
EXPLOITING RUN-TIME RECONFIGURATION IN STENCIL COMPUTATION

Xinyu Niu1, Qiwei Jin1, Wayne Luk1, Qiang Liu2 and Oliver Pell3

1Dept. of Computing, School of Engineering, Imperial College London, UK
2School of Electronic Information Engineering, Tianjin University, China

3Maxeler Technologies, UK
Email: {nx210, qj04, wl}@doc.ic.ac.uk, qiang.liu205@gmail.com, oliver@maxeler.com

ABSTRACT

Stencil computation is computationally intensive and requir-
ed by many applications. This paper proposes an approach
to exploit run-time reconfigurability of field-programmable
accelerators for stencil computation. System throughput is
optimized by partitioning, analysing and scheduling tasks
in applications to remove idle functions. To evaluate the
proposed approach, Reverse Time Migration (RTM), a high
performance application, is developed. Our optimized run-
time reconfigurable solution, which targets a Virtex-6 FPGA
in a Maxeler MAX3424A system, can achieves an improved
throughput of 102.8 GFlop/s, up to two orders of magnitude
faster than the CPU reference designs, 1.59 times faster than
the best published GPU and FPGA results, and 1.45 times
faster than an optimized static implementation.

1. INTRODUCTION

Run-time reconfiguration aims at improving system perfor-
mance during execution. At the early stage of reconfigurable
computing, virtual hardware [1] is introduced to temporally
partition applications into smaller configurations that fit tar-
geted reconfigurable platforms. Nowadays, as Moore’s Law
continues, the latest generation of FPGAs is capable of ac-
commodating many high performance applications. The chal-
lenges for run-time reconfiguration become finding optimi-
sations for available resources.

Three key challenges are as follows. First, due to data
dependency, application structure and reconfiguration over-
head, different combination of functions will lead to differ-
ent overall system performance. A partitioning method is
thus required to split applications into separate configura-
tions, according to application characteristics and properties
of reconfigurable systems. Second, within a valid partition,
combined functions should be optimised for available re-
sources to eliminate idle functions during run time, to im-
prove system concurrency and throughput; such optimisa-
tions should be derived from systematic exploration of the
design space. Third, high performance applications should

be developed based on the proposed approach, to evaluate
its effectiveness.

In this work, we propose a systematic methodology to
address these challenges, with a focus on stencil computa-
tion.

- A novel partitioning algorithm for extracting valid and
optimised partitions recursively, which underpins an
automatic approach to exploit run-time potential and
to achieve optimal system acceleration.

- An analytical model to enable systematic exploration
of design space involving stencil computation for op-
timising memory architectures, precision optimisation,
computation transformation, and design scalability, with
promising experimental results in improving speed and
resource usage.

- A high performance application, RTM, has been de-
veloped based on the proposed approach. It is, to the
best of our knowledge, the first RTM design involving
run-time reconfiguration.

The rest of the paper is organised as following: Section 2
reviews previous efforts in Run-time Reconfiguration (RTR)
and in stencil computation. Section 3 presents an overview
of a novel design flow. Section 4 presents the partitioning
algorithm. Section 5 describes our analytical model, and ex-
plains the formulation steps. Section 6 presents the schedul-
ing algorithm. Section 7 shows experimental results and
evaluates the proposed framework. Finally, Section 8 draws
the conclusion.

2. RELATED WORK

2.1. Run-Time Reconfiguration

Run-time reconfiguration is an emerging area to improve
system performance during design time and during run-time.
At design time, the dynamic property is used to improve
floorplanning [2] and to accelerate design validation [3]. Dur-
ing run-time, applications with slowly varying inputs and

978-1-4673-2256-0/12/$31.00 c©2012 IEEE 173

various scenarios are dynamically optimised. An adaptive
32-tap FIR filter [4], robotic applications [5] and sorting ar-
chitectures [6] are implemented to dynamically elaborate the
designs and to temporally share resources. In this work, we
focus on improving system throughput by dynamically re-
configuration tasks.

