Context Logic as Modal Logic:
Completeness and Parametric Inexpressivity

Cristiano Calcagno

Philippa Gardner

Uri Zarfaty

Department of Computing, Imperial College London
{ccris,pg,udz}@doc.ic.ac.uk

Abstract

Separation Logic, Ambient Logic and Context Logic are based
similar style of reasoning about structured data. They eacisist
of a structural (separating) composition for reasoningualubs-
joint subdata, and corresponding structural adjoint(syéasoning
hypothetically about data. We show how to interpret thesgcst
tural connectives as modalities in Modal Logic and prove plate-
ness results. The structural connectives are essentidegmribing
properties of the underlying data, such as weakest pretionsli
for Hoare reasoning for Separation and Context Logic, amd-se
rity properties for Ambient Logic. In fact, we introduced @ext
Logic to reason about tree update, precisely because thetstal
connectives of the Ambient Logic did not have enough exjress
power. Despite these connectives being essential, firstd tzen
Dawar, Gardner and Ghelli proved elimination results fop&a-
tion Logic and Ambient Logic (without quantifiers). In thisyper,
we solve this apparent contradiction. We study parametegpres-
sivity results, which demonstrate that the structural emtines are
indeed fundamental for this style of reasoning.

Categories and Subject Descriptors D.2.4 [Software/Program
verificatior]: Correctness proofs, Formal methods, Validation

General Terms Languages, Theory, Verification

Keywords Logic, Expressivity, Structured Data, Contexts

1. Introduction

Separation Logic (SL) and Ambient Logic (AL) are related-log
ics for reasoning about heaps and trees respectively. @fklea
Reynolds and Yang introduced SL [8, 11, 13] to develop local
Hoare reasoning about heap update, based on the genergl theo
of Bunched Logic (BL) due to O’Hearn and Pym [10]. Cardelli
and Gordon independently introduced AL [5] for reasoningugb
static trees. AL has been used to reason about security niexpef
firewalls and structural properties of XML [6]. We have intetgd
these two lines of research. In [3], we showed that it is nesfize

to use AL to reason about tree update (XML update). Instead, w
introduced the general theory of Context Logic (CL) for i@@ag
about structured data, which generalises BL. We demosestihat
the application of CL-reasoning to trees can be used as a foasi

Permission to make digital or hard copies of all or part of tork for personal or
classroom use is granted without fee provided that copesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to postesmess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL'07 January 17-19, 2007, Nice, France.
Copyright© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

local Hoare reasoning about tree update, whilst the agmicaf
CL-reasoning to heaps exactly corresponds to SL-reasoning

These logics are based on a similar style of reasoning about
structured data. They each extend propositional conresctivith
a structural (separating) composition for reasoning alutsjbint
subdata, and the corresponding structural adjoint{s® show how
to interpret the structural connectives of BL and CL as mitiéalin
modal logic (ML). We present additional axioms for these albd
ties to give a precise correspondence between the origiesépta-
tion of BL and CL, and their ML-interpretations. These ax&are
well-behaved, in that they satisfy the conditions necgsfarus
to apply a general completeness result about ML (Sahlguisg-
orem). We thus prove that the CL-proof theory is sound and-com
plete with respect to the set of CL-models (and analogously f
BL). This work follows previous unpublished work by Calcagn
and Yang, who proved completeness for CL from first prin@ple

The structural connectives are essential for modular reaso
ing about programs, and for describing weakest precomditand
safety properties. However, recent expressivity resaitsSi and
AL due to Lozes [9] appear to contradict this fundamentaintla
Lozes concentrates on expressivity for closed formulagsraen-
ing whether an arbitrary closed formula specifyingetof data in
one logic can be expressed by a formula in the other logicispec
fying the same set of data. For example, Lozes has shown that S
and Propositional Logic (PL) with simple atomic heap foramil
are equally expressive using this definition of expresgivtow-
ever, our experience says that SL is more expressive thagifig
for example we can reason directly about disjointness andmyc
update of linked lists. We solve this apparent mismatch betw
the theoretical results and our practical experience byipgpin-
expressivity results for stronger definitions of expretgiv

SL forms the basis of local Hoare reasoning about heap update
An important part of the reasoning is to be able to express the
weakest preconditions, which provide completeness faigtt-
line code and have a key role in some verification tools (tifywer
Hoare triple, first find the weakest precondition of a givestpon-
dition and then prove that the given precondition implieswleak-
est precondition). Our results show that the weakest paitions
cannot be expressed in PL for heaps. To illustrate this,idens
the weakest precondition of allocati¢én—0) — p, specifying that
whenever a cell with addressand value0 is added to the given
heap then the resulting heap satisfies post-condititzes’ result
says that, for every interpretation pfas a set of data determined
by a closed formula, there is a corresponding PL-formulawHo
ever, these PL-formulae are highly non-uniform with respecthe
post-conditiorp, and Lozes’ result says nothing about whether the
weakest precondition itself can be specified in PL. We shat th
it is not possible, by studying expressivity for open foramilcon-

Lin this paper, we do not consider quantification.

taining propositional variables. This notion of expre#gideter-
mines whether an arbitrary open formula in one logic, spy&uif

differences between CL- and BL-reasoning. Again, we prawe o
parametric inexpressivity result via strong inexpresgivi

afunctionfrom sets to data to sets of data, can be expressed by a

formula in the other logic. There are two choices for the doma
of this function, either as sets of data specified by closedditae
or as arbitrary sets of data. The first option is enough tordere
whether the weakest precondition can be specified in PLel$ dot
however allow for natural extensions to SL, such as the etdtf
inductive predicates. We therefore study the second optiancall
this type of expressivitparametric expressivityand show that SL
is parametrically more expressive than PL for heaps by detratq
ing that(n—0) — p cannot be expressed in PL.

Although the SL-adjoint= is important for the weakest pre-
conditions and has a key role in some proofs [12], it is noi-typ
cally used for specifying safety properties. For exampiglays
no role in the verification tool Smallfoot [1], which combm@n-
ductive predicates with a cut-down decidable fragment ofw@ith
guantification). A more fundamental SL-formulgis g specifying
that the heap can be split into two disjoint parts, one satigfp
and the othery. Lozes’ results imply that, for every interpretation

2. Context Logic and Bunched Logic
We review the general theory of CL and BL.

2.1 Context Logic

We introduced CL to reason about data update [3]. Local data u
date typically identifies the portion of data to be replagedjoves

it, and inserts the new data the same placéWith CL, we reason
about both data and this place of insertion (contexts). Gisists
of data formula denoted h#, and context formulae denoted By.

In each case, these include standard formulae from propaait
logic, and less familiar structural formulae for directlpaysing
the data and context structure.

Definition 1 (CL-Formulae) The set of CL-formulae consists of
disjoint sets ofdata formulae” and context formulae/C, con-
structed from a set of propositional variabl¥s= V» U Vi where

of p andq as sets of data corresponding to closed formulae, there V» and Vi are disjoint, countably infinite sets of propositional

is a corresponding PL-formula. Again, the PL-formulae dghly
non-uniform. We show that it is not possible to express patam
cally this formula in PL. However, with the Smallfoot apgliton
in mind, it is perhaps more interesting to determine a speuifi
expressivity result, that it is not possible to express g in PL
with the interpretation op aslist(3), denoting the existence of a
O-terminated linked list starting at addressandq aslist(4). To
do this, we study the notion strong expressivitwhich states that,
for a specificinterpretation of the propositional variables as arbi-
trary sets of data, every formula with propositional valésin one
logic can be expressed in the other logic.

To prove our strong inexpressivity results, we use a stahdar
bisimulation technique from ML. For example, consider teas

h1 =
ha =

Brn',4—n" n 010" — 0

[Brn',4—n'n" —0,n" 0.

These heaps are distinguished by SL-formula ¢, with the in-
terpretation ofp andq as the listdist(3) andlist(4) respectively,
sinceh; can be split into the appropriate disjoint lists wheréas
cannot due to the sharing at addre$sOur proof shows that there
is a PL-bisimulation relation relating; andh.. Bisimulation has
the well-known property that it is contained in logical ecalence.
Thus, the heapk; andh. are indistinguishable using PL.

Our original motivation for studying parametric inexpriegy
results came from studying CL for trees and AL. We introduced
CL to provide local Hoare reasoning about tree update [3hae
strating that it was not possible to base our Hoare reasaminglL
since it had a missing adjoint. Whilst we believe that ouuangnt
was convincing, it was an argument given by example rathean th
by a formal inexpressivity result. Lozes’ expressivity uks, fo-
cussing on the closed formulae, show that the argument igesub
since AL (without quantifiers) is as expressive as the logtbout
the structural adjoints [9, 6]. We prove that CL for treesasgmet-
rically more expressive than AL. Unlike the results for Sle @o
not know how to prove this directly. Instead, we prove a gron
expressivity result using an analogous proof method todhtined
above. Since strong inexpressivity implies parametriggnessiv-
ity, we have the result. In addition, we prove that CL for re@nus
the extra adjoint is parametrically as expressive as ALs how-
ing that the additional strength of the CL-reasoning doekeéul
come from this additional adjoint. We also prove similamulesfor
CL for sequences and a variation of BL applied to sequeneé&s (
non-commutative). Sequences provide the simplest exaafphe

data variables and context variables respectively. Thenfdae
are given by the grammars:

data formulae

P:= KP)|K<P structural formulae
PV P |-P |false additive formulae
D,P1, P2, .- prop vars inVp

context formulae

K:= I|P>P structural formulae
KV K |-K | False additive formulae
k ki, ka,... prop vars inVx

The key formulae are the structural formulag P), K < P,
Py > P> and . Theapplication formulaK (P) specifies that the
given data element can be split into a context satisfyingpplied
to data satisfying?. For example, if we define the context formula
True £ —False, then the formula Tr(#) states that some subdata
satisfies property’. The next two formulae are both (right) adjoints
of application. The formuld « P is satisfied by the given data
if, whenevewe insert the data into a context satisfyiag then
the result satisfie®. For example, the formuléTrue < P) states
that, when the data is put in any context, the resulting datiafees
property P. The analogous connectives for AL have been used to
describe security properties of trees (ambients). Meaewh; >
Ps is a statement on contexts. It is satisfied by a given context i
whenevemwe insert in the context some data satisfyiAg then the
result satisfiesP>. Given the derived data formula trug —false,
the context formuldtrue> P) states that, regardless of what data is
putin the context hole, the resulting data satisfies prypeit This
adjoint is essential for expressing weakest preconditionspdate
commands, as we demonstrated in [3], and has no counterpart i
AL. The context formula specifies the empty context.

