
Small Specifications for Tree Update

Philippa Gardner and Mark Wheelhouse

Imperial College London, {pg, mjw03}@doc.ic.ac.uk

Abstract. O’Hearn, Reynolds and Yang introduced local Hoare reason-
ing about mutable data structures using Separation Logic. They reason
about the local parts of the memory accessed by programs, and thus con-
struct their smallest complete specifications. Gardner et al. generalised
their work, using Context Logic to reason about structured data at the
same level of abstraction as the data itself. In particular, they developed a
formal specification of the Document Object Model, a W3C XML update
library. Whilst they kept to the spirit of local reasoning, they were not
able to retain small specifications: for example, the specification of ap-
pendChild was not small. We show how to obtain small specifications by
working with a more fine-grained context structure, allowing us to work
with arbitrary tree fragments.

Key words: Specification, logical reasoning, program verification, locality

1 Introduction

Separation Logic [12], introduced by O’Hearn, Reynolds and Yang, provides
modular reasoning about mutable data structures in memory. The idea is to
reason about the small, local parts of the memory (the footprint) that are ac-
cessed by a program. In particular, they introduced small axioms for specifying
the atomic commands, using the smallest heaps possible to obtain complete
specifications of programs, and the frame rule for extending the reasoning to
larger heaps. The resulting modular reasoning has been used to notable success
for verifying memory safety properties of large C-programs.

Calcagno, Gardner and Zarfaty generalised Separation Logic to reason about
more complex data structures, such as those found on the web, by providing a
fundamental shift in the reasoning. Structured data update typically identifies
the portion of data to be replaced, removes it, and inserts the new data in the
same place. Gardner et al. introduced Context Logic to reason about both data
and this place of insertion (contexts). Their original work applied Context Logic
to reason about a simple tree update language, with analogous small axioms
for the basic tree update commands and a generalised frame rule.

With Smith and Zarfaty, Gardner and Wheelhouse have applied Context
Logic to provide a concise, compositional specification of the W3C Document
Object Model (DOM) [17],[7], a library for XML update. In our initial paper[6],
we introduced and reasoned about Featherweight DOM (called Minimal DOM
in the paper), a fragment of DOM which concentrates on the DOM tree structure
rather than the full DOM structure. The compositionality of our reasoning means
that, as well as specifying the basic DOM commands, we can also reason about
simple JavaScript programs which call DOM. Gardner and Smith have extended

2 Philippa Gardner and Mark Wheelhouse

Fig. 1. Splitting up the working tree using multi-holed contexts.

the reasoning to the full DOM Core Level 1 specification[15]. This extension was
a substantial piece of work, not because of the reasoning, but because the full
DOM specification is large, underspecified and difficult to interpret.

Context Logic reasoning can be adapted to many familiar context styles
associated with structured data. In our initial papers and the DOM work, we
chose to use single-holed contexts because it was enough to introduce our ideas
of reasoning about tree update. However, although our DOM specification keeps
to the spirit of local reasoning, it does not have small axioms for all the atomic
commands. This can be illustrated by the command appendChild(n, m) which
moves the tree with top node identified by DOM identifier m to be the last child
of the tree identified by n. Since n and m may be in distinct parts of the tree, it
certainly seems natural to move to multi-holed Context Logic[2]. However, we
shall see that multi-holed contexts are not enough.

Consider Figure 1 which indicates how the working tree splits in the two
cases where appendChild(n, m) does not fault: it succeeds when n and m are in
different parts of the tree and when m is under n; it faults when m is above n. The
axiom for appendChild(n, m) in multi-holed Context Logic is:

{(C ◦α n[c1]) ◦β m[tree(c2)]}
appendChild(n, m)

{(C ◦α n[c1 ⊗ m[tree(c2)]]) ◦β ∅}

Figure 1 shows, in each successful case, how the tree satisfies the precondition.
The precondition specifies that the working tree can be split into a subtree
with top node identified by m, and a context with hole variable β (equals y in the
figure) satisfying context formula C◦αn[c1]. This formula C◦αn[c1] states that the
context can be split into a subcontext with top node n and an unspecified context
with hole α (equals x in figure) given by context variable C. The postcondition
states that the tree at mmoves to be the last child of n, the empty tree replaces the
tree at m, and the surrounding context denoted by variable C remains the same.

