such that its first element relates to the last element
of α′ in the same way as the first element ofβ relates to the last
element ofα. Let f : A → A be a bijection such thatf(αi) = α′

i.
Such anf exists sinceα ∼ α′. We defineβ′ as the unique sequence
such that|β′| = |β|, β′

i = f(βi) andγ′ , α′ · β′. It is easy to see
thatβ ∼ β′ andγ ∼ γ′.

5.3 Trees

We have the following results for trees for infinite alphabetA:

• BLTreeA,VD(−{−•, bµ,b⋄})=CLTreeA,VD(−{◮, ◭})

• BLTreeA,VD =CLTreeA,VD (−{◮})

• BLTreeA,{p} (CLTreeA,{p}.

The first result states that CL and BL for trees without adjoints have
the same parametric expressive power. The second result states that
adding the◭ modality to CL gives the same expressivity as BL.
This formalises our intuition that the◭ modality is a compact way
to express the adjoints of AL (pluŝ⋄). The third result is a para-
metric inexpressivity result, showing that CL for trees is parametri-
cally more expressive than BL for trees. This result illustrates that
◮ is the key modality for giving CL its additional expressive power.
In [3], we observed that it was important for expressing the weak-
est preconditions of update commands. Our inexpressivity result
formalises this intuition, which we had previously motivated by ex-
ample.

Our first parametric expressivity result is that BL and CL for
trees without adjoints are equally expressive. The proof shows that
context formulae can be reduced to a canonical form, allowing con-
text application to be eliminated by a form of syntactic substitution.

Theorem 42(Parametric Expressivity).

BLTreeA,VD (−{−•, bµ,b⋄})=CLTreeA,VD(−{◮, ◭})

Proof. Note that propositional variables are restricted to sort D,so
the context formulae ofCLTreeA,VD(−{◮, ◭}) are:

K ::= I | K ∨ K | ¬K | False| µ[K] | P ◦ K

We define a canonical subset, similar to that given in Theorem39:

K ::= K ∨ K | True | False| P ◦ I | P ◦ η[K]
η ::= {a1, . . . , an} | {a1, . . . , an}

⊥

The composition formulae analyse whether the hole is at the top
level or under a node label. The formulae{a1, . . . , an}[K] and
{a1, . . . , an}

⊥[K] are syntactic sugar for
W

i ai[K] and
V

i a⊥
i [K]

respectively. Just as for Theorem 39, it is enough to show the
following results:

(1) every CL-formulaK is equivalent to a canonical formulaK;
(2) every applicationK(P) is equivalent to the substitution for-

mulaK[P/I, ⋄P/True].

To prove (1), we define a translationtr from context formulae
to the canonical subset by:

tr(I) , 0 ◦ I

tr(K1 ∨ K2) , tr(K1) ∨ tr(K2)

tr(¬K) , Not(tr(K))

tr(False) , False
tr(µ[K]) , 0 ◦ µ[tr(K)]

tr(P ◦ K) , Add(P, tr(K))

where Not(K) and Add(P,K) are defined by induction on the
structure of the canonical formulae.

Before definingNot, we define a functionAnd on canonical
formulae such thatAnd(K1, K2) is equivalent toK1 ∧ K2:

And(K1 ∨ K2, K3) , And(K1, K3) ∨ And(K2, K3)

And(True, K) , K

And(False, K) , False
And(P1 ◦ I, P2 ◦ I) , (P1 ∧ P2) ◦ I

And(P1 ◦ I, P2 ◦ η[K]) , False
And(P1 ◦ η1[K1], P2 ◦ η2[K2]) ,

(P1 ∧ P2) ◦ (η1∧η2)[And(K1, K2)]

where, for setsSi, we defineS1∧S2 = S1∩S2, S1∧S⊥
2 = S1−S2,

andS⊥
1 ∧S⊥

2 = (S1∪S2)
⊥. We now define the functionNot such

thatNot(K) is equivalent to¬(K):

Not(K1 ∨ K2) , And(Not(K1), Not(K2))

Not(True) , False
Not(False) , True
Not(P ◦ I) , (¬P) ◦ I ∨ true◦ ∅⊥[True]

Not(P ◦ η[K]) , true◦ I ∨ true◦ η⊥[True] ∨
(¬P) ◦ η[True] ∨ true◦ η[Not(K)]

We finally defineAdd such thatAdd(P,K) is equivalent toP ◦K:

Add(P,K1 ∨ K2) , Add(P,K1) ∨ Add(P, K2)

