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ABSTRACT

Bayesian Optimisation (BO) is a data-efficient, global black-box optimisation method
optimising an expensive-to-evaluate fitness function; BO uses Gaussian Processes (GPs) to
describe a posterior distribution over fitness functions from available experiments. Similar to
experimental design, an acquisition function is applied to the GP posterior distribution over
fitness functions to suggest the next (optimal) experiment. Dynamic models of biological
processes allow us to test biological hypotheses without running costly real-world
experiments. But model construction requires estimating biological parameters (e.g. reaction
rate kinetics) from costly experiments. BO efficiently estimates the parameters and thereby
reduces the number of model simulations. We focus on parameter estimation for a dynamic
model of microalgae metabolism [1]. In biological parameter estimation, Bayesian
Optimisation (BO) is challenging because the parameters interact nonlinearly and the broad
parameter bounds result in a huge search space. Due to the high problem dimensionality (in
this context, 10 parameters), balancing exploration versus exploitation becomes more
intricate and traditional Bayesian methods do not scale well. Therefore, we introduce a new
Dimension Scheduling Algorithm (DSA) to deal with high dimensional models. The DSA
optimises the fitness function only along a limited set of dimensions at each iteration. In
each iteration, a random set of dimensions is selected to be optimised. This reduces the
necessary computation time, and allows the dimension scheduling method to find good
solutions faster than the traditional method. The increased computational speed stems from
the reduced number of data points per each GP and the reduced input dimensions in the
GP; GPs scale linearly in the number of dimensions but cubically in the number data points.
Additionally, considering a limited number of dimensions at each node allows us to easily

parallelise the algorithm.

Compared to commercial parameter estimation for biological models and a traditional
Bayesian Optimisation algorithm, our approach achieves strong performance in significantly
fewer experiments and a reduced computation time. We also design and provide a graphical
user interface (GUI), which allows untrained users to optimise any model that can be
invoked through a command line. The GUI is built on top of a modular Bayesian
Optimisation library, pybo [2], which includes most common acquisition functions and
kernels. The framework removes the barrier of programming language by providing the user
with a straightforward user interface to set BO parameters, observe the optimisation as the

code runs, and examine the GP after the experiment has been completed.
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1 INTRODUCTION

1.1 MOTIVATION AND OBJECTIVE

Bayesian Optimisation (BO) is a data-efficient, global black-box optimisation method
optimising an expensive-to-evaluate fitness function; BO tries to minimize number of queries
made to the objective function by balancing exploration and exploration over a surrogate
function with a utility function [3]. As a result, the technique is commonly applied over the
black-box function associated with high cost, computationally or/and physically. In our case,
we diverge from the traditional use of BO and address the problem of computation time with
many function observations at high dimensions. We will explore the problems faced with
scaling BO in the third chapter, and present our solution to address the problem in the

fourth chapter.

The technique has been applied to optimize neural network structures [4], control wind
turbine’s parameters to maximize the energy output [5] and material design[6]. We scope our
problem over dynamic models of microalgae metabolism [1]. The goal is not only to find the
maximum or minimum of a given model, but also reveal underlying features of the biological
models, which could be extrapolated to other biological models or used to evaluate the given

models.

1.2 CONTRIBUTION

We introduce a new Dimension Scheduling Algorithm (DSA) to deal with high
dimensional models. The DSA optimises the fitness function only along a limited set of
dimensions at each iteration. In each iteration, a random set of dimensions is selected to be
optimised. This reduces the necessary computation time, and allows the dimension
scheduling method to find good solutions faster than the traditional method. The increased
computational speed stems from the reduced number of data points per each GP and the
reduced input dimensions in the GP; GPs scale linearly in the number of dimensions but
cubically in the number data points. Additionally, considering a limited number of
dimensions at each node allows us to easily parallelise the algorithm. Compared to
commercial parameter estimation for biological models and a traditional Bayesian
Optimisation algorithm, our approach achieves strong performance in significantly fewer
experiments and a reduced computation time. We also design and provide a graphical user
interface (GUI), which allows untrained users to optimise any model that can be invoked
through a command line. The GUI is built on top of a modular Bayesian Optimisation
library, pybo [2], which includes most common acquisition functions and kernels. The
framework removes the barrier of programming language by providing the user with a
straightforward user interface to set BO parameters, observe the optimisation as the code

runs, and examine the GP after the experiment has been completed.
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1.3 REPORT OUTLINE

Here is the outline of the project:

In Chapter 2 we provide brief overview of the biological model used in our
work. We give provide an introduction into Bayesian Optimization, and
identify all the main components of the technique. Followed by an analysis of
latest Bayesian Optimization techniques and current challenges of the method.
In Chapter 3 we outline all the experiments carried out, with outcomes of each
experiment and further analysis of the results. The chapter includes sections on
effects of normalization on the performance of the Bayesian Optimization
library, with detailed analysis of the call stack to identify the bottleneck of the
technique.

In Chapter 4 we introduce the Bayesian Optimization with Dimension
Scheduling Algorithm. We provide the pseudo-code of the algorithm, with
experimental results of the algorithm on the models described in the second
chapter. We discuss the limitations of the algorithm, follow with possible
improvements of the algorithm.

In Chapter 5, we cover the development cycle of the Bayesian Optimization
Framework. We discuss the initial analysis of the problem area, followed with
design, implementation and testing of the Framework.

In Chapter 6, we summarize our work completed with a future outlook.



2 BACKGROUND AND RELATED WORK

We start by looking at specifics of the biological models, which we will be using
throughout this work. We introduce Bayesian Optimization, and the related researched
completed in the field to deal with problems faced with the traditional Bayesian

Optimization methods.

2.1 ALGAE MODEL

The thesis studies the applications of Bayesian Optimization methods on dynamic
models of biological processes. Models of biological processes allow us to test hypotheses
about the biological system without running costly real-world experiments. However,
training the models requires to find parameters that explain behaviours of the true biological
process, thus, requiring to conduct costly experiments at training time. To minimize the
number of experiments, we use Bayesian optimization as a tool for data-efficient global

black-box optimization.

10
A f(x) Y

Figure 2.1.1: 10 dimensional black box function with an output of y

We focus on parameter estimation for a dynamic

models of microalgae metabolism [1]; the forcing Bounds of the Models
function is based on light exposure and nitrate input o0 e -
and experimental data which includes data collected o

10.1]

for measurable outputs including: lipids, [0.,100.]
carbohydrates, carbon organic biomass, nitrogen [0.,10000.

organic biomass and chlorophyll [1]. The two models
simulate Algae yield, with 10 input parameters with .
varied bounds; the bounds are shown on the right, M1 MI1SN
Figure 2.1.2; and diagram of the black-box function is

shown on top, Figure 2.1.1. The objective of the Figure 2.1.2 Bounds of the models

optimization is to minimize the objective value.

The dynamic models provided can be evaluated relatively quickly, but the size of the
bounds and number of dimensions creates an enormous search area making random sampling
methods futile. Commercial optimization software, gPROMS, have achieved lowest objective

value of 22.45 after ~24hours of computational time. To achieve the objective value,



gPROMS requires an initial starting point, which does not guarantee an optimal result. The
software may or may not provide with a result, nor does it report points of explorations. In
other words, the only data the user receives back from the software is the best point

achieved.

2.2 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a global black-box optimization technique and our

objective is to find

x* = argmax f(X)

d
X € B, whereB Is the feasible set B c R

The problem of minimization is addressed by transforming the function,

x* = argmax g(Xx)
9&x) =—f(x)

d
X € B, whereB Is the feasible set B c R

We also assume f(x) is Lipschitz-continuous, i.e. there exists some constant C,

usually unknown, such that for all x;,x, € B

If (x1) = I < Cllxg = %2l

The black-box function does not yield us any information on convexity of the
problem or the gradient at any given point. We are limited only to querying the function at
point X and receiving an output y. We bound our problem with a hyperrectangle with d

dimensions specified by the feasible set B.

The idea behind BO is to use the prior and the evidence collected from the observed
points to maximize over the posterior to decide next point of evaluation; with each new step
getting us closer to the global optimum of the objective function; thus reducing the total
number of function queries required to achieve the optimal result. The general algorithm can

be formulated the following way:

Algorithm 1: General Bayesian Optimization

Sample the function n times, and update the GP with the sampled data
while termination condition is not met do:
Find x4, = argmax a(x,41, GP,)

Update the GP with (X,41,Vn+1)

1
2
3
4:  Sample the objective function yn41 = f(Xns1) + Ens1
5
6 Increment n by 1




The first step is to generate a sample data to be able to calculate the posterior of the
Gaussian Process (GP), alternately, we can bootstrap the GP with pre-generated data. We
use GPs as a surrogate function, which we maximize with a utility function a(e). In
literature the utility function is often referred as the acquisition function or the policy or
infill function; we interchangeably use the terms acquisition function and policy to refer to
the utility function in BO. Common acquisition functions are covered in the section 2.2.2,
and GPs are discussed in the section 2.2.1. The objective function is evaluated with the next
point of evaluation derived by maximizing the acquisition function. If our objective function
is noisy, we assume the noise is Gaussian where &,,1~N(0,02,;5.) - In our case, the dynamic
biological models are noise-free. We update our GP with the new observation, and repeat the
cycle till we meet the termination condition. The termination condition is arbitrary, more
commonly the termination condition “while n < t” is used, where t is the total number of

function observations we want and n is the current number of observations.

Alternative approaches to global optimizations have been studied before, but the
methods require large amount of observations to achieve the optimal result [3]. The
alternatives include: interval optimization, branch and bound methods, stochastic
approximations and reinforcement learning [7]. In a scenario with a costly function
evaluations, we may not be able to afford to sample the function as many times required by
these alternative methods [8]. Even though we are working with a relatively cheap function
evaluations, we are interested in applying BO to achieve optimal results as efficiently as

possible.