Definition 2 (CL-Model). A CL-modelM is a tuple ©,C, ap,I)
such that

1. D andC are sets;
2. ap C (C x D) x D is arelation, calledapplication we use the
notationap(c, d1) = ds for ((¢,d1), d2) € ap;
3. I C C acts as a left identity tap: that is,
eVdeD,Field e€D. ap(i,d) =d’;
e Vvd d €D,Vicl ap(i,d) = d impliesd = d’.

We often callD the data setandC the context setbecause of
the form of our motivating examples. Of course, there are mod
els which do not fit this structured data intuition. We prowene
pleteness for these CL-models (theorem 23) and the anadgjou
models (section 3.2).

Example 3.

e Monp = (D,D,-,{e}) whereD is a partial monoid with
binary operation : (D x D) — D and unite € D.

e Heapis an example oM onp whereD = N* —;, Nis the

set of finite partial functions denoting the heaps amenotes

the empty heap. The domaii™ = N — {0} does not include

0 as it is reserved for the null location. Given hedpsh/', the

heap compositioth - ' is function union which is only defined

whendom(h) N dom(h') = 0.

Terms = (Ds,Cs,ap,{-}) where Ds is the data set of

terms constructed from the n-ary function symbols in sigmat

3, Cx is the corresponding set of contexigy denotes the

standard application of contexts to terms, andenotes the

empty context.

o Seqa = (Da,Ca,ap,{-}) whereD, is the set of sequences
constructed from the elements in alphabgtC 4 is the corre-
sponding set of contexts, ang and _ are as forT’erms.

e Treea is an example of'erms with an additional equality
relation on terms. The terms are generated by the signaiure
constructed from the sets, = {0}, ¥; = AandX; = {|},
whereX; denotes the function symbols of arityWe use the
notationt | ¢’ for |(¢,t") andal[t] for a(t). Terms are considered
modulo an equality relation generated by the axidims = ¢,
t|t'=t|t,@t|t) |t =¢t]{# |t and closed by the
obvious structural rules for the function symbols.

¢ Relp = (D,P(D x D),ap,{i}) whereD is an arbitrary
set, P(D x D) denotes the set of binary relations @n ap
is relational application, and is the identity relation.

Definition 4 (CL-Satisfaction Relation)Given a CL-modeM =
(D,C,ap, 1), the CL-satisfaction relatiok ¢, consists of two re-
lationso, M,d Ep P ando, M,c Ex K whered € D,c € C
and interpretation functios : V — P(DUK) maps data proposi-
tional variables to sets of data, and context propositioreiables
to sets of contexts. The two relations are defined by inducticthe
structure of the formulae: the cases for the propositioralables
and the boolean additive connectives are standard; thecé&se
the structural connectives are

o,M,dEp K(P) iff 3JceC,d €D.
ap(e,d)=dNo,M,cFx K ANo,M,d Ep P

o, M,dEp K <P iff VceC,d eD.
o, M,cEx KA ap(c,d)=d = o,M,d Ep P

o, M,ckEx I iff cel

o, M,cEx Pr> Ps iff Vd,dIE'D.
o, M, dEp PL A ap(c,d) =d = o, M,d Ep P

We sometimes omit the subscriptand K.

In section 4, we study applications of CL to heaps, sequeacds
trees, which extend CL with simple atomic formulae specific t
these models. Here, we use tleq4a model and the additional
zero formula0, denoting the empty sequence, to illustrate our CL-
reasoning. Consider the derived formula® —0 A =(=1)(—-0),
which states that the sequence only contains one elemetisth

it is non-empty and cannot be split into a non-empty context a
non-empty data. Now consider the judgement

whereo(p) denotes the set of sequences with equal elements and
s denotes a sequence. This judgement only holdssfnon-empty

and all the elements inare equal except possibly one: for example,

it holds whens isb - a - b, but not whers isb - a - c.

We use the standard derived classical formulae for bothatata
context formulae: trueP A P and P = P; similarly for contexts,
writing True for the context formula that is always satisfidtle
shall also use the following derived formulae:

* oP = True(P) specifies that somewhere propeRyholds;

e P, » P> £ —(P, > —P») specifies thathere existsome data
element satisfying propert§?; such that, when it is put in the
hole of the given context, the resulting data satisites

e K 4 P, £ =(K < —~P,) specifies thathere exista context
satisfying propertyi such that, when the given data element is
put in the hole, the resulting data satisfies

We give a Hilbert-style proof theory, following the stylerfBL
in [10]. The axioms and rules for the structural operatoasesthat
K <P, andP; > P, are right adjoints of< (P), and[is the identity
of application.

Definition 5 (CL-Proof Theory) The Hilbert-style CL-proof the-
ory consists of the standard axioms and rules for the bookeht-
tive connectives, and the following axioms and rules forstinec-
tural connectives:

Ki b K2 Prbp P2
PHrp I(P) Ki1(P1) Fp Ko (P2)
K(P)FpP, KrcPi>Py PrpP
Kb i P K(P)bFp P2
KP)kp P, PFpK<aP, KibcK
Pbtp K< Py Ki(P1)Fp P2

We sometimes omit the subscripts-ip and Fx, and sometimes
write ¢, to refer explicitly to this CL-proof theory.

The proof theory given here emphasises the right adjoimiqrro
ties of < andr>. In the next section, we show that this proof theory
is equivalent to the standard ML-proof theory plus an addi set
of axioms specific to CL. This alternative formulation emgikas
the derived connectivas and« instead.

2.2 Bunched Logic

We also present (a variant of) BL [10], its models and satitfa
relation, and compare it to CL. We use the notatiomnd —o,
instead of the standardand— for the multiplicative conjunction
and its adjoint. Our variation of standard BL does not reguito
be commutative, since one of our key example models is segqaen
whereo denotes concatenation.

Definition 6 (BL-Formulae) The set of BL formulaé is con-
structed from a countably infinite set of propositional edles)»,
and defined by the grammar:

P:= 0|PoP|Po—P|P—oP
PV P |-P |false
p;p1;p2;- -

The key formulae are the structural formul@eP; o Pz, P1 o— P»
andP; —o P». Thezeroformula0 specifies empty data. Tlvempo-
sitionformula splits the given data into two parts, the first sgirgf

P, and the second.. For example, the formula 0 o — 0 specifies
that the given data can be split into two disjoint, non-engyts.
Unlike the original BL, we have two right adjoints, due ¢dbe-

ing non-commutativeP; o— P> specifies thawhenevesome data
satisfying P, is placed to the left of the given data, then the result

structural formulae
additive formulae
prop vars inVp

satisfiesP;; the other adjoinf?y —o P places data to the right. This
distinction has no effect in the heap model, but is importarthe
sequence model. As in CL, we define the negation duals of the ad
jOintS asP; —e P» £ —|(P1 —O_‘PQ) andP;e— P £ _‘(Plo__‘P2)-

Definition 7 (BL-Model). ABL-model M is atuple O, -, e) such
that

1. Dis aset;

2. - C (D x D) x Dis an associative relation: we use the notation

dy - d2 = ds for ((di1,d2),ds) € -;

3. e C D acts as a left and right identity to: that is,
eVdeD,Jdece,d e€D.e-d=d
evVdeD,Jeced cD. d-e=d
eVd d c¢D,Vece. e-d=d ord-e=d impliesd = d'.

Any BL-modelM = (D, -, e) can be transformed into a CL-model
Mzpr = (D, D, -, e). We highlight specific BL-models for heaps,
sequences and trees, since we will use them throughoutahesrp

Example 8.

e Heap = (D, -, {e}) whereD, - ande are as in Example 3.

e Seqa = (Da,-,{0}) whereD,4 is the set of sequences con-
structed from the elements in sét- is sequence concatenation,
andO0 is the empty sequence.

e Trees = (Da,|,{0}) whereD, is the set of trees in Exam-
ple 3,| is horizontal tree composition, ariis the empty tree.

Contrast these BL-models with the analogous CL-modelsgive
in Example 3, which also emphasise the context structure hEap
model is essentially the same, with the context set beingdhree as
the data set. However, the sequence and tree models anediffe
since the context set is more complex than the data set.