Temporal partitioning is investigated in [7] to fit large
applications into limited logic area. Tasks are presented with
data flow graphs (DFGs), and partitioned under resource
constraints. The problem is formulated as a Integer Non-
linear Programming (INLP) model [8] to minimise the com-
munication efforts between partitioned segments. Spatial
partitioning is covered in [9] to support multiple devices.
The motivation for these partitioning algorithms is that there
are not enough resources to accommodate the targeted ap-
plications. In this paper, we focus on exploiting run-time
reconfiguration in removing idle functions.

2.2. Stencil Computation

Stencil computation is widely used in diverse areas such
as heat diffusion, electromagnetic and fluid dynamics. By
sweeping over a spatial grid, the stencil kernel performs
nearest neighbouring computation in multiple dimensions.
As the number of dimensions increase, memory access be-
comes more sparse, limiting achievable throughput. Various
efforts have been put to fill the gap between the high per-
formance requirements and the low computational intensity.
The stencil computation has been optimised to exploit paral-
lelism of Graphics Processing Units (GPUs) [10, 11, 12] and
reconfigurable architectures of FPGAs [13, 14, 15]. How-
ever, none of the previous work exploits run-time properties
of the stencil computation.

3. FRAMEWORK OVERVIEW

3.1. Motivating Problem

The motivating problem is presented in Figure 1. For high
performance application with multiple functions, more of-
ten than not, there are idle functions from time to time. Due
to data dependency and application structure, idle functions
appear in certain time steps and conditions. As shown in
Figure 1, the target application has functions A, B and C.
With static design methods, the three functions will be
mapped into reconfigurable fabrics, and the mapped kernels
will be duplicated as many as possible to utilise the concur-
rency of hardware. In this way, at time step 0 and time step
2, function B and C will be idle, reducing the system per-
formance and efficiency. In the meanwhile, multiplexed or
demultiplexed functions cannot be active at the same time,
further limiting the system performance.

At circuit level, the idle nodes in a data flow graph can
be eliminated with operations scheduling and resource shar-

ing, given the nodes can be mapped into the same hardware
block. However, the I/O interfaces and arithmetic opera-
tions of different functions differ from each other. The re-
quirements of static methods are no longer satisfied. The
another solution to eliminate the idle functions involves the
run-time reconfiguration. As shown in Figure 1, the applica-
tion can be partitioned into different configurations. By dy-
namically reconfiguring the hardware, the functions can be
implemented only when required. The resource consump-
tion at each time step can be reduced, and system parallelism
can thus be increased. In this work, we aim at utilising run-
time reconfiguration to achieve the optimal run-time solu-
tions for target applications.

A

B C

configurations

time steps

MUX

A

C

B

A B

A C

C

B

C

B

A

C

A

A

1

2

0

Fig. 1. Motivating problem for the proposed approach.

3.2. Design Flow

Design flow of the proposed approach is presented in Fig-
ure 2. Applications are represented with DFGs. From bot-
tom to top, the applications are divided into functions, seg-
ments, configurations and partitions.
Definition 1: A function is the smallest element of the pro-
posed approach. Functions assigned the same data depen-
dency level are combined into a segment.
Definition 2: An application configuration is a design file
containing one or several application segments. It can be
synthesised and downloaded onto the reconfigurable fabrics.
Definition 3: A valid partition indicates a combination of
non-overlapping application configurations that is capable
of properly accomplishing the application functionality.

The approach includes three automatic steps: applica-
tion partitioning, configuration analysing, and partition
scheduling. The partitioner generates all valid application
partitions that respect the data dependency. The model tra-
verses configurations within partitions, exploiting maximum
throughput and estimating reconfiguration overhead of the
investigated configuration. Finally, the scheduler algorithm
evaluates valid application partitions, based on the estima-
tions from the analytical model. The optimal partition is
selected and mapped onto the targeting platform as sched-

174

uled. The partitioner, the analytical model and the scheduler
are presented in more detail, in the following sections.

Application
Properties

Platform
Properties

Monte−Carlo
Paths

Partitioner

Configurations

Scheduler

Optimal Partition

Data Flow Graph

Analytical Model

Valid Partitions

design flow

section5

section4

section6
paper structure
model input

Fig. 2. Design flow for the proposed approach.

4. APPLICATION PARTITIONING

The major objective of the partitioner is to generate valid ap-
plication partitions under data dependency constraints. The
problem is formulated as a DFG, G = (V,E, F), where V
and E are sets of nodes and edges. fi ∈ F indicates the
function of the node. The partitioning process is demon-
strated in Figure 3. Level assignment, configuration combi-
nation and application partitioning are executed step by step.