2.2.1 GAUSSIAN PROCESS

The Gaussian Process (GP) form the important component of the BO, as previously
mentioned we use GPs as a surrogate function in our BO algorithm. GPs are an extension of
the multivariate Gaussian distribution, with an infinite dimension stochastic process for
which any finite combination of dimensions will be a Gaussian distribution [3]. The
marginalization property of the Gaussian distribution allows us to compute marginal and
conditional probabilities in a closed form. A GP is fully defined by its mean and covariance

functions:
f(x)~GP(m(x) k(x.x"))

The surrogate function is a probabilistic model of the function, where for any given x
point, the GP returns the mean and variance of a normal distribution over the probable
values of f( ) at x. The mean of the GP is commonly set to zero where m(x) = 0.
Alternatively, the mean function can be specified from the initial sampled data from the

function space.



Kernels

The kernels of a GP incorporate smoothness assumptions made of the black
function. The common kernels used in BO with GPs are the Matérn family kernels
[9][10] and Squared Exponential kernel. The SE kernel is infinitely differentiable,
therefore it makes the most naive and smoothest assumptions of the underlying
function. The Matérn kernels contains a smoothness parameters, which determines
the differentiability assumptions of the function. The mathematic definition of the

kernels is presented below.

Squared Exponential Kernel: k(x;, x;) = exp(—% ||xl- — xj||2)

Matérn Kernel: k(xl-,xj) = zc—llr(q) 2Ve||x; — xj”c )H ( 2/¢||x; — xj”C)

where T'(+) and H¢(+) are the Gamma function and
the Bessel function of order ¢, and ¢ is the

smoothness parameter [3]

Alternative kernels have been developed, and some for specific use cases, such

as incorporating cost function into the kernel [4].

posterior

Figure 2.2.1 An example of GP with four data points. The shaded blue area represents the possible objective
values at point .

The diagram above provides an intuitive overview of the Gaussian Processes. The
diagram shows the true function with a dotted line, and the mean of the GP with a solid
blue line. The edges of the shaded area are the p minus or plus the o. For example, at a
point indicated by a red line, we expect an objective value higher than our current best

known value.



posterior

Figure 2.2.2 An example of GP with five data points. The shaded blue area represents the possible objective
values at point x.

Upon evaluation of the point, we update our posterior to reflect our latest knowledge
about the underlying true function. The red lines in the two diagrams are showing the next

point of evaluation generated by the Expected Improvement policy specified below.

2.2.2 ACQUISITION FUNCTIONS

The acquisition functions are used to determine next point of evaluation based from
the posterior of the GP. Therefore, each acquisition function uses the mean (i) and variance
(o) derived from the GP. The three most common acquisition functions are the Probability
Improvement, Expected Improvement and Upper Confidence Bound. The formulas for each

acquisition function are presented below [3].
Probability Improvement:

PI(x)

P(f(x) = f(x+) +¢)
® (u(x)—f(x+)—£)

o(x)
where ®(+) is the normal cumulative distribution function,
x+ =argmaxx; € xq. f(x;)
and ¢ is the trade-off parameter

Expected Improvement:

W) —fx+H) -2 +a()¢p(2) if a(x) >0
0

EI(x){ ifo(x)=0



ROO)—fxH)—¢ .
————ifa(x)>0
Where Z = o(x) fo@)
0 ifo(x) =0
where @(+) and ®(-) denote the PDF and CDF of the standard

normal distribution respectively

Upper Confidence Bound
UCB(x) = u(x) + Bo(x)
Where 3 is the exploration vs exploitation parameter
Each acquisition function contains an exploration vs exploitation parameters. The
parameter can be scheduled according to the current iteration or other arbitrary rules. There

does not exist a specific rule of thumb with regards the choice of the acquisition function.

Like the kernels, acquisition functions can be tailored to the problem area [11].

posterior

UuCB
El
PI

Figure 2.2.3 Next point of evaluation generated via different policies

The diagram above illustrates how the different polices pick a different point of
evaluation depending the on posterior. In red it the UCB, which is sampling along the
highest variance area of the GP, similarly the EI in green, is sampling on the opposite side of
the curve. On other hand the PI policy, in cyan colour, is sampling closer to known point,

where the variance is lower.

2.3 PYBO

The primary tool used throughout the thesis a Python 2.7 based modular Bayesian

optimization library pybo [2]. Pybo contains all the kernels and the policies outlined in the
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previous section. Furthermore, the modular structure of the library allows for addition of
custom components or modification of the Bayesian optimization algorithm without

requiring changes in other components.

The default policies present in pybo, contain an exploration parameters and for the PI
and EI policies and the hyper-parameters are integrated out. In UCB policy the exploration
parameter is scheduled based on the current iteration value and the total iterations set for
the algorithm. In addition to the policies from the section 2.2.2, we also have a choice of
Thompson sampling policy. The Thompson policy uses a finite approximation to the kernel

matrix with Fourier components [2].

In addition to the choice of kernels and policies, the library contains two different
solvers for the acquisition functions. The two solvers are DIRECT solver and LBFGS solver,

details of the solvers in covered in the Sections 3.2.

2.4 RELATED WORK

Increased usage of computational models, and machine learning in general has sparked
the interest in Bayesian Optimization techniques. BO and different variants of the algorithm
have been applied to robotics [12], adjust wind turbine parameters for maximum yield [5].
However, there have not been development in application of BO to dynamic models of
biological processes. Traditionally, BO has been applied to functions with an expensive

evaluation costs, which is not necessarily the case with our models.

In all applications, there is a common theme. The BO methods perform excellently
when the number of dimensions is not high. The BO methods do not scale well, and there

have been two interesting approaches tackling the problem of dimensionality.

The most recent development is the Additive BO method (ABO)[11]. ABO makes an

assumption of the underlying black-box function. The function is additive, as shown below:
f) = 1D+ 2 +
M)

Under the additive function assumption the method divides the dimensions space into

independent decompositions of dimensions where:

x*nx/ =9
where x’ € X/ =[0,1]d/
are lowerdimensional components.

As a result, each dimension decomposition can be optimized separately. The overall
benefit of the method is faster converges to an (near-) optimal objective value in less

iteration compared to the traditional BO method and other variants of BO.



3 EXPERIMENTS

Throughout the work number of experiments were carried out to explore how Bayesian
Optimization techniques perform on the provided Algae models (M1 and M1SN). Each
experiment was carried out to observe different aspects of Bayesian Optimization. The
following section explores effects of different kernels, policies, and normalization of the input,

and dimension fixation.

3.1 INITIAL EXPERIMENTS

The first set of experiments performed aimed to observe: how normalization aids the
performance of the Bayesian Optimization library; how policies effect the output of the
functions; how kernels effect the output of the functions; combination of which kernels and
policies provides us with lowest objective value?

For the experiment total of 4 models were tested. The models consisted of the Algae
models from Chapter 2.1, M1 and M1SN, and versions of the same models with normalized
input values, MIN and M1SNN respectively. The normalized models’ bounds are scaled
down between 0 and 1 for all 10 dimensions of the models. Normalization is a common
technique to bring all the values under a common scale, for easier comparison of the
parameter values.

The Bayesian Optimization parameters used for the experiment included; all the
common kernels, 3 variants of the Matérn kernels and Squared Exponential kernel; and
Expected Improvement (EI), Probability Improvement (PI), Thompson and Upper
Confidence Bound (UCB) polices. Each run of the experiment tested a combination of a
policy and a kernel for 100 iteration, with 30 random Sobol samples for initialization and
LFBSG solver. The importance of the solver is discussed in the next section.

Each experiment recorded the objective value achieved at each iteration and the time
(in seconds) between each iteration of the BO. Based on the output, we calculate the
average objective value, median objective value and average computation time per iteration.
Total of 64 experiments were carried out, and only a subset of the results is presented on the
next page, Table 3.1.1 and Table 3.1.2, and in the Appendix A2 the full data summary table
is presented. The experiment with the kernel Matérn 5 and Thompson policy on the M1N
was prematurely terminated due to computation instability of the calculation. The
covariance matrix calculated by from the data resulted in non-positive definite matrix
resulting in a failure of Chomsky Decomposition. The issue could be fixed by increasing the

noise parameter for the GP, but for consistency purpose were kept same for all experiments.
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Results:

Total of 64 experiments runs were carried out, a subset of experiment results are

presented in the tables below. The results of all 64 experiments can be found in the

Appendix.

Table Keys:

A.R. = Average Result A.T. = Average Iteration Time
B.R. = Best Objective Value Result T. = Time per Iteration Bar Graph

M.R. = Median Result

FExpected Improvement

MATERN1 MATERNS
LYl MI1N M1SN MI1SNN M1 MIN M1SN MI1SNN
AR. 277110.7

B.R. 201.537197  264.816842  98.08365  81.67155  171.243597  168.042621  63.50432  54.83634

M.R. 575324688 6170110.22 303.0726 164.9722 9175492.33 596738036 5717213  627.2734

A.T. 5.70040353  3.10867061  5.865699 = 2.556584  14.6504596 3.0706828 5.107278 = 2.863471

T.
Figure 3.1.1 Experiments with EI policy

Probability Improvement

MATERNS Squared Fxponential

AR. 3709609 298175.9  212514.1 8562599 1605591 203151.2

B.R. 163.187297  73.05804  57.56085 132.6882  71.41848 4827869  81.67155
M.R. 917549233 10591.88  566.7448 2319529 1152323  485.5674 -

A.T. 20.3816455 2.813308 4.576696 = 2.833679 13.48185 2.527455 6.475325

T.
Figure 3.1.2 Experiments with PI policy

The tables are colour coded, the green colour indicates good results relative to all
other experiments, and red colour indicates the opposite. The best hyperparameter
combination in terms of the objective value was the Matérn 5 kernel with Probability
Improvement policy on MISNN model. Each experiment ran for only 100 iterations,
therefore the objective value is not reflective of the performance in the long run. At the same
time, running 1000 iterations with all possible combinations is a computationally expensive
and a time consuming process. Therefore, best performing hyper parameters are tested in the

long run, and explored in the further section of this Chapter.
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The significant finding in this set of experiments was the effects of the input
normalization. A common pattern can be spotted by viewing the time per iteration graphs
below the tables. The pattern is consistent, not only in the subset presented, but across all of
the experiments. Experiments with normalized models on average required less to complete
an iteration, and the growth of the iteration times is slower. The effects are more
pronounced with the M1 model versus the M1N model. M1 model is significantly slower on
average per iteration time, and each subsequent iteration increases in the computation time.
The table below, presents an average of iteration times for across all experiments for all four
models. The M1 model, on average is 6.25x times slower than a normalized variant.
Similarly, the M1SN model is on average 1.96x times slower than a normalized variant. The

effects of the normalization are explored in detail in the next section.