Definition 9 (BL-Satisfaction Relation) Given a BL-modeM =
(D, -, e), the BL-satisfaction relation is of the form M, d Fpr, P
whered € D, ando : Vp — P(D). As before, it is defined by
induction on the structure of formulae. We only give the sdee
the structural connectives:

U,M,d':BL PoPs iff Hdl,dz € D.

di - do :d/\O',M,d1 Epr P1 /\O’,M,dg ErrL P>
o,M,dEpL 0 iff dee
O’,M,d':BL P —o P iff Vd1,d2 e D.

o, M,di Epr Pi A d-di =ds = 0, M,d2 Fpr P>
O’,M,d':BL Pio— P iff Vd1,d2 € D.

o, M,di Epr AN di-d=d2 = o, M,d2 Fpr P»

Consider the BL-mode$eqa, the derived BL-formulal £ -0 A
—(=00-0) specifying sequences of length one, and the BL-relation

o,Seqa,s Fpr (0 —op)ol,

whereo (p) again denotes the set of sequences with equal elements.

This relation only holds ifs is a non-empty sequence consisting
of equal elements except the last one which can be anythimg: f
example, the relation holds wheris b-b-a, but does not hold when
sisb-a-bandb-a-c. This simple example illustrates the difference
between BL- and CL-reasoning: BL-reasoning analyses tloks en
of the sequences, whereas CL-reasoning also analyses dé&mi
However, when the CL-model arises from a BL-model, there is a
strong relationship between BL-reasoning and and CL-r@ago
We give this correspondence explicitly for heaps in Prajpmsi26.

The Hilbert-style BL-proof theory consists of analogoutesu
to those given for the CL-proof theory (Definition 5), with an
additional axiom for the associativity of

3. Connection to Modal Logic

We recall some general theory of ML, and show how CL and BL
fit within this formalism. We prove completeness resultsatialy
the CL- and BL-proof theories with their respective moddig,
appealing to a general theorem of ML due to Sahlqvist.

Definition 10 (ML-Signature) A ML-signature is a tripleX =
(8,0,p : O — T), whereS is a set of sorts ranged over 8,
O is a set of modalities ranged over kY, 7 is a set of types of
the form(S1,...,S,) — S for S;, S € S, andp is a function. We
write A : T'whenp(A) = T.

Definition 11 (ML-Model?). Given a ML-signatur& = (S, 0, p),
a ML-modelM s generated fronk consists of a seM s for each
S € S, and an interpretationtMa C (Mg, X -+ x Mg,) x Ms
for each modalityA of type(Si,...,S,) — S.

Example 12 (ML-signature for CL) Consider the ML-signature
Y ¢ consisting of two sorts D, C with modalitieg : (C,D) — D,
I:()—C,»:(D,D)— Cand«: (C,D) — D. Given a CL-
modelM = (D, C, ap,I), we can view it as a ML-modeV1s,,, ,
where Mp = D, Mc = C, the interpretationsM,, and M;
are inherited from the CL-model, and1, and M are given
by (c,d,d") € Mgy iff (d,d',c) € My iff (¢,d',d) € Mqg.
Hence, every CL-model can be interpreted as a ML-modelcBloti
that not all ML-models over signatutB.;, are CL-models, since
the I modality need not have any relationship to tiiemodality.

Definition 13 (ML-Formulae) Given ML-signature: = (S, O, p)
and disjoint, countably infinite selds of propositional variables
for each sortS, the setPs, of ML-formulae ovei: is given by

PZ::ps|P1\/P2|—|P|fa|SeS|A(P1,...,Pn)

whereps € Vs and, for eachA : (S1,...,S5,) — S, the formula
A(Pi,. .., P,) has sortS provided theP; have sortS;. We write
Ps ¢ for the set of formulae of soff generated from signature.

Definition 14 (ML-Satisfaction Relation) Given ML-signature
¥ = (S§,0, p) and ML-modelM s, the ML-satisfaction relation
Enr consists of relations of the form, M, m Es P for each

sortS € S, wherem € Mg, formula P has sortS and, for each
propositional variablep’s, o(p’s) € M. Itis defined by induction
on the structure of ML-formulae, with the modality case gilog

o, M, mEg A(P1,...,Pn)<:>Vi6{1,...,n}.3m¢.
o, M,m; Fs; Py A((ma,...,ma),m) € Ma.
The other cases are evident.

Example 15. Given CL-modelM and corresponding ML-model
Mz, from example 12, the CL- and ML-satisfaction relations
are equal in the following sense. Define a translation florcti
|-| : PUK — Ps, from CL-formulae to ML-formulae oveétcy,

by induction on the structure of the CL-formulae such thathea
case follows the structure of the formulae except tRat< P, | =
—(|P1| « —|P:]) and|Py > Po| & =(|P1| » | P2|). We have

o,M,dEc, P & o,Ms,,,dFEuL |P|
o, M,cEcr K & o,Ms,,,cEur |K|

Recall that not all ML-models over signatu¥e-;, correspond
to CL-models. To get a precise correspondence with CL, we wil
restrict the class of ML-models to those satisfying a cartat of
CL-axioms. We first describe the general theory.

Definition 16 (AX-Model). Given a ML-signaturé_ and a set of
axiomsAX C Py, an AX-model generated from is a ML-model
M generated from®: which also satisfies, M, m Egs P for all
m € Ms,P € AX ando.

2Note that what we call a ML-model is typically called a frameeig. [2].

Definition 17 (AX-Proof Theory) Given a ML-signature: and a
set of axiomsA X C P, the ML-proof theory generated byd X
consists of the following axioms and rules:

FP=Q F+FP PecAX P tautology

FQ FP FP
P A:(S1,....S) — S
PP /p] F A, false ..., pn) < false
P()=Ap1,- -yy-eeyDn)

= P(pi V pi) < P(pi) V P(p;)
We sometimes writes x to emphasise the sétX.

There is a well-known general completeness result for ML due
to Sahlqvist, which relates the AX-satisfaction relation éhe AX-
proof theory as long as the axioms have a certain form. We ttat
result here, since we use it to show completeness for CL.

Definition 18 (Very Simple Sahlqvist Formulae)Given ML-
signatureX = (S, 0, p), a very simple Sahlqvist antecedefit
is a formula given by the grammar:

A =trues |falseg | ps | ANA| A(AL, ..., An)

forps € Vs andA : (S1,...,S5») — S. A very simple Sahlqvist
formula is an implication of the formt = P*, where P™ is
a positive formula, in that every propositional letteg appears
under an even number of negations.

Theorem 19 (Sahlqvist (see [2])) For every axiom setl X con-
sisting of very simple Sahlqvist formulae, the ML-proobtiyegen-
erated byAX is complete with respect to the classAK-models.

3.1 Context Logic as ML

We have shown that a CL-model can be viewed as a ML-model
over signaturécr, (example 12), and that the corresponding sat-
isfaction relations agree (example 15). Now we identify giom
set AXcr, over signaturécr,, such that thed Xz -models cor-
respond exactly to the CL-models and the proof theoriescdén
Since theA X r-axioms are Sahlqvist axioms, the general com-
pleteness result for ML (Theorem 19) implies completenes€t..

Definition 20 (CL-Axioms). Given ML-sighaturéc ., the axiom
set AXcr, over Yo consists of the following formulae, where
p,q € Vp andk € V¢!

1.I(p)=p

2.p=1I(p)

3. g Nk(p) = Truelp A (k < q))
4.qNk(p) = (kA (p» g))(true)
5.pA (k 4 q) = True < (g A k(p))
6. kA (p» q) = true» (g Ak(p))

The axioms inAXcr are very simple Sahlqgvist formulae. The
first two axioms correspond directly to the identity axiom@if.
The other axioms capture the relationship betw#énp,, M, and
M, , which simply permutes elements (Example 12). For example,
the third axiom species that, if the given data satisfiesd can
be split into a context satisfying and subdata satisfying, then
there exists subdata satisfyipgand & <« ¢ (think of the same
subdata). This axiom shifts the emphasis from the given tata
the subdata. The fifth axiom is a sort of converse. It statat th
the given data satisfigsandk <« ¢, then it is possible to enclose
it in a context (actually one satisfying), such thatg and k(p)
are satisfied. The third and fifth axiom together describeettact
connection betweeM,,,, and M 4. Similarly, the fourth and sixth
axiom describe the exact connection betwgddg, and M, .

3This is called the normal modal proof theory in [2].

We have already illustrated how a CL-model can be intergrete
as a ML-model (Example 12). This ML-model is indeed &5, -
model. Conversely, evert X, -model gives rise to a CL-model.

Lemma 21.

1. Every CL-ModelM gives rise to amM X ¢r-modelMs, .

2. EveryAXcr-modelM gives rise to a CL-modeM ax; .

3. The CL-modeM equals the CL-mod€éM s,) axc, -

4. TheAXcr-modelM equals thed Xcr.-model(Maxq;)sor -
5. The satisfaction relations agree.

Proof. Part 1 follows from Example 12 by observing that thé -
axioms are satisfied bj1x,, . The construction oM 4 x, and
the proof of part 2 is given below. Parts 3 and 4 follow from the
constructions of the models. Part 5 is stated in more detall a
proved in Example 15. For part 2, |af be aA X r,-model, with
setsMp and Mc, and interpretationdqp,, M1, M andM,..
The tupleMax.;, = (Mp, Mc, Map, Mr) is a CL-model. In
particular, axiomd and2 give the condition that\1; is a left unit
of Mg,. Axioms 3 to 6 give the condition(c,d,d’) € M., <
(c,d',d) € Mq & (d,d',c) € My, which captures exactly the
relationship between connectives, «, ». O

Finally, we connect the proof theory of CL andX ¢ ..
Lemma 22. Given arbitrary Py, P, € P and K1, Ks € K,

P btep Py ff }_AXCL |P1| = |P2|
Kibop Ko iff }_AXCL |K1| = |K2|

Proof. For simplicity of notation we omit the explicit conversion
| P|. The proof consists of two parts:

1. the rules of-¢, are derivable if-ax,; ;
2. the axioms il X ¢, are derivable in-¢r..