A

B C

D

B C

D

A

(b)

0

0

1

1

2

2

1

1

210 21 2

10 1

0

210

0

1

2
2

1

0

(c)

Segment 2

Segment 1

Segment 0

for B C

D

for A

B C

D

A

Partition0

Configuration0

Configuration1

Configuration2

(a)

(d) (e)

(f)

2

1

0

21210

10

Fig. 3. (a) application DFG, (b) level assignment, (c) config-
uration formation, (d) valid configurations, (e) application
partitioning, (f) one valid partition.

Algorithm 1 Partitioning Algorithm.

Labels: si: segments, ci: configurations, pi: partitions
Functions Add: combine a node into a configuration,
Func: test whether all functions are contained, Min: get the
minimum level in partition.

1: for Level i = Levelmax → 0 do
2: for Level j = i → 0 do
3: cij ← si
4: if i �= j then
5: si.Add(sj)
6: end if
7: end for
8: end for
9: Level i = Levelmax

10: for Level j = Levelmax → 0 do
11: p ← cij
12: Find_Partition(p)
13: end for

Level assignment is an effective way to protect data de-
pendency. Normally, reconfigurable architectures stream data
into customised data-paths, eliminating redundant operations
such as instruction fetch and decoding. To maximise stream-
ing operations, nodes are assigned As Late As Possible (ALAP),
and functions at the same level are combined as a segment.
Several basic rules can be set to simplify the partition pro-
cess for reconfigurable systems. (1) The order of segments
in a configuration does not matter. Configuration <1,2> and
configuration <2,1> are implemented using the same hard-
ware. In other words, the partitioner needs only to traverse
nodes in one direction. (2) To protect data dependency, only
segments with consecutive levels are allowed in a configu-
ration. (3) Configurations with overlapping segments can-
not be combined into a partition, as redundant hardware will
be implemented otherwise. Combining process can thus be
accelerated by reducing the search space. The partitioning
algorithm is listed in Algorithm 1 and Algorithm 2, where
segments are combined into configurations, and valid parti-
tions are extracted recursively.

5. ANALYTICAL DESIGN MODEL

Bounded by physical limitations, the analytical model for-
mulates the design space to exploit the maximum config-
uration performance. Model parameters are listed in Ta-
ble 1. The model operations involve analysing applications,
formulating hardware constraints and estimating configura-
tion performance. The streaming concept is introduced to
stream data from memory into customised data-paths, elim-
inating redundant operations. A design kernel refers to a
hardware implementation consisting memory systems and

175

Algorithm 2 Find_Partition(p)

1: Level i = Min(p) -1
2: if Func(p) then
3: Partition.Add(p)
4: Return
5: else
6: for Level j = i → 0 do
7: pij ← p.Add(cij)
8: Find_Partition(pij)
9: end for

10: Return
11: end if

parallel data-paths. Kernels are duplicated vertically along
the memory banks and horizontally with serial connections.
The streaming architecture and data structure are presented
in Figure 4.

S
h

ar
ed

 C
ac

h
e

S
te

n
ci

l
O

p
er

at
or

S
h

ar
ed

 C
ac

h
e

S
te

n
ci

l
O

p
er

at
or

M
em

o
ry

 I
n

fr
a

st
ru

ct
u

re
s

O
ff

−
C

h
ip

 M
em

or
y

B
an

k
s

M
em

o
ry

 I
n

fr
a

st
ru

ct
u

re
s

O
ff

−
C

h
ip

 M
em

or
y

 B
an

k
s

Kernel0Time Step 0 Time Step 1

Fig. 4. Basic hardware architecture and data structure.

