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Abstract

Computer arithmetic remains important as we move to systems-on-a-chip that ded-
icate large areas for special-purpose arithmetic units. System application areas such
as signal processing, multimedia, and mobile computing require the evaluation of
functions as fast as possible with as little power as possible. It is well known that ra-
tional approximations and continued fractions offer fast approximations and efficient
algorithms to compute rational functions. Due to the difficulty of converting between
continued fractions and binary numbers continued fractions have been impractical for
the design of computer systems.

Rational arithmetic is about division of two numbers, division of polynomials
and/or division of digits. Continued fractions(CFs) enable the development of divide-
add structures for digits of rational numbers. Continued fraction arithmetic deals with
computing rational functions where input and output values are represented as simple
continued fractions. The basic remaining problems of previous work are threefold:
choosing the optimal CF-digit representation, converting between simple continued
fractions and binary numbers, and error control.

The M-log-Fraction Transform(MFT), introduced in this work, solves all three
problems. Instant conversion is shown to be related to the distance between the ’'1’s
of the binary number. Applying M-log-Fractions to continued fraction arithmetic
algorithms reduces the complexity of the implementation of the CF algorithm to

shift-and-add structures, or more specifically, digit-serial arithmetic algorithms for

v



computing rational functions. A multiplication-based scheme can be used to evaluate
higher-degree rational approximations.

This thesis demonstrates two applications of the MFT:

(1) a rational arithmetic unit computing functions such as (ax+b)/(cx+d) in a
shift-and-add-based structure.

(2) the evaluation of rational approximations (or continued fraction approxima-
tions) in a multiplication-based structure.

The MF'T bridges the gap between continued fractions and the binary number
representation, enabling the design of a new class of efficient rational arithmetic units

and the efficient evaluation of rational approximations.
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Chapter 1

Introduction

The following table summarizes the notation that will be used throughout the thesis.

Table 1.1: Symbols and Definitions

£ definition | = equivalence ~ approximately equal
pisl 52l M2 M;| 0320.3333...
A Matrix | |A| Determinant | |x] largest integer smaller than
{a,b,c,...} a set of values
N set of natural numbers {1,2,3,...}
R set of rational numbers r = ¥ where z,y € N/
1 1
[ao;al,...an] Clo+|a—1+72+"'+i:ao+ﬁ
[z] citation, reference number z
<My, My, M3, My, My, | [0;2M1 —(27M1 4 2M2) (=M 4 9Ms) ' (9=Ms 4 9Ma)
ey My, > (27 May 2Ms) | 4 (27 Mn-14 2Mn))

Although the following mathematical terms are well known, they are defined here
for completeness.
Theorem: A formula, proposition, or statement in mathematics or logic deduced

or to be deduced from other formulas or propositions (Webster [72]).
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Lemma: An auxiliary proposition used in the demonstration of another proposi-
tion (Webster [72]).

Corollary: A proposition inferred immediately from a proved proposition with
little or no additional proof (Webster [72]).

Equivalence: In this thesis, ’equivalence’ refers to non-trivial equalities that are

only valid within a specific set of conditions.

1.1 Motivation for Computer Arithmetic

Computer arithmetic[2][4][5][6] deals with the computation and implementation of
mathematical operations and functions in computer systems. In general, any opera-
tion can be implemented in hardware or — by using the arithmetic units of a processor
— in software. Software implementations use the arithmetic operations that are avail-
able in a general purpose microprocessor to approximate more complex operations or
functions. Hardware implementations make use of specialized arithmetic circuits.

Implementations of arithmetic circuits in hardware are based on mapping the
desired function to an Application Specific Integrated Circuit (ASIC) or to a Field-
Programmable Gate Array(FPGA). With shrinking feature sizes, advanced arithmetic
units also get incorporated into general purpose microprocessors. For example, mod-
ern microprocessors extend the division unit to a divide/square-root[48][50]. Mul-
timedia extensions such as Intel’s MMX enable parallel 8-bit computations within
larger arithmetic units. Microprocessors for signal processing typically include an in-
tegrated multiply-add unit that joins a multiplication and an addition unit to speedup
the evaluation of, for example, polynomial approximations.

The main focus of this thesis is on efficient general-purpose hardware (VLSI)
implementation of rational arithmetic for computer systems, i.e. rational arithmetic

units. Rational arithmetic units compute functions that include division. An example
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ax+b

for a rational arithmetic unit is the bilinear function y = 2=

Just as the multiply-
add unit is a natural extension to multiplication units, rational arithmetic units are
candidate-extensions of current floating-point divide units.

Which applications are likely to benefit from a rational arithmetic unit? The
datapath of a computer system consists of arithmetic units and memory (storage).
The performance of a computer system for a given application is limited by the
“bottleneck” [1][10] of the computation. The bottleneck is created by either the arith-
metic units or the memory hierarchy. The arithmetic units implemented in this work
are most beneficial for applications that are limited by arithmetic resources. Applica-
tions that are limited by arithmetic resources are within application areas that tend
to exhibit large amounts of parallelism at the arithmetic level.

Data-intensive applications such as signal processing, multimedia, graphics, and
geometrical computations with regular data access require fast approximation of spe-
cific analytic functions. In general, such functions are approximated either with poly-
nomials or rational functions (e.g. the ratio of two polynomials). However, for most
functions rational approximations converge faster than polynomial approximations.

Rational approximation offers efficient evaluation of analytic functions represented

by the ratio of two polynomials.

(@t +ap1)z+--a1)r+as 2"+ cp1a™ '+ co

(b + by 1)t + - b))T+ by dpd™ + dypy 2™ - - dy + dy

fz) ~ (1.1)

Koren[34] evaluates rational approximations with a latency of maz(m,n) multiply-
add (MA) operations and a final division. Typically, division is implemented either
with multiplicative[l], or digit-serial (iterative) methods, also called digit-recurrence

methods[50]. The algorithms presented in this thesis fall into the class of digit-serial

az+b
cx+d

methods. The main objective is to compute rational functions such as producing
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the result one digit at a time. The proposed algorithms combine a novel number

representation or encoding with state-of-the-art rational algorithms.

1.2 Representing Numbers in Computer Systems

Computer arithmetic is based on partitioning integer or rational numbers into repre-
sentable digits. The size of the digits is called radix r. Using the weighted positional

number system numbers are represented by digits s; and powers of radices r as follows:

x = 510 + 517t + Sor% 4 5573 + - - - (1.2)

A binary number consists of binary digits s; = {0, 1} with radix r = 2. However,
alternative encodings of binary digits are sometimes advantageous. We distinguish
redundant and non-redundant encodings of numbers. Non-redundant encodings guar-
antee that for every number there is one and only one series of digits that represents
the number.

Redundant encodings are defined by Omondi[6] page 456, as: “A radix-R redun-
dant signed-digit number system is one that is based on a digit set S = {-N,—(N -
1),...,-1,0,1,..., M —1,M}, where l < N<R—-1,1<M<R-1and|S| > R.
The last condition allows each digit to assume more than R values and gives rise to
redundancy.”

Non-redundant encodings use a minimal amount of memory to store numbers,
while redundant encodings enable high-speed arithmetic algorithms for division (e.g.
see [41]). For example, digits s; = {1, —1} create a non-redundant representation of

numbers called signed digits[53]. An example of redundant digits for radix r = 2 is

si ={1,0,—1} e.g.

(1)-224+(0)-2" +(=1)-2°=(0)- 22+ (1) - 2" +(1)-2°=3 (1.3)
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Iterative division uses redundant digit-sets s; = {—a,...,+a}[41]. What is the
advantage of the redundant representation for division? At each iteration the basic
division algorithm has to compute the correct next output digit based on the state
within the arithmetic unit. In the case of non-redundant digits, there is only one
correct next output digit. In the case of redundant digit sets there are multiple
correct candidates for the next output digit. Imagine a table that maps the internal
state of the divider and the current input digit to the next correct output digit. For
redundant digits, there are multiple choices possible, thus the table consists of many
“don’t care” entries. These “don’t care” entries translate directly to smaller and
faster logic to compute the next digit[41].

Digit-serial arithmetic units operate on streams of input digits producing a stream
of output digits. The digits can enter and leave the arithmetic unit in a least-
significant digit (LSD) first, or most-significant digit (MSD) first order. MSD first is
also called Online Arithmetic[19][20].

Digit-serial design uses iterative arithmetic schemes. In general, a digit-serial
arithmetic unit consumes one input digit and produces one output digit in one it-
eration. The size of the digit (or radix) and the overall precision (bits per datum)
determine the number of required iterations. For example, computing with an overall
precision of 16-bit numbers with radix-2 requires 16 iterations, while radix-4 reduces
the latency to 8 iterations. Increasing the radix also typically increases the delay per
iteration, reducing the advantage of increasing the radix.

IEEE Floating-point[9] introduces standardized exact rounding modes for indi-
vidual operations. How do we control the accumulation of roundoff error during the
evaluation of expressions? The order in which the expressions are evaluated has an ef-
fect on overall precision. Details on how to deal with expressions at the compiler-level
are shown in [49]. In order to avoid resulting numerical instabilities of computational

algorithms it is sometimes necessary to increase the precision of the computation,
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e.g. when dividing by very small numbers, or when dividing by the difference of
two very large numbers. An optimal solution is to use ezact arithmetic: In exact
arithmetic, rational numbers are represented as fractions and irrational numbers are
represented as symbolic expressions such as square-root[26], e.g. V2. A proposed
method for exact arithmetic hardware is to store each value as a ratio of two numbers
separated by a “slash”: the slash number system[47], e.g. represent 0.3 by (1)/(3).
Besides being redundant, the slash numbers are not distributed uniformly, making
error estimation very difficult. Another disadvantage of this method is that the two
numbers (especially the denominator) grow very quickly. Expanding the value of a
fractional number into continued fraction digits gives us an alternative approach to
exact arithmetic which is proposed in [45].

An alternative approach to improve the accumulation of roundoff error is to build
compound arithmetic units. Compound arithmetic units join arithmetic operations
together evaluating entire expressions. At each iteration the state of the arithmetic
unit encodes the remaining error. Exact arithmetic is achieved by terminating the
computation as soon as the error is sufficiently small. In our case continued fractions

will lead to compound arithmetic units for rational functions.

1.3 Introduction to Continued Fractions

Continued fractions can be used as a rational number representation. This section
provides the basic definitions and terminology that will be used throughout the thesis.

Let us start by defining some continued fraction(CF) forms. (1) Finite continued
fractions represent rational numbers that are constructed as follows: for A;, B;, a;, b; €

R
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A b b b b
_n:a0+ 1b :a0+_1|+_2|+...+_" (1_4)
Bn a + a2+-2--b—" |CL1 |U,2 G,

(2) Simple continued fractions form a special case of a finite continued fraction where
all partial quotients b; = 1. The following vector notation denotes simple continued
fractions.

1| 1| 1 1

AN
a2 I S S 1.5
[ao a1 an] Qo |CL1 |CI,2 ay 0 a 1 ( )

PRS-

(3) Regular continued fractions are simple continued fractions with all a; € N,
except ag € N.