For each part we give one case in detail, the other casesfollo
similarly. For the first part, we show that the following isrive@ble
}_AXCL K(P1) =P
Faxe, K = (P> P2)

First observe that
Faxe, K= (P> Po)iff Faxs, ~((Py» —P) AK).

Using A X ¢, -axiom 5, we obtain :

Faxe, KA (PLw» —P2) = truew (nP> A K(Py))
From the assumptiofnax., K(P1) = P, we have

Faxg, truew (—Px A K(P1)) = truep (P2 A P)
Sincetax,, true» (-P2 A P2) & false, we have proved

Faxey, —((P1» —P2) A K)

For the second part, we show that axidrns derivable, by
proving the following stronger version:

FoL g Nk(p) = k(p A (k <4q))
Note that, for propositional variable we have:
For k(p) © k(pA(rVv—r)) S k(pAr)VklpA-r)

If we replacer by —(k < g), then our stronger version of axiom 3
follows from proving that

For g AN k(p A—(k 4 q)) = false

Sincelcr p A —(k € ¢) = —(k 4 g) andFcr —(k € q) &
k <1 —q by definition, we derive
Foer g Ak(p A —(k €q)) = g Ak(k < —q)
Finally, since-cr, k(k <t ~q)) = —q, we conclude that
For g A k(k < —q) = g A —q = false
|

Theorem 23(Soundness and Completenes$he proof theory of
CL (Definition 5) is sound and complete with respect to thestzH
CL-models (Definition 2).

Proof. Immediate from Theorem 19, using lemmas 21 and Z2.

Using this result, it is also possible to prove completefiesthe
restricted class of functional CL-models: that is, thoser@bdels
whereap is a function. For each relational model, it is possible
to construct a functional model which satisfies the same titaen
This proof is given in Zarfaty’s forthcoming thesis. In [3}e also
study CL with an additional zero formula since it has interesting
logical structure. It is possible to give additional axiofos0, and
provide an analogous completeness result.

3.2 Bunched Logic as ML

We show how BL can be expressed in ML, by analogy with CL.
The ML-signatureX g, consists of one sort D with the modalities
o: (OD) - D,0: () — D,e : (D,D) — D and
—e : (D,D) — D. The axiom sed X gy, Is:

.0op=p

.p=>0o0p

-(pog)or=po(gor)

-po(gor)=(pog)or

.gN(rop)=-trueo (p A (r e q))

g N
.PpA
. A(p—eq)=true—e (¢ A (rop))

—

rop) = (r A(p—eq))otrue

r e— q) = truee— (g A (r o p))

0 N O O~ WN P

The setAXp. is a set of very simple Sahlgvist formulae, and

for everyn € NT andm € N. The CL-modeH eap is a model of
CLHeap With the the additional modalities interpreted as:

Mo = {e} whereedenotes the empty heap

We have the following derived formulae:

e Po P, 2 (0> P1)(P2) specifying that a heap can be split into
two disjoint parts, one satisfying; and the otheis;

e n—m2 (n— m)A—(-0 o —0) specifying that the given
heaph contains just one cell with(n) = m;

e P, o P £ (0 P) < P, specifying that, whenever a heap
satisfying P, can be composed with the given heap, the result
satisfiesPs.

To illustrate the difference betweerandA, notice that the formula
(n — m) o (n — m) is not satisfied by any heap, whereas the
formula (n — m) A (n — m) specifies a one-cell heap. Also,
notice that logical equivalence dfLr.qp IS heap equality. This
strength of analysis is typical for this style of logical seaing.

BL for heaps is Separation Logic [11]. It is defined similaidy
CLHeap, by extending the signatueg, to include modalities for
specifying the existence of heap cells.

Definition 25 (BL for Heap). BL for heaps, denoteB L rcap, iS
given by the ML-signature

YBriteap =L U{n—m:() = D|neN" meN}L

The BL-modeH eap is a model oB3L cqp, With the interpretation
of the additional modalities defined in Definition 24.

Again, we can derive the BL-formula — m denoting a one-
cell heap. In SL, this formula is primitive. We choose— m as
primitive here, because of a comparison with propositidoglc
given in Section 5, where — m is the natural atomic formula.

From the derived CL-formulae given previously, we know that
BLHeap is asublogic o Leqp. In fact, there is a collapse of the
CL-structure for the heap case, in th&L geap aNd BLEcqp are
equivalent logics on data (Proposition 26). This resultisrgy, in
that it implies that the logics are parametrically as exgikesas
each other on data (Definition 31).

Proposition 26. Let Ps., | y..,,v» denote the restriction of set
Pscryteap 10 those formulae with propositional variables¥,

hence we have an analogous completeness result to CL. Wet do noand similarly for BL. There exists a bijectian Ps.; . re0,.ve —

know how to prove completeness for the functional BL-mogdels
because the construction of a functional model from a @hai
model does not preserve associativity.

4. Applications of Context Logic
We shall study three applications of CL: heaps to give an @am

where CL- and BL-reasoning are the same; sequences to give an

PS5+ meap,v» Which preserves the satisfaction relation: that is,
o,dFcL P & o,dFpL P
O’,C’:CLK =2 O’,C(O) Fpr K

Proof. The translation is defined inductively on the structure ddda
and context formulae. We give the cases for the modalities:

example where CL- and BL-reasoning is different; trees tiole K(P)2KoP T20

a more substantial example where the reasoning is different K4P2K P Pr 2P P,

4.1 Heaps 0= neman—m

CL for heaps is CL extended by specific modalities which can 1he proof follows by induction. =

be interpreted in the CL-modelfeap (Example 3). The extra
modalities specify the empty heap and heaps containingafigpe
cell.

Definition 24 (CL for Heap). CL for heaps, denote@L eap, iS
given by the ML-signaturBc .+ meap CONSisting ob¢ 1, extended
by the modalities:

0:)—D, n—m:()—D

4.2 Sequences

CL for sequences generated by alphaliés CL extended by spe-
cific modalities which can be interpreted in the CL-modelg4
presented in Example 3. The additional modalities spedify t
empty sequence, sequences with just one elemest A, and
modalities for analysing sequence contexts.

Definition 27 (CL for Seq4). CL for Sequences generated by al-
phabetA, denoted Lscq , , iS given by the ML-signatuBc 1+ seq 4
consisting o, extended by the modalities:

0:()—D, a:()—D, o,:(C,D)—C o:(D,C)—C

for a € A. The CL-modelSeqa is a model ofCLs.,, with the
interpretation of the additional modalities given by:

Mo = {0} where0 denotes the empty sequence
M, ={a} foreacha € A

Mo, ={(¢c,s,¢c-5)|c€Ca,s€Da}

Mo, ={(s,¢,8-¢) | s €Da,c €Ca}

We will use the notatior’l’ o P for o.(K,P) and P o K for
o;(P, K), overloadingoe as the subscripts can be inferred.

We require the additional modalities. and o; for analysing se-
guence contexts, since unlike the heap case these cannertivedd
from application. We can derive a formula for sequence cempo
sition P; o P, £ (P; o I)(P.) which specifies that a sequence
can be split into two sequences, the left one satisfyitigand
the right oneP,. This is logically equivalent tq o P)(P1).
We also derive the two corresponding right adjoints: therfalia

P, o— P, 2 (P o I) 1 P specifies that, whenever a sequence sat-
isfying property P is joined to the left of the given sequence, then
the result satisfie®,; similarly for P, —o P, £ (I o Py) < P». For
example, the formula —o P specifies that joining to the right of
the sequence results in a sequence satisf#inn contrast, notice
that the formula(a > P)(0) specifies that, whenever anis put

somewherén the given sequence, then the result satisfies property

P. Again, logical equivalence @ Ls.q, is sequence equality.

Definition 28 (BL for Seqa). BL for sequences generated from
alphabetA, denoted5Ls.q, , is given by the ML-signature

YBLtHeap = LBrL U{a | a € A}

The BL-modeKeq4 is a model of3Ls.,, With the interpretation
of the additional modalities defined as given in Definition 27

BLseq, is a sublogic ofC Ls.q,. Unlike the heap case, there
is no collapse of the CL-reasoning, and the question of véreth
CLseq, is more expressive thaliLs.,, is subtle. Consider the
CL-formula(0 > bo c)(a). Itis logically equivalent to the formula
aobocVboaocVbocoa. Now consider the CL-formula
(0> True(b))(a). Itis equivalent to true b o trueo a o true'V trueo
aotrueo bo true, which has very different structure to the previous
example. We shall see in section 5.2 tldtscq, andBLseq,
are equality expressive in the sense that every CL-formiitleowt
propositional variables has an equivalent BL-formula. Idoer,
they are noparametricallyas expressive, in the sense that the CL-
formula (0 > p)(a), for propositional data variablg, cannot be
expressed iBL 5. , . By contrastC Ls.q,, Without thes modality
is parametrically as expressive B%.scq , -

4.3 Trees

CL for trees generated by alphahétis CL extended by specific
modalities which can be interpreted in the CL-mo@elee 4 pre-
sented in Example 3. The additional modalities corresponthé
empty tree, and modalities for analysing tree contexts.