Customisation of memory systems involves balancing
computation versus communication (c/c) ratio and maximis-
ing data reuse ratio. As data are streamed into computing
engines, a c/c ratio less than one will stall computation at
the memory side. On the other hand, in terms of resource
utilisation, it is inefficient to push the c/c ratio higher than
one or to implement a memory architecture with low data
reuse ratio. Data structure of stencil computation and the
customised memory architecture are demonstrated in Fig-
ure 5. For a single stencil operator, several slices of the cube
are cached in FPGAs, balancing the c/c ratio at the ideal
level. The data reuse ratio is maximised, as only data no
longer needed will be streamed out. When the stencil oper-
ators are duplicated as shown in Figure 5, the required data
overlap with each other as long as the data being processed
are consecutive on one dimension. The memory architec-
ture can thus be further customised, constructing a shared
cache for parallel data-paths. The number of memory ac-
cess operations provided by the cache scales with data-path
parallelism, without consuming more memory resources.

Arithmetic operations are mapped onto reconfigurable
fabrics as customised data-paths. Given an ideal c/c ratio, a
single data-path can generate one valid result in every clock

Table 1. Model Parameters
Model Variables

α, β blocking ratio in x and y dimensions
B bit-width optimisation ratio
T arithmetic operation transformation ratio
fknl kernel operating frequency
Ob, Ot overhead for blocking and multiple time steps
Pdp, Pknl, Pt data-path, kernel and time dimension parallelism
Bs, Ds, Ls, Fs BRAMs, DSPs, LUTs and FFs usage

Model Coefficients
D, S data size and stencil order
x, y, z x, y, z dimension size
Rc/c computation versus communication ratio
Rs/r standard / Monte-Carlo computation results
Nmp number of Monte-Carlo paths
Nop/c number of arithmetic operations / constant input
Wdp data-path width
Wm memory channel width
BWm memory bandwidth
Bw impacts of B on data-path width
BD/L/F impacts of B on resource usage
T<B/D/L/F,i> resource usage of operation i under ratio T

IL/F infrastructure LUTs / FFs usage
Ai available resources of type i
γ configuration size per unit area
θ reconfiguration interface throughput
φ communication interface throughput

Model Objectives
Ct configuration execution time
Cre reconfiguration time
Cm configuration memory transfer time

cycle. While the throughput of a data-path reaches the theo-
retical upper bound, several optimisation techniques can be
applied to reduce resource consumption.

−1 +5+1 +2 +3 +4−2−3−4−5
+1
+2
+3

−1
−2
−3
−1

−2
−3

4 8
−1
−2
−3

 1
 2
 3

−1
−2
−3

 1
 2
 3

6 10

−1
−2
−3

 1
 2
 3

−1
−2
−3

 1
 2
 3

5 9

(a)

(b)

−4

−3

−8

−7

−6−2

−5−1 117

Data from Memory

Data from Memory

Fig. 5. Memory architectures for (a) a single stencil operator
and (b) parallel stencil operators.

Bit-width optimisation of reconfigurable computing can
be explored by analysing the application precision require-
ments. A Monte-Carlo based method is used. Test vectors
are randomly generated, bound to a specified mantissa size,
and the precision is analysed as in Eq.(1). Representative
cases are simulated iteratively to converge the error value
of current data presentation. For RTM, one thousand paths
are simulated for each data presentation, and the maximum

176

error is bounded to 10−3.

� =

��Nmp

1

�D
1 (Rs −Rr)2

Nmp ·D
(1)

Arithmetic operations can be mapped into either embedded
processors or FFs/LUTs pairs. The arithmetic operations
are divided into addition, general multiplication, and con-
stant multiplication. The computation transformation is au-
tomated in the model to release more limited resources.

Finally, design scalability is investigated to further im-
prove system performance. With the scalable memory ar-
chitecture, data-paths can be easily duplicated without in-
troducing overhead. The data-path parallelism is expressed
as Ndp. At the kernel level, multiple computation engines
can be constructed along the off-chip memory banks. With
isolated local memory systems, the duplicated computing
engines need to process different cube regions. Domain
decomposition is implemented to decompose the cube into
smaller blocks. This technique also effectively reduces mem-
ory requirements. As a consequence, additional data are
streamed into the kernel to provide neighbouring data for
the edge points of decomposed blocks, as shown in Figure 4.
The overhead ratio for domain decomposition is expressed
as:

Ob =

x−2·S
nx−2·S · y−2·S

ny−2·S · nx · ny

x · y
(2)

nx =
x− 2 · S

α
+ 2 · S ny =

y − 2 · S

β
+ 2 · S (3)

In time dimension, the data dependency between different
time steps can be satisfied by connecting kernels serially
[16]. The results from the current time step are fed into op-
erations in the next time step, accomplishing multiple time
steps in one memory pass. Moreover, edge data of decom-
posed blocks wrap in when decomposed blocks are passed
through serial kernels, introducing overhead for serial dupli-
cation.