Average and Variance of the A.T. for all Fxperiments

2.866584 5.144304 3.323937
0.162416  3.770371 1.921226

Average
Variance

The time per iteration is bound to grow as we add observations to the Gaussian
Process. The calculation of the posterior is a 0(n®) computation [13], where n is number of
observations. Therefore, the computation time per iteration increases regardless of the
bounds of the model. In our case, the number of iterations is not high enough to reflect the
consequences of the 0(n®) computation on the normalized models. The performance
degradation of the original models and detailed breakdown of the computation cost is

presented in the next two experiment.
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3.2 EFFECTS OF THE INPUT NORMALIZATION

The initial experiments revealed significant reduced computational time per iteration of
the Bayesian Optimization when the models’ inputs were normalized between 0 and 1.
Further experiments were carried out to pin-point the cause of the performance differences
between the normalized and original models, and performance comparison of two different
solvers. The pybo library contains Direct solver and LBFGS solver. The same models from
the previous section was used to perform the experiments: M1, M1SN, M1N, and M1SNN
models. The policy and kernel were fixed to the Squared Exponential kernel and Expected
Improvement policy. To ensure fairness of the experiments, all experiments used the same
initial data. As a result, the only different variables in the experiments were the solvers and
the models and normalization of the inputs.

To locate the cause of the performance differences, each run was profiled with cProfile
[14] module from Python 2.7. The module records number of method calls made, and
computational duration of each call. Total of 8 experiments were in each run, 4 with Direct
solver and another 4 with the LBFGS solver. Total of were 6 runs were performed, and

averaged results of the experiments are presented below.

Completion Times Number of Calls by the Solvers
2500 250000

2000 ‘} 200000 —I—

150000 E3

SECONDS
a
o
o

17!
=
O 100000

T T

MISN MISNN MISN MISNN M1 MIN

—
o
o
o

MODELS ELBFGS  EDIRECT MODELS
Figure 3.2.1 Total time (in seconds) passed for Figure 3.2.2 Total number of calls made by each
each run with different models and solvers with experiment with different models and solvers with
Standard Error bars Standard Error bars

Note: The profiling module has a significant overhead, therefore these times are not

representative of the actual performance times of the algorithm without the profiler.

The data from the profiling makes it clear, the gains in normalization are evident only when the
LBFGS solver is used. The computation time for the LBFGS solver with the M1N model is on
average 2.9x times shorter compared to the M1 model; similarly the M1SNN model is 2.60x times
faster than the M1SN model with the LBFGS solver. The Bayesian Optimization library performs
more calls with the LBFGS solver, thus increasing the total computation time. To narrow down the

cause of the increased calls and times the profiling data was processed with a modified visualization
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library SnakeViz [15]. The visual graphics generated by SnakeViz are presented in the Figure 3.2.3 for
LBFGS solver and Figure 3.2.4 for the Direct Solver.

SnakeViz Icicle Graphs:

solve lbfgs :93.42% | 2476.4s __cal
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Figure 3.2.3 Icicle Graph of the Bayesian Optimization with the LBFGS solver and the M1 model
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Figure 8.2.4 Icicle Graph of the Bayesian Optimization with the LBFGS solver and the MIN model
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Figure 3.2.5 Icicle Graph of the Bayesian Optimization with the Direct solver and the M1 model
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Figure 3.2.6 Icicle Graph of the Bayesian Optimization with the Direct solver and the M1N model

The figures generated by SnazeViz present the call structure of the code, percentage of the
computation time consumed by the call and the total time accumulated by the call. The call stack for
the two solvers differ, since both of the solvers call to different external libraries. Nlopt library for the

Direct solver and scipy for the LBFGS solver.
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Direct Solver

Direct solver is based on the DIviding RECTangles algorithm for global optimization, which
is a deterministic and a systematic algorithm. The algorithm works by dividing the search domain
into smaller and smaller hyperrectangles. As a result the performance of the algorithm is predictable,
and consistent [16]. The figures 3.2.1 and 3.2.2 in addition to the averages of the results show the
standard error of the data. The Direct solver provides more consistent result with smaller standard
error compared to the LBFGS solver. The performance is 1%-2% slower under normalized models; the

slow down partly stems from the scaling up and down the input between the models.

LBEGS Solver

LBFGS is part of a quasi-Newton family of algorithms, by bringing all the bounds
between 0 and 1, we are not only scaling down the bounds, but also bringing them to the
same magnitude, and leading the performance difference we observe in Figures 3.2.1 and
3.2.2 between the normalized and original models [17]. Unlike the Direct solver the algorithm
is not systematic, but it is deterministic. The first step of the algorithm is finding the
random initial points from which onwards it applies the rest of the algorithm. As a result,
the performance of the algorithm is not as consistent as the Direct solver. The standard error
bars are significantly larger with the LBFGS solver. Although, the solver may perform faster

on a normalized model than a Direct solver, but this is not always the case.

16



3.3 LONG RUN TESTS

The previous experiments were performed for short runs, to get the basic idea of how
different components of Bayesian Optimization effect each other. In the experiments
performed in the section 3.1, the best performing set of hyper parameters was the Matérn 5
kernel with the Probability Improvement policy for the M1ISNN model. The experiment was
set, up for only 100 iterations, and the best objective value achieved was not satisfactory. At
10 dimensions, the GP does not have enough data to be able to accurately predict the result.
The more dimensions we have, the more data is required for the GP to provide meaningful
mean and variance over a given data set. Therefore, the same set of hyper parameters were
utilized for the long run experiment.

The experiment was set up on a remote server, and ran for total of 9 days, 1 hour and
43 minutes. Total of 2057 iterations were completed and each iteration recorded the
objective value, input parameters and the time between iterations. Unfortunately, the
variance of the prediction prior evaluation was not recorded. A reduction the variance would
provide a progress indication of the accuracy of the GP.

The results of the experiment is presented in the graphs on the next page, Figures 3.3.1-
3.3.3. The long run experiment has shown the performance degradation, from real world
data, of the GP as the number of observations increases. In the experiment from section 3.4,
we have covered the call stack solver and number of calls performed by the solver to the GP.
The calculation of the posterior of GP is one of the major computational costs, with a
computational complexity of O(n3). On the figure 3.3.1, the graph shows the number of
seconds between each iteration and a n® trendline. The experimental data closely matches
with the trendline with exception of few outliers. As number of data points increase in the
GP, the longer each iteration takes to be completed. At the same time, this exposes the
weakness of the GP with large data set. The iteration time after 2000 iteration is over 1000
seconds per iteration, in the same amount time we can randomly sample our biological
processes dynamic model over 300 times. As a result, even though in BO we have a
guarantee of convergence to an optimal point given enough time and observations. Due to
the computation cost of the posterior calculation, there exists a fine line between the
computation time per iteration and the computation time of the objective function where we
have to decide if it is desirable to use BO when the objective function computation time is
fraction of the iteration time.

In terms of the objective value achieved, the best objective value is near optimal. The
optimal result being 22.45 and best achieved objective value being 27.24 on 1157 iteration.
The BO was unable to improve the objective value further for next 900 iterations. The
overall cost in terms of the computation time is too high to consider such use cases viable,
especially for models with higher dimensionality. Since with increase in dimensions, the GP

would require more observation points to produce reliable predictions.
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Long Run Experiment Results
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Figure 8.3.1 Long run experiment: iteration time in seconds with a fitted n® trendline
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3.4 DIMENSION FIXATION, DIMENSION DETECTION

The following set of experiments were directed at exploring if the model can be
optimized only by using a subset of dimensions, and how to choose the correct dimensions.
The idea is, not all dimensions carry the same level of importance in the models. As a result,
we might be able to reduce the computation time by reducing number of dimensions and
improve the objective value at the same time. The reduction of computation would come
from reduced number of dimensions in the GP, which in turn would require less observation

points to improve the accuracy of the predictions of the GP.

The structure of the code was modified to enable fixation of n dimensions to a
specific value. The GP was limited only to the first ¢ dimensions of the observed points.
From the initialized data, we set x;, to the arguments with best objective value from the
sampled data. Similarly, the solver would solve for only first ¢ dimensions. The next point of
evaluation received from the acquisition function is combined with x; to get back to the full
dimensional input point. The combined input point is evaluated and added to the GP. The
updated BO algorithm is presented below.

Algorithm 2: Bayesian Optimization with Fixed Dimensions
1:  Sample the function n times, and update the GP{1 ...c } with the sampled data XY

2:  Set x5 = argmax f(X)

3:  while termination condition is not met do:

4:  Find X471 = argmax a(X,4+1, GR,{1 ...c})

5 Sample the objective function y,.q = f (xb — Xn+1>

{1..c}
6:  Update the GP{1 ...c} with (X1, Vn+1)
7:  Increment n by 1

The experiment was carried out for 100 iterations with ¢ equal to 2, 3, 4, 5,6, 7, 8, 9
and full 10 dimensions. The M1SN model was used with Squared Exponential kernel and EI

policy. The same initial data was used for all of the experiment.