The problem with this appendChild(n, m) axiom is that it is not small, since it
uses variable C to stand for a surrounding context which contains both n and m.
We could put additional constraints on C to insist that the context is minimal, but
this is not the point. Intuitively, the only part of the tree that appendChild(n, m)
requires is the tree at m which is being moved, and the tree or context with top
node n (actually node n is enough) whose children are being extended by m. We
need a finer way of splitting the tree to be able to capture this footprint.

Small Specifications for Tree Update 3

Fig. 2. Splitting up the working tree using tree fragments.

We use tree fragments. The idea is that the working tree can be split into tree
fragments that can be reasoned about separately, but which still ‘know’ how
they join back together. They are similar to multi-holed tree contexts in that
they have unique hole labels; they are different in the way they join together.
Tree fragments have unique hole addresses, which determine which holes the
fragments can fill. With multi-holed contexts, it is the application function that
determines which hole gets filled. Consider figure 2. In both example cases, the
working tree is split into a bunch of tree fragments; the hole labels and addresses
determine how the tree fragments join back up to form the original tree.

There are several further features about our tree fragments to observe. Con-
sider the right-hand equalities of figure 2. In both cases, the tree fragment with
top node n has been split into just the top node n with the same address and
fresh hole label z, and another tree fragment with address z. We shall see that the
node n and the tree with top node m are all that is required to provide the small
axiom for appendChild. If we take this to the extreme, we can cut up the tree
structure into a collection of nodes with hole spaghetti (similar to heap cells),
where the hole labels and addresses show how the nodes are joined together.
Although this is possible, this is not how we use the hole labels and addresses.
We only cut up the tree in a minimal way in order to provide the right fragment
about which to reason. Also notice that the hole labels and addresses have been
hidden by a freshness operator; the ν in the figure. With the restriction, the
fragments can be compressed into the larger fragments indicated by the figure.
Without the restriction, the fragments cannot be compressed and the hole labels
and addresses would behave rather like pointers and addresses in a heap.

We introduce Context Logic for analysing tree fragments. It is analogous to
our previous work on single-holed and multi-holed Context Logic in the sense
that we analyse fragments of high-level trees. It is different from the previous
work in that we use the commutative separating conjunction ∗ of Separation
Logic rather than a non-commutative separating application. We also use the
revelation connectives and freshness quantification of Gabbay and Pitts [5]
and Cardelli and Gordon [4]. Interestingly, we shall see that these constructs are
important for the weakest preconditions. Using this Context Logic for analysing
tree fragments, we are able to give a small axiom for appendChild(n, m):

{α�n[γ] ∗ β�m[tree(c)]}
appendChild(n, m)

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅C}

4 Philippa Gardner and Mark Wheelhouse

The precondition specifies two tree fragments: a tree fragment at variable ad-
dress αwith node n and a tree fragment at address βwith a complete tree whose
top node is m. The postcondition states that the tree at m moves to be the last
child of n being replaced by the empty tree. The axiom is small, in the sense that
it captures the intuitive footprint of appendChild(n, m). We can extend the axiom
to larger tree fragments using the normal frame rule for separation conjunction,
a non-standard frame rule for revelation, and a rule for freshness quantification.

We must especially point out the difference in spirit between this work on
reasoning about high-level tree update, and the work of O’Hearn, Parkinson
and colleagues on reasoning about mutable data structures represented in heaps.
The reasoning is at a different level of abstraction. O’Hearn and Parkinson are
working with C-programs and object-oriented programs, where it is natural to
work with the basic heap model and build up layers of abstraction. Our focus is
on high-level tree update languages such as that specified by the DOM library,
where we must work with the tree structures directly.