Definition 29 (CL for Treea). CL for trees, denoted L1cec ,,
is given by the ML-signatur€crrree, consisting ofXcr ex-
tended by the additional modalities:

0:()—=D, pu:(¢)—=¢C

wherep ::= a | a* for a € A. The CL-model'ree 4 is a model of
CL71ree, With the interpretation of the additional modalities given

o:(D,C)—=C

by:
Mo = {0} where0 denotes the empty tree
Mo = {(c,a]d) | ceC}
M, = {(¢d]])|ceC,a € A-{a}}
Mo = {({t,et]|e)|teD,ceC}

We writep[K] for p(K), and P o K for o(P, K).

Apart from the0, the additional modalities describe ways of
analysing tree contexts: either tree contexts consist obgu with
a subcontext underneath, or they can be split at the top ieiel
data and a context. The roptcan either be the node labele A,
or a* denoting any label which is nat. The et modalities are
not given explicitly in [3], since they are derivable withistential
guantification and label equality. They are important for com-
parison with BL-reasoning, and also play a prominent rolegic-
based query languages for XML (see XDUCE [7]). We only reguir
one modalityo for splitting contexts, since our tree composition is
commutative. Analogous to the heap case, we have the ddawved
mulaeP; o P, £ (P o I)(P2) andP; —o P, 2 (P oI) 4 Ps.

Definition 30 (BL for Treea). BL for trees generated from

alphabet A, denoted BL7e,, iS given by the ML-signature

YBL+Tree, CONsisting o gy extended by the modalities:
w:(D)—D, u:(D)—D, ¢:(D)—D <:(D)—D

The BL-model'ree 4 is a model ofBL7,.., With the interpreta-
tion of the additional modalities given by:

Mo = {(talt)|teD}
M, = {(t.d]])|te€D,a €A {a}}
Mp = (@[], 1) | (¢, a'lt]) € My}

Mo = {(t,c(t) [t €D, ceC)

s {(c(®),1) | (£,¢(t)) € Mo}

BL7rec, is a sublogic ofCLrrec,. The BL-formula p[P)
specifies a tree with top node described /aylt is derivable in
CL7ree, as(u[P o I))(0). The modalitiesa™ are essential to
express deep properties of trees in BL. For examplel léenote
all the trees with one node. L., , this can be expressed as
=(=1(=0)) A =0. Itis expressed iBLr. , asa[0] V a*[0], and
is not expressible without the™ modality. The BL-formulgi[P]
is the adjoint. It specifies that, whenever a top node is atinléte
given tree with label specified by, the resulting tree satisfies.

It corresponds to the CL-formula[I] <« P. AL has the formula

a[P], with a-[P] derivable using existential quantification and
label equality. The BL-formula(P) denotes that there is a subtree
satisfying P. Recall that this is expressible in CL as T(&y.
Finally, the BL-formula(P) is the corresponding adjoint. It states
that the given tree can be put in a context such that the result
satisfiesP, and is expressible in CL as TrueP. AL has the
formulaeo(P), but surprisingly not the corresponding adjoint. We
will see thats plays an important role in an expressivity result
linking BL- and CL-reasoning withoue (Theorem 40).

Just as for sequences, the CL-reasoning does not collapse fo
trees, and the comparison betwekhr,.c. , andBLrrce, iS Sub-
tle. Consider the CL-formulg0 > b[0])(a[trug]), which specifies
that we can remove a subtree with root labéb obtain a tree with
one node labelledl It corresponds to the BL-formutgtrug ob[0]V
bla[true]]. Now consider the CL-formulg0 > ob[trug]) (a[trug).

It corresponds to the BL-formula(b[oaltrug]]) Vv o(o(bltrug]) o
o(aftrud))). Notice that the structure of the CL-formulae is sim-
ilar, but the structure of the derivable BL-formulae is gudif-
ferent. In Section 5.3, we shall see tl@&kr,cc, and BLrree,
are not parametrically as expressive, in the sense thao@htfla
(0> p)(aftrug)) cannot be expressed BL7cc , . CL7ree , With-
out thew» modality is as expressive & 1,ce 4 -

5. Parametric Expressivity

We present our expressivity results. We prove parameteggres-
sivity results comparing BL for heaps with and without theust
tural connectives, using a direct proof method. We provensir
inexpressivity results for specific interpretatiomscorresponding
to the extension of BL with list predicates. We also studyapar
metric inexpressivity results comparing CL and BL for seqes
and trees. We cannot prove the parametric results direatithEse
applications. Instead, we prove strong inexpressivityltes and
hence by implication the parametric results. In additior, study

which are identified by-. Inexpressivity then follows from Propo-
sition 33 that no formula ifPs; can distinguish the two elements.
5.1 Heaps
We have the following results about heaps:

® BLHecap,vo = CLHeap,vp

® BLyeap,o(—{—*} +{n—>—}) = BLueap,0

® BLucap,{p}(—{—0} + {n—==1}) € BLucap,{p}

BL for bounded heaps, presenting logics which have the same The first result is a parametric expressivity result, shgutimat the

strong expressivity for every interpretatien but different para-
metric expressivity.

First some notation. Given ML-signatude = (S, O, p) and
AX-model My, we letL A45,,v denote the modal logic determined
by £ and M with propositional variables iv. We useL 1y, v
to denote the restriction to propositional variables oft sfyrand
L ams, {py for the restriction to propositional variabje We write
Ly, v(—2A) for the logic without modalityA. For example,
CLSequ,vp (—{»}) denotes” Ls.q, Without modalitys and with
the propositional variables restricted to sort D.

Definition 31 (Parametric Expressivity)LetY = (S, O, p) and
¥ = (8,0, p") be two ML-signatures with so§ € SN S'.
Consider two models1, M’ over the respective signatures such
that M s = M. Consider the logic® a1,vs and Lae v

1. Logic Loy ,vg IS as expressive afa,ys With respect to
sort S, written Lay,vg Cs Ly, if and only if VP €
£M,VSEIP/ S EM’,VS' Yo.¥m € Ms.

ooM,mEg P& o, M mEgs P .

We often writeC v,y € Lagr,vg Since the sorfS is apparent.

2. Giveno, logic L,y is as o-expressive as vy With
respect to sortS, written Lxy,vs Cs,0 Lar,vg, if and only
if VP e [:M,VS.EPI € ‘CM’:VS' Ym € Ms.

oo M,mEs P& o, M mEs P .
Again, we writeLr,v5 Co Lar,vg SinceS is apparent.

We write Lym,vs = Lar,vg WhenLagyvs C Ly and
Lmys 2 Lymevg, andLa,vg =0 Ly, vg analogously.

In fact, we concentrate on inexpressivity results, askidgmva
logic is strictly more expressive than another. We say that v
is parametrically more expressive thaf aq,vg iff La,vg
Ly vg. We say thatl ny y is strongly more expressive than
Lm,vg iff there exists ar such thatl vy Co L, vg-

To prove our strong inexpressivity results we rely heavity o
the notion of bisimulation. Bisimulation has the propefat; if
two elements of the models are bisimilar, then they cannatibe
tinguished from each other in the logic, and hence can bettlire
used to prove strong inexpressivity.

Definition 32 (Bisimulation) A symmetric binary relationr =
Uses ~g With~sC Mg x Mg is abisimulationfor ML-model
Ms if and only if, wheneve((mi,...,myn),m) € Ma and
m ~ m/, then there existn; € Mg, such thatm; ~gs, m;
fori = 1...nand ((m},...,m}),m’) € Ma. A bisimulation
~ is compatiblewith interpretationo if and only if, for all m, p,
meap)Am~m'=m'€o(p).

Proposition 33. Let ~ be a bisimulation compatible with for
ML-model Ms. Thenmi ~gs meo implieso, M, m1 Egs P iff
o, M,ma Es Pforall P € Psg.

To show thatZam,vg Co Lar,vg, OUr proof method consists
of finding a formulaP € L,y oOf sort.S and a bisimulation-
for M compatible witho, such thatP distinguishes two elements

structure of CL collapses to BL in the heap case. This reslitiiis
from Proposition 26. The second result is a non-parametpess-
sivity result due to Lozes [9], which compares the expressif
closed formulae. It states that the adjunetcan be eliminated if we
add formulaen— — to specify that address is allocated:n— —
specifies that there exists such thai—m. It is expressible using
—e as—((n—0) —etrue); the current heap cannot be extended with
cell n, son must already be allocated. Lozes’ result was initially
quite a surprise, since the adjuncts are used in an esserjal
to describe the weakest preconditions for Hoare reasoréisgd
on BL for heaps. We address this apparent contradiction, tgre
proving the third result.

The third result is a parametric inexpressivity result, efhve
prove by showing that formulén—0) —o p cannot be expressed
in BL for heaps without—e. This formula is interesting because
it expresses the weakest precondition of allocation. Tregpres-
sivity result says nothing about whether the formula is espible
for a particular interpretation gf. By Lozes’ results, we know that
it is expressible for every interpretation pfas a closed formula.
We also prove a strong inexpressivity result using the sametla
and a natural interpretation;s: which interpret® aslist(m): that
is, the heap contains@&terminated linked list starting at.. This
result is interesting because lists are one of the typicdligtive
predicates used in BL-reasoning.