Regular continued fractions are alternative representations of rational numbers[62].
In addition, CFs are at the basis of rational approximation theory. Therefore, the
representation of rational numbers by CFs connects number representation to the
rational approximation of transcendental functions. Peter Henrici already mentions
that “we are still missing a general theory explaining the connection between tran-
scendental functions and continued fractions” (the introduction in [17]). In other
words, there currently is no theory explaining the simple continued fraction approx-
imations below. Still, the already known continued fraction expansions cover most

useful functions[35]. Examples are:

(&

p— =10;1,1,2,1,1,4,1,1,6,1,1,8, .. ] (1.6)

9 11
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35
Tz

Y

1
arctan(x) = [O; -,
x

IEA] o

arcsin(x)_[o_l 3 1 5 1 7 1 ]
iee U

or the incomplete I'-function:

(1.9)

r0.5,2)=e *-2°. [0; 7, (0.5) 1z, (1.5) 1 2, (2.5) L, (3.5) .. } (1.10)

Given the above CF approximations, let us take a closer look at a more general
way of transforming CF's to rational numbers. The following non-obvious two equa-
tions are at the heart of continued fraction theory showing the link between rational
numbers and continued fractions. The step from rational numbers to continued frac-
tions is one step of the journey from a rational binary number to continued fractions,
which is required to build rational arithmetic units presented in this thesis. A finite

A;

continued fraction with n partial quotients can always be transformed into a ratio 3t

using the iterative equations:

W = apA,_ + by A, s (1.11)
Bn = aan_1+ann_2 (112)
where % corresponds to the value of the same continued fraction without the 5

partial quotient. Initial conditions are Ay = a9, By = 1, A_; = 1, and B_; = 0
(see for example [12],[63]). The iterative equations can be used to convert between
continued fractions and rational values. Evaluating continued fractions reduces to
multiply-add operations with a final division 4.

Another way of expressing the connection between rational approximations and
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continued fractions is given by Wall.

Equivalence 1 (Wall[63]) Given the rational function H(z) written as the ratio of

two polynomials, it is possible to find r;’s and s;’s such that:

a2 + a2 '+ -+ a
H(Z)_ 00 01 0n

B ETZ+$’TZ+$5...5T'HZ+STL 1.13
a2+ a2+ - +agy, [rs 172 2 ] (1.13)

with all a;; # 0, and r; # 0.

Equivalence 1 shows the main advantage of continued fractions. The powers of z in
the polynomial representation are reduced to linear terms for each continued fraction
digit. It seems that if we could store and manipulate continued fractions within a
computer system, we could more efficiently compute rational approximations. Ideally,
the evaluation of the rational approximation on the left is transformed in a set of linear
approximations which can be evaluated in parallel. This suggests that for rational
approximations it is possible to make use of symmetries in the continued fraction
space. In general, continued fraction algorithms take a continued fraction input and
compute a function storing the result again as a continued fraction. Before we take a
look at continued fraction algorithms it is necessary to investigate how to represent
continued fractions in computer systems.

Converting between binary numbers and continued fractions is non-trivial. In the
worst case, conversion requires O(N) divisions where N is the number of continued
fraction digits. Using the above iteration equations 1.11 and 1.12 it is possible to
reduce the conversion to O(N) multiply-adds followed by one division. Clearly, this
overhead for converting in and out of a number representation is to large.

In order to make continued fractions attractive for practical arithmetic units three

fundamental problems need to be solved:

1. What is the optimal digit representation for simple continued fractions?
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In other words, what is a digit of a continued fraction. How does it look like, and
how many bits should we use to represent it? Is there an upper bound on the
value of a digit? Mathematical literature focuses on regular continued fractions
with integer digits. However, the value of a regular continued fraction digit has
no upper bound, i.e. the value of the digit is between one and infinity. Clearly
we need to restrict the maximal value of a digit. In fact, we need to restrict
the range of a digit to a small set of values compared to the number of values
of the number that we want to represent with the digits. The upper bound on
a regular continued fraction digit has the side-effect that we can not represent
all rational numbers, even if we use an infinite number of digits. However, all
we want to do in computer arithmetic is to represent a finite number of values
within one stored number. The problem is to choose the optimal set of values
for the CF digits in order to represent the finite number of values of the stored

binary number.

2. How to convert between continued fractions and binary numbers?

This problem is related to the first one. Once we choose a digit representation,

how do we convert binary digits to CF digits and vice versa without unreason-

able effort?

3. How to control the errors during the computation with continued fractions?

Specifically, given a continued fraction with n digits, can we give a bound on
the error of the stored number compared to the actual value? For example,
0.3 = [0; 3] is exact. 0.6 = [0;1,2] is also exact. But how close is the substring
[0;1,2] to 0.7, i.e. what is the error of the continued fraction after the first two

digits. What happens if the digits are not integers?

This thesis solves all three problems of continued fraction arithmetic and shows
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how to build practical and efficient rational arithmetic units for extending floating
point division to rational approximation.

For more information on continued fractions see the CF literature, e.g. [12][17][63][40].
For a historical discussion on continued fractions and their development towards a

practical tool for computer arithmetic units see Appendix B.

1.4 Organization of this Thesis

The following chapters are organized as follows. Chapter 2 investigates the possi-
bilities for representing digits within a continued fraction environment. Chapter 3
introduces the M-log-Fraction Transform (MFT) discussing the optimal digit rep-
resentation for continued fractions. The MFT enables efficient rational arithmetic
shown in chapters 4 and 5.

The appendices present some related issues. Appendix A details work on the
precision of regular continued fraction arithmetic which which is the initial work that
led to the MFT and the results of this thesis. Appendix B summarizes some of
the relevant historical background of continued fractions and, especially, continued

fraction arithmetic.



Chapter 2

Integer versus Logarithmic Digits

for Simple Continued Fractions

In this chapter we investigate the tradeoffs in using integer digits versus logarithmic
digits for simple continued fractions. Integer digits are similar to digits of regular
continued fractions. However, regular continued fractions defined for mathematical
purposes assume digits a; € N . In computer systems we generally have to choose
a fixed number of bits to represent a digit. In case of digit overflow it is possible to

concatenate digits to form larger digits by inserting a zero in-between:

[...,20,..]=]...,10,0,10,.. ] (2.1)

How many bits should we choose for representing integer digits? Given regular
continued fractions as a representation for fractional numbers, what is the average
information content of a regular continued fraction digit, or stated differently, how
many regular continued fraction digits are necessary on average to represent a decimal
number with n decimal digits ? The theorem of Lochs gives information relating

decimal numbers to regular CFs.

12
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Theorem 1 (Lochs [66]) For almost all irrational numbers x and their approxzimation
in the form of a reqular continued fraction:

lim —k" (z)

n—0oQ n

~ (0.9702.

with ky(x), the number of partial quotients, and n, the number of approximated

decimal digits.

In other words, the precision of a regular continued fraction with n partial quo-
tients corresponds roughly to the precision of a decimal number with n decimal digits.
Thus, the information content of one partial quotient is on average constant and com-
parable to one decimal digit, or 3 — 4 binary digits.

Given a fixed number of bits per digit, logarithmic digits enable the represen-
tation of larger values for digits, at the expense of coverage: Given stored digits

ag, a1, ag, ds, . . ., in the logarithmic representation the simple continued fraction is

[ag; 2%,2%2,2% . ] (2.2)

In order to understand the tradeoff between logarithmic and integer digits, we
need to understand the interaction between number of bits of the binary number,
the number of bits per CF digit, and the maximal number of CF digits required
to represent all values of the binary number. These three parameters create a 3-
dimensional design space. Figure 2.1 shows two sample cuts through this design
space.

The graphs in figure 2.1 compare two alternatives for representing the digits of
a simple continued fraction. INT denotes representing each digit (partial quotient)
by an integer value (a;) with a given number of bits, while LOG denotes the graph

for logarithmic CF digits, i.e. digit = 2%. The two representations result in simple
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Max. Number of CF Digits

/’:// \
-7 77 =~__! Number of Bits per CF Digit

Number of Bits per Binary Value

CUT1: Binary Value = 8 bits CTUT2: CF Digit = 4 bits
# of CF Digits .
140 ——LOG [ 1_E+D4#OfCP Digits Z1000%

120 " —=—NT e LOG //C)
100 1E*03 4 _a nT /

# 1.E+02

: P aee———

40 \ i\ 1.E+01 e
20 + * % % % * %
. 1.E+00 : : . . . .
2 3 B 8 10 12 14 18 4 B 8 10 [ 18
Bits per CF Digit Eits per Binary Value

Figure 2.1: The top figure shows the 3-dimensional space of bits per binary value,
bits per CF digit and mazximal number of digits required to represent the binary value.
INT stands for integer representation of CF digits and LOG stands for logarithmic
representation of CF digits. The bottom two graphs show two cuts through the 3-
dimensional space above.

continued fractions [ag; a1, as, as, .. .| and [ag; 2%1,292,2% .. ] respectively.

CUT1 keeps the overall precision (bits per binary number) constant at 8 bits. For
CF digit sizes close to or larger than the overall precision, integer CF digits result in
fewer digits. However, it does not make sense to use a CF digit representation where
the CF digits are close in size to the actual value that we want to represent. For CF
digits significantly smaller than 8 bits, the logarithmic representation results in less
digits.

CUT?2 shows that for integer digits the number of digits in the worst case grows
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144

124

104

-
VALUE
A L 1

0.2 0.4 0.8 0.6 i

Figure 2.2: The histogram shows the non-uniform distribution of the values of con-
tinued fractions with integer CF digits.

exponentially so that for 16-bit binary numbers we need in the worst case more
than 10,000! CF digits with 4 bits each. For the same 16-bit values less than 100
logarithmic digits are necessary. The reason for the enormous number of integer CF
digits lies in the worst case. Let’s take a look at the smallest 16-bit value larger than
zero: 2716 = [0;2!°]. In the case of integer CF digits, the largest digit value is 15
and 2716 = [0; 21%] = [0;2'°,0, 2] = [0;15,0,15,0,15,...] resulting in about 10,000
digits. In the case of logarithmic digits it is enough to simply represent the power of
two, i.e. 16.

Another problem with continued fractions is error control. For conventional binary
numbers the error is bounded by the position p of the least-significant bit, i.e. for a
fractional number, error < 27P. The reason why this simple error bound works is

the uniform distribution of values of conventional binary numbers. If we look at the
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values of binary numbers, two neighboring values always have the same distance 277.
In general, and especially for continued fractions, this is not true. If the distribution
is non-uniform, such as in the case of integer CF digits (INT), the error bound does
not only depend on the least-significant digit, but also on the value itself. Therefore,
the error of a computation does not only depend on the number of computed digits,
but also on the value itself.

Rational representations such as continued fractions sometimes lead to a non-
uniform distribution of values. In our case, continued fractions representing numbers
between 0.0 and 1.0 with integer CF digits (INT) result in many values close to 0+ A
and very few values close to 1.0. The non-uniform distribution of values representable
by continued fractions with integer digits is shown in figure 2.2. Logarithmic CF-
digits also result in a very similar non-uniform distribution. However, the M-log-
Fraction proposed in the next chapter is a variation of the logarithmic CF-digits
with a uniform distribution of values. The M-log-Fraction combines the advantages
of logarithmic CF digits with the uniform distribution of values needed to control
the error during computation, and thus the M-log-Fraction solves all three problems

previously associated with the continued fraction representation.



Chapter 3

The M-log-Fraction
Transformation (MFT)

Practical arithmetic units based on continued fractions rest on the resolution of three

fundamental questions:
1. What is the optimal digit representation for simple continued fractions?
2. How to convert between continued fractions and binary numbers?
3. How to control the error during the computation with continued fractions?

Ideally we are looking for the following three features of the digit-representation:
First, we need a reasonably compact digit representation with a small number of bits
per digit compared to the number of bits for the binary number. In addition, a few
such CF digits should suffice to represent the binary number. Second, conversion
between binary numbers and continued fractions has to be very simple and efficient.
Third, the values represented by the continued fractions have to be distributed uni-

formly to enable us to bound and thus control the error during computation,

17
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The M-log-Fraction
o a,
TN 7>
.001\010011=2 T Bt B R B B A T Rt B it

QU\
_e 4 M, =0,-M,_,

is equivalent to

— i —

WZM, + 1
(27 4 2M2)

1
(27M2 M5y,
={0;2" —(27% £ 2", 27" £ 2M) —(27Ys 1 2M), (27 4 2™

Figure 3.1: The figure shows the connection between the distances between the ’1’s
(a’s) and the M-log-Fraction. My = a;.
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Logarithmic CF digits defined in the previous chapter solve the first problem.
However, conversion and error control are still significant hurdles even with logarith-
mic CF digits. This chapter provides the theoretical treatment of the M-log-Fraction
Transform(MFT) for rational arithmetic units, and shows how the MFT implicitly

combines all three necessary features outlined above.