Ot =

�
1 α · β = 1

nx+(Pt−1)·2·S
nx · ny+(Pt−1)·2·S

ny α · β �= 1
(4)

Off-chip physical constraints at the memory side include
the limited memory bandwidth and the memory access pat-
tern. The maximum throughput of off-chip memories limits
design parallelism along the memory side.

BWm ≥ (Wdp ·Bw · Pdp) · Pknl · fknl (5)

Wm = N · (Wdp ·Bw · Pdp) N ∈ {1, 2, 3...} (6)

Eq.(5) constructs the memory bandwidth upper bound. As
irregular memory access will consume additional resources,
width of data-paths are rounded up to the nearest supported
value. In the meanwhile, off-chip data are accessed in a

burst manner to maximise memory throughput. Eq.(6) en-
sures that accommodated data-paths can be properly inte-
grated into the memory access pattern.

Available on-chip resources limit the number of accom-
modated kernels. Memory resources are consumed by the
customised memory systems and data buffers inserted to
synchronise computation. As shown in Figure 5, increas-
ing Pdp ((a) → (b)) will reduce cache depth along the x-
dimension, thus reducing the buffer size. Moreover, the pre-
cision optimisation will reduce the memory resource con-
sumption, as smaller data (Wdp ·Bw) need to be cached.

1 ≥ Bs =

�Pknl·Pt·Pdp

1 mdp · (S · (2 +Nc) + 1)

AB/ (Wdp ·Bw)
(7)

mdp =
nx+ (Pt − 1) · 2S

Pdp
· (ny + (Pt − 1) · 2S) (8)

Controlled by the transformation ratio T and bit-width opti-
misation ratio B, optimised operators are mapped into DSP
blocks and logic pairs. IL and IT indicate resource con-
sumption of infrastructures such as memory controllers.
Therefore, the resource consumption can be described by:

1 ≥ Ds =

�
Nop,i ·BD · TD,i

AD
(9)

1 ≥ Ls =

�
(Nop,i ·BL · TL,i) + IL

AL
(10)

1 ≥ Fs =

�
(Nop,i ·BF · TF,i) + IF

AF
(11)

Configuration performance includes maximum config-
uration throughput and the corresponding reconfiguration
overhead. With the partitioning algorithm protecting data
dependency, functions in a configuration can either be seri-
ally connected or execute simultaneously. In both scenarios,
all functions can be combined into a single data-path. Exe-
cution time of the configuration can be estimated as:

Ct = Rc/c ·
D ·Ob ·Ot

fknl · Pknl · Pdp · Pt
(12)

The reconfiguration time depends on the size of configura-
tion file and throughput of configuration interface. The con-
figuration file size can be estimated with the area usage. As
data need to be reorganised for different configurations, the
other overhead is the time consumed by memory data trans-
fers.

Cre =
γ ·Max(Bs, Ds, Ls, Fs)

θ
(13)

Cm =
2 ·D ·Wdp · (1 +Nc) ·Bw

φ
(14)

Within a configuration, resource consumption of anal-
ysed functions can be accumulated. When accumulating the

177

Algorithm 3 Partition Scheduling Algorithm.

Variables: vi: nodes, pi: partitions, Cur: current configura-
tion
Functions Conf(vi, pi): find the configuration in partition
pi that vi ∈ ci

1: for pi ∈ Partitions do
2: for vi ∈ Source Nodes do
3: Cur ← Conf(vi, pi)
4: while vi.NextNode �= ∅ do
5: if vi /∈ Cur then
6: Cur ← Conf(vi, pi)
7: Texe += Cur.Cre + Cur.Cm

8: end if
9: Texe += Cur.Ct

10: vi ← vi.NextNode
11: end while
12: pi.T ← Max(Texe)
13: end for
14: Partition ← Min(pi.T)
15: end for

memory bandwidth constraints, if implemented tasks stream
data from other data-paths instead of the off-chip memory,
the overlapped data-path width can be removed from the ac-
cumulation. Subject to the constraints, configuration vari-
ables providing the maximum throughput can be scheduled.