2 Tree Update Language
We present a simple, but expressive, high-level tree update language. Our tree
structures are left intentionally simple. We work with finite, ordered, unranked
trees and tree contexts [2], with unique node identifiers for specifying the lo-
cations of updates as in DOM. It is straightforward to incorporate (and reason
about) additional data such as tag information and text data. Throughout this
paper we use countably infinite and disjoint sets I = {m, n, ...} for location
names and X = {x, y, z, ...} for hole labels.

Definition 1 (Multi-holed Tree Contexts). Multi-holed tree contexts c ∈ CI,X are
defined by the grammar:

tree context c ::= ∅C empty tree
x tree context hole label

n[c] tree context with top node n
c ⊗ c tree composition

with the restriction that each hole label, x ∈ X, and location name, n ∈ I, occur at
most once in a tree context c, and subject to an equivalence c1≡c2 stating that the ⊗
operator is associative with identity ∅C. The set of hole labels that occur in tree context
c is denoted by f n(c). We use t, t1, t2 to denote tree contexts with no context holes.

Definition 2 (Context Application). Context Application is defined as a set of partial
functions apx : CI,X × CI,X ⇀ CI,X indexed by hole labels x:

apx(c1, c2) =

{

c1[c2/x] if x ∈ f n(c1) and f n(c1) ∩ f n(c2) ⊆ {x}
undefined otherwise

We abbreviate apx(c1, c2) by c1 x©c2. We often omit the ∅C leaves from a tree
context to make it more readable, writing n[m⊗ p] instead of n[m[∅C]⊗ p[∅C]].

Our update language is a high-level, stateful, imperative language, based on
variable assignment, and update commands. The program state is made up of

Small Specifications for Tree Update 5

two components. The first component is the working tree which contains all of
the nodes we will be manipulating with our programs. The second component is
a high-level variable store containing variables for both node identifiers and tree-
shapes (trees modulo renaming of identifiers, allowing high-level manipulation
of tree structures). The choice of having tree shapes, as opposed to trees, in
the store illustrates a seemingly paradoxical property of high-level, imperative
update: while some way of identifying nodes is required to specify the location
of in-place updates, these identifiers are typically not considered an important
part of the high-level structure itself.

Definition 3 (Tree-shapes). Tree-shapes t◦ ∈ T◦ are defined by the grammar:

tree-shape t◦ ::= ∅T empty tree
◦[t◦] tree node

t◦ ⊗ t◦ tree composition

We write 〈t〉 for the shape of a tree t, where 〈∅C〉 = ∅T, 〈n[t]〉 = ◦[〈t〉] and
〈t⊗ t′〉 = 〈t〉 ⊗ 〈t′〉. We only store complete trees. We write t ≃ t′ when 〈t〉 = 〈t′〉.

Definition 4 (Variable Store). The variable store s ∈ S consists of a pair of finite
partial functions

s : (VarI ⇀fin I ∪ {null}) × (VarT◦ ⇀fin T◦)

mapping location name variables VarI = {m, n, ...} to location names or null, and tree
shape variables VarT◦ = {t, ...} to tree shapes. We write s[n 7→ n] for the variable store
s overwritten with s(n) = n, and similarly for s[t 7→ t◦].

To specify location name and tree-shape values, our language uses simple ex-
pressions. Location names are specified either with location name variables or
the constant null; we forbid direct reference to constant location names other
than null. Tree-shapes are specified using a combination of tree-shape variables
and constant tree-shape structures. We also require simple Boolean expressions.

Definition 5 (Expressions). Location name expressions N ∈ ExpI, tree-shape ex-
pressions T ∈ ExpT◦

and Boolean expressions B ∈ Exp
B

are defined by the grammars:

N ::= n | null n ∈ VarI

T ::= ∅T | t | ◦[T] | T ⊗ T t ∈ VarT◦

B ::= N = N | T = T | false | B⇒ B

The valuation of an expression E in a store s is written ~E�s and has the obvious
semantics. The standard classical Boolean connectives ¬, ∧ and ∨ are derivable.