Theorem 34(Parametric Inexpressivity)
BLHeap,{p}(_{_.} + {n%_}) - BLHeap,{;D}

Proof. We define the notion of heap-reducing formulae, and prove
that all the formulae iBL ycqp, (1 (—{—0} + {n——}) are heap-
reducing, whereas formul@g+—0) —o p is not. This captures our
intuition is that, without-e, the BL-modalities either leave the heap
alone or make it smaller, whereas formyla—0) —o p crucially
testsp on an extension of the initial heap with cell

Given heaph, define a binary relation on interpretations by

o~y o iff VA <h.h €o(p) =k €0d'(p)

whereh’ < h meansdom(h') C dom(h) andVn € dom(h’).
K (n) = h(n). We say that a formul® is heap-reducing if and
only if, whenevew ~j, o, itfollowsthato,h |= P < o', h = P.

Given formulaP in BL g cqap, {p} (—{—0} + {n——1}), we show
that P is heap-reducing by induction on the structurefaf Case
p is immediate from the definition of ~j, o’. The only other
interesting case i® o P». Supposer ~j, ¢’ ando, h = P; o P».
There exists; for i = 1,2 such thath = hy - he ando, h; = P;.
Sinceh; < h, we haves ~y,, ¢’ fori = 1,2 and hences’, h; =
P; by the induction hypothesis. We conclude thgth = P.

Let P’ be (n—0) —o p. We show that”’ is not heap-reducing.
Defines(p) = {h | h : Nt —4;, N} ando’(p) = {e} wheree is
the empty heap. Them ~. ¢’ ando, e = P/, bute’, e ¢ P’. O

We now prove our strong inexpressivity result, that cannot
be eliminated with interpretations;(p) = list(m). With this
interpretation, the formulén—0) —op is satisfied by a list segment

starting atm and stopping with dangling pointer. This cannot be
expressed withouto, since only whole lists can be observed.

Theorem 35(Strong Inexpressivity)

BLHeap,{p}({_.} + {n‘% }) = Tlist BLH"GIL{P}

Proof. Consider the BL-formula® £ (n—0) —o p, and interpre-
tation oiist(p) = list(m) for m # n. We show that there is no
formula P’ in BL geap, (p} (—{—#} + {n——}) that is equivalent
to P usingaiisi. Expecting a contradiction, suppose that sudh’ a
exists, and lef. C N be the finite number of constants mentioned
in P’. Consider the restriction @8 Lz, to constants irL, written
BLHcap; . We choose a bisimulatior which identifies two heaps
when they have the same domain, coincide on valuds and are
identical if one of them contains a list startingrat

h1 ~ hs iff dom(hl) = dom(hg) and
Vi,j € L. hl(Z) = jiff hz(l) =jand
if h1 [= list(m) or he |= list(m) thenh, = ho.

Notice thatoyst(p) is compatible with~, since if hi~hs and
h1 E list(m) thenhy = list(m). Assume for the moment that
~ is indeed a bisimulation. With this assumption, we show that
we do indeed obtain a contradiction. Takeé ¢ L U {n, m} and
consider the heaps; = [m — m’,;m’ — n] andhs = [m —
m’,m’ — m']. Note thathi~hs ando,h; E (n—0) — p
but o, he & (n—0) —o p. Assuming that~ is a bisimulation
for BLycap,, {p} (—{—0}+{n——1}), Proposition 33 implies that
oiist, b1 =pL P’ iff ist, h2|=51 P’. We have therefore proved that
there cannot be a BL-formul®’ which is equivalent taP.

Finally, we must prove our assumption thats a bisimulation
for the modalities{0, o} U {i—j,i—— | i, 57 € L}. We only look
at theo modality; the other cases are trivial. Assuie= h} - hY
andhi~hsz. We must show thafihh, h5 such thatha = h5 - b5
andh}~h5 andhf ~hj. Chooseh’, b5 as the unique splitting of
ho such thatlom(hs) = dom(h’) anddom(hy) = dom(hy). We
showh)~hj; the cas 5 is identical by symmetry. The first
and second conditions in the definition-efare immediate. For the
third condition, assumg] = list(m), which impliesh = list(m)
since h} is a sublist ofh;. By definition of hi~h2, we have
h1 = hs, henceh| = R} which is the desired conclusion. O

Lozes also shows that, with an additional modalitge, for
determining the size of heaps, thenodality can be removed. We
show thatb is essential for parametric reasoning. The results are:

® BLieap,o(—{0, —#} + {sizer}) = BLueap,0(—{—o})
® BLueap,{p,a} (—{0, —o}+{sizer}) € BLcap,{p,q} (—{—2})

The results also hold with modalitgy— —. Thus, BL is as ex-
pressive as PL with atomic formuldg size,, andn——, but not
parametrically so. We believe this parametric inexpregsiesult
demonstrates what has been always known intuitively, bugxby
ample only, that the-modality is essential for modular reasoning.

We give a direct proof of our parametric inexpressivity fesu
for o based on the trivial observation that, witheuiand —e, all the
modalities leave the current heap unchanged. The modak#gy.,
for eachr € N1, is interpreted by |= size,. iff |[dom(h)| < r.
We do not requirgsizeq as it corresponds to the zero formula

Theorem 36(Parametric Inexpressivity)
BLcap, {p,qy (—{0, —} + {sizer}) € BLuecap, {p,q} (—{—})

Proof. The proof is analogous to that of Thm. 34. A formupais
heap-invariantiff, when h € o(p) < h € o'(p) for all p, then
o,h = P < o',h|= P.Theformulae ilBL geap, (p,q1 (—{0, —0}+
{size, }) are heap-invariant, byto ¢ is not. d

We also prove a second strong inexpressivity result, ¢hegnnot
be eliminated with fixed interpretatian, ., which interprety and
g aslist(my) andlist(me) respectively form: # mo. Theo
modality is essential for specifying the property that tive tists
are in the heap and their tails never meet.

Theorem 37(Strong Inexpressivity)

BLHeap,{p,q}({o, —e}+{sizer}) Coyyn BLHFap,{pq}({—})

Proof. The structure of the proof is analogous to Theorem 35.
Consider the BL-formula o ¢. As in Theorem 35, we restrict our
attention to BL-formulae mentioning at most a finite $e€ N of
constants and the propositional variables.

Consider the interpretatidn € oy, (p) iff h satisfiedist(my),
andh € o0y;5:(q) iff h satisfiedist(m2). Define relation~ by:

h1 ~ hsg iff |dom(h1)| = |dom(h2)| and
O',hl ':P<:>U,h2 ':PfOI'
Pe{p,qtU{i—jlijeL}
~ is compatible witho and is a bisimulation for the modalities

{0 szzer}U{z‘—>] | i,5 € L}. Takehy = [m1 — n/,mz —
n”,n' — 0,n" »—>O]andh2 [m1»—>nm2»—>nn»—>
0, " 0] for distinctn’,n” ¢ L U {m1i,m2}. Thenhy ~ hs
anda, hi E pogq, buto, hg K pog. O

From the previous examples, one might be tempted to conthade
whenever a parametric inexpressivity result holds, a spoading
strong inexpressivity result holds too. In fact, this is tie case as
we demonstrate using bounded heaps. In bounded heepannot
be eliminated parametrically for reasons identical to thieaunded
case. However, given a specific interpretatipnany formula is
equivalent to a disjunction of characteristic formulaehwiit —e.

Theorem 38. Let Heapr denote the restriction of heaps, and
correspondingly formulae, to locatiors k. The following hold:

1. BLueapy, (p} (—{—*} + {n—>=1}) € BLHcap, {p}
2. BLHeaPk:{P}(_{_.} + {’I’L;)—}) 0o BLHeapk,{p} forall o.

Proof. The proof of part 1 is identical to the proof of The-
orem 34. For part 2, we in fact prove a stronger claim: for
any set of heapd! C Heapg, there exists a formuldPy €
BLpcap,,0(—{0,0,—o}) such thath = Py < h € H. We
show that the conclusion then follows from the claim. Giverly a
candP € BLyeap,, (p}, 1€ H = {h | 0,h |= P}. ThenP is
equivalent taPy, by definition. To prove the claim, we first define,
given heaph, the characteristic formul®, as

A A
n,m<k.h(n)=m n,m<k.h(n)#m)

c|ear|yh/ ': P, h = h/, andpP, € BLHeapk,@(_{O’
To conclude, we defin®y = \/,,_;; Pa.

n—m A —(n—m)

o, —e}).
Od

5.2 Sequences
We have the following results for sequences for infinite alpdtA:

® BLseqy,0(—{—® 0}) =BLseqy,0 = CLseqy,0
® BLseqy,vp(—{—®,0=}) = CLscqy vo(—{», «})
® BLseqa,vo = CLseqq,vp(—{»})

® BLseqa.ipy & CLseqa {p}-

The first result is a standard expressivity result showireg 8L
and CL for sequences without propositional variables arelty)
expressive. The proof will appear in a forthcoming papee $ac-
ond result is a parametric expressivity result. It shows, thidhout
adjuncts, BL for sequences is as expressive as CL for segsenc

The third result shows that full BL is parametrically as eegsive
as CL without the» modality. The fourth result illustrates that the
importance of CL-reasoning lies in tmemodality, by showing that
CL for sequences is parametrically more expressive tharoBkd-
qguences. Unlike the heap case, we are unable to give a digft p
of the parametric result. We give a proof of strong inexpréss
and hence prove parametric inexpressivity.

Our first parametric expressivity result for sequences show
that, without adjuncts, CL-application can be specified Hy B
composition. The proof shows that any context formula can be
expressed as the disjunction of formulae of the fdPmo I o P,
and the applicatiofPy o I o P2)(P) corresponds td’ o P o Ps.