6. PARTITION SCHEDULING ALGORITHM

With the analytical model providing the optimal design for
every configuration, the performance of valid partitions can
be properly estimated. A scheduler is developed to evaluate
all valid partitions. The scheduling algorithm is listed in Al-
gorithm 3. For every valid partition, the scheduler traverses
all node paths, accumulating the execution time Texe. Once
reconfiguration is required, the overhead is combined into
the accumulation. The partition with minimum execution
time is selected as the optimal reconfiguration strategy.

7. RESULTS

Reverse Time Migration (RTM) is an advanced seismic imag-
ing technique to detect terrain images of geological struc-
tures, based on the Earth’s response to injected acoustic waves.
The wave propagation within the tested media is simulated
forward, and calculated backward, forming a closed loop
to correct the velocity model, i.e. the terrain image. The
propagation of injected waves is modelled with the isotropic
acoustic wave equation [14]:

d2p(r, t)

dt2
+ dvv(r)

2
�2 p(r, t) = f(r, t) (15)

The propagation involves stencil computation, as the par-
tial differential equation is approximated with the Taylor ex-
pansion. The kernel algorithm is shown in Algorithm 4.
The propagation types differ from each other in terms of
the propagation order and boundary equations. In our im-
plementation, the propagation is approximated with a fifth-
order Taylor expansion in space, and first-order Taylor ex-
pansion in time. The constant coefficients are calculated us-
ing finite difference methods.

The application structure is listed in Figure 3, with A, B,
and C presenting functions with different stencil computa-
tion, and D indicating image migration. The optimal parti-
tion generated in our approach combines segment 2 as the
first configuration, and segment 1 and segment 0 are inte-
grated into the following configuration. The configurations
are optimised under the analytical model, and mapped by
MaxCompiler version 2012.1 to a Xilinx Virtex-6 SX475T
FPGA hosted by a MAX3424A card from Maxeler Tech-
nologies.

7.1. Model Performance

Figure 6 compares model decisions with implemented re-
sults. Under various design environments, the customised
designs driven by the analytical model take around 90% of
the reconfigurable fabrics. Limited by the memory access
pattern and the scalability overhead, duplicating data-paths
into the leftover resources will reduce system throughput.
Moreover, the model estimations are more than 90% accu-
rate, in terms of resource usage and implementation perfor-
mance. In other words, with the analytical model taking
care of application and circuit details, the applications are
running with almost the theoretical performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
0

S

C
0

M

C
0

L

C
1

S

C
1

M

C
1

L

 0

 20

 40

 60

 80

 100

n
o

rm
a

lis
e

d
 r

e
so

u
rc

e
 u

sa
g

e

c
o

n
fig

u
ra

tio
n

 e
xe

cu
tio

n
 t

im
e

 (
s)

Estimated DSPs
Measured DSPs

Estimated BRAMs
Measured BRAMs

Estimated LUTs

Measured LUTs
Estimated FFs
Measured FFs

Estimated Execution Time
Measured Execution Time

Fig. 6. Model estimations and measured results. C0S in-
dicates Configuration 0/1, with Small/Medium/Large data
set.

178

Algorithm 4 Stencil Kernel Algorithm.

1: for t = 0 ← nt-1 do
2: for x = 0 ← nx-1 do
3: for y = 0 ← ny-1 do
4: for z = 0 ← nz-1 do
5: p(t,x,y,z) =dvv *(
6: c0 * p(t,x,y,z) +
7: c11* (p(t,x-1,y,z) + p(t,x+1,y,z)) + c12*(p(t,x-2,y,z) + p(t,x+2,y,z))...+c15*(p(t,x-5,y,z) + p(t,x+5,y,z))
8: c21* (p(t,x,y-1,z) + p(t,x,y+1,z)) + c22*(p(t,x,y-2,z) + p(t,x,y+2,z))...+c25*(p(t,x,y-5,z) + p(t,x,y+5,z))
9: c31* (p(t,x,y,z-1) + p(t,x,y,z+1)) + c32*(p(t,x,y,z-2) + p(t,x,y,z+2))...+c35*(p(t,x,y,z-5) + p(t,x,y,z+5))