In previous work [9], we concentrated mainly on tree update commands
for changing a tree with some top node n. Here, we give node commands and
subtree commands for changing the subtree under node n. The language here
is more flexible, allowing us to manipulate pieces of trees; the language in [3]
is implementable. The node update commands consist of look-up commands
that return a neighboring node in the tree, a delete command that removes a
node from the tree, one node insertion command that puts a fresh node into

6 Philippa Gardner and Mark Wheelhouse

the tree (the others are derivable), and node move commands that take a node
out of the tree and replace it in a new position. The node movement commands
leave the children of the moved node m as children of m ’s old parent. The tree
update commands work on subtrees of an identified node and consist of a copy
command that stores the shape of a subtree, a delete command that removes an
entire subtree from the tree, insertion commands that add new nodes to the tree
and subtree move commands that take a subtree out of the tree and replace it in
a new position.

Definition 6 (Tree Update Language). The commands of the tree update language
are defined by the node update commandsCnodeUp, the tree update commandsCtreeUp, and
the standard skip, variable assignment, sequencing, if-then-else and while commands:
CnodeUp ::= n′ := getUp(n) get parent of node n

n′ := getLeft(n) get previous sibling of node n
n′ := getRight(n) get next sibling of node n
n′ := getFirst(n) get first child of node n
n′ := getLast(n) get last child of node n
deleteNode(n) delete node n
insertNodeAbove(n) insert a new node above node n
moveNodeAbove(n, m) move node m above node n
moveNodeLeft(n, m) move node m to the left of node n
moveNodeRight(n, m) move node m to the right of node n
prependNode(n, m) prepend node m to children of node n
appendNode(n, m) append node m to children of node n

CtreeUp ::= x := copy(n) copy shape of subtree starting at node n
deleteSubtree(n) delete subtree beneath node n
insertLeft(n, T) insert tree shape T to the left of node n
insertRight(n, T) insert tree shape T to the right of node n
insertFirst(n, T) insert tree shape T as first child of n
insertLast(n, T) insert tree shape T as last child of n
moveSubLeft(n, m) move children of node m to the left of node n
moveSubRight(n, m) move children of node m to the right of node n
prependSub(n, m) prepend children of node m to children of node n
appendSub(n, m) append children of node m to children of node n

The intuitive behavior of these commands should be self-explanatory. These
commands are sufficient to express a wide range of tree manipulation. For ex-
ample, allocation of a new tree or node can by expressed by the insertion of a
literal tree-shape. In particular, inserting the tree-shape expression ◦[∅T] creates
a single new node, with fresh identifier, at a location given by the insert com-
mand. The only node insertion command that we need to give explicitly is for
inserting a fresh node above an existing node. Our command set is not minimal,
for example we could derive the copy command using a combination of lookup,
insertion and recursion. We believe the commands chosen lead to a natural and
expressive tree update language. We give the operational semantics in section
3, using tree fragments rather than trees, as it simplifies the interpretation of the
Hoare triples in section 5.

Small Specifications for Tree Update 7

Example 1 (Move). DOM uses the command appendChild, whereas here we
have appendNode and appendSub.. We use our basic commands to provide the
standard appendChild(n, m) command. The diagrams illustrate the effect of the
program on the part of a tree necessary for the program to run without faulting,
with n = 1 and m = 2. The complete subtree beneath node m is needed as the
whole tree is cut out of its original place in the tree and appended to node n.

appendChild(n, m) , insertRight(m, ◦[∅T]);
temp := getRight(m);
appendSub(temp, m);
appendNode(n, m);
appendSub(m, temp);
deleteNode(temp)