Theorem 39(Parametric Expressivity)

BLScqa,vo(—{—®,0=})=CLscqq,vo (—{», 4})

Proof. Note that propositional variables are restricted to sors®,
the context formulae af Lseq 4, v, (—{», 4}) are
K I|KVK|-K|Falsel] KoP|PoK.
We define a canonical subset
K KVK|PoloP

and show that

(1) every CL-formulaK is equivalent to a canonical formuld;
(2) every application formulds (P) is equivalent to the substitu-
tion formulaK[P/1].

The result follows. Given an arbitrary CL-formula, first fape
the context subformulae by canonical formulae, then repthe
application subformulae by the equivalent substitutionmiadae.
The resulting formula is a BL-formula equivalent to the amig
CL-formula.

To show (1), we define a translatien from context formulae
to the canonical formulae by:

tr(I) & 00I00
tT(K1 \/KQ) £ t?“(Kl)\/tT(Kz)
tr(~K) 2 Not(tr(K))
tr(Fals§ £ falseo I o false
tr(KoP) £ Add(tr(K),P)
tr(PoK) £ Add.(P,tr(K))

whereNot(K), Add. (P, K) and Add,(K, P) are defined below
by induction on the structure of the canonical formulae.

Before definingNot, we define a functiomMnd on canonical
formulae such thallnd(XK,, K,) is equivalent ta’; A K,:

And(K, V K,, K;) And(K,, K3)VAnd(K,, K;)
And(PloIoPg, P30]OP4) (P1 AN Pg) olo (PQ A P4)

We now define functioNot

No(K, V K,) = And(No(K,),Not(K,))
Not(P o I o P») (=P1) oI otrueV trueo I o (—P)

Add,(P,K) andAdd; (K, P) are defined similarly toAnd.

(2) is proved by induction od. For case; vV K,, note that
(K, V K,)(P) is equivalent toK,(P) V K,(P) and, by the
induction hypothesis, itis equivalent 16, [P/I] v K ,[P/I]. Case
Py o I o P, isimmediate sincéP; o I o P»)(P) is equivalent to
PioPoPs. O

=l

1>l

As an example, consider ti@L-formula (—I)(P) satisfied by
any sequence having a strictly smaller subsequence sagsf:
We havetr(—I) = Not(¢tr(I)) = Not(0 o I o 0) = (—0) o
I o trueV trueo I o (—0). Therefore(—I)(P) is equivalent to

(=0) o PotrueVtrueo P o (—0), which is satisfied by any sequence
containing a subsequence satisfyiBgomposed with a nonempty
sequence on at least one side.

Our next result shows that CL for sequences mimuis para-
metrically as expressive as BL for sequences.

Theorem 40(Parametric Expressivity)
BLseqavp =CLseqqvp(—{»})
Proof. As in the proof of Theorem 39, we define a canonical subset:
K KVK|PoloP

The only difference compared with Theorem 39 is that now data
formulae may contain the adjoint formul#é « P. Given an arbi-
trary CL-formula, first replace the context subformulae lbyan-

ical formulae, as in (1) of Theorem 39, then replace the appli
tion subformulae by the equivalent substitution formulaéra(2).

We must show how to eliminate the adjoint formulde « P,

by induction on the structure oK. When K is P1 o I o Ps,
then (P, o I o P») « P is equivalent toP; e— (P, —e P).
WhenK is K, vV K,, then(K, V K,) « P is equivalent to
(K, «P)V (K, «4P). O

Finally, we show that CL for sequences is parametricallyenor
expressive than BL for sequences. This additional expriggsor
CL must lie in the use of th® modality. Intuitively, BL can only
add elements to either side of a given sequence, whilsan add
elements wherever the hole happens to be. We initially kedrc
for a direct proof of this result, trying to identify a propgranalo-
gous to the heap-reducing formulae of theorem 34 which cagtu
this difference between adding elements to the side or tloellmi
of sequences. BL-formulae can however affect the middlehef t
sequence, by using and —e to remove the whole sequence and
adding any desired sequence. We do not know if such a direct re
sult is possible. Here, we prove our parametric expregsieisult
via a strong inexpressivity result using bisimulation.

Theorem 41 (Parametric Inexpressivity)Let A be an infinite al-
phabet. ThenBLSqu,{p} g CLSqu,{p}-

Proof. We consider BL and CL for sequences containing formulae
with at most one propositional variabje Consider CL-formula

P (0 > p)(a) for somea € A. Expecting a contradiction,
assume thaP is equivalent to data formul®&’, and letA’ C A

be the finite set of letters occurring iR’. Formula P says that

p holds after removing an elemeatsomewhere from the current
sequence. By contrast, BL can only observe subsequencagaeibt
by removing letters from either side, not from the middletWBL,

we can only compare adjacent pairs of elements. With CL, we ca
compare arbitrary pairs of elements. We must find an intéaion
functiono, and a bisimulation relatior which is compatible with

o and captures this intuitive difference in expressivity.

We choose an interpretatienwhich states that the interpreta-
tion of p is the set of all sequences with equal elements. To express
this formally, we first introduce some notation. Leet3 denote se-
guences, lety; denote the-th element of sequence, and let|«|
denote the length of the sequence. We defitwy

olp) 2 {a|Vicl.|a| —1.a; = ajy1}

In addition, we define a bisimulation relation which obserete-
ments in the sef’” and equality of adjacent elements:
a~pg@ iff In. ol =|8=nA
Viel...n—1. a;=qai+1 < Bi=Bit1 A
Viel..na €A ay=d & B =d

Clearly ~ is compatible witho. Assume for the moment that
it is indeed a BL-bisimulation. With this assumption, we y&o

the inexpressivity result we seek. Consider two sequenges-
a -a-a andae = a’ - a-a”, wherea’ # o” are not inA’.

Observe thatv; ~ a2, as adjacent letters are distinct in both

sequencesy, a1 = (0> p)(a) buto, as = (0> p)(a). Assuming
~ is a bisimulation forBLs., ,, (), Proposition 33 implies that
o,a1E=pL P iff 0,asf=pr P’ for all BL-formulae P’. We have
therefore proved that there cannot be a BL-formitawhich is
equivalent taP.

Finally, we must show that- is indeed a bisimulation for
all the modalities ofBLs.q,,,(p}- We only look at theo and
—e modalities; the other cases are analogous or trivial. Ferth
modality, assume:- 3 = v andy ~ ~'. We must show thalc’, 5’
suchthat’- 3 = 4’ anda ~ o’ and3 ~ 3’. Choose’, 3’ as the
unique splitting ofy’ such thata’| = |a| and|g’| = |3|. Clearly
a ~ o' andg3 ~ /3, since adjacent elementsdt and 3’ are also
adjacent iny’. For the—e modality, assume: - 3 = v anda ~ «’.
We need to show thas’,~" such thain’ - 3 = 4 and3 ~ 3

andy ~ +'. Sincea anda’ might end in different letters, we must
construct 83’ such that its first element relates to the last element

of o’ in the same way as the first element/felates to the last
element ofa. Let f : A — A be a bijection such that(a;) = .

Such anf exists sincex ~ o’. We defing3’ as the unique sequence

suchthatg’| = |3|, 8 = f(B:) andy’ £ o/ - 3. Itis easy to see
that3 ~ 8" andy ~ +'. O
5.3 Trees
We have the following results for trees for infinite alphaldet

® BLrreen,vo(—{—,11,0}) =CLTrec s, vo (—{», «})

® BLrree s, vp =CLTree,vo(—{»})

b BLTreeA,{p} - CLTreeA,{p}-

The first result states that CL and BL for trees without adphrave
the same parametric expressive power. The second redel that

adding the« modality to CL gives the same expressivity as BL.

This formalises our intuition that th& modality is a compact way
to express the adjoints of AL (plu¥). The third result is a para-
metric inexpressivity result, showing that CL for trees éametri-
cally more expressive than BL for trees. This result illasts that
» is the key modality for giving CL its additional expressivewer.
In [3], we observed that it was important for expressing theake¢
est preconditions of update commands. Our inexpressieiylt
formalises this intuition, which we had previously motedty ex-
ample.

Our first parametric expressivity result is that BL and CL for

trees without adjoints are equally expressive. The proofstthat
context formulae can be reduced to a canonical form, allgwon-
text application to be eliminated by a form of syntactic gitbgon.

Theorem 42(Parametric Expressivity)
BLrree s ,vo (—{—9, 11, Z>\}) =CLrreey,vo (—{», 4})
Proof. Note that propositional variables are restricted to sors®,
the context formulae of Lrree , v, (—{», «}) are:
K == I|KVK|-K |False|ulK]|PoK
We define a canonical subset, similar to that given in The@8m
K == KVK|True|False| Pol | Pon[K]
n u= {a1,...,an} | {a1,...,an}"

The composition formulae analyse whether the hole is atdpe t

level or under a node label. The formulges,...,a,}[K] and
{a1,...,a,}"[K] are syntactic sugar foy ; a; (K] and A\, a;- [K]

respectively. Just as for Theorem 39, it is enough to show the

following results:

(1) every CL-formulak is equivalent to a canonical formuld;
(2) every application& (P) is equivalent to the substitution for-
mulaK[P/I,oP/True].

To prove (1), we define a translation from context formulae
to the canonical subset by:

tr(I) = 0ol
tr(K1 \/K2) £ tT(Kl)\/tT(KQ)
tr(-K) = Not(tr(K))
tr(Fals§ £ False
tr(ulK]) = 0o pftr(K)]
tr(PoK) %= Add(P,tr(K))

where Not(K) and Add(P, K) are defined by induction on the
structure of the canonical formulae.