Theorem 2 (MFT Theorem) A binary number B with p binary digits, containing n
’1’s is equivalent to a simple continued fraction with n partial quotients: the M-log-

Fraction < My, My, M5, ...> where if

B =bibobs---b, =21 202 1 283 1 9P4 4 9Fs 4 ofn then
B =[0;2M1 —(27M1y oM2) (9=M2 4 oMs) _ (9=Ms | 9Ma) (9=Miy oMs)
vt (27 Mnm1 g My (3.1)

E<Mla M27M3; M4a M57 .. aMn >

where M; are related to «;, the distances between the ’1’s of the binary number B,

by the recursion:

Mi=a1=-0, My=o0y—M, M=0;—M_, (3.2)

The a’s, #’s, and M’s are maximally N-bit integers where N is the number of bits
in the binary number B. As shown, «; is the sum of M; and M;_;. «’s, the distances
between the ’1’s, can also be seen as a O-runlength encoding of the binary number
B; ie. q; is the number of '0’s between the i and (i + 1) *1’. Theorem 2 in one

sentence is: “An M-log-Fraction of length n is equivalent to n powers of 2 for any

neN.”
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Figure 3.1 shows the connection between binary numbers and the M-log-Fraction.
Before the proof, let us look at some implications of the MFT. The M-log-Fraction
is a special case of a logarithmic simple continued fraction. First, given an N bit
binary number, the MFT representation requires at most N digits with log(/N) bits
per CF digit. Thus, N log(/N) bits are used to store the binary number in continued
fraction (MFT) form. Second, the MFT enables instant conversion between simple
continued fractions and binary numbers. All that is required to convert between
binary numbers and an M-log-Fraction is a modified “Leading One Detect” circuit
similar to the one used in floating point units to normalize the mantissa to the required
format: l.zzzx . ... Conversion, i.e. aleading one detect circuit, takes one to two clock
cycles. Being the equivalent of a binary number, error bounds for the M-log-Fraction
are equal to error bounds of binary numbers. Thus, an N digit M-log-Fraction has
the same error bound as an N digit binary number.

Figure 3.1 shows the correspondence of the distances between ’1’s (0-runlength
encoding) called o’s, and the digits of the M-log-Fraction. O-runlength encoding
refers to counting the number of zeros between the ones of a binary numbers, i.e. the
runlength of the strings of zeros. Each « of the binary number is the sum of two
consecutive M;’s of the M-log-Fraction.

The full proof of Theorem 2 (MFT Theorem) by induction follows.

3.1 Proof of Theorem 2 (MFT Theorem)

Please note the following notation, making the following proofs more readable.

M; = XZ: M; (3.3)

Jj=1

<My, My, M3, ..., M;> denotes the M-log-Fraction with parameters {M;}. (3.4)
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Before starting the proof of Theorem 2 it is necessary to review a few fundamental
equations from continued fraction theory. We know from the above introduction to
continued fraction theory that a simple continued fraction can be written as a ratio

Ag

[T, T1, To, X3,...| = B Simplifying the general equations 1.11,1.12 we obtain the

following iteration equations for simple continued fractions:

A = miAi+ A (3.5)

Bi = .TiBi,1+Bi,2 (36)

Initial conditions are Ay = a9, By = 1, A_; = 1, and B_; = 0. In our case, the
digits of the simple continued fraction x; are defined by the binary M-log-Fraction
(equation 3.1).

x; = (=1)"(2Mi+1 4 27 Mi) (3.7)

The short version of Theorem 2 is: “An M-log-Fraction of length n is equivalent
to n powers of 2 for any n € N.” We prove “is equivalent to” with one induction
for each direction. First, given an M-log-Fraction with N MFT-digits we prove by
induction the correspondence to a binary number with N powers of 2 (one’s). Second,
in direction 2 of the proof we start with a binary number with N powers of 2 and
show by induction the correspondence to an M-log-Fraction with N digits.

Direction 1: Binary M-log-Fraction of length n — n powers of 2.

The proof uses induction on the length of the M-log-Fraction, so for any n € N,

we must show that (remember the definition of M; above)

<My, My, My, My, ... My>— 27M 4 972M1=Ma | 9=2My=2Mo=Ms . 4 9=2Mn—1=Mn
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98 L 9f2 4 98 ... 4 9bn (3.8)

First, M-log-Fractions of length n = 1 and n = 2 reduce to a binary number:

<My>=2"M <My My>= 27 4 92— (3.9)

Assuming that direction 1 of Theorem 2 holds for M-log-Fractions of length n:

<M, My,...,My>=2"M 9 2Mi-M2 . | 9" 2Mn1~Mn (3.10)
We want to show that Theorem 2 holds for n» + 1 ’1’s. This means we have to
show that for M-log-Fractions of length n + 1:
<My, My, ..., My >=<M, My,..., M,> +2 2Mn—Mns1 (3.11)
To simplify the previous equation we use an equation given by Thron ([17], equa-
tion 2.1.9):
Aiy1Bi — AiBipy = (—1)° (3.12)
Using this (3.12) and rewriting equations 3.4,3.5 and 3.6 we obtain,
An—|—1 An

<M1,M2,...,Mn+1>—<M1,M2,...,Mn> = - — = (313)
Bn+1 Bn

1
=(=1)"
( ) Bn—HBn

(3.14)

The last step of direction 1 of the proof is to apply the following lemma:

Lemma 1 The following equation holds for binary M-log-Fractions:
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B; = (—1)I0%4 . oM (3.15)

Lemma 1 is almost a direct consequence of equation 3.6 and the digits of the
M-log-Fraction. In fact, lemma 1 shows how the digits of the M-log-Fraction cancel
out and lead to a single power of two for B. Let us assume the correctness of lemma
1 and delay its proof until after the current proof of the MFT theorem. Applying

lemma 1 to equation 3.14 we obtain

1
Bn+1Bn

= oMn . QMut1 — 9=2Mn—Mnty (3.16)

(="

concluding direction 1 of the proof.
Direction 2: n powers of 2 — Binary M-log-Fraction of length n, for any n € N,

we must show that

91 + 9082 + 903 4t 2ﬁn_> 9—M + 9—2M;—M; + 9—2M1—2M>— M3 4t 9—2Mp—1—Mp

—< My, My, M3, ... M, > (317)
First, for length n = 1 and n = 2, we obtain by inspection:
W —< B> 2492 =<3 208 — B> (3.18)

Assuming that direction 2 of Theorem 2 holds for binary numbers with n powers
of 2:
P o oy 9P — M M, My > (3.19)
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we want to show that
2P o oy 9B =< M My, My > (3.20)

Combining lemma 1 with equations 3.12 from direction 1 ,3.19 above, and 3,41 =

—2M,, — M, 1, we can conclude that

Anr Ay
<My, My, ..., Mys1> — <My, M, ..., M,>==2 20— (321)
Bn—|—1 Bn

_ 272E7Mn+1 — 9Pt (3.22)

concluding direction 2 of the proof.

Thus, an M-log-Fraction of length n is equivalent to n powers of 2, with the
relation between M’s and the powers of 2 as shown in equation 3.8. ¢.e.d.

In order to complete the proof we now need to prove lemma 1.

Lemma 1 The following equation holds for binary M-log-Fractions:

B; = (—1)L0%) . 9 (3.23)

Proof of lemma 1 by induction

For s = 1 and 7 = 2 lemma 1 follows by inspection using the initial conditions for

iteration equation 3.6:

By =2, =2"" By = Bzy+ By = -2 (3.24)
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The equation for 7 + 1 follows from equation 3.6:
Biyn = (-1D)'M+ +27")B, + B; 4 (3.25)

Now let us assume that lemma 1 holds for ¢ and 7 — 1. Applying lemma 1 for B;

and B;_; results in the equation for B;,:

B = (_1)i ((_1)L0.5.iJ2Mi+1 + (_1)L0.5-1‘J2Mi_1) + (_1)L0.5(i—1)J2Mi_1 — (3.26)

(—1)L0BGHD] . gMiss (3.27)

g.e.d.

This concludes the proof of the equivalence of M-log Fractions and binary numbers
(Theorem 2).

Another way of understanding the principles behind the MFT is to look at the

following equivalence of series and CF's.

Equivalence 2 of series and continued fractions: for ¢; # 0,(Euler[60])

ct+tct+tet+---=c +C—1|— z_ﬂ -
0 1 2 =0 |1 |1+z_2 |1+c_3
1 Cc2

0_3‘
Cc2

e (3.28)

Each partial quotient of the CF on the right depends on two neighboring terms
of the series on the left. Thus, the precision of an n element CF is equivalent to
the precision of a finite series of length n. Looking at a binary number as a sum of
weighted digits we obtain the equivalence of binary numbers and continued fractions.

The basic M-log-Fraction Transform (MFT) enables the encoding of binary num-
bers with a sequence of M;’s as shown above. In fact, the first digit M; corresponds

to the integer part of the logarithmic representation of B, i.e. M; = |log(B)]. Thus,



CHAPTER 3. THE M-LOG-FRACTION TRANSFORMATION (MFT) 26

theoretically the MFT is a variant of the logarithmic number system[44] with the
advantage that conversion just requires counting distances between the '1’s.
Although the M-log-Fraction shown above solves the three problems associated
with continued fractions, there is a small drawback left. A continued fraction digit
corresponds roughly to one ’1’ in the binary number. Given a target precision of 16
bits it is not clear a priori how many iteration are required to compute a satisfactory

result. In the worst case with “all ’1’s”

16 iterations are required. In order to enable a
regular hardware structure for the rational arithmetic unit, we introduce the signed-

digit M-log-Fraction.

3.2 The Signed-Digit M-log-Fraction

This section shows a modified version of the MFT, using signed-digit binary numbers.
Our objective is to is to use the digits of a binary number B = 5,271 4+ 55272453273 +
54274 + ... + 5,27 directly to convert B to the M-log-Fraction. In the binary case
s; = {0,1}. The main problem to direct conversion stems from the restriction on
Euler’s equivalence 3.28, in our case s; # 0. In order to circumvent this restriction,
we use signed-digit binary numbers. In case of radix-2 signed-digits are in {+1, —1}.

A drawback of the general M-log-Fraction is that a CF digit corresponds to a
1" in the binary number. Therefore the result does not converge uniformly and
requires a variable number of iterations per result. In fact, in the worst case (all
ones) the algorithm is limited to retiring one bit at a time. Signed-digit binary
numbers eliminate the non-uniform convergence and enable us to improve the rate of
convergence in the worst case. Applying the signed digits to the MFT leads to the
Signed-Digit MFT.

The signed-digit binary M-log-Fraction shown below connects signed-digit binary

numbers (see also the introduction on representing numbers in computer systems in
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section 1.2 of this thesis) with the MFT. In the weighted positional number system
with numbers B = 51251 + 5,272 4 53203 4 4+ 5,2 3’5 are fixed to §; = —i:

{ﬂlaﬂ?aﬂfﬁa"',ﬂp} = {_la_Qa_?)a"'aﬂp} (329)

Fixing the 3’s enables us to fix the shifts M; according to Theorem 2. From the
B3’s above we know that «; = ;1 — ; = 1 = M; + M;_1. The most efficient (yielding

the smallest hardware implementation) set of M;’s with this restriction is M; = imod2:

{MI,MQ,M:;,...,M,,L}:{1,0,1,0,1,...,Mn} (330)

The resulting equation below is a corollary on Theorem 2:

Corollary 3 Signed-Digit Binary M-log-Fraction: A signed-digit binary number Bg
with n ’1’s (n, even), and s; € {+1,—1} is equivalent to a simple continued fraction

with n partial quotients as follows:

Br=52""4522452 45,27 +... +5,27"

=[0; 512", — (51271 4 522°), (522°+ 532"), — (5327 + 542%), ... — (50127 + 5,2°)]

In order to convert binary numbers to signed-digit binary M-log-Fractions requires
two steps. The first step is to convert the binary number to a signed-digit binary
number. This can be done in about the time required for an addition. For details on
converting between signed-digits and binary digits see [6]. Second, the signed-digit
numbers are converted to the signed-digit M-log-Fraction as shown in Corollary 3
above. Converting between signed binary digits and continued fraction digits consists

of combining two neighboring digits as shown in Corrolary 3. The choice of M; =
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imod2 keeps the powers of two in the set {271,2° 2!'}-basically a left shift, a right
shift, or no shift. The actual implementation of rational arithmetic units shown in
the next chapter absorbs this conversion operation into the iteration equations of the
algebraic algorithm-thus eliminating conversion (MFT) overhead.