Results:

Cumulative Iteration Times
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Figure 3.4.1 Cumulative Iteration times with different number of unfrozen dimensions
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Running Best Objective Value
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Figure 3.4.2 Running best objective value with different unfrozen dimensions

The computation time with different number of dimensions shows a linear growth.
The fastest overall being at 2 dimensions and slowest at 10 dimensions. There is a clear

computation time performance improvement when operating on lower dimensions.

The running best objective value graph, Figure 3.4.2, clearly shows possibility of
improving the objective value by operating only a on a subset of dimensions. The lowest
objective value was achieved only by operation at 7 dimensions. More interestingly, the

objective value improved even when the optimization was limited to only two dimensions.

The results of the dimension fixation showed the possibility of improvement of the
objective even if we operate on lower dimensions. The problem is, which dimensions should
be optimized along. We are dealing with a black-box function, and assuming we do not have

an expert to guide us, how do we determine the most important dimensions?

To observe the characteristics of the inputs for the M1SN model, a simple technique
was performed to analyse the dimensions. 2000 random input points were generated for the
model, and evaluated. The points were filtered out, where any point with an objective value
of higher than 100 was throw-out. These are arbitrary rules, performed on rule of thumb
guidance. Out of 2000 random points, only 87 points remain in the final “Filtered” data set.
Another data set was collected from all the experiments performed throughout the duration

of the project, with total of 93797 data points in the “Horde” data set.

The data sets were processed with standard Principle Component Analysis technique
(PCA) to analyse the dimensions. PCA is a common dimensionality reduction technique
applied in the pre-processing phase in machine learning algorithms. The procedure is aimed
at transforming the points into linearly uncorrelated variables. In our case, we are interested
in the variance of the dimensions, and we assume the higher the variance, the more

important the dimension is.
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Dimension

Data Set 1 2 3 4 5 6 7 8 9 10
Horde(93797) [ 0.16059 0.1287 0.1147 0.1096 | 0.0644 | 0.0985 0.0908 | 0.0726 0.0781 0.0821
Filter(87) [ 0.16969 0.0358 | 01289 0.1229 0.1152 0.0721 0.0774 0.0816 0.1026 0.0937

Based on the numbers obtained via applying PCA, we can assume that dimensions
carry varied importance. If we assume, the Horde dataset is more representative of the
dimension variance due to the larger data set, the Filter dataset approximates the large
dataset with fewer points with few exceptions (Dimensions 2 and 5). The downside of both
approaches is the requirement of the data prior BO is applied. Therefore, both approaches

come at a costs which we are trying to minimize.

3.5 MISCELLANEOUS NOTES:

e The experiments with the mean from the data achieved lower objective values
quicker compared to the GPs with mean zero. However, in the long term
stopped improving in a similar manner as mean zero GPs.

o A quick experiment with a similar set-up to Additive BO performance in terms
of the computation time was magnitudes times slower, due to the fact that in
additive BO all GPs contain all the observations (for their limited dimensions
set). The experiment was terminated due to the long computation time. The
experiment did not use the original code, and did not use the custom policy

used by the original code, therefore is omitted from this report.
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4 BAYESIAN OPTIMIZATION WITH DIMENSION
SCHEDULING ALGORITHM

The Bayesian Optimization with Dimension Scheduling Algorithm (DSA) was devised
based on the findings from the Chapter 3. In this chapter we summarize the problems faced
with traditional BO, introduce DSA and how DSA addresses the problems faced with BO,

present experimental data and discuss advantages and the limitations of the DSA.

4.1 INTRODUCTION

BO is commonly used for optimizing costly black-box functions in terms of the
computation or even a physical experiments. In our case, our objective function is relatively
computationally cheap, but at the same time complex enough to render common global
black-box optimization methods inefficient. Due to the complexity of the objective function
the traditional BO requires many samples, but still magnitudes less than other methods (i.e.
Direct or LBFGS, covered in the Chapter 3).

One of the common problems encountered with BO is the algorithm performance
severely degrades in high dimensions and/or with large data amount of observations. As we
have covered in the previous chapter, the GP scales linearly in terms of dimensions and in
cubic scale in terms of the observation points. Although GP scale linearly in terms of the
dimensions, the GP at higher dimensions requires more observation points for more accurate
predictions. The latest research dealing with problem of dimensionality work under strong
assumptions; an additive BO works under an assumption the underlying black-box function
is an additive function [11]; REMBO assumes the low dimensional problem is hidden in a
highly dimensional problem [18]. In cases where these assumptions do not hold, the
performance of these methods is underwhelming. The dynamical biological model is an

example of such function.

To address the problem with high dimensionality and many observation points, we
introduce Bayesian Optimization with Dimension Scheduling Algorithm (DSA). The DSA is
tailored to our problem, and diverges from the traditional Bayesian Optimization use case.
The DSA distributes the observation points across many GPs, with each GP containing
observation points with a subset of dimensions. The total number of GPs by default is
dependent on the total number of dimensions and subset size for each GP. Each new
iteration, a new subset of dimensions is selected from a given probability distribution and
optimized along. As a result the DSA benefits from a faster computational performance and

achieves better objective values compared to the BO.

The following sections present a more detailed breakdown of the algorithm with an

example run, followed by experimental results comparing the DSA to traditional BO.
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4.2 ALGORITHM

Algorithm 3: Bayesian Optimization with Dimension Scheduler

1: Sample the function n times, update the all the GPs with sampled data X,Y

2: Set X = argmax f(X) and y, = max f(X)

3:  while termination condition is not met do:

4 Update P from the observations (Optional)
5:  Randomly select dimension set Z from the dimensions probability distribution P.
6:  Find xZ,, = argmax a(xZ,,GP;)
7 Sample the objective function y,,.q1 = f (Xb < Xﬁﬂ)
8
9

Update the GP, with (xZ,1,Vn41)
If Yn41>Yp then X, = xp & Xiyq and yp=yn41

10:  Increment n by 1

The first step of the algorithm is similar with all other BO methods, to sample initial
observation points from the function. Based from the sampled observations (X, Y), we set
Xp = argmax f (X) and y, = max f(X). The x;, stores ours best known arguments for the
highest objective value, and y, stores the best objective value. We start the optimization
process by optionally updating our probability distribution from the observed data. In our
implementation we use PCA, and use the eigenvalues as the probability of the dimension.
We pick a random dimension set Z from the dimensions probability P. The size of the set is
a parameter set by the user. For the subset Z we optimize GP, for the next point for
evaluation with our acquisition function a(e). We replace dimensions Z in x, and evaluate
the updated point. The y,,; and xZ,, are added only to the GP;, and if the y,,;; is a better

objective value than y,, we update X, and y,with the data from the previous iteration.
Practical Considerations
Probability Distribution

The algorithm requires a probability distribution to pick randomly the
dimensions at each iteration. The probability distribution can be supplied by an
expert, who can reliably assign probabilities to each dimension. Unfortunately, in
most cases we do not have such service at hand. We have covered two methods to
generate a probability distribution from the data in the Section 3.4, but both of the

methods require some form of pre-processing.

An alternative method applied in the implementation of the DSA is an online
updating probability distribution. The algorithm starts with a uniform distribution,
and every 50 iteration updates the probability distribution by applying PCA over the
observation points. The frequency of updating the probability distribution is an

arbitrary choice. The online PCA method arrives to an approximately close results as
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Horde and Filter methods covered in the Section 3.4, as shown on the table below,
Table 4.2.1. The results are for an experiment run with 1000 iterations, and the

probability distribution shown is from the last iteration of the experiment.

Dimension
Data 0 1 2 3 4 5 6 7 8 9
Horde(93797) 0.1286 0.1146 0.1095 - 0.0985 0.0907  0.0726 0.0780 0.0820
Filter(87) 0.1289 0.1228 0.1152 0.0721 0.0774 0.0815 0.1026 0.0936
Online(1000) 0.1177 0.0787 0.1088 0.1047 0.0973 0.0841 0.0908 0.0889

Table 4.2.1 Probability Distribution derived with different data sets

Z: Subset Size

Subset Size Computation Time
+ I

3

Subset Size

2

0 2000 4000 6000 8000 10000 12000 14000 16000
Computation Time (seconds)

Figure 4.2.1 Computation Time Graph for different subset sizes. Averaged result of 5 experiment runs with
different subset sizes over the M1SN model. Each experiment set for 1000 iterations with EI policy and SE
kernel.

Every iteration, the algorithm selects a subset dimensions Z to optimize
along. The size of the subset has a significant impact on the performance of the
algorithm, as shown on the Figure 4.2.1 above. A larger subset size, means our GP
operates on a higher dimension, which adds linear growth. In addition to the GP, the
solver of the acquisition function maximizes on higher dimensions. The combination

of the two, result in a slower computation time, without significant gains in the

objective value.

Performance Analysis

The performance increase stems from the reduced number of dimensions for the GP
and the solver, and reduced number of observations per GP. As discussed in the previous
chapter, computational complexity of posterior calculation is O(n?), by distribution the
observation points across multiple GPs we are dividing the computational cost by number of

GPs. The growth of the algorithm still remains at O(n®), but it is divided by total number of
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GPs used and the probability distribution. Total number of GPs used by the algorithm is
equivalent to the total number of permutations of the set Z. The total number of
permutations of the set Z is based on the sizes of the subsets and dimensionality of the
problem. The diagram below represents all the permutations used by the algorithm at subset
size 2 on a 10 dimensional problem, where the white cells are the permutations used by the

algorithm.