10: d0 * p(t,x,y,z) + d1 * p(t-1,x,y,z-1) + f(t,x,y,z);
11: end for
12: end for
13: end for
14: end for

Table 2. Implementation results, the missing details in [10, 11, 12, 14] are labelled as n/a.
CPU1 GPU2 FPGA (static) FPGA (optimal)

data size3 s m l
[10] [11] [12]

[14]
s m l s m l

execution time (t) 181.7 1458.2 5574.8 3.6 18.0 147.9 2.9 13.4 110.59

overhead time (t)4 0.03 0.01 0 06 0.14 0.58 3.88 0.22 0.82 5.8

throughput (GFlop/s)5 1.8 0.9 1.8 36 51.2 64.5 35.87 70.6 68.0 66.8 102.8 91.6 91.6

speed-up 1x 1x 1x n/a n/a 39.2x 76.4x 37.11x 57.1x 102.9x 50.9x

power (W)6 182 185 183 461 n/a n/a n/a 128 129 124 131 128 127

energy (103J)5 33 269 1020 n/a n/a 0.5 2.3 18.3 0.4 1.7 14.6

efficiency ((MFlop/s)/W) 9.8 4.9 9.8 76.5 n/a n/a n/a 551.4 527.1 538.9 785.0 715.6 721.3

efficiency gains 1x 1x 1x n/a n/a 56.7x 108.4x 55.4x 80.8x 145.1x 71.4x
1 CPU designs are running on a four-core Intel i7-870 under the OpenMP platform.
2 GPU numbers come from best case in published work, running on NVIDIA GTX280 [10], Tesla C1060 [11], and Tesla C2050 [12], respectively.
3 Three datasets are applied to the RTM application, s: 128*128*128, m: 128*256*256, l: 256*512*512
4 Reconfiguration time, memory transfer time, and computation set-up time are referred to as the overhead time
5 All overhead time is included into the throughput computation.
6 Power consumption includes static system power, as well as dynamic system power introduced by enabling computation.
7 The number is calculated based on algorithm and execution details in [14]. Without available information, overhead here is assumed to be 0.

7.2. Optimal Reconfiguration Solution

Implementation results of the optimal reconfiguration
strategies and reference designs are listed in Table 2. Static
power consumption and reconfiguration overhead are
included into the result calculation. Implementation results
are compared with reference designs with the same data set.
The best numbers from relevant work are compared with
our maximum performance, to provide a fair comparison.
While the experiment results are based on single-FPGA im-
plementations and three data sets, the proposed approach is
applicable to larger platforms and arbitrary problem size. As
estimated by the model, distributing the RTM application
into multiple FPGAs will bring almost linear improvements
compared with the single-FPGA implementations, reaching
3.34 times speedup for a MAXNode with 4 FPGAs. With
the scalable memory system and the proposed approach, any
industrial data sets can be mapped onto FPGAs with execu-
tion time linearly proportional to the data size.

Bounded by the sparse memory access pattern, the mea-
sured CPU throughput depends on application data size and
decisions of the compiler, generating an uneven performance
as data size scales up. The m data set generates the worst
performance as data are neither small enough to be cached
nor large enough to be properly blocked. The reconfigurable
designs driven by our analytical model adapt themselves to
stay at high throughput levels, and achieve up to 102.9 times
speedup and up to 145 times more energy efficiency.

GPUs have been seen as another strong candidate for
high performance computing. Implementation results from
relevant papers are introduced [10, 11, 12]. Our optimal de-
sign outperforms the published GPU throughput by 1.59 to
2.54 times, and provides 10.2 times more energy efficiency.
It is also worth mentioning that, besides stencil computa-
tion, the RTM algorithm requires additional computation
and communication operations, such as processing bound-
ary conditions and accessing terrain parameters, while the
GPU implementations focus on pure stencil computation.