Add(P, True) , (P ◦ true) ◦ I ∨ (P ◦ true) ◦ ∅⊥[True]
Add(P, False) , False

Add(P1, P2 ◦ I) , (P1 ◦ P2) ◦ I

Add(P1, P2 ◦ η[K]) , (P1 ◦ P2) ◦ η[K]

To prove (2), we proceed by induction onK. For caseK1 ∨
K2, note that(K1 ∨ K2)(P) is equivalent toK1(P) ∨ K2(P)
and hence, by induction, is equivalent toK1[P/I, ⋄P/True] ∨
K2[P/I, ⋄P/True]. For case True, observe that True(P) is equiv-
alent to⋄P . Case False is immediate. CaseP1 ◦ I is also im-
mediate since(P1 ◦ I)(P2) is equivalent toP1 ◦ P2. For case
P1 ◦ η[K], first observe that(P1 ◦ η[K])(P2) is equivalent to
P1 ◦ η[K(P2)] which, by the induction hypothesis, is equivalent
to (P1 ◦ η[K[P2/I, ⋄P/True]]).

Consider CL formula (¬I)(P), satisfied by any tree hav-
ing a strictly smaller subtree satisfyingP . We havetr(¬I) =
Not(tr(I)) = Not(0 ◦ I) = (¬0) ◦ I ∨ true◦ ∅⊥[True]. Therefore
(¬I)(P) is equivalent to(¬0)◦P ∨ true◦∅⊥[⋄P], satisfied by any
tree with either a subtree satisfyingP at the top level composed
with a non-empty tree, or a subtree satisfyingP under a tree node.
Our second parametric expressivity result for trees shows that CL
for trees minus◭ corresponds to BL.

Theorem 43(Parametric Expressivity).

BLTreeA,VD =CLTreeA,VD(−{◮})

Proof. The proof extends the proof of Theorem 42, just as the
proof of Theorem 39 extends that of Theorem 40. We use the
same canonical forms as in Theorem 42, and just need to show that
K ◭ P can be eliminated by induction onK. For caseK1 ∨ K2,
we have(K1 ∨ K2) ◭ P equivalent to(K1 ◭ P) ∨ (K2 ◭ P).
For case True, we have True◭ P equivalent tob⋄P . Case False is
immediate, since False◭ P is equivalent to false. CaseP ◦ I is
also immediate, since(P1 ◦ I) ◭ P is equivalent toP1 −• P .
For caseP ◦ η[K], we have(P1 ◦ η[K]) ◭ P equivalent to
K ◭ (bη(P1 −• P)) where, if S = {a1, . . . , an}, then bS(P) is

ba1(P) ∨ · · · ∨ can(P) and cS⊥(P) is ca⊥
1 (P) ∧ · · · ∧ ca⊥

n (P). The
result follows by the induction hypothesis.

Finally, we show that CL for trees is parametrically more expres-
sive than BL. We are unable to give a direct proof. We instead show
a strong inexpressivity result based on interpretationσeq, which in-
terpretsp as the property that all the labels in the tree are equal. We
show that formula(0 ⊲ p)(a[true]), corresponding to the weakest
precondition of deleting a subtree with root labela, is not express-
ible in BL. Intuitively, the result holds since CL can removea sub-
tree at an arbitrary position, while BL can only split trees at the top
level using◦ or under a fixed number of edges usingµ.

Theorem 44(Parametric Inexpressivity).

BLTreeA,{p} (CLTreeA,{p}

Proof. The structure of the proof is identical to that of Theorem 41.
Consider the CL formulaP , (0 ⊲ p)(a[true]), which says that
we can remove a subtree with roota from the current tree and
the result satisfiesp. Intuitively, BL can remove subtrees from the
top level of the current tree using◦, but cannot remove them from
arbitrary positions. As in Theorem 41 for sequences, we restrict our
attention to BL-formulae with a single propositional variablep and
node labels from a finite setA′ ⊆ A. We define the interpretation
ast ∈ σ(p) iff all the labels in treet are equal.

Let∼ be the unique relation such that:

t ∼ t′ iff t ∈ σ(p) ⇔ t′ ∈ σ(p) and
if t ≡ a1[t1] then∃a′

1, t
′
1 such that

t′ ≡ a′
1[t

′
1] andt1 ∼ t′1 and

a1 ∈ A′ or a′
1 ∈ A′ impliesa1 = a′

1 and
if t ≡ t1|t2 then∃t′1, t

′
2 such that

t′ ≡ t′1|t
′
2 andt1 ∼ t′1 andt2 ∼ t′2

It is easy to see that∼ is compatible withσ, and we will show that
it is a BL-bisimulation. Letb, c be distinct labels not inA′ ∪ {a},
and definet1 , b[a[0]|b[0]] andt2 , b[a[0]|c[0]]. We havet1 ∼ t2
andσ, t1 |= P butσ, t2 6|= P , hence the result.