1 2 3 45 6 7 8 9 10

© 0 N O T s W N -

—
)

Number of observations per GP is dependent on number of initial observation points,
current iteration and the probability distribution. The formula below calculates the average
case scenario for subset Z, it does not take into consideration online probability distribution

updates.
z
i+ (-0 HP(d)
d

Implementation Details:

The implementation of the DSA differs from the simplified pseudo code presented.
For more efficient execution the GPs are created lazily. In other words, the instances of GPy
are created only when the set Z is selected. When the dimensions set Z is selected, a new
GP; is created, and the prior of the GP is set from all the observation points gathered
throughout the experiment. As noted in the previous chapter, by setting the prior from the

data we reduce the training time of the GP.



4.3 EXAMPLE RUN

Below is an example of the DSA running on a real 3 dimension minimization

problem:

Intial Sampled Data:

261 1.16 5.351 572.12 [0,10] 1/3
X =[6:36 091 660 |y_|101429( p_|102]| p= 1/3]
136 191 1.60 33;65 [0,10] 1/3

Add (X, Y) to all GPy,
Set Best objective and its arguments
Xp = [1.36 191 1.60] and y, = 33.65
Pick random dimensions set Z
Z = [1 3] - fix dimension 2 to 1.91
Find xZ,, = argmax a(xZ,,,GP;)
Xfe1=1[0 0]
Evaluate yp4q = f (Xb < X,ZHl)
33.65 = f([0 1.91 0])

Add ([0 0], 33.65) to GP,, and since y,,1 <y, is not true y, and x;, are not
updated.

Pick random dimensions set Z
Z = [2 3] - fix dimension 1 to 1.36
Find xZ,, = argmax a(xZ,,,GP;)
xZ, ., =[137 0.81]
Evaluate yp4q = f (Xb < Xﬁﬂ)
21.72 = f([1.36 1.37 0.81])
Add ([1.37 0.81], 21.72) to GP,, and since y,,1 <y, we update the variables to:

xp = [1.36 1.37 0.81] and y, = 21.72

Repeat the cycle till the termination condition is met



4.4 EXPERIMENTS SET-UP AND RESULTS

For the comparison experiments between traditional BO and DSA, 10 different models
were tested with 4 experiment runs per each model. Each experiment ran for 300 iterations,
with SE kernel and EI policy. The models used in the experiment were variants of the algae
models specified in the second chapter, with some models at higher dimensions. The table

below summarizes model details and results of the 4 runs.

Results: Objective Value

Experiments
Best Achieved Objective Values
Model d DSA:3 BO:4 DSA:4
M19 10 58.95 39.40 51.09 30.94 47.10 24.79 58.31 32.13
M19o 10 80.93 136.70 87.78 F 34.98 F 106.66 F
M26 11 56.14 30.47 F 27.14 65.63 41.53  110.87  26.18

M29G 11 46.56 37.58 7301 37.98 48.88 25.78 79.92 30.95
M29C 11 60.40 76.41 48.74 37.26 75.97 29.97 50.03 45.41
M31 11 47.80 31.55 51.68 25.77 52.12 31.38 66.02 38.95
M32C 12 62.19 23.20 61.32 36.30 52.44 32.17 60.56 32.71
M32G 12 57.42 27.38 47.80 41.86 42.47 35.91 64.41 27.07
M33 12 52.44 24.61 56.24 30.47 43.86 34.00 58.50 30.31

M35 12 44.63 33.54 49.76 29.78 54.25 28.68 42.62 28.02
Table 4.4.1 Objective Values Table

Best Running Objective Value
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Figure 4.4.1 Graph of Best Running Objective value from the experiment run 2

Note: Some experiments have failed due to the error within the model provided. The model

M19 is specifically problematic.

27



In most cases the DSA outperformed traditional BO in terms of the lowest objective
value. With exception of 2 instances and failed experiments due to the underlying model,
DSA achieved lower objective values than the BO method. The table 4.4.1 presents the
summary of the experiments in terms of the objective value and the Figure 4.4.1 present a
sample of running best objective values. As in the experiments carried out in the third
chapter, the traditional BO method tends to improve less frequently as the optimization
process progresses. The DSA method due to the constant changes of the dimensions tends to
improve the objective value more frequently and overall achieves a lower objective value.
Due to the randomness present in the DSA, the performance of the algorithm does not
always yield the near optimal objective value, as seen in some instances of the experiment on
the table 4.4.1

Results: Completion Times

Average Computation Time
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Figure 4.4.2 Average computation time of the DSA and BO on different models

In addition to achieving the lower objective value, the DSA algorithm completes each
experiment on average at a fifth of computation time. The figure 4.4.2 shows the average
computation time of the experiment runs with all the models. Due to the performance
enhancing features covered in the previous section, DSA completed all experiment runs
quicker than the BO method.



4.5 LIMITATIONS AND FURTHER IMPROVEMENT

The dimension scheduling aspect of the DSA algorithm relies on random dimension
selection from a probability distribution. The randomness of the scheduler results in
inconsistent results as encountered during the experiments section. A more deterministic
dimension scheduling approach would provide a more consistent performance of the

algorithm.

Unlike traditional BO, the DSA does not have proof of convergence. At no given point
does any GP in the DSA contain all the data points to converge the variance to zero. As a
result, DSA achieves only near-optimal result with a possibility of an optimal result. The
issue of convergence could be addressed by a hybrid BO solution with the function space
sampled for near optimal solutions with DSA, and further optimized with the traditional or
other BO methods.

Another solution considered for an improvement of the performance of the DSA
algorithm is to schedule the dimensions on the GP level. As we have covered in the previous
sections, the main performance bottleneck is at the solver level. The solver requires more
posterior calls at higher dimensions, by limiting the solver to a subset of the dimensions we
can applying the same convergence proof to this solution. By using a GP with all dimensions
and observations points, we would be sacrificing the performance gains achieved by
distributing the observation points across many GPs. The performance of the GP could be
aided by caching part of the posterior calculations, since only subset of dimension’s values
are change. The proposed solution would require further work to test if the statement holds

true.

The DSA address only a subset of problems with BO under specific conditions. The
algorithm faces similar challenges when we increase number of dimensions. If d > n, the
GPs’ accuracy would suffer since the observation points would be spread thinly over many
GPs. In the current implementation, number of GPs is equivalent to number of
permutations of the subset 7 are used by the DSA, however not all GPs perform equally
well. The GPs could be eliminated over time by calculating the marginal likelihood of the
GPs. Thus optimizing only along dimensions where the GP; has a high marginal likelihood.

Alternatively, we may simply limit number of GPs in our DSA optimization process.

As indicated in the introductory statement, DSA is designed for our specific use case.
The DSA algorithm does not take into consideration the regret accumulated over the
optimization process. Cumulative regret is defined by Ry = YN f(x*) — (fx,,) , and plays an
important role in bandit problems such as reinforcement learning and online advertising.

Alternative BO variant would be more suitable for such applications[19].

One of the advantages of the Bayesian Optimization with Dimension Scheduler over
traditional Bayesian Optimization is easy parallelization the code for increased performance

on multicore systems. The traditional Bayesian Optimization method can be parallelized to a
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certain extent. The Gaussian Process has been successfully parallelized[13] with gains in
performance. The solvers can be parallelized by dividing the search space between different
processes. These approaches provide compartmental parallelization, whist the whole process

is still sequential.

The parallelization process of the DSA is much simpler, and can use current GP and
solver modules. The solution lies in distribution of the GPs across many processes, and a
manager process to communicate between all the child-processes and the objective value
function. The manager would contain the x5 and y, variables, and assign different iteration
points to each process. Each processes would contain a GP and a solver, and based on the
iteration number the process receives (if we have exploration parameter scheduler), the
processes maximizes the acquisition function for the GP in the process and returns the
solution to the manager. The manager would evaluate the solution and return it to the
process to update the GP and start a new iteration. A graphical representation of the

parallelized DSA is presented on the next page, Figure 4.6.1.

Parallelized DSA

Structure Overview " )
Objective Function

1

Manager

GP GP GP

Solver Solver Solver

Figure 4.5.1 Parallelized Implementation of DSA structure overview

4.6 CONCLUSION
We have presented the DSA algorithm and successfully applied it to our problem area.

The DSA addresses the problem of performance degradation in BO in terms of the
computation time required with many data points, by distributing the observations across
many GPs and reducing the dimensionality of the input for each GP, the DSA outperforms
the traditional BO algorithm. With further work specified in the prior section, the
performance of the algorithm in terms of the computation time and accuracy can be

improved further.
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5 BAYESIAN OPTIMIZATION FRAMEWORK

The main objective of the Framework is to provide the users with ability to use
Bayesian Optimization methods without any prerequisite knowledge of Bayesian
Optimization or python coding skills. This is achieved by providing the users with a clear
and easy to use Graphical User Interface, and command line interface to set and invoke
Bayesian Optimization methods over any given model which can be called via a command
line.

The following section covers the development of the Bayesian Optimization Framework.
The sections starts analysis of the users, the requirements of the framework; followed by the
reason behind design choices of the framework and implementation of the framework. The
testing section covers the user testing and unit-testing performed to ensure the software
performs as expected. The final section discusses the further possible improvements and

concludes the software development section.

5.1 ANALYSIS

The development of the software started with early sketches of the user interface. To
analyse how a user may interact with the software, and how they may use it. The initial
designs for the interface divided users based on their experience and knowledge of the
Bayesian Optimization techniques. Thus the first screen presented the user with an option to
select their level during the first interaction with the software. Depending on the selection

made by the user, different set of parameters would be presented to the user. The initial

il

sketch is presented below (Figure 5.1.1).