Before definingNot, we define a functiomMnd on canonical
formulae such thallnd(XK,, K,) is equivalent ta’; A K,:

And(K, V K,, K;) £ And(K,, K3) V And(K,, K ;)
And(Trug K) £ K
And(False K) £ False
And(PloI,PgoI) é (Pl/\PQ)OI
And(Piol,P,on[K]) 2= False

And(Prom[K,], P om[K,]) =
(P1 A P2) o (mAn2)[And(K,, K,)]

where, for sets;, we defineS1 ASy = S1NS2, S1ASy = S1—55,
andS;AS3 = (S1US2)*. We now define the functioNot such
thatNot(K) is equivalent to-(K):

Not(K, V K,) = And(No(K,),Not(K,))
Not(True) £ False
Not(Fals§ = True
NotPol) 2 (-P)olV trueo()*[Trug
Not(PonK]) £ trueo IV trueon™ [Trug v

(=P) on[Trug V trueo n[Not(K)]
We finally defineAdd such thatAdd(P, K) is equivalent taP o K:

Add(P,True) £ (Potrue)olV (P otrue) o (*[Trug
Add(P,Fals§ £ False
Add(Pl,PQOI) é (P10P2)OI
A

Add(Py, P2 o n[K)) (P1o P2)on[K]

To prove (2), we proceed by induction dii. For casek; vV
K,, note that(K, Vv K,)(P) is equivalent tok, (P) V K,(P)
and hence, by induction, is equivalent 16, [P/I,oP/Trug Vv
K,[P/I,oP/True]. For case True, observe that T(u®) is equiv-
alent tooP. Case False is immediate. Casg o I is also im-
mediate sincg P o I)(P-) is equivalent toP; o P». For case
Py o n[K], first observe tha(P; o n[K])(P:) is equivalent to
Py o n[K(P:)] which, by the induction hypothesis, is equivalent
to (Py o n[K|[P2/I,oP/Trug]). O

Consider CL formula (—1I)(P), satisfied by any tree hav-
ing a strictly smaller subtree satisfying. We havetr(—I) =
Not(tr(I)) = Not(0 o I) = (—0) o I V trueo) [Trug]. Therefore
(=I)(P) is equivalent tq—0) o P V trueo (- [0 P], satisfied by any
tree with either a subtree satisfyirfg at the top level composed
with a non-empty tree, or a subtree satisfyiRginder a tree node.
Our second parametric expressivity result for trees shivas €L
for trees minus« corresponds to BL.

Theorem 43(Parametric Expressivity)
BLTreeA Vb :CLTTEEA Vb (_{>})

Proof. The proof extends the proof of Theorem 42, just as the prove that SL is parametrically more expressive than PL é&ays,
proof of Theorem 39 extends that of Theorem 40. We use the whereas Lozes shows that these logics have the same exjiyessi
same canonical forms as in Theorem 42, and just need to skaw th on closed formulae. We also prove that CL for trees is pamamet

K <« P can be eliminated by induction ds. For casek; V K,
we have(K, V K,) <« P equivalent to/ K, « P) V (K, « P).
For case True, we have True P equivalent tos P. Case False is
immediate, since Falsa& P is equivalent to false. Case o I is
also immediate, sincéP; o I) « P is equivalent toP; —e P.
For caseP o n[K], we have(Py o n[K]) « P equivalent to
K < (7(P1 —e P)) where, ifS = {a1,...,a.}, thenS(P) is
ai(P)V---Van(P)andS+L(P)isai(P)A--- Aakt(P). The
result follows by the induction hypothesis. O

Finally, we show that CL for trees is parametrically more res
sive than BL. We are unable to give a direct proof. We instdavs
a strong inexpressivity result based on interpretatigp which in-

terpretsp as the property that all the labels in the tree are equal. We

show that formulg0 > p)(a[trud), corresponding to the weakest
precondition of deleting a subtree with root lalels not express-
ible in BL. Intuitively, the result holds since CL can remavsub-
tree at an arbitrary position, while BL can only split tre¢she top
level usingo or under a fixed number of edges using

Theorem 44(Parametric Inexpressivity)

BLT'reeA,{p} g CLTreeA,{p}

Proof. The structure of the proof is identical to that of Theorem 41.
Consider the CL formuld® £ (0 > p)(atrud), which says that
we can remove a subtree with roetfrom the current tree and
the result satisfieg. Intuitively, BL can remove subtrees from the
top level of the current tree using but cannot remove them from
arbitrary positions. As in Theorem 41 for sequences, weiotstur
attention to BL-formulae with a single propositional véuliap and
node labels from a finite set’ C A. We define the interpretation
ast € o(p) iff all the labels in treg are equal.

Let ~ be the unique relation such that:

t~t iff teo(p) et €o(p)and
if t = a1[t1] thenTal, t] such that
t' = al[t}] andt; ~ t] and
a1 € A’ ora} € A" impliesa; = o} and
if t = t1]t2 then3t}, t5 such that
t' = ti|th andt; ~ t; andts ~ th

Itis easy to see that is compatible withr, and we will show that
it is a BL-bisimulation. Leb, c be distinct labels not id’ U {a},
and defing; £ b[a[0]|b[0]] andt2 £ b[a[0]|c[0]]. We havet; ~ o
ando, t1 E P buto, t2 £ P, hence the result.

We must show that- is a bisimulation for all the modalities
of BLTree ,, {p}- The modalities), o, . are immediate from the
definition of ~. Modalities—e, 1, 5 follow from the fact that- is a
congruence: that is, if ~ ' thenc(¢) ~ c(t') for all tree contexts
c. For theo modality, we need to show that,dft:) = t andt ~ ¢/,
then there exist’, t; such that’ = ¢/(¢}) andt; ~ t;. The proof
is straightforward, by induction on the size of O

6. Concluding Remarks

cally more expressive than AL, whereas Lozes shows thatthey
the same expressivity on closed formulae. Our definitionarhp
metric expressivity corresponds to that studied in the hérhture,
and corroborates our intuition that the structural connestof CL
and BL are essential for our local Hoare reasoning. Lozete sif
expressivity result is not typically explored in the MLergature. It
is interesting for our application of structured data: feample, we
have shown that CL for sequences corresponds te-tinee regu-
lar languages on closed formulae. The structural conrestiv CL
and BL give rise to several examples of logics which are patam
rically more expressive, but which have the same expragsiri
closed formulae. We currently do not know of other examples o
ML where this is the case, except for simple examples suchdas S
and S5 where all closed formulae correspond to either trialse.
We are only at the beginning of studying expressivity result
for CL: for example, two natural extensions involve higloeder
guantification and first-order quantification. The paraietkpres-
sivity results in this paper are based on formulae with psitemal
variables. Our results say nothing about the expressiyitygher-
order SL over higher-order logic. Also, our results comp@teand
BL without first-order quantification, whereas their apptions to
analysing trees and heaps usually involve quantificatier oede
labels and heap addresses. Dawar, Gardner and Ghelli {veittik$
to Yang) have shown that adjunct-elimination in AL with quan
tification is not possible [6], strengthening a previousutedy
Lozes [9]. Despite this inexpressivity result, it still neaksense to
ask for parametric inexpressivity results about particidamulae,
to pin down exactly why full SL seems to be more appropriate fo
modular reasoning about programs than first-order logic.

References

[1] J. Berdine, C. Calcagno, and P.W. O’'Hearn. Smallfoot:dMar
automatic assertion checking with separation logicPtaceedings
of FMCO’05 volume 4111 ot NCS§ 2006.

[2] Patrick Blackburn, Maarten de Rijke, and Yde Veneriidal Logic
Cambridge University Press, 2001.

[3] C. Calcagno, P. Gardner, and U. Zarfaty. Context logid &ee
update. INPOPL, 2005.

[4] L. Cardelli and G. Ghelli. TQL: A query language for seinigtured
data based on the ambient logic. To appear in MSCS.

[5] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logifor
mobile ambients. IPOPL, 2000.

[6] A. Dawar, P. Gardner, and G. Ghelli. Adjunct eliminatiosing
Enrenfeuch’s games. RSTTCS2004.

[7] H.Hosoya and B. Pierce. Xduce: A typed xml processingleaye.
ACM Transactions on Internet Technolo@y117-148, 2003.

[8] S. Ishtiag and P. O’'Hearn. Bl as an assertion languagenfgable
data structures. IROPL, 2001.

[9] Etienne Lozes. Elimination of spatial connectives iatist spatial
logics. In TCS 330(3), 2005.

[10] D. Pym, P. O'Hearn, and H. Yang. Possible worlds and ussss:
The semantics of BITheoretical Computer Sciencgl5(1), 2004.

We have shown how to present CL and BL as ML, interpreting the [11] J.C. Reynolds. Separation logic: a logic for sharedahlg data

structural connectives as modalities satisfying a set difbehaved
ML-axioms. We have given two applications of the generabtize

of ML: we have proved completeness results for CL and BL using

a general theorem about ML due to Sahlqvist, and inexpri#gsiv
results using the standard ML-bisimulation technique.

Our parametric inexpressivity results for arbitrary forame
contrast with Lozes’ expressivity results on closed foraeul\We

structures. Invited Paper, LICS'02, 2002.

[12] H. Yang. Local Reasoning for Stateful Program#>h.D. thesis,
University of Illinois, Urbana-Champaign, Illinois, USRP01.

[13] H. Yang and P. O’'Hearn. A semantic basis for local reaspn
FOSSACS, 2002.