The next chapters show the implications of the MFT to continued fraction al-
gorithms and the implementation of the first practical rational arithmetic units for

general purpose processors based on continued fraction algorithms and the MFT.



Chapter 4

Algorithm Class 1:
A Rational Arithmetic Unit

The previous chapters showed how to represent digits of a continued fraction, elimi-
nating the conversion overhead between binary numbers and continued fractions, and
keeping the same level of error control as for binary numbers. Why do we want to
use continued fractions in the first place? One of the main motivations for using
continued fractions are the continued fraction algorithms shown below. Continued
fractions are a natural representation for rational functions. However, until now con-
tinued fraction were impractical due to the large overhead of converting in and out
of the representation and the non-uniform distribution of representable values. The
MFT introduced in the previous chapter opens up all continued fraction algorithms
for practical implementations in computer systems based on binary numbers.

The conventional method to compute rational approximations uses multiply-add
structures to evaluate the numerator and denominator, followed by a final division.
Each multiply-add step introduces roundoff error, accumulating error for the final
result. The following rational arithmetic units compute entire rational functions in

one arithmetic unit. Such arithmetic units are also called compound arithmetic units.

29
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For example, instead of computing % with 2 multiplies, 2 adds and a final divide,
the algorithm proposed below starts with loading a, b, ¢, d into internal state registers,
takes the first input digit of x and produces the first output digit of the final result
after the first iteration. An application example for such extended division units
is signal processing, where the bilinear function could be used to compute rational
approximations, replacing the multiply-add units that are currently used to evaluate
polynomial approximations in Digital Signal Processors (DSPs).

The goal of this chapter is to show the details of a rational arithmetic unit. The
previous chapter showed us how to convert between binary numbers and continued
fractions. The following continued fraction algorithms show the advantages of the
continued fraction representation for rational arithmetic.

Continued fraction algorithms take simple continued fractions and compute a
function returning a result in the form of a simple continued fraction. Assume we
have a simple continued fraction [xg, z1, Z, . . .] representing a number in our computer
system and we want to compute a function f(z). A continued fraction algorithm for

f(z) takes the digits z; of the input fraction and produces the output digits o; of the

result.

[00,01,02...] = f([io,xl,xg,...]) (41)

The trivial rational function is the reciprocal. While for conventional number sys-
tems computing the reciprocal f(z) = i is a complex operation, continued fractions
are a natural representation for the reciprocal. Computing the reciprocal of a simple

continued fractions consists of a single digit shift:

1 0;a9,01,0a9,...] if a 0
_ [ 0, 1, 02 ] 0# (42)
[a; a1, a2, .. ] [a1; ag, . . ] if ap=0
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Bilinear Arithmetic Unit
state registers

a X

Simple X - Simple

o.
Continued | ={ | E b |l—~ 3@4 —= Continued
Fraction c Fraction
d

Figure 4.1: The figure shows the state machine for the iteration equations (IE) of the

positional algebraic continued fraction algorithm. The state-registers a,b,c,d hold at

each iteration the values a;, b;, c;,d;. The algorithm selects the output digit o; close to
aiTi+b;

the current state 5=Fit shown without the indices in the figure abowve.

A simple continued fraction multiplied by a constant ¢ becomes:

aq as as
[c-ap;—,c-ag,—,C- a4, —,C- ag, .. .| (4.3)
c c c
Next, let’s examine the bilinear function f(z) = if:[g which is the simplest non-

trivial rational function. In order to compute the bilinear function we use the algebraic
algorithm proposed by Gosper[15].

At each iteration the algorithm consumes an input digit or produces an output
digit. The amount of state kept by the algorithm stays constant and corresponds
to the numbers of coefficients of the computed rational function. In the case of the
bilinear function there are four state registers corresponding to the four coefficients
a, b, c, and d.

The objective is to compute [0y, 01,02 ...] = f ([To,Z1, X9, ...]) where x;’s are the
partial quotients of the simple input CF, and o; = f(x;, state) are the partial quo-

tients of the output. 7'(z) is the function that is stored in the state variables. The
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general structure of the algebraic algorithm is shown in figure 4.1. The iteration equa-
tions (IE) transform the state from ¢ to 7+ 1 consuming an input digit and producing
an output digit (Figure 4.2).

How do we obtain the iteration equations? At any given iteration the state of
the entire computation is given by the state-registers, the remaining input digits and
the produced output digits. The internal state changes on two events: consuming
one input digit and producing one output digit. Continued fractions are add-divide
structures. Thus, consuming an input digit amounts to an add-divide operation on
the argument of the function that we want to compute. Producing an output digit
amounts to an add-divide operation on the output of the function that we want to
compute. The internal state represents the function that we want to compute. As a
consequence, the transformation of the internal state can be described mathematically

with the following transformations:

e to consume an input quotient x;

apply T"(z) = T'(i + ;).
e to produce an output quotient o;

apply T"(x) = T(gg;_%.

We will use 77 and T" to derive the iteration equations below. T'(x) stands for the

function that we want to compute-represented by the internal state registers. In the

ax+b
cx+d

bilinear case T'(z) = with state registers a, b, ¢, d. The number of coefficients and
form of T'(x) stay constant across all iterations, thus leading to very efficient hardware
structures. Why does the number of coefficients stay constant? The algorithm uses
the fact that the homographic function is invariant over the basic CF transformations
T'(z) and T"(z). In fact, there are also rational functions of higher degree that satisfy

this requirement. This means that we can build arithmetic units for a whole family

of functions. In this thesis we focus on rational functions.
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Figure 4.2: The figure shows a slice of the transition diagram for the positional al-
gebraic continued fraction algorithm. The iteration values a;,b;, c;,d; go over into
the next state a;11,b;41, Civ1, dir1 absorbing an input digit x; and producing an output
digit o;.

In general, the algorithm can independently consumes an input quotient, or pro-
duces an output quotient at each iteration. However, ensuring that quotients are
consumed and produced optimally requires the computation of a large error term
which increases the overall computation time of the algebraic algorithm by an “order
of magnitude”[45].

In order to avoid computing the error term in each iteration to determine if the
algorithm should consume or produce a digit, Vuillemin[45] shows that in most com-
mon cases we can consume one input and produces one output at each iteration— the
positional algebraic algorithm. Consuming and producing a digit at each iteration
makes the computation more regular and eliminates the need to compute the error
term at each iteration. All arithmetic units discussed in this thesis use the positional
algebraic algorithm.

The following section presents three examples of rational functions, their iteration
equations and corresponding output selection functions. These iteration equations
can then be combined with the MFT digits resulting in the design of regular and effi-
cient hardware arithmetic units for computing the rational functions. The following

sections show the derivation of the iteration equations from figure 4.1.
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Linear Fractional Transformation

Linear fractional transformations are also called homographic, or bilinear functions:

Ti(z) = %. Given an input CF digit z; and the current state a,b,c and d, the

1 azx;+b

algorithm chooses coitd”

an output digit at each iteration o; ~ In fact, it suffices
to choose the next output digit o; “close” to the real remainder T'(x) = % based
on the current state a,b,c, and d. In the original algorithm with integer CF digits,
choosing o; “close” to the real remainder becomes a rounding operation.

Now let us derive the iteration equations for the bilinear transformation. The
variable = consists of digits [x; z1, T2, . ..]. The four coefficients determine the initial
values of the four state registers a, b, c,d. The iteration equations for consuming one
input digit x; and producing one output digit o; follow from applying T’(x) and T” (x)
to the bilinear transform. a;;1,b;11,ci11,d;11 denote the next state as a function of
the previous state. The digit z; is the current input digit and o; ~ % is the

chosen output digit:

;1% + b; 1
next — state Ti+1(l") = = (it 1) +b;
Cip1® + dipy  G@iE )

LTTLT o,
ci(zi+g)+d; 0i

(4.4)

After simplifying equation 4.4 to a bilinear form in z, the state iteration equations

are obtained as the new coefficients:

ai+1 = CiX; +d; biy1 =c¢;s (45)
Cit1 = a;%; +bs —03(Cix; +di) diys =a; — 05¢4

The output digit is chosen in order to force ¢ to zero. In the bilinear case, the
. b . . .
state can be represented by the matrix A = ¢ d). The iteration equations above
[

have the property that |A| = constant[45]. As a consequence, forcing ¢ to zero, forces

L«choose” refers to the fact that the algorithm can choose any output digit. The iteration

equations adapt the state according to the chosen output quotient.
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b to zero, d to one, and a to |A|.

Quadratic Transformations

In the quadratic case the algorithm computes the transformation T5(z) = %,
with x as the current input digit and o as the current output digit (indices i are

az’+bz+c

A rert [ and afterwards

omitted for simplicity). The algorithm first chooses o ~

updates the state registers as follows:

Adjpg = dX2 +ex+ £ di_|_1 = ax2 +bx+c— 0ajq
bi_|_1 =2dx +e €it1 = b+ 2ax — Obi—|—1 (46)
Ciy1 =d fitqy =a—0Ciqy

In the quadratic case with two input variables z,y, the algorithm computes the

axy+br+cy+d

cryt friayih where x,y are inputs to the following iteration

transformation T3(z,y) =

equations for the state registers. For input digits x,y, and corresponding output digit

azy+bxr+cy+d

coyt Tt guh the iteration equations are:

[V N

ajtg —exy+fx+gy+h ey =—axy+bx+cy+d—oajyg
bity = ex+ fiiy =ax+c¢c—ob;
+1 g +1 +1 (4.7)
Ciy1 = €y +f gi+1 = Ay +b— 0Cjit1
dij1 =e hiy =a—od;
Quadratic units have more state variables than the bilinear unit. In addition, the

iterations per variable require more operations. However, due to the available paral-

lelism in the equations, minimal latency per iteration does not increase significantly.
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Bilinear Arithmetic Unit
state registers
. a Xj
*bin X : ¢ 0; ° bin
| b ax+b |

R —— — I E | ~ Cxﬁ% — —

c

d

-1
MFT MFT

Figure 4.3: The figure shows the state machine for the iteration equations (IE) of
a bilinear arithmetic unit using the positional algorithm. The input digits enter the

algorithm in the form of MFT digits. The algorithm selects the output digit o; to fit

the MFT digit value closest to the current state %.

4.1 A ’shift and add’ based rational arithmetic
unit

Rational arithmetic units are candidate extensions for floating point division units.
The following implementation focuses on the mantissa part of the floating point di-
vider and shows the rational arithmetic unit for fixed-point rational numbers. This
section describes the implementation of rational arithmetic units based on combin-
ing the iteration equations for algebraic algorithms developed above and the MFT
introduced in the previous chapter.

The signed-digit binary M-log-Fraction (Corollary 3) combined with the positional
algebraic algorithm results in the implementation specified below. Figure 4.3 shows
the structure of the proposed arithmetic unit. We use the MFT to convert a bi-
nary number to the M-log-Fraction. The M-log-Fraction is fed into the positional
algorithm. Finally, the inverse MF'T converts the M-log-Fraction back to a binary
number. More specifically, the input digit x; and the output digit o; are chosen ac-

cording to the MFT. Rewriting the iteration equations with the particular z; and
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0; leads to rational arithmetic units without any overhead for the MFT and inverse
MFT. Next let us take a look at a detailed implementation of a bilinear arithmetic

unit.

ax+b

4.1.1 Implementing the Bilinear Function ="

The bilinear (linear fractional) arithmetic unit (figure 4.3) computes output oy, =

T(xpin) = % The following steps detail the operations to compute ;‘;‘IS given

four binary coefficients a,b,c,d, and a binary input x;,, producing a binary output
Obin'

1. Load state registers a, b, ¢, d with coefficient values. The coefficients are used as

starting values ag, by, cg, dg for the state-registers

2. The input value zy, is converted to a signed-digit representation with digits

t; € {—1,1}.