B

R

==

Figure 5.1.1 The greeting page would let select their expertise level
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Prior to any further development of the framework, potential users of the framework,
Dr Caroline B. and Dr Benoit C. from Imperial College Chemical Engineering Department,
were presented with the initial sketches and questioned on how they would like to interact
with the Bayesian Optimization framework. The feedback from Dr Caroline B. and Dr
Benoit C., formed the bases of further development. The main request on their behalf was
ability to invoke the Bayesian Optimization through a command line without any
interaction with the graphical user interface. The command line interface would allow the
optimization to be carried out remotely on a server without use of any Remote Desktop
utilities.

The graphical user interface aspect of the framework would still play an important
role for easy parameter settings, local execution and visual feedback of the Bayesian
Optimization. The development of the framework was an iterative approach with features

required analysed during the development process.

5.1.1 IMPLEMENTATION CHOICES

The core of the project was developed on top of the modular Bayesian Optimization
library pybo[2]. The pybo library is written in Python 2.7 and has dependencies on pygy,
numpy, scipi and matplot modules. The pybo was chosen as the core of the project since it is
the only library providing an easy modular approach to Bayesian Optimization. The library
provides the most common acquisition functions, kernels and initializers with ability to
define own custom modules to be used by the library to perform Bayesian Optimization.
Alternative options included Limbo (C++11)[20], Spearmint (python)[21] and
DiceOptim(R)[22] which do not have the modular flexibility of the pybo library, nor contain
all the options provided by the pybo library. The core library determined the programming

language and the graphical user interface to be used to build the framework.

5.1.2 GRAPHICAL USER INTERFACE (GUI) LIBRARY

Python offers variety of Graphical User Interface libraries with different capabilities
and targeting different uses. To ensure all the requirements of the framework were met, the

GUTI library was decided based on the following requirements for the library:

Cross Platform
- The Graphical user interface should support all major platforms, Windows,
OS X, and other Unix based operating systems such as Ubuntu and Linux
Mint.
Free or GLP Licence:
— The library should not require any payment from the developer or the user

Lightweight and Simple



— The user interface does not require advanced user interface features, therefore
a simple library with barebones graphical user interface elements would
suffice.

Support for Python 2.7

- Components of used by the framework, such as pybo and pygp are based on
Python 2.7. Thus to avoid any compatibility issues with the modules, and
reduce confusion in the source code the Ul library must be compatible with
Python 2.7.

The requirements for the GUI library narrowed down the choice of libraries to PyQt,
PySide, Tk and wxPython. The four libraries include all the necessary widget elements to
build the framework user interface, the deciding factor for the Tk library was the
abundances of the library. Tk library is the default GUI library for Python, and comes with
all the installations of Python since the version 2.6. As a result, it minimizes amount of
external library dependencies. In addition, the Tk library is well documented, tested, with an

active community of developers.

5.2 DESIGN AND IMPLEMENTATION

5.2.1 FRAMEWORK STRUCTURE:

FRAMEWORK OVERVIEW

The framework consists of the Graphical User Interface, File Parser, Bayesian
Optimization Module, Command Line Wrapper, and Core modules. The modules are
decoupled from, thus allowing modifying one module without effecting other modules. Each

module has following purpose:
Graphical User Interface:

The module contains all the graphical user interface elements, and deals with
the visualization of each stage. The GUI is invoked by the core module which

determines if the user invoked the GUI or the Command Line.
File Parse:

The file parse module deals with parsing files in and out of the framework.
The parser ensures the file contain all the necessary fields, and checks the values of
the parameters are in the correct format. In addition, the module contains functions
to convert the GUI module’s parameters into a list or update the GUI module’s

parameters from a list.
Bayesian Optimization Module:

The following module is heavily based on the pybo’s implementation of the
Bayesian Optimization. The modifications allow for greater flexibility in model

definition, and introduces the dimension scheduling algorithm.
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Command Line Wrapper:

The command line wrapper creates an object from the parameters provided.
The object upon request updates the input file, calls the module to perform the

calculations, reads the output of the model and returns it to the caller of the module.
Core:

The core module, up on a call from the user scans the machine for the
necessary modules. The user is notified if the required Python libraries are not
installed; else launches the GUI module. Alternative, if the user specifies to invoke
without the GUI, it parses the parameter file via the File Parsing module and passes

on the parameters to the Bayesian Optimization Module.

Below is the graphical representation of the modules and how they interact with each other.
The framework is started by invoking the core module, which in turn calls the file parser or
the GUI modules. The file parser can export the parameters to the requested directory or
continue through to the command line wrapper. The GUI, once the user enters the
parameters also creates a command line wrapper object. The command line wrapper object
inputted into the Bayesian Optimization module with rest of the parameters. The Bayesian
Optimization module starts the process of optimization, updates the GUI if necessary with
the latest values. Each iteration the Bayesian Optimization module writes the updates the

output file of the Framework.

Modules Interaction QOuerview

User
User
Framewor
GUI
User Core File Command
Comma Parse Line
Bayesian
Optimization

Output

Figure 5.2.1 Framework abstract overview showing the interaction between all the modules
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DEFINING A FILE FORMAT

The Framework defines a simple CSV (Comma Separated Values) as a file format
which specifies the parameters of the Bayesian Optimization and model details; such as the
input file, command and the output directory. The specified file format is human readable,
thus allows the user to create/modify parameters file with any basic text editor; or
alternatively use spreadsheet software for a more structured view. In addition, the file format
is easy to parse with any programming language, with little overhead.

The file structure follows a simple pattern, each line stores only one parameter. First
value is the parameter key, for example “policy”; followed by the value of the parameter,
separated by a comma such as “ei” (expected improvement policy). The structure allows
having multiple values for each parameter, but this is limited only to the kernel and policy
parameters. The limitation is imposed by the graphical user interface, where only multiple
kernel and policies can be selected. In addition, to the parameters the file format stores the
data gathered during optimization or user pre-processed data. The order of the parameters
does not matter, except for the data parameter. The data parameter must be defined last
followed by the data where the first column is y values and starting from the 4™ column are
the x inputs. Full detailed breakdown of the file format specification is presented in the
Appendix A2,

Alternative possible file formats included
XML and JSON based file structures. Both file

Example XML snippet:

formats can be more expressive in their notation. <policies>
For example XML based file format could specify <policy xi=0.1>SE</policy>
</policies>

a policy with a tag, and specify the parameters of

the policy with attributes. Examples of each file

format would be structure for the same Ezample JSON snippet:
parameter is shown on the right. The CSV file L
. . Policies: {policy: ei,
format is less verbose compared to the alternative i 0.1}
xi: 0.1},
file formats presented, and the benefits of the }

JSON and XML formats are minimal. Therefore,
CSV based file format was chosen as the default

file format for the framework. policy, ei

Example CSV snippet:

eixi, 0.1

5.2.2 USER EXPERIENCE (UX) DESIGN:

GRAPHICAL USER INTERFACE (GUI)

The designing of the User Interface was an iterative process, only final iteration of the
UX is presented in this subsection. The User Experience is divided into three stages:

Selection, Observation and Evaluation. Each stage suits a different purposes.
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Selection:

7é ProjectB — %
ProjectB: tion Import Settings Export Settings
Model Parameters Set the Bayesian Optimization Parameters
C dline d for the model: Policies: Kernels:
i.e. python C:Users/Deskiop/modelfinald py ¥ Expected Improvement ¥ Squared Exponential
™ Probability Improvement ™ Matern 5
Select your model ¥O: ™ Upper Confidence Bound ™ Matern 3
I Thompsen I~ Matern 1
Select Input File Select Input File
Select Output File Selest Output File Iterations: Objective:
150 © Minimize
@ Maximize

Set model bounds:

. . Model Qutput Directory (Optional):
Set or View Bounds From File

Qutput Directory Select Directory

. \Welcome to Project Bi

Figure 5.2.2 Selection Window

The selection stage requires the user to set the model parameters, which includes
model invocation command, input file, output file, and the bounds of the parameters. The
user is presented with a choice of policies, and kernels; the user may select multiple options
for the framework to try out. Optionally, the user may specify the output directory for the
framework. The user interface tracks the changes of the parameters, and turns on the

“Optimize” button only when all the necessary parameters are set correctly.

For more advanced users, there is an option set more in-depth Bayesian optimization
parameters. The “Advanced Settings” button invokes the panel with options to set the
recommender, initializer, number of samples to sample by the initializer and Markov Chain
Monte Carlo settings on the left side. The right hand side panel includes the Gaussian
Process settings and hyper prior settings, and option to bootstrap the Bayesian Optimization
processes with data. The fields in the MCMC and GP section allow python code for more
dynamic settings. For example, the noise parameters can be set from the initialized data, by

a following code snipped “np.std(Y)”.

Once the user is happy with their settings, and the framework has all the necessary

parameters set, the user may continue to the next phase by pressing the “Optimize” button.
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Observation:

4 Projecth _ x

Graph: Variance = Model:

scilex -args
C:/Users/doniy/Desktop/Scilab_scripts_model/ -f

Command: C:/Users/doniy/Desktop/Scilab_scripts_model/Chla
my_Kliphuis_19_reduced resized params sce
-nwni

C:/Users/doniy/Desktop/Scilab_scripts_model/input

Mousllinput [params_resized_19.txt
. Model Output: Etjéjbis;s:feﬁlgrlﬁzﬁnpfSclIab_scrlpts_mndeWnutp
=
v
£ Current Experiment-1/1
%‘ Iteration: Kernel: Policy:
38 SE El
Best Result: Current: -66.890715
Overali: 66.890715
Latest lteration: ¥ 67.757797
mu. -3262.84767313
0 5 10 15 20 5 30 35 var. 2201456.01236

Iteration

Figure 5.2.3 Observation Window

The observation stage present the user with an overview of the current stage of the
optimization process. The right hand side provides the information on the model being
optimized, parameters (i.e. kernel, policy) used and current stage of the optimization process.
The panel shows the best objective value in the current experiment, overall best objective

value achieved and information on the latest iteration.