We must show that∼ is a bisimulation for all the modalities
of BLTreeA′ ,{p}. The modalities0, ◦, µ are immediate from the
definition of∼. Modalities−•, bµ,b⋄ follow from the fact that∼ is a
congruence: that is, ift ∼ t′ thenc(t) ∼ c(t′) for all tree contexts
c. For the⋄ modality, we need to show that, ifc(t1) ≡ t andt ∼ t′,
then there existc′, t′1 such thatt′ ≡ c′(t′1) andt1 ∼ t′1. The proof
is straightforward, by induction on the size ofc.

6. Concluding Remarks
We have shown how to present CL and BL as ML, interpreting the
structural connectives as modalities satisfying a set of well-behaved
ML-axioms. We have given two applications of the general theory
of ML: we have proved completeness results for CL and BL using
a general theorem about ML due to Sahlqvist, and inexpressivity
results using the standard ML-bisimulation technique.

Our parametric inexpressivity results for arbitrary formulae
contrast with Lozes’ expressivity results on closed formulae. We

prove that SL is parametrically more expressive than PL for heaps,
whereas Lozes shows that these logics have the same expressivity
on closed formulae. We also prove that CL for trees is parametri-
cally more expressive than AL, whereas Lozes shows that theyhave
the same expressivity on closed formulae. Our definition of para-
metric expressivity corresponds to that studied in the ML-literature,
and corroborates our intuition that the structural connectives of CL
and BL are essential for our local Hoare reasoning. Lozes’ style of
expressivity result is not typically explored in the ML-literature. It
is interesting for our application of structured data: for example, we
have shown that CL for sequences corresponds to the∗-free regu-
lar languages on closed formulae. The structural connectives of CL
and BL give rise to several examples of logics which are paramet-
rically more expressive, but which have the same expressivity on
closed formulae. We currently do not know of other examples of
ML where this is the case, except for simple examples such as S4
and S5 where all closed formulae correspond to either true orfalse.

We are only at the beginning of studying expressivity results
for CL: for example, two natural extensions involve higher-order
quantification and first-order quantification. The parametric expres-
sivity results in this paper are based on formulae with propositional
variables. Our results say nothing about the expressivity of higher-
order SL over higher-order logic. Also, our results compareCL and
BL without first-order quantification, whereas their applications to
analysing trees and heaps usually involve quantification over node
labels and heap addresses. Dawar, Gardner and Ghelli (with thanks
to Yang) have shown that adjunct-elimination in AL with quan-
tification is not possible [6], strengthening a previous result by
Lozes [9]. Despite this inexpressivity result, it still makes sense to
ask for parametric inexpressivity results about particular formulae,
to pin down exactly why full SL seems to be more appropriate for
modular reasoning about programs than first-order logic.

References
[1] J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. InProceedings
of FMCO’05, volume 4111 ofLNCS, 2006.

[2] Patrick Blackburn, Maarten de Rijke, and Yde Venema.Modal Logic.
Cambridge University Press, 2001.

[3] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree
update. InPOPL, 2005.

[4] L. Cardelli and G. Ghelli. TQL: A query language for semistructured
data based on the ambient logic. To appear in MSCS.

[5] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for
mobile ambients. InPOPL, 2000.

[6] A. Dawar, P. Gardner, and G. Ghelli. Adjunct eliminationusing
Enrenfeuch’s games. InFSTTCS, 2004.

[7] H.Hosoya and B. Pierce. Xduce: A typed xml processing language.
ACM Transactions on Internet Technology, 3:117–148, 2003.

[8] S. Ishtiaq and P. O’Hearn. BI as an assertion language formutable
data structures. InPOPL, 2001.

[9] Etienne Lozes. Elimination of spatial connectives in static spatial
logics. In TCS 330(3), 2005.

[10] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources:
The semantics of BI.Theoretical Computer Science, 315(1), 2004.

[11] J.C. Reynolds. Separation logic: a logic for shared mutable data
structures. Invited Paper, LICS’02, 2002.

[12] H. Yang. Local Reasoning for Stateful Programs. Ph.D. thesis,
University of Illinois, Urbana-Champaign, Illinois, USA,2001.

[13] H. Yang and P. O’Hearn. A semantic basis for local reasoning.
FOSSACS, 2002.