Example 2 (Simple Swap). Our node update commands enable us to define pro-
grams that act on arbitrary fragments of the tree. For example, consider the
program simple(n) which swaps a node nwith its first child:

simple(n) , insertNodeAbove(n);
temp := getUp(n);
first := getFirst(n);
moveNodeAbove(first, n);
moveNodeAbove(temp, first);
deleteNode(temp)

Example 3 (General Swap). The program nodeSwap(n, m) swaps the positions of
arbitrary nodes n and m of a tree leaving their subtrees stationary:

nodeSwap(n, m) , insertNodeAbove(n);
temp := getUp(n);
moveNodeAbove(m, n);
moveNodeAbove(temp, m);
deleteNode(temp)

Example 4 (Node Rotate). Consider the program nodeCycle(n); which takes n, its
first and last child and rotates these nodes with n taking the place of last child,
last child taking the place of first child, and first child taking the place of n :

nodeCycle(n) , first := getFirst(n);
last := getLast(n);
nodeSwap(n, last);
nodeSwap(n, first)

Example 5 (Move and Node Swap). Consider a simple hierarchical queuing system
given by the program queuePop(n) which puts the top element of the hierarchy
to the back of the queue and promotes the next element to the top of the queue,
carefully maintaining the data related to these elements:

8 Philippa Gardner and Mark Wheelhouse

queuePop(n) , next := getFirst(n);
info := getLast(n);
nodeSwap(n, info);
nodeSwap(next, info);
appendChild(next, info)

In Section 6 we look at the reasoning of these programs and show how we can
specify their behavior from the specifications of their component commands.

3 Tree Fragments

We now give our definition of tree fragments.

Definition 7 (Tree Fragments). Tree fragments f ∈ FI,X are defined by the grammar:

tree fragment f ::= ∅F empty tree fragment
x�c tree context c with hole address x
f + f disjoint union

(νx)(f) label restriction

with the restriction that each label, x ∈ X, occurs free at most once as a hole address and
at most once as a hole label in a tree fragment f, and each location name, n ∈ I, occurs
at most once in the a fragment f. Tree fragments are also required to be cycle free. The
set of hole labels and hole addresses that occur free in tree fragment f is denoted f n(f).

Definition 8 (Tree Fragment Equivalence). An equivalence relation ≡ over tree
fragments is defined by the following axioms:

f + ∅F ≡ f
f1 + f2 ≡ f2 + f1

f1 + (f2 + f3) ≡ (f1 + f2) + f3

(νx)(∅F) ≡ ∅F

(νx)(νy)(f) ≡ (νy)(νx)(f)
(νx)(f) ≡ (νy)(f [y/x]) if y < f n(f)

(νx)(y�c + f) ≡ y�c + (νx)(f) if x , y and x < f n(c)
(νx)(y�c1 + x�c2) ≡ y�c1 x©c2 if x ∈ f n(c1)

Most of these axioms involving restriction are unsurprising and follow from the
π calculus [11]. The last restriction axiom is crucial and enables us to split and
join tree fragments at will, as illustrated in Figure 2 of the introduction.

Restriction is well known as a mechanism for hiding names (wires) in Mil-
ner’s process graphs in particular, and in arbitrary graphs in general. Our tree
fragments have similarities and differences with this approach. The tree frag-
ment (νy)(z�1[x ⊗ y] + x�2 + y�3) can be illustrated as:

or even

Small Specifications for Tree Update 9

s(n) = n f ≡ (νx)(f ′+ x�n[t])

t := copy(n), s, f s[t 7→ 〈n[t]〉], f

s(n) = n f ≡ (νw,x,y,z)(f ′+ x�m[y ⊗ n[w] ⊗ z])

n′ := getUp(n), s, f s[n′ 7→ m], f

s(n) = n f ≡ (νx,y,z)(f ′+ x�n[y] ⊗m[z])

n′ := getRight(n), s, f s[n′ 7→ m], f

s(n) = n f ≡ (νx,y,z)(f ′+ x�m[z ⊗ n[y]])