The left panel of the observation stage provides the user with a graphs of objective
values, iteration times and variance prior evaluation of the Bayesian Optimization Process.
The graphs are updated after every iteration providing the user with live overview of the
progress. The user is presented with a range of graphing options, including objective value,

best running objective value, variance and timing graphs.

Eualuation:

The evaluation stage is presented to the user once all the experiments are completed
or terminated early. The page provides with a summary of all the experiments, providing the
user with information on the completion time of the experiment in seconds and the best
value achieved during the experiment. The user may optionally query the Gaussian Process
created during the Bayesian Optimization process. By querying the Gaussian Process with
input points, the user invokes the Framework to update the output file with the mean and

variance of the requested points.
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74 ProjectB _ %

ojectB: Evaluation

Model

scilex -args C:/Users/doniy/Desktop/Scilab_scripts_model/ £
Command: C:/Users/doniy/Desktop/Scilab_scripts_model/Chlamy_Kliphuis_19 red
uced resized params.sce -nwni

Model Input: C:/Users/doniy/Desktop/Scilab_scripts_model/input/params_resized 19
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Model Output: tC:lesersfdnn|nyesktn:np.-’Scllab_scrlpta_mndelﬂnutputfnbjectwe_ualue.tx
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# Kermel: Policy: lterations: Best Result: Time (s);
1 SE El 45 -66.09366 129.47 Query

aving the data...

inished experiment
yesian Optimization
rou can interact with the model{s)

Save Console Logs Output Directory

Figure 5.2.4 Evaluation window

In addition, the Evaluation page user provides the user with small handy shortcuts to
export the console logs, open the output directory and exit the framework. Exiting the
framework automatically closes the framework GUI and all the processes invoked during the

Bayesian Optimization process.

COMMAND LINE INTERFACE (CLI)

The command line interface was designed to with common command line syntax, to
reduce the learning curve for the users. The CLI is invoked by simply adding “-cli” to the
framework invocation command, the interpreter ensures the command satisfies the
requirements, and ensures all the necessary libraries are present. If the user does not meet
one of the requirements, the user is provided with a message specifying what has cause the
failure. For example, if the user does not have numpy module installed, the interpreter
would request the user to install it.

The command line interface is specified as follows:
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Framework Invocation (default GUI): python -m projectb.start
Usage: [-h] [-v] [-cli] [paramfile] [outputdir]

Positional Arguments:
paramfile The URI of the parameter file
outputdir The URI of the output directory

Optional Arguments:

-h, —-help
shows help message and exits

-v, —-verbosity
increases output verbosity, 1 will inform of only
about start and finish of experiments. 2 will
inform of each iteration of the process.

-cli

Use Command Line Interface, requires paramfile

5.2.3 IMPLEMENTATION OPTIMIZATION

Implementing the whole project a monolithic process would lead to a very inefficient
code and result in a static GUI. The user would not be able to interact with the GUI whist
the Bayesian Optimization process would be running. Therefore, the frameworks splits some
modules into a separate thread or/and process. A process is an instance of the program; each
process may contain multiple threads; a process may spawn another process. Unlike, threads,
processes cannot share memory spaces with each other.

Python contains a threading and multiprocessing packages for easy creation and
management of threads and processes. The framework uses both packages, threading package
for communicating with the Bayesian Optimization process, which uses multiprocessing
package. On the next page, Figure 5.2.5, is a graphical representation of how the framework

is split into processes and threads.

The GUI thread contains all three stages of the user interface. The first stage,
Selection, does not interact with the communicator or Bayesian Optimization module. The
communicator is spawned during the transition from the Selection stage to the Observation
stage. The Communicator thread always listens for messages from the Bayesian
Optimization process through Python Multiprocessing Pipes. Pipes allow communication
between two processes. Each process can send data through the pipes to another pipe. The
data cannot be referential to another object and limited to 32 megabytes. On the other side,

the Bayesian Optimization module always checks for a termination command from the
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Figure 5.2.5 The overview of the threads and processes in the framework

communicator. The termination code may arrive in the middle of an iteration, the process is
terminated only when the iteration is complete and a message is send out to the
communicator confirming processes termination. The Bayesian Optimization process sends
data back to the communicator every iteration and prior each experiment run. The
communicator relays the data to the GUI thread to update the graphs and the data fields of
the Observation stage.

The framework proceeds to evaluation stage once the Bayesian Optimization Module
has finished or if user request premature termination. The first termination call does not kill
the Bayesian Optimization Module. The module switches to a listener mode, always polling
for a command from the communicator. The evaluation stage allows the user to query the
models created during the Bayesian Optimization process, and if user requests a file to be
processed, the GUI sends the file location and model id to the communicator. The
communicator relays the information back to the Bayesian Optimization module to write the
posterior to the output direction. The threads and processes are terminated fully only once
the user closes the framework window.

The benefits of the threads and processes set up in the framework is two-fold. The
Bayesian Optimization does not interfere with the performance of the GUI; the GUI remains
responsive regardless of what is happening in the Bayesian Optimization process. Similarly,
having a communicator on a separate thread, frees the GUI from polling for new data, it

receives the data just in time.

5.2.4 INSTALLATION

The project is hosted on Github with detailed instructions on how to install the
framework, and details on which packages are required and how to install them, also the
instructions are present on the Appendix A3. The project github page is located at

https://github.com/udoniyor/projectb

The installation process requires the user to have Python 2.7, git, and number of
Python libraries prior installing the framework. The project depends on numpy, matplotlib
(only for GUI, not required for CLI), pybo, pygy, mwhutils, and scipy. The majority of the

dependencies stem from the pybo library which requires all the same packages installed on
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the machine. As covered in the section 5.1.2, the GUI library comes bundled with all python
installations, therefore does not require any extra installation steps.
All the necessarily Python libraries and the framework can be installed with only two

lines of code, shown below.

pip install -r https://github.com/udoniyor/projectb/raw/master/requirements.txt
pip install git+https://github.com/udoniyor/projectb.git

The first line of code install all the external libraries from the requirements file. The
second line clones the github repository and installs the framework on the machine. Possible
Operation System issues, and remedies to the issues are presented on the Github page of the

project.

5.3 TESTING

In the Section 5.2.1, we have covered the main modules present in the framework. The
modules are dependent on each other to a certain extend. The table below covers the manual
tests performed, with the command used, required outcome, actual outcome and modules

responsible in the interaction.

5.3.1 CLI TESTING

# Command Required Outcome Actual Outcome
Cl1 python -m project Starts the GUI A bug in the
multiprocessing library
Modules: Core, GUI prevented the

__main___ .py script to
invoke a separate
process. As a result the
__main__ .py was
renamed to start.py.
The new command to
invoke the GUI is:

python -m
projectb.start
C2 python -m projectb -cli Error, specifying user As Expected
requires to provide a
Module: Core settings file if command

line interface is used.
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C3

C4

Ch

C6

Cc7

C8

python -m projectb -cli
/home/udoniyor/settingsfile

*Settings file with a wrong
parameter

Modules: Core, File parser
python -m projectb -cli
/home/udoniyor/settingsfile

*Settings file with all
correct parameters

Modules: Core, File parser,
Bayesian Optimization

python -m projectb -cli -v
/home/udoniyor/settingsfile

*Settings file with all
correct parameters

Modules: Core, File parser,
Bayesian Optimization

python -m projectb -cli -vv
/home/udoniyor/settingsfile

*Settings file with all
correct parameters

Modules: Core, File parser,
Bayesian Optimization
python -m projectb -h

Module: Core

python -m projectb -cli
/home/udoniyor/settingsfile
/home/udoniyor/outputdir/

*Settings file with all
correct parameters

Modules: Core, File parser,
Bayesian Optimzation

Error, specifying which
parameter value caused
an error

The framework parses
the file successfully, and
starts Bayesian
Optimization

The framework parses
the file successfully, and
prints to the console
details of the experiment
and starts Bayesian
Optimization

The framework parses
the file successfully, and
prints to the console
details of the experiment
and starts Bayesian
Optimization, and prints
details of each iteration.

Prints out the help

message

The framework parses
the file successfully, and
starts Bayesian
Optimization, and
outputs the results to
the specified directory
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As Expected

The parser would
incorrectly parse the
Boolean variables due to
the incorrect “if”
statement. The file
parser module was
updated to remedy the
issue.

The core was printing
the wrong verbose level.
Updated the file core to
print the verbose level
correctly

As expected.

As expected

As expected



5.3.2 GUI TESTING

The user interface testing cannot be performed without a live user to analyse if the

outcome of the actions has resulted in intended result. Therefore the GUI testing was

performed manually, by using the software, and actively trying to sabotage the framework.

The table below presents the issues discovered, and fixes applied to ensure the future users

will not receive such errors.

#
G1

G3

G4

G5

G6

GT7

Issue
The output directory button open a file
picker, not a directory picker

If the graph picked during initialization of
the model, an error occurred due to the
zero length array.

The file parser would fail to export if no
data was present

The selection page background contained
different tones of grey for Policies and
Objective widgets.

Changing the graphing option in middle of
an iteration can lead to an error. The
framework would try to add data to the
arrays while the graph was updated.

The normalization setting would be set to
True by the GUI even if the settings file
specified False.

Closing the window in the Observation
stage during “Saving...” the data stage
resulted in an error after the window
closed.
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Solution
The selection page code was
updated to present the user with
directory picker.
The graph options button is
disabled unless there has been
some data generated to present to
the user.
The file parser was modified to
output only parameters different
from the default parameters.
The background colour of all
widgets was checked and updated
if necessary to the correct colour
Implement simple locks preventing
changes occurring while the graph
is generated. Similarly, prevent
graph refresh if data is being
added.
The issue was caused by the GUI
checking for the correct library,
and setting the normalization true
if the user did not have nlopt
library. This overwrote the
parameter specified by the user.
The behaviour was modified to
prevent such scenario.
The issue was caused due the
Bayesian Optimization process
trying to communicate with the
parent process, which does not
exists anymore. The window
closing function was updated to
terminate the process right away if
the window is closed.