3. Combine neighboring digits ¢;,¢;_1 to form MFT digits according to the signed-
digit MFT: for even digits : Tij—even = —(t; + t’; 1), and for odd digits: z;—oaa =
(2t; +ti—1), to = 0.

4. For all CF digits z; do

(a) Compute the output CF digit 0; ~ %Zitbi  Output digits o; are restricted

.z
cixitd;

by the CF digit form required by the MFT. In fact, all we have to do is to

choose the proper signed-digit s;: for even digits : 0j—even = —(5; + %51),
and for odd digits, 0j—oaa = (25; + si_1), so = 0. Using these identities we
choose s; = sign(f(a,b,c,d,s;_1)) with f(x) depending on the position i

of the digit.
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Figure 4.4: The figure shows (a) a possible implementation of the iteration equations
for a bilinear radiz-2 unit based on the MFT, and (b) a general SRT-Table divider
based on results from [41]. The sizes of the boxes indicate the relative, approrimate
VLSI-area relations. Note that b;y1 = ¢; and is therefore missing in the figure.

(b) Update state variables with the iteration equations (IE) from equations
4.5:

ai+1 = CiX; +dy bit1 =¢Cy (4.8)

Cit1 = a;X; +b; —05(cix; +di) dips =a; — 05Cs

5. Convert signed-digits s; to the actual output value 0y, = $15983...8, = %
N

In the actual implementation the conversion between signed-digits and MFT digits
can be absorbed into the iteration equations. To get a sense of the complexity of
designing a rational arithmetic unit, figure 4.4 shows the micro-architecture of an
iterative rational arithmetic unit. Carry-Save Adders (CSA) and Carry-Propagate
Adders(CPA) are the building blocks of our design. For detailed explanation of

Adder technology please refer to standard textbooks such as [3] or more advanced
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texts on computer arithmetic [2][4][5][6]. CSA units mostly contribute to the area of
a circuit and have very short delays: latency O(1). CPAs have significant delays due
to the full propagation of the carry signal with latencies between O(log N) to O(N)

depending on the microarchitecture (/N is the number of bits).

azr+b
cx+d

Figure 4.4 shows that the rational arithmetic unit for 7'(z) = has a delay, or
cycle time, of O(CPA+e¢), just as a regular divide unit. The additional functionality
is bought with additional area for CSAs for «, d.

Similar structures for quadratic rational functions follow from iteration equations

4.6 and 4.7. Before comparing different rational arithmetic units we compare the

efficiency of the proposed algorithm with state-of-the-art division.

4.2 An MFT-based Division Unit

Given the algorithm presented above, how do the rational arithmetic units introduced
above compare to the state-of-the-art? As there is no directly competing arithmetic
unit that computes any bilinear function?, the next section examines the complexity
of a division unit based on the bilinear unit. The division unit based on the MFT
algorithm presented above allows us to compare the efficiency of the proposed method

to state-of-the-art division.

The MFT-based division unit is a bilinear unit (‘;;”IS) with ¢ = ¢ = 0 and no input

x. Thus, we compute the division %. Figure 4.5 shows the structural comparison
between traditional division and MFT-based division. The MFT uses two feedbacks:
one feedback of the current state register, and a second feedback of the previous, or
delayed, state d;_;.

We obtain the iteration equations starting with 7To() = . As there are no input

digits x; to consume (both inputs are present at the start of computation), it is

2Ercegovac[52] proposes a general method that can also evaluate rational functions, but poses
restrictions on the coefficients.
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Radix-2 Digit Selection for Division

MFT-based State-of-the-Art - SRT
|digit s, =segn(d,.’)-segn(dj)| o Digit
digit + _
13 Selection
I di'urisorlv J Table
x x & {
! E v divisor
+
+
g — N

Figure 4.5: The figure shows the structure of the MF'T diwvider and the state-of-the-art
SRT divider. A stands for an additional unit delay element.



CHAPTER 4. ALGORITHM CLASS 1 41

log2(error) Division 1/d Histogram of Errors
08]
06]
047

0.2

0 24 22 20 -18 -16
1 12 14 Divisora 1© 18 2 log2(error)

(a) (b)

Figure 4.6: The graphs plot the error for computing 1/d after 16 iterations with 16-
bit precision at each iteration, not including exact results. (a) shows log,(error)
for divisor d between one and two. (b) shows the distribution of error values with a
histogram.

sufficient to apply transformation T;,() = m for producing output digits.

d_1 = dg =d di—i—] = di—l - Oidi (49)

There is only one equation and one state register d since b;;; = d;. As before the

output digits o; based on the MFT are:

.. Si—1
for even digits, Oj—even = —(8; + 5 ),
for odd digits, 0j—oaa = (28; + Si 1), (4.10)

80:0.

In fact, the iterations are reduced to shift-and-add operations. By unrolling the
iterations, the shifts can be hardwired and the computation simplifies to a sequence
of additions. A structural comparison of the resulting unit to state-of-the-art SRT-
division[7][8](for recent improvements in SRT implementation see [41]) is shown in

figure 4.7. The iterations 4.9 for computing oy, = g reduce to simple shift-and-adds
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similar to conventional division as follows:

d_l =b dg =d di+1 = di_1 =+ 8,1 Q_Idi + Sigodi (411)

The main difference to state-of-the-art division is that the state d;;; depends on
the two previous iterations.

Absorbing the inverse MFT into the next-output digit selection, the algorithm

di—1

d;

chooses the next signed-digit from s; = {+1,—1} by solving o; ~ and equation

4.10 to:

for even digits, s; = sign ((—1)"_1 ~di_1—8i-1-0.5- di) - sign(d;) (4.12)

for odd digits, s; = sign ((—1)1._1 cdim1 — Si—1 di> - sign(d;) (4.13)

Equation 4.13 enables the algorithm to select the next signed digit with very little
effort. The self-correcting feature of the algebraic algorithm guarantees convergence
to the correct result.

For the conventional divider, a redundant digit set introduces some flexibility in
the next-output digit selection function. As a consequence, a radix-2 SRT divider has
a delay of 1 CSA plus a few gates to select the next digit. A similar approach can
get rid of the CPAs for the MFT-based unit.

Figure 4.6 shows simulation results for the simple case b = 1(computing ).
Operands are between one and two, like the mantissa of the floating point[9] rep-
resentation. The figures show simulation results for an implementation of 16 it-
erations, 16-bit accurate iteration computations, targeting 16-bit accurate results
(error < 27'%). Note that most results are close to the desired accuracy, i.e. for
most divisors 2717 < error < 2716, This suggests a very high efficiency of the algo-

rithm.
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Figure 4.7: The figure shows (a) a regular, pipelined radiz-2 divider based on the
MFT, and (b) a general SRT-Table divider based on results from [41]. Broken lines
en-capsule logic that can be collapsed to a few gates in case of a redundant digit
representation.
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RTL-level Implementations
{(Venlog, Synopsys Design Gompiler and RTL Analyzer)

Area and Time
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Figure 4.8: The figure shows the area and time(latency) tradeoff for ’shift and add’

based (class 1) rational arithmetic units implemented in Verilog and synthesized with

a commercial synthesis tool. The results are shown relative to division. L requires

D
about 1 unit area and 1 unit of time.

In conclusion, the complexity of the MFT-based divider is similar to the com-
plexity of state-of-the-art division. The main difference is that the novel MFT-based
divider scales up to higher degree rational arithmetic units and enables the extension

of conventional floating point arithmetic units to higher-degree rational functions.
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4.3 VLSI Implementation of
Rational Arithmetic Units

The algebraic algorithm enables the computation of rational functions such as T'(x) =

azx+b _ az’+bz+c
cm+d’T(x) T dx?+4ex+f

azytbrteytd o microarchitecture of these arithmetic units can be constructed from
exy+fr+gy+h

but also functions of multiple variables such as T'(z,y) =

the iteration equations 4.5, 4.6 and 4.7.

In this section we implement division, linear, and quadratic rational arithmetic
units at the RTL level using Verilog. The purpose is to get an understanding of
the area-time tradeoff between the different degrees of the polynomials of rational
functions. More specifically, Synopsys RTL-Analyzer|71] is used to obtain timing and
area estimates for the rational arithmetic units.

Figure 4.8 shows the VLSI area and latency results for MF'T-based division, linear,
and quadratic fractional transformations. The arithmetic units are implemented in
Verilog and synthesized with Synopsys Design Compiler[71]. With increasing degree
N of the polynomials, area grows with at least O(NN?) making implementations of
higher-degree polynomials less attractive. Given enough area, the latency-growth of
the proposed rational arithmetic units is less than O(N).

All arithmetic units above use radix-2 digits and thus, for results with X bits of
precision X iterations are required. In order to speed up computation, we investigate

higher radix rational arithmetic algorithms next.

4.4 Higher Radix Rational Arithmetic

For conventional iterative division units, increasing the radix reduces the number of
iterations per result. This section considers using an arbitrary radix r. The radix-r

algorithms use redundant digit-sets such as s; = {—(r —1),...,7r —1}.
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In general, high radix algorithms (e.g. for division) reduce the number of itera-
tions at the cost of additional area and, possibly, a longer delay per iteration. As
a consequence, current state-of-the-art in SRT-division, does not scale well to effi-
cient dividers much beyond radix-8. The MFT enables us to design efficient higher
radix algorithms with an algebraic formulation of the selection functions, as shown
for radix-2 in the previous sections.

The M-log-Fraction for the desired radix, shown below, leads to the design of

the iterative algorithm for radix-r numbers(rrn). Let us compute the linear frac-

tional transformation y = —g;”j:g With Ty = tibats ... = |21, 22, 23,...] and Ym =
515283 ... = [Y1,Y2, Y3, ... ti,s; are radix-r digits and z;,y; are the equivalent CF
digits:
Yrrn = 517“_1 + SQT_2 + 837‘_3 + 347“_4 —+ ...
= (039192, Y3 - - ] (4.14)
T _ a1
yo= —  p=sp T2 =5 (4.15)
51 b1
v = ()7 (p+rtmD) g (4.16)

with temporary variables

Pi = DPic1 Di (4.17)

o - ' (4.18)

The next digit selection function for radix-r arithmetic is similar to the selection

function in the radix-2 case:

a;x; + bz

4.19
C;T; + dz ( )

,L' ~J
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Figure 4.9: The figure shows a radiz-r base-implementation of the proposed division
unit. 5 = S%,E— = pii, MCSAs denote (logr)-level CSA structures. Consequently,
variables d,p, and p hold full precision values. T1, T2 are small logr by logr tables.
However, as in the case of radiz-2, a redundant digit representation might enable us
to reduce the complexity of choosing the next digit s; to a few gates. The broken line

en-capsules the area that could be simplified.
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Equations 4.19,4.16 lead to the next output digit s; (radix-r) as a function of:

S§; = f(az', bi, ci, di, yz‘) (4-20)

The above equations are valid for all bilinear units. A special case of the bilinear
unit is division. High-radix division is important for decreasing the number of itera-
tions for the division operation. Below we show the next-digit selection function for
high-radix division.

Figure 4.9 shows the microarchitecture of the above algorithm simplified to radix-r
division. Tables T'1 and 7’2 use the most significant bits of X and Y to choose the
next output digit s; ~ % In general, increasing the radix r, increases the number of
levels of CSAs and increases the required precision in tables 7'1 and 7T°2.