n′ := getRight(n), s, f s[n′ 7→ null], f

s(n) = n f ≡ (νx,y,z)(f ′+ x�n[y ⊗m[z]])

n′ := getLast(n), s, f s[n′ 7→ m], f

s(n) = n f ≡ (νx,y,z)(f ′+ x�n[∅C])

n′ := getLast(n), s, f s[n′ 7→ null], f

s(n) = n f ≡ (νx,y)(f ′′+ x�n[y])
f ′≡ (νx,y)(f ′′+ x�y)

deleteNode(n), s, f s, f ′

s(n) = n f ≡ (νx)(f ′′+ x�n[t])
f ′≡ (νx)(f ′′+ x�n[∅C])

deleteSubtree(n), s, f s, f ′

s(n) = n 〈t〉 = ~T�s t has fresh ids
f ≡ (νx,y)(f ′′+ x�n[y])

f ′≡ (νx,y)(f ′′+ x�n[y] ⊗ t)

insertRight(n, T), s, f s, f ′

s(n) = n f ≡ (νx,y)(f ′′+ x�n[y])
n′ fresh id f ′≡ (νx,y)(f ′′+ x�n′[n[y]])

insertNodeAbove(n), s, f s, f ′

s(n) = n f ≡ (νw,x,y,z)(f ′′+ x�n[z] + y�m[w])
s(m) = m f ′≡ (νw,x,y,z)(f ′′+ x�m[n[z]] + y�w)

moveNodeAbove(n, m), s, f s, f ′

s(n) = n f ≡ (νw,x,y,z)(f ′′+ x�n[z] + y�m[w])
s(m) = m f ′≡ (νw,x,y,z)(f ′′+ x�n[z ⊗m] + y�w)

appendNode(n, m), s, f s, f ′

s(n) = n f ≡ (νx,y,z)(f ′′+ x�n[z] + y�m[t])
s(m) = m f ′≡ (νx,y,z)(f ′′+ x�n[z ⊗ t] + y�m)

appendSub(n, m), s, f s, f ′

The cases for skip, assignment, sequencing, if-then-else and while-do are omitted as they are standard.
For get, insert, and move only some of the cases are given; the other cases are analogous.
Our commands fault when the datastructure does not satisfy any of the preconditions for that command.

Fig. 3. Operational Semantics of the Tree Update Language

and is analogous to the graph approach. However, we are not only using hole
labels for wires. Consider the appendChild command in example 1. The tree
fragment (z�1[x] + y�2[t]) updates to (z�1[x ⊗ 2[t]] + y�∅C): before update
the fragment y�2[t] states that a tree can be put in hole z; after update y�∅C

states that the empty tree can be put on hole z. In general, unlike heaps, we do
not have a sense of arity being preserved by update: before update a node can
have a certain number of children; after update it can have a different number of
children. The closest work to tree fragments that we have come across is work
by Back, which does not have restriction, but otherwise is analogous.

Our programming language manipulates nodes and complete trees. It does
not refer to hole labels or hole addresses in any way. However, the operational
semantics are greatly simplified by using either tree contexts or tree fragments.
We use tree fragments, as this leads to a simpler interpretation of Hoare triples
in section 5. We give the operational semantics of the tree update language in
Figure 3. We use an evaluation relation relating configuration triples C, s, f,
terminal states s, f, and faults, where f refers to a tree fragment and the free
program variables of a command C are free(C).

Our style of reasoning requires that the commands of our language be local.
A command is local if it satisfies two properties, initially introduced in [10],
known as the safety-monotonicity property and the frame property. The safety-
monotonicity property specifies that, if a command is safe (does not fault) in a
given state, then it is safe in a larger state. The frame property specifies that,
if a command is safe in a given state, then any execution on a larger state can
be tracked to an execution on the smaller state. A state can be made larger via
disjoint tree fragment union or via label restriction. Separate from the reasoning,
we also believe that the property of locality leads to good language design. Low-
level imperative commands are typically local [12]. In our work on specifying

10 Philippa Gardner and Mark Wheelhouse

DOM [7] we demonstrated that the DOM commands are also local. Here, we
insist on locality. Consider for example the behavior of n′ := getRight(n). If the
right sibling of n exists, then its identifier is stored at n’. If n is the last child
of some parent node (meaning n can never obtain a right sibling via context
composition), then n’ stores the value null. However, if the node n is not present
in the tree, or n has no right sibling or parent, then the command must fault if
it is to be local. The behavior of the other update cases are similar.