179

The FPGA implementation in [13] is limited to 2D sten-
cil computation where data are small enough to be cached
without domain decomposition. The memory system pro-
posed in [14] is specific to stencil computation with the form
of 2n · (2n+ 1) · 2n, and resource consumption scales with
data-path parallelism. Additionally, the throughput numbers
(28GFlop/s [13]) and 35GFlop/s [14]) are far from the opti-
mal level. The concept of multiple time steps is introduced
in [15] to eliminate memory bottleneck. Without algorithm
details, throughput values of the implementations and es-
timations in [15] are not available. A configuration con-
taining all application functions is referred to as the static
design. With Virtex-6 FPGAs, if previous partitioning al-
gorithms [7, 8, 9] are applied, the static design would be
the final configuration, as it achieves maximum task-level
parallelism and minimises the communication overhead. As
listed in Table 2, the optimal partition is up to 1.45 times
faster, and 1.42 times more energy efficient, than the static
designs.

8. CONCLUSION

In this paper, we present an automatic approach to exploit
run-time potential of applications, with an analytical model
targeting stencil computation. Experimental results show
promising improvements in system throughput and energy
efficiency, compared with various reference designs and rel-
evant work. Future work includes expanding the analytical
model into other fields, and investigating partial run-time
reconfiguration. Since partial reconfiguration is capable of
tuning and replacing specific circuits on the fly, possible im-
provements include further optimised arithmetic operators
and reduced reconfiguration overhead.

9. ACKNOWLEDGEMENT

This work was supported in part by UK EPSRC, by the Eu-
ropean Union Seventh Framework Programme under Grant
agreement number 248976, 257906 and 287804, by the
HiPEAC NoE, by Maxeler University Program, and by Xil-
inx.

10. REFERENCES

[1] W. Luk, N. Shirazi, S. Guo, and P. Cheung, “Pipeline
morphing and virtual pipelines,” in Proc. FPL, 1997.

[2] L. Singhal and E. Bozorgzadeh, “Multi-layer floor-
planning on a sequence of reconfigurable designs,” in
Proc. FPL, 2006.

[3] Y. Iskander et al., “Using partial reconfiguration and
high-level models to accelerate FPGA design valida-
tion,” in Proc. FPT, 2010.

[4] K. Bruneel, F. Abouelella, and D. Stroobandt, “Auto-
matically mapping applications to a self-reconfiguring
platform,” in Proc. DATE, 2009.

[5] F. Nava et al., “Applying dynamic reconfiguration in
the mobile robotics domain: A case study on com-
puter vision algorithms,” ACM Trans. on Reconfig-
urable Technology and Systems, vol. 4, no. 29, 2010.

[6] D. Koch and J. Torresen, “FPGASort: A high per-
formance sorting architecture exploiting run-time re-
configuration on FPGAs for large problem sorting,” in
Proc. FPGA, 2011.

[7] K. G. Purna and D. Bhatia, “Temporal partitioning and
scheduling data flow graphs for reconfigurable com-
puters,” IEEE Trans. on Computers, vol. 48, pp. 579–
590, 1999.

[8] M. Kaul and R. Vemuri, “Optimal temporal partition-
ing and synthesis for reconfigurable architectures,” in
Proc. DATE, 1998.

[9] R. D. Hudson, D. Lehn, J. Hess, J. Atwell, D. Moye,
K. Shiring, and P. Athanas, “Spatio-temporal partition-
ing of computational structures onto configurable com-
puting machines,” in Proc. SPIE, 1998.

[10] K. Datta et al., “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architec-
tures,” in Proc. Supercomputing, 2008.

[11] E. Phillips and M. Fatica, “Implementing the himeno
benchmark with CUDA on GPU clusters,” in Proc.
IPDPS, 2010.

[12] Y. Yang, H. Cui, X. Feng, and J. Xue, “A hybrid circu-
lar queue method for iterative stencil computations on
GPUs,” Journal of Computer Science and Technology,
vol. 27, pp. 57–74, 2012.

[13] K. Sano et al., “Scalable streaming-array of simple
soft-processors for stencil computations with constant
memory-bandwidth,” in Proc. FCCM, 2011.

[14] M. Araya-Polo et al., “Assessing accelerator-based
HPC reverse time migration,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, pp. 147–
162, Jan. 2011.

[15] H. Fu and R. G. Clapp, “Eliminating the memory bot-
tleneck: an fpga-based solution for 3d reverse time mi-
gration,” in Proc. FPGA, 2011.

[16] H. Fu et al., “Accelerating 3d convolution using
streaming architectures on FPGAs,” in Proc. SEG,
2009.

180