Formally, the next digit selection function from equation 4.20 becomes:

disi—17 ;
—_— = even
X “pidiard; LT €Ve (4 21)
S~V = .
Y _disiar_ 7 = odd
pidi—1—d; B

with p; computed by equation 4.17.

In summary, arbitrary radix-r rational arithmetic units are quickly increase in
complexity. Even in the simplest case, division, retiring higher-radix digits requires
substantial computational effort as shown in figure 4.9. The approach presented in
this section can be used to derive high-radix rational arithmetic units for bilinear
functions and quadratic rational functions leading to high-speed implementations of

the rational arithmetic units introduced in this thesis.
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4.5 Related Work

Early investigations found a very high potential [18][21][22] (very optimistic [23])
for continued fraction arithmetic. Vuillemin[45], Kornerup and Matula[25] formalize
Gospers ideas and investigate software and hardware implementations. Additional
continued fraction algorithms such as sorting continued fractions are summarized in
[69].

The conventional way of computing rational functions is based on multiply-adds
and a final division[34]. The advantage of the MFT method is that the most significant
digit is produced immediately (with the delay of one iteration) given the first input
digit. Figure 4.10 shows a direct comparison of the two options. The overall delay of
the operations is similar, depending on the particular implementation. An advantage
of the MFT-based design is a fast “first digit out”, i.e. the first result digit is produced
immediately after the first input digit is consumed. In addition, a single iteration step
can be used in a loop to compute the entire function that would require multipliers,
adders and a divider.

There are many shift-and-add based algorithms approximating elementary func-
tions. One of the most popular ’shift-and-add’ algorithms is CORDIC[56][57]. CORDIC
algorithms were formally introduced by Volder in [56] and unified to compute el-
ementary functions by Walther in [57]. CORDIC functional units compute up to
two elementary functions at the same time. Given three arguments z,y, z, minor
modifications to the CORDIC architecture compute function pairs such as:

{zcos(z) — ysin(z),ycos(z) — xzsin(z)}

{2,y — 22}

{zcosh(z) — ysinh(z),ycosh(z) — zsinh(z)}

{Va?+y?, 2z —tan"(y/2)}

{z,z2 - (y/2)}
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Figure 4.10: The figure shows a conceptual comparison of the structures of computa-
tion for class 1 MFT-based arithmetic units computing a bilinear function, and the
conventional approach of computing two multiply-adds followed by a final division.
The box with the arrow and a plus stands for a shift-and-add step. Qutputs s; are the
digits of the result in most-significant digit(MSD) first order.
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{Vr? =92, 2 — tanh ' (y/z)}

The fundamental mathematical principles behind CORDIC algorithms can be
found in their scalar form in the work of T.C. Chen [58], as pointed out by Ahmed in
his thesis [55]. Ahmed showed that if T.C. Chen’s convergence computation technique
is applied instead of real numbers (as assumed by Chen) to complex numbers one
obtains the class of CORDIC algorithms. The real power of CORDICs lies in the
ability to compute two functions simultaneously, where a conventional functional
unit only computes one scalar function.

Although the set of functions that can be computed appears to be limited, CORDICs
are very popular, especially in signal processing, due to the simplicity of implemen-
tation in hardware[29].

Ercegovac[51][52] generalizes digit-recurrence algorithms such as SRT division to
matrices and vectors, creating the E-method. Ercegovac uses linear algebra to derive
linear matrix equations that represent polynomial and rational expressions. The E-
method is a ’shift-and-add’ method solving the resulting linear system that represents
the approximation. The required computation is done in linear time, i.e. producing
one output digits per iteration, similar to the MFT-method proposed in this work.
The E-method is a more general method capable of computing various expressions
such as polynomial and rational approximations, given a specific set of restrictions. In
the case of rational approximation, however, the E-method has very tight restrictions
on the values of the coefficients.

Low latency, parallel arithmetic algorithms use substantially more VLSI area than
the previous methods to obtain an approximation. Examples are table based methods
such as bipartite tables[39][38] or multiplier/CSA-tree-based methods[37][36]. These
parallel methods are more closely related to the multiplication-based algorithms pre-

sented in the next chapter.
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In summary, the above chapter shows the details on how to combine the MFT
and the algebraic algorithm to design rational arithmetic units based on shift-and-add
primitives. The size of the arithmetic units grows very quickly with increasing order
of the polynomials. Thus, higher order rational approximations require very large
VLSI areas. Once the available area for arithmetic units is large enough to justify
the use of multipliers, it makes sense to switch to multiplication-based algorithms.
To address the computation of higher order rational approximations the next chapter

looks at such multiplication-based arithmetic structures based on the MF'T.



Chapter 5

Algorithm Class 2:
Rational Approximation of

Analytic Functions

As we have seen in the previous chapter, the area requirement of shift-and-add based
rational arithmetic units grows very quickly with increasing order of the rational
approximation. As a consequence, high-order rational approximations require a dif-
ferent solution. Of course it is possible to use shift-and-add based arithmetic units
to compute multiple low-order rational approximations and combine them in a sum
or a product. However, there is a faster way of computing high-order rational ap-
proximations if a multiplier is available. This chapter explores a multiplication-based
algorithm based on the MF'T and the algebraic algorithm that enables the evaluation
of high- order rational approximations.

Which applications or rather functions require high-order rational approxima-
tions? In general, for most functions, rational approximations converge faster than
polynomial approximations. Some functions are inherently difficult to approximate.

A prominent “hard” function is the incomplete Gamma function which is used, for

93
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Figure 5.1: The figure shows the state machine for the iteration equations (IE) eval-
uating a simple continued fraction. In this case the input digits are the digits of the
continued fraction representing the rational approximation of the function.

example, in signal and image processing applications.

A simple continued fraction representing a rational approximation of a function
f(z) replaces the input MFT in the MFT-based algebraic algorithm. The result-
ing arithmetic structure shown in figure 5.1 evaluates the simple continued fraction
approximation yielding one output digit per iteration. As explained in chapter 1, con-
tinued fraction approximations are alternative representations for rational approxima-
tions. Some continued fraction approximation “gems” are known from literature (e.g.
equations 1.7, 1.8,1.9,1.10). In general, any rational approximation can be converted
to a simple continued fraction with linear CF digits using equivalence 1 (chapter 1)

taken from Wall[63]:

H(Z) _ CL()QZTL + amz"_l + -+ Qon,

= =[riz+ 51,92+ S0, -, Tnz + Sn 51
a112" !+ a2 2+ -+ ag, [r12 4 81,722 + S, -+, Tnz +55]  (5.1)

with all a;; # 0, and r; # 0.
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5.1 A multiplication-based rational arithmetic unit

Let us focus now on evaluating simple continued fraction expansions (or rational ap-
proximations) with rational elements r;, s; to binary numbers using the positional

algebraic algorithm from the previous chapters. The trivial linear fractional transfor-

1-2+0
0-z+1

mation computed with the positional algebraic algorithm can be used to convert
a simple continued fraction expansion such as equation 5.1 to a binary M-log-Fraction.
This is achieved by consuming the input digits of the CF expansion, and selecting
the output digits according to the M-log-Fraction. Figure 5.1 shows the input digits
of the function tan(x) being consumed by the arithmetic unit. Consuming an input
digit requires a multiplication with the argument z. The output is chosen according
to the inverse MFT. Thus, on the output side the computational effort remains a
shift-and-add just like in the previous chapter.

The multiplicative algorithm shown in this section only makes sense for hard
functions, i.e. functions which require many polynomial terms for accurate approxi-
mation. The area-time results for shift-and-add based arithmetic units in figure 4.8
show that the area of these arithmetic units grows very rapidly with the degree of
the polynomials. It makes sense to use the multiplicative algorithm presented in this
chapter when the area of a shift-and-add arithmetic unit exceeds the area required
for multiplication.

Instead of fixing the shifts M;, we use the initial MFT (Theorem 2 and compute
at each iteration the next shift M; and the signed-digit s;. The resulting M-log-
Fraction is a combination of Theorem 2 and Corollary 3. This small modification of
the algorithm from the previous chapter increases the average speed of convergence.

We use the following corollary of the MF'T from Theorem 2:

Corollary 4 Signed-digit M-log-Fraction with variable shifts. A binary number Bg

with n digits, and s; € {+1,—1} is equivalent to a simple continued fraction with n
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partial quotients as follows:

Br = 312[31 + 322ﬁ2 + 332[33 + 342@1 + ...+ sn2ﬂ"
= [0; 512, — (5127 M1 592M2) (552 M2 539M3) (5327 Ms  5,2M1)

ook (5127 M-t 5, 2Mn)] (5.2)

The corollary differs from previous M-log-Fraction by using signed-digits s; and
variable shifts M;. The variable shifts M; set the values of the 3’s. We use the
corollary on the MFT above to represent the output oy, = [01, 02, 03, .. .|, and obtain
01 = 5:2M and for i > 1, 0; = (—1)" }(s;2Mi + 5,12 Mi-1). The input fraction is
not an M-log-Fraction. Instead, the input digits are taken from a continued fraction
approximation as shown below.

As before, the algorithm is defined by the iteration equations 4.5 repeated below:

i1 = CiX; +dy bits =Cy
i i (5.3)
Cit1 = a;X; +b; —05(CiX; +d;i) dipg =a; — 05Cs
The iteration equations for the linear fractional algebraic algorithm lead to the

following equations for s; and M;:

My = [logy(z1)] (5.4)

s1 = sign(z) (5.5)

Note that ay = dy = 1 and by = ¢o = 0, simplifying M; and s;. For ¢ > 1 the

equations for the output digits are:
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i1 [ax;+b M
M; = {logQ (-1 (ca:i i §i-12 MH) H
~ |log, |az; + b — s5;_127Mi=" (cx; + d)|| — |log, |cx; + d|] (5.6)

s; = sign(az; +b— 512 M1(cx; +d)) - sign((=1)"(cx; +d)) (5.7

Multiplication with z; for the class 2 method requires a full precision multiply
(NxN bits) while a multiplication with o; just requires a shift-and-add. Thus, the
4 shift-and-add operations for equation 4.5 for the class 1 algorithm turn into 2
multiplications and 2 shift-and-adds. Instead of computing log(x) and then taking
the floor |z |, we use a Leading One Detect(LLOD)[42] circuit. Computing M; requires
2 shift-and-adds and 2 LODs. The leading one detect circuit returns the position of
the most left "1’ of a binary number. As this is also the most significant '1’, the integer
value of the position of the left-most 1’ is equal to |log,(z)]|. A leading one detect
circuit usually has a latency of less than one clock cycle, or one full carry-propagate.

The convergence of the evaluation algorithm increases to above one bit per itera-
tion by computing an approximation to the optimal next shift (M;).

Jones and Thron ([17], p. 202) give arctan(1) as an example of a function that
converges much faster when approximated by a continued fraction compared to a
Taylor approximation. In order to show the versatility of continued fraction approx-
imations, the examples below also show a composite function, and the incomplete
Gamma function. For simplicity, the examples use approximations with integer coef-
ficients. For optimal results over an interval an optimal approximation with minimaz

coeflicients can be obtained with Remez’s method [43],[26].

Example 1 Approzimate arctan(z) for x between zero and one, with the continued

fraction approzimation given in [17], p. 202.
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Figure 5.2: The graphs show the error for computing arctan(x) after 16 iterations with
16-bit precision at each iteration. (a) shows log,(error) for arguments x between zero
and one. (b) shows the distribution of error values with a histogram.

i< L 2SO IE 2] s

Figure 5.2 shows the results for 16 iterations with 16-bit precision at each iteration.

Example 2 Approzimate the normalized function %_Lg) for x between zero and one

half, with the continued fraction approxzimation given in [17], p. 2083.

3 1 5 1 7
1-2 2'1-2 2'3-4

arcsin(x)
V1—1?

Figure 5.8 shows the results for 16 iterations with 16-bit precision at each iteration.

1 1
_[o. L S 5.9
; (59)

Example 3 Approzimate the incomplete Gamma function I'(a,x) for a = %,x be-
tween 10 and 100, with the continued fraction approximation given in [17], p. 348,
and [35].