5.3.3 OPERATING SYSTEMS
The installation process, Graphical User Interface and the Command Line interface

were tested on the Windows 10 Pro and Linux Mint 17.2 Mate operating systems.

Installation
The installation process on both platforms did not incur any problems. Problems
may occur with the installation of numpy and SciPy through the Python pip package
manager. A work around is included in the instructions in the installation guide (project
Github page). For Windows base system the easiest solution is to download a precompiled
Python distribution with necessary Python packages, such as Anaconda Python distribution.
Unix based systems include a handy package manager, allowing users to install Python

packages. More details instructions and links are provided in the Github page of the Project.

Graphical User Interface
The behaviour of the user interface is consistent across both platforms. On other
hand, the visual aspects of the GUI differ on the platforms. The TKinter package uses OS
based widgets, as a result the buttons and frame are rendered to match rest of the user
interface of the operation system. Below, Figure X and Figure X are screenshots of the GUI

on Windows and Linux respectively.

Command Line Interface

The command line interface does not suffer from same problems as the GUI. The
command are defined by the framework and Python. Therefore, both operating systems
behave as expected.

To ensure the framework works on Unix based systems as well as Windows based
systems the framework was installed on clean virtual machine instances of the operation
systems. The purpose was to analyse, if the provided installation and usage tutorials are
sufficient to guide the user, and if the framework performs as expected on Unix based

systems, since the development was carried out on a Windows based machine.

5.3.4 USER TESTING

Once the framework was complete, the framework was tested by a potential user of the
framework. The user was not given any specific instructions on how to install or use the
framework. The only documentation available to the user was presented on the main GitHub
page, including on how to install, troubleshoot installation problems, file format
specification, and how to use the framework. This was essential part of the testing to ensure

any user should be able to install the framework, and if the any trouble occurred along the
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way the instructions would be updated to reflect the changes in the installation/usage
process.

During the usage of the framework, C1, C5, G1, G3 bugs were uncovered by the user.
The issues were promptly fixed, and the GitHub repository was updated. Once all the issues
were fixed, the user was successfully use the framework to optimize different models with the

framework.

5.4 EVALUATION AND FURTHER WORK

The high-level objective of the framework was to provide an easy to use Graphical
User Interface and a Command Line Interface for any command line model to be optimized
with Bayesian Optimization technique. We believe we have delivered on our primary goal,
but there is a lot of room for improvement.

The framework currently is self-contained, and cannot interact with custom policies or
kernels. In some applications, custom kernels and policies can be essential for an optimal
performance. A plug-in based policies and kernels, would allow the research community to
develop and share custom modules for the framework and carry on the benefits of
modularity present in the underlying pybo library.

The current implementation could further be improved by switching the experiments
from sequential execution to a parallelized execution. The underlying architecture of the
framework supports easy parallelization, but the limitations are applied by the GUI since in

the current form it can represent only one experiment at a time.
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6 CONCLUSION

We have introduced Bayesian Optimization, identified the main components of the
optimization process. Through experimental data we have shown the limitations and
characteristics of BO. We identified the bottlenecks of the BO, and effects of the
normalization of the input data on two different solvers. Based on the identified problems
with Bayesian Optimization, we have developed a new novel variant of Bayesian
Optimization with Dimension Scheduling Algorithm. The DSA algorithm successfully
outperformed the traditional BO method and achieved better objective values in less
computation time than the traditional BO method. In addition to the DSA, we have
developed a graphical user interface with command line support. The framework
incorporates the traditional Bayesian Optimization Algorithm and the Dimension Scheduling
Algorithm with support for the most common kernels and policies. The framework has been
successfully tested on real world models and with real users and has been deployed online for

anybody to take advantage of the framework and the DSA.
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APPENDIX

Al: INITIAL EXPERIMENT RESULTS

Expected Improvement
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277110.7 624197.5

201.537197 264.816842 98.08365 81.67155 171.243597 168.042621 63.50432 54.83634 173.293067 153.593238 60.56389 64.28592 160.9192 169.1989 74.41224 89.27149
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Probability Improvement
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9314480 9299671
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3824685 3909096
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Upper Confidence Bound
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173654.9 665.3624 4684989 232247.3 509.5654 1182.116 4605200 175957.5 1485.815

[196:3712" 7950653 539990.4 1073.393
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A2: FILE FORMAT SPECIFICATION

The Framework defines a simple CSV (Comma Separated Values) as a file format which
specifies the parameters of the Bayesian Optimization and model details; such as the input
file, command and the output directory.

The file structure follows a simple pattern, each line stores only one parameter. First value is
the parameter key, for example “policies”; followed by the value of the parameter, separated
by a comma such as “ei” (expected improvement policy). The structure allows having
multiple values for each parameter, but this is limited only to the kernel and policy
parameters. The limitation is imposed by the graphical user interface, where only multiple
kernel and policies can be selected.

Another exception is the bounds parameter. The bounds can be described by stating the key
"bounds", followed by a comma, lower bound, comma and upper bound. The key can be
defined multiple times to specify many bounds. For example if function has three inputs with
bounds between 0 and 100, it should be specified as follows:

bounds, 0,100
bounds, 0,100
bounds, 0,100

In addition, to the parameters, the file format stores the data gathered during optimization or
user pre-processed data. The order of the parameters does not matter, except for the data
parameter. The data parameter must be defined last followed by the data where the second
column is y values and starting from the 4th column are the x inputs. The purpose of the strict
data column layout is to match the output of the framework. The framework, output is
structured in a following way: time per iteration in seconds, objective value achieved at the
iteration, mean calculated from the posterior for the point prior evaluation, variance
calculated from the posterior for the point prior evaluation, followed by the input values
separated via commas.

You do not need to specify all the kays and parameters for the framework, most have
reasonable default values. Only following are required for the framework: command,
modelinput, modeloutput, and bounds. By default, the framework maximizes with EI policy
and SE kernel for 150 iterations with sobol initialzer.

Basic Settings Spefication:

Keys | Parameters

command | command line string to invoke the function
modelinput | input file for the function. One parameter per line
modeloutput | output file for the function.

bounds | lowerbound, upperbound

outputdir | directory to output the results to

policies | ei,pi,ucb,thompson

kernels | maternl,matern3,maternb5, se

iter | number of iterations

objective | min/max

solver | direct*/lbfgs
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initializer | sobol/middle/uniform

initializernum | number of samples to sample by the initializer
recommender | latent/incumbent/observed

normalize | True/False **

e Requires nlopt python library ** Normalize the bounds between 0 and 1. Experiments
have shown normalizing the input helps with performence of the Ibfgs solver.

Preferably, use direct solver without normalization. *** Dimension Scheduler is a
technique to improve the performence of the Bayesian Optimization.

Advanced Settings Specification:

dims | If dimension scheduler enabled, number of dimensions per permutation
dimscheudler | True/False **x*

mcmcburn | Burn number

mcmen Number of GPs

eixi | Exploration parameter for the EI policy

pixi | Exploration parameter for the PI policy

ucbxi | Exploration parameter for the UCB policy
ucbdelta | Probability of that the upper bound holds
thompsonn | number of Fourier components

thompsonrng | Random seed

Following keys have python code snippets as parameters:

Gaussian Process Settings:
gpsf, gpmu, gpell, gpsn

Hyper-prior Settings

priorsnscale, priorsnmin, priorsfmu
priorsfsigma, priorsfmin

priorella, priorellb

priormumu, priormuvar
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A3: USER GUIDE

ProjectB is a graphical user interface, which allows untrained users to optimize any model
that can be invoked through a command line. The GUI is built on top of a modular Bayesian
Optimization library, pybo, which includes most common acquisition functions and kernels
and more.

Installation

The easiest way to install this package is by running

pip install -r
https://github.com/udoniyor/projectb/raw/master/requirements.txt
pip install git+https://github.com/udoniyor/projectb.git

The first line installs any dependencies of the package and the second line installs the
package itself. Alternatively the repository can be cloned directly in order to make any local
modifications to the code. In this case the dependencies can easily be installed by running

pip install -r requirements.txt

from the main directory.

Tips

If you are having trouble installing via pip, try installing scipy and numpy with package
manager on UNIX based systems. For more details on how to install SciPy stack on your

machine look here

If you are on Windows and having troubles with pip, try Anaconda. It includes numpy and
scipy, therefore reducing the chances of running into an error.

Usage (GUI)

To invoke the Graphical User Interface, you need to type in following command into the
command line:

python -m projectb.start

This will launch the GUI of the framework. You may also specify the settings file to prefill
the fields in the UI.

python -m projectb.start /home/user/settingsfile.projectb

Your settings file can have any extension name, but for clarity purposes keep it simple and
relevant.

Usage (Command Line)
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https://github.com/mwhoffman/pybo
http://www.scipy.org/install.html
http://continuum.io/downloads

The framework can be executed via commandline, but you must specify a settings file.
Settings file format is a CSV file, with one parameters per line. You will find the
specification for the settings file in the next section. Alternatively, you may create a settings
file via the GUI by exporting the settings defined in the Ul. To invoke the command line, you
simply add -cli to the command.

python -m projectb.start /home/user/settingsfile.projectb -cli
Optionally, you can specify the output directory during the invokation.

python -m projectb.start /home/user/settingsfile.projectb
/home/user/outputhere/ -cli

It is advised to provide an output directory, otherwise the framework will write to the
directory called from.
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