0(0.5,2) = e -2 [0;2,(05) "z, (15) ! 2, (25) 2, (35)...]  (5.10)
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Figure 5.3: The graphs show the error for computing N after 16 iterations with
16-bit precision at each iteration. (a) shows log,(error) for arguments x between zero
and one half. (b) shows the distribution of error values with a histogram.

Figure 5.4 shows the results for 16 iterations with 16-bit precision at each iteration.
The figure shows increasing precision with increasing distance from x = 0. Intuitively,
the even quotients of the continued fraction, x, lead to pseudo-divisions by zero. In

fact, T'(0.5, ) has a pole at zero.

The actual results of the examples below show the convergence of the algorithm
to the exact function, and thus includes also the convergence behavior of the ratio-
nal approximation. Thus, we are dealing with two sources of error: the error of the
rational approximation and the error of the evaluation of the rational approxima-
tion. As a consequence of the limitations posed by the convergence of the rational
approximation, for some arguments X, overall convergence can drop below one bit
per iteration. In the previous examples, this happens in example 1 for arguments
larger than ~ (.55, in example 2 for arguments larger than 0.2, and in example 3
for arguments smaller than ~ 25. Note that the algorithm degrades gracefully. Even
when the rational approximation does not converge fast enough, the result stays as
close to the rational approximation as possible.

The multiplication-based MF'T algorithm enables the design of a general purpose
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log2(error) Gamma(0.5,X) Histogram of Errors
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log2(error)
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Figure 5.4: The graphs plot the error for computing the incomplete Gamma func-
tion I'(0.5,x) after 16 iterations with 16-bit precision at each iteration. (a) shows
log,(error) for arguments x between 10 and 100. (b) shows the distribution of error
values with a histogram.

rational approximation unit that can be used for the approximation of any analytical
function. The resulting general-purpose arithmetic unit produces “fast first digit out”

results, in the same manner as class 1 units.

5.2 Related Work

Rational approximations can be evaluated in continued fraction form, or by dividing
two polynomials. Evaluating the continued fraction leads to the minimal number of
operations, but requires many divisions. For an implementation technology where
division takes significantly more time and/or resources than multiplication, it makes
sense to evaluate two polynomials first, and then use only one division to obtain the
result.

There are many options for evaluating polynomials with multiply-add structures.
The various methods differ in the required hardware resources. A straightforward

evaluation of polynomials uses the Horner scheme:
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p(r) =a+br+cx’ +dr* = (dz+ )z + b))z +d (5.11)

Figure 5.5 compares conventional computation of rational approximation with the
multiplication based MFT method (class 2). As before for class 1 both approaches
have a similar latency. However, the MFT-based approach delivers a “fast first digit
out” and offers a regular implementation.

Koren[34] uses two parallel multiply-add modules to compute rational approxima-
tions. The two polynomials are evaluated in parallel with Horner’s scheme, followed
by a division.

Knuth[64] obtains more complex structures to find the minimum number of op-
erations for evaluating polynomials. A more regular scheme for parallel or pipelined
execution with a performance between Knuth’s optimum and the Horner scheme is
proposed by Estrin[70][64]. The methods for evaluating polynomials are very efficient
and could be used to evaluate the top and bottom polynomials of a rational approx-
imations before the final divide. However, they require multiple multipliers and are
hard to adapt to variable degree polynomials. Thus, these methods are less useful for

a general-purpose evaluation unit for higher-degree rational approximations.
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State-of-the-Art vs. MFT-based rational approximation

MAdd

L 2

MAdd MAdd
\ Result
/'

Divide ™ jx)

MAdd

L J

MAdd

L J

MAdd

The MFT-based design overlaps MAdd steps with division:

MAdd | ’ MAdd 4 MAdd |\
T+ 7 T+ P LR IR i I RS
MAdd J' ﬁ MAdd l ﬁ MAdd l l l

5. s, 8§, S.—»result

Figure 5.5: The figure shows a conceptual comparison of the structures of compu-
tation for the class 2 MFT-based arithmetic unit evaluating continued fraction ap-
proximations, and the conventional approach of evaluating a rational approximation
with a series of multiply-adds(MAdd) and a final divide. The box with the arrow
and a plus stands for a shift-and-add step. The example shown evaluates a rational
approximation with third-degree polynomials. Outputs s; are the digits of the result
in most-significant digit(MSD) first order.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

We provide an effective algorithm to convert between binary numbers and continued
fractions. The resulting transformation is called M-log Fraction Transform (MFT).
The MFT provides a means to determine the optimal representation of binary num-
bers in the continued fraction space, and allows for error control.

The M-log-Fraction Transform(MFT), introduced in this work, enables the first
practical implementation of continued fraction algorithms for computer systems. The
MEF'T bridges the gap between continued fractions and the binary number represen-
tation, enabling the design of a new class of efficient rational arithmetic units.

From a distance the M-log-Fraction and MFT behave like a redundant repre-
sentation of binary numbers utilizing the integer distances between ’1’s, similar to
O-runlength encoding (counting the ’0’s between the '1’s of a binary number). Run-
length encoding is a very fast way of converting between continued fractions and
binary numbers reducing the conversion overhead by orders of magnitude. This fast
conversion allows us to exploit the symmetries in the continued fraction space while

computing and storing binary numbers.

63
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The thesis explores two application areas of the MFT: ’shift and add’ based ra-
tional arithmetic units (class 1), and multiplication-based digit-serial evaluation of
higher degree rational approximations (class 2). The presented architectures are based

on combining the MFT with a specific state-of-the-art continued fraction algorithm.

6.2 Future Work

Future work includes the application of the MFT to other continued fraction arith-
metic algorithms such as the algorithms proposed by Jones and Thron [24][17] (see
also [40] and [12]). [24] shows the application of continued fractions to problems in
the frequency-domain of digital filters. A first step towards applying bilinear trans-
formations to the time-domain of digital filters, inspired by [24], is proposed in [30].

In [30] linear FIR filters are extended by using bilinear function taps. Instead

az+b
cx+d

of a constant multiply, each “tap” consists of the bilinear function optimally
implemented in hardware with class 1 MFT arithmetic units. The coefficients a — d
are found by starting with a linear filter (a = optimal FIR coefficient, b = ¢ = 0, and
d =1). A gradient search algorithm is used to improve the mean-square error of the
frequency response. The resulting MFT-filter is non-linear (mostly in the stop-band),
but stays closely related to the initial linear FIR filter.

Further research is required to identify and analyze the impact of the presented
MFT arithmetic units on other numerically intensive application areas such as signal
processing, multimedia processing, and computer graphics.

In computer graphics, for example, cubic surfaces (f(z,y,z) = 0) can be repre-

sented by rational parameterized forms with parameters u, v:

= fi(u,v) y = f3(u,v) L f5(u,v)
fa(u,v) fa(u,v) fe(u,v)

As more and more VLSI area is available for hardware acceleration of computer

(6.1)
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graphics applications, MF'T arithmetic units can be used to efficiently evaluate such
cubic surfaces.

On the function approximation side, there is a connection between rational ap-
proximations, continued fraction approximations, and CORDIC arithmetic. The con-
necting paradigm seems to be the theory of linear transformations. CORDIC iteration

can be written as (see [70] equation 6.6):

Tpt1 _ 1 _SiQ_M Tn (62)
Yn+1 51'27M 1 Yn
Interestingly, the M-log-Fraction can be written as:
Tp1 _ 0 _Si—IQMi_I Tn (63)
Yn+1 1 1+ SiQMi Yn

The CORDIC iterations and M-log-Fractions appear to be special cases of a more
general approximation space using linear transformations. An alternative approxima-
tion method, the E-method[52][51], uses linear transformations to evaluate polynomi-
als, rational functions, and other expressions. However, evaluating rational approxi-
mations with the E-method is limited by restrictions on the values of the coefficients.
Like in other scientific areas we are still missing a general unified theory for the three
discussed methods.

On the implementation side, MFT arithmetic units promise to be an efficient
alternative to state-of-the-art (floating point) division units. Current state-of-the-art
SRT division is a result of decades of optimization and exploitation of redundant
number representations. A similar effort is required for MFT arithmetic units. Of
particular interest is the scalability of redundant, high-radix implementations of the
arithmetic units proposed in this work. Future work will include VLSI implementation

of MFT-based arithmetic units and a direct comparison to state-of-the-art division
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units.

Digit-serial arithmetic units are also useful for a relatively young field of recon-
figurable computing[31]. Reconfigurable, MFT-based rational arithmetic units are
potential candidates for coarse-grain arithmetic cells. Arrays of rational arithmetic
units offer the potential to speedup data-intensive and compute-intensive applications
which are limited by arithmetic resources of a general-purpose processor.

Finally, the trend towards low-power and power-aware computing for mobile, ubiq-
uitous and embedded communication and computation units can use high-level arith-
metic units such as the rational arithmetic units presented in this thesis to minimize
and/or adapt power consumption by using more powerful arithmetic units, enabling

the computational elements to run at lower clock speeds.



Appendix A

Precision of Regular Continued

Fraction Arithmetic

This appendix investigates hardware implementations of rational arithmetic units
with inputs and outputs in regular continued fraction form, i.e. the digits or partial
quotients of the input and output CF are small integers.

How many bits should we use to represent the integer digits of the regular CFs?
Theorem 1 (Lochs) expresses the average behavior of integer CF digits:

(Lochs [66]) For almost all irrational numbers x and their approrimation in the

form of a reqular continued fraction:

tim "2+ 0.9702. (A1)

n—oo n

with kn(x), the number of partial quotients, and n, the number of approxzimated
decimal digits.

Theorem 1, repeated above, leads us to consider a 4+1-bit signed digit representa-
tion for partial quotients. We know the distribution of the partial quotients of regular

CFs from the previous section. By choosing 4-bits for the magnitude of integers to

67
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represent one partial quotient we cover over 90% of the partial quotients of regular
CFs. Including zero in the quotient digit set results in redundant CFs and allows us

to handle quotient digit overflow by using Equivalence 5 below:

Equivalence 5 (see [61][12][45]) For any fragment of a simple continued fraction

with positive and/or negative partial quotients,

[. <y Gy, 1, Aiy2, - - ] = [ ce, 0+ 1, —Qi49 — 1, —Q;4+3, —Ajt4,- - ]

["‘aaiaoaa’i-l-Qa"‘]E[""ai+ai+25"']

The algebraic algorithm introduced in chapter 4 computes functions such as

Ti(z) = ‘C‘;ig,Tg(x) = %, but also functions of multiple variables such as

T3(z,y) = %. Given a finite 5-bit representation (including the sign) of
quotient digits and finite-size state registers, we observe the following three main

sources Of error.

1. Overflow of State Registers: Representing the state registers with a finite
number of bits leads to frequent overflow and limits the precision of the final
result even with the use of floating-point-like arithmetic. Previous work[25]

assumes infinite size registers?.

2. Virtual Singularities: Even if there is no real division by zero, an intermediate
input quotient may cause cz+d = 0 (in the linear case). Aborting the algorithm
in case of division by zero introduces an error because the following part of the

input is ignored.

!The paper[25] mentions that the results are true “given sufficient register lengths”.
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3. Overflow of Quotient Digits:The overflow of partial quotients creates Re-
dundant Continued Fractions?. For 5-bit quotient digits, any quotient digit x
with |z| > 2? results in a zero digit according to Equivalence 5. Thus, the
CFs are not regular any more, and the algorithm may not converge to the right

value. The following conditions also cause the algorithm to produce an error:

e A CF ending with 1.
e strings of 1s, e.g. [...,1,1,1,1,...].

e An end of the form [...,z,0,z,0,z,0]

or[...,z,0,x,0, x|

Given infinite resources and a converging, regular input CF, the positional al-
gebraic algorithm converges to the exact result. However, the state registers either

A (1)) for T3, or (2) diverge very rapidly

(1) quickly converge to the simplest form
towards infinity. In case (1) we obtain an exact result. Case (2) causes an overflow
of the state registers and results in an approximate result.

The positional algebraic algorithm produces almost always exact results if all input
quotients are regular CFs. “Almost always” is quantified in the results section below.

However, the distribution of the values that are represented by CF's with integer digits

is different from the uniform distribution of binary numbers (see 2).

Improved Positional Algebraic Algorithm

We propose the following improvements for the linear case, 7, based on the three

sources of error, explained above:

2 An explanation of the distribution of regular continued fractions can be found in an article by
Hall[14]. Hall proves that any rational number can be expressed as the sum or the product of two
regular continued fractions with limited partial quotients, i.e. redundant continued fractions without
zero quotients.
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1. Overflow of State Registers: The simple solution is to shift the coefficients
a to d to the right, and continue computation to a possibly non-exact result.
Raney’s results[16] suggest that we might not want to create exactly one output
for each input. Raney’s observations lead to a better solution to state register
overflow: produce an output without consuming an input. The output can be

chosen to decrease the values of the state registers without introducing errors.
2. Virtual Singularities: We choose the best possible value: sign(azx + b) - 2*.

3. Overflow of Quotient Digits Creating Redundant Continued Frac-
tions: Redundant continued fractions allow us to pick from a variety of differ-
ent continued fractions for the input to the transformation to avoid the cases
that lead to non-exact results. We use equivalence 5 to convert between the

various forms.

4. Speedup of the convergence of the transformation matrix A to ('? S):

In case |2=L| = &=L we choose 0 = &=L resulting in d = 1.
c c ’ c

While the last feature does not address a particular source of error, it forces A

faster to its simplest form where ¢ = 0,d = 1. Examining equations 4.5 in more

az+b
cx+d’

detail, we see that by choosing o ~ ¢ — 0. Intuitively, we also want to force
d — 1, in order to simplify A.

For |A| = £1, A converges to the identity matrix ((1) (1)> As soon as the identity
matrix is reached, the tail of the input fraction is equal to the tail of the output
fraction[12]; A does not change anymore, and the calculation can be terminated.

Below we show the improved Semi-Exact Positional Algorithm (SEPA) based on

the positional algebraic algorithm for continued fraction arithmetic with finite state

registers and redundant CF's.
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SEPA Algorithm with Improvements:

1. s[o]l:={a,b,c,d} //Init State Regs
. loop i,0 from O to MAXLEN
if ((c*x[i]+d)==0.0)
Output [o]=sign(a*x[i]+b)*2"MAXVAL

2

3

4

5. else
6 if (c<>0)

7 if (frac((a-1)/(c))==0.0) and

8 (frac((axx[il+b)/(cxx[i]+d))<>0.0)

9 Output [o]=round ((a-1)/c)

10. else

11. Output [o]=round ((a*x[i]+b)/(cxx[i]+d))
12.  Compute Next State (S[o+1])

13. if {state regs overflow}

14. if (c<>0)

15. Output [o]=round(a/c)

16. else

17. Output [o]=sign(a)*2 "MAXVAL
18. else

19. i++; // consume input

20. ot++; // produce output
21. endloop

22. return(Qutput)

The algorithm is shown for transformation 7. S[o] stands for the state registers.
Truncation of the output quotients to representable values is not shown for simplicity.

MAXLEN is the maximal length of the input CF. MAXVAL is the maximal value of a
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redundant CF quotient — chosen in case of a virtual singularity. Virtual singularities
occur due to the truncation of CF quotients to integers.
In the simple case, lines 14-17 are replaced by a right-shift(division by a power

of 2) of all state-registers.

Experimental Results

We use MapleV|[26] to improve continued fraction arithmetic algorithms, and sim-
ulate various implementations. Exact arithmetic enables us to study the behavior
of continued fraction arithmetic algorithms with arbitrary precision, limited only by
computation time.

Running the simulations of the positional algebraic algorithm gives us more in-
sight into its behavior and accuracy over a large set of inputs. We compare the simple
algorithm to the improved SEPA algorithm described above. The simple version basi-
cally follows the standard algorithm, with a floating-point-like right-shift of all state
registers on register overflow.

We classify individual results into exact and non-exact results. Exact results are
results that match the result computed with Maple’s exact arithmetic. Non-exact
results differ from Maple’s exact result by some error. We present the maximal er-
ror occurring within the non-exact results, and the average error, also within the
non-exact results. Section A.2 deals with improving the maximal error with a correc-
tion term. The improvements suggested above are primarily chosen to minimize the

percentage of non-exact results.

Example 4 Linear fractional transformation T :

A= (" Z with initial a, b, c,d between 1 and 15. Results are shown in figure A.1.
C

The accuracy of the improved results does not depend much on state register

size. For reasonably sized state registers 98.5% (1.5%) of results are (non-)exact. In
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o, T1: Percentage of Hon-Exact Results
a0
40 H Simple
a0 O Improved
20 4 I
10 4

l:l i |-| T 0 T I = T I 0 T . = T =

3 12 16 20 24 25
Bits per State Register

Figure A.1: Example 4:T; = 2;13; Exact results match the input CF evaluated with T3

using Maple’s exact arithmetic. The “simple” results are obtained with “shift on overflow”
of state registers.

addition, within the 1.5% of inputs that yield non-exact results, the average error
is about 272!, and mazimal error is 278. The histogram of the distribution of error
within non-exact results is shown in figure A.4.

Quadratic transformations create quadratic growth of state register values, result-
ing in a stronger dependence of precision on the size of the state registers.

As a consequence, overflow of state registers occurs more often, and the improve-
ments that worked well in the linear case (7}) fail to improve the performance in
the quadratic case (results are shown without “improvements”). Still, with 28-bit
registers, ~ 75% of inputs yield exact results. Average error of the non-exact com-
putations is about 2710 — 2720 for the square function, and 272° — 2725 for the chosen
case (1,1,1,3,2,1), depending on state register size. In both cases maximal error is

~ 1 for state register sizes larger or equal to 12 bits.

Example 5 Quadratic fractional transformation Ty:

Figure A.2 shows cases:

z?

e square function ~ Ty = *-.

z24z+1

e chosen case ~ Ty = 52000
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i, T2: Percentage of Hon-Exact Results

100 =
a0 B (111321) O SOR

» IER A

g 12 16 20 24 25
Bits per State Reyister

Figure A.2: Example 5:T, = %, T = 3;217;;{1; Exact results match the input CF

evaluated with T, using Maple’s exact arithmetic.

Example 6 Quadratic fractional transformation of two input variables, Tj:
e Multiplication ~ Ty = =2,
o Addition ~» Ty = &,

Results are shown in figure A.3.

As in the quadratic case with one input variable, the “improvements” of the linear
case do not apply for the quadratic case T5. Even with 28 bit registers, only about
70-80% of the results are exact. However, for the two cases shown in figure A.3 the
average error of the non-exact results is about 272 for register sizes larger or equal

to 16 bits.

A.1 Simple Continued Fraction Inputs

Simple continued fractions consist of partial quotients € R. We use the identity

transformation 7} = (1):21(1) to convert simple continued fractions with rational partial

quotients to redundant continued fractions — implicitly evaluating a continued fraction

expansion, in our case tan(x).
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iy T3: Percentage of Hon-Exact Results
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Figure A.3: Example 6:73 = %, and T3 = %9 Exact results match the input CF

evaluated with T3 using Maple’s exact arithmetic.

Example 7 We evaluate tan(z) (from equation 1.7) with the identity transformation

10 .
(1) =+

We observe a dependence of the accuracy of the final result on the accuracy of
the input quotient. In fact, simulations show that the average error of the result is
close to the precision of the state registers. Maximal error is roughly the square-root
of the average error (i.e. half the bits).

Note that for a simple continued fraction input the algorithm does not produce
any exact results. Accuracy is now not limited by state register overflow, as much as
by the loss of accuracy from truncation of fractional digits.

It appears reasonable to expect that a converging simple continued fraction at the
input would improve the accuracy (convergence) of the output. Convergence theorems
for regular CFs are given in standard CF literature [12][17][63] etc. Surprisingly, the
following convergent, positive, simple continued fraction expansion of tan(x), obtained
from equation 1.7, fails to improve the precision of the final result.

1 3 5 7

t =[0;--1,1,=-2,1,-—2,1,— —2,1,... A2
a’n(x) [7.1_ Y 5$ Y 7$ Y 7:1: Y ? ] ( )
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Figure A.4: The figure shows the histogram of error of non-exact results (logarithmic

x-axis) for 77 = % (example 1). Boxes contain equal amounts of data points.

As in the case of continued fractions with integer quotients, we find no simple

dependence between the convergence of the input, and the exactness of the output.

A.2 Final Optimization

Within the non-exact results, the proposed algorithm has a very low average error,
but a relatively high mazimal error. We discuss the final optimization of example 4
from above.

Figure A.4 shows the histogram of the distribution of the error within the 1.5% of
non-exact results in the case of T; with 12-bit state registers, as shown in Example 1
above. We see that the error is almost uniformly distributed. In order to guarantee
16 bits of precision, we have to find a correction value for a small set of about 300
non-exact input values (out of 64K possible 16-bit inputs). A small programmable
array such as a table, PLA, etc., indexed with a subset of input bits holds the 300
correction values. In case of a non-exact result, the corresponding correction value is

added to the final result.
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In conclusion, finite resources limit the achievable precision of continued frac-
tion arithmetic. The proposed improvements make it feasible to obtain exact results
in 98.5% of cases for the linear fractional transformation (7}), even with relatively
small registers — making the algorithm interesting for implementation in hardware.
Quadratic transformations create quadratic growth of state register values, resulting
in a stronger dependence on the size of the state registers. A large percentage of
non-exact results make it unrealistic to guarantee a specific precision with reasonable
resources.

The examples analyzed in this appendix form the beginning of a bit-level under-
standing of algebraic algorithms with regular continued fractions for rational arith-
metic. The major issues for the regular CF algorithms to be practical in the framework

of real computer systems:

e The Redundant Continued Fraction representation limits the achievable
precision by limiting the maximal range of partial quotients. Extending the
maximal value of a quotient with “0” quotients leads to unacceptable growth

of the number of partial quotients.

e Quadratic growth of state register values for quadratic transformations limits

the predictability and precision of quadratic arithmetic units.

e Conversion of regular continued fractions to and from binary numbers limits
the performance and applicability of current regular continued fraction arith-

metic.

All three problems are solved by using the M-log-Fraction Transform introduced

in this thesis.



Appendix B

Historical Notes on Continued

Fractions in Arithmetic

The fundamental ideas behind continued fractions can be traced back to Euclid’s
algorithm for finding the greatest common divider (GCD) of two integers. Cataldi[59]
is first to mention continued fractions in 1613. The theory of continued fractions has
its roots in the works of Euler[60], Lagrange[61], Legendre, Lambert, and many other
mathematicians during previous centuries.

This century Khinchin[62] studies regular continued fractions as a number repre-
sentation, and gives the distribution of values of partial quotients found by Kuzmin in
1928. Wall[63] summarizes the analytic theory of continued fractions with an empha-
sis on convergence and function theory. The best discussion of the theory of continued
fractions is given by Perron[12].

Homographic function evaluation with simple continued fractions, as discussed in
this thesis, was first studied by Hurwitz ([13], 1896). Hall[14] follows up on Hurwitz’s
work, and Raney[16] shows a simplified algorithm based on linear algebra and finite
state machines.

Meanwhile Knuth[64] considers continued fractions for semi-numerical algorithms.

78
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Gosper[15] notes how to evaluate homographic functions to CFs, given CF inputs.
Vuillemin|[45] formalizes and extends Gosper’s work to the algebraic and positional al-
gebraic algorithms. Kornerup(25] investigates a hardware implementation of Gosper’s
algorithm. A more theoretical use of CFs and the 2-dimensional, quadratic, rational
form is suggested by Potts. Potts[68] extends the notion of representing exact real

numbers with expression trees of tensors (rational forms).
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