4 Context Logic
First, we present the logical environment which is a set of functions mapping
logical tree context variables to tree contexts, tree fragment variables to tree
fragments, and context label variables to context labels. These variables allow
us to refer to unchanged data in our pre- and post-conditions (see Definition
14), and make use of quantification in our weakest preconditions (see Figure 6).
Tree-shape program variables refer to specific store values and are hence not
quantified. We permit location name variables to have the standard dual role as
both program variables and logical variables, hence they can be quantified.

Definition 9 (Logical Environment). An environment e ∈ E is a set of functions

e : (LVarC → CI,X) × (LVarF → FI,X) × (LVarX → X)

mapping tree context variables LVarC = {c, ...} to tree contexts, tree fragment variables
LVarF = {f, ...} to tree fragments and label variables LVarX = {α, β, γ, δ...} to labels.

We write e[x 7→ v] for the environment e overwritten with e(x) = v.
We are going to work with Context Logic for tree fragments. In fact, our

logic has much in common with Separation Logic [12]. In particular, we have
the standard classical formulae (additive connectives) and structural formulae
(multiplicative connectives) from Separation Logic. The most important of these
are the separation connective ∗ and its right adjoint −∗. Given tree fragment
formulae PF and P′F: the formula PF ∗ P′F describes a tree fragment that can be
split into a tree fragment satisfying PF and a separate tree fragment satisfying
P′F; and the formula PF −∗ P′F describes a tree fragment which, when joined to a
tree fragment satisfying PF, results in a tree fragment satisfying P′F.

We include label restriction in our tree fragments, which means it is natu-
ral to have freshness quantification Nα 1 and revelation connectives r and −r
from Ambient Logic [5],[4]. These constructs are essential for our weakest pre-
conditions. Given tree fragment formula PF and hole label α: the formula Nα.PF

describes a tree fragment that with a fresh label stored in variable α satisfies
PF; the formula αrPF describes a tree fragment with a top level restriction of
the value of α and, after removing that restriction, the remaining tree fragment
satisfies PF; and the formula α −r PF describes a tree fragment which satisfies
PF once it has been extended with a restriction over label stored in variable α.

1 For our model, it would be possible to use the existential quantification for hole labels
instead of the freshness quantification. We choose freshness since it is the natural
quantification to accompany revelation.

Small Specifications for Tree Update 11

e, s, c |=C PC ⇒ P′
C
⇔ e, s, c |=C PC

⇒ e, s, c |=C P′
C

e, s, c |=C falseC ⇔ never
e, s, c |=C ∅C ⇔ c ≡ ∅C

e, s, c |=C α ⇔ c ≡ e(α)
e, s, c |=C n[PC] ⇔ ∃c1. c ≡ s(n)[c1]

∧ e, s, c1 |=C PC

e, s, c |=C PC ⊗ P′
C
⇔ ∃c1, c2. c ≡ c1 ⊗ c2

∧ e, s, c1 |=C PC

∧ e, s, c2 |=C P′
C

e, s, c |=C T ⇔ 〈c〉 ≡ ~T�s
e, s, c |=C c ⇔ c ≡ e(c)
e, s, c |=C 〈c〉 ⇔ c ≃ e(c)
e, s, c |=C B ⇔ ~B�s = true
e, s, c |=C @α ⇔ e(α) ∈ f n(c)

e, s, f |=F PF ⇒ P′
F
⇔ e, s, f |=F PF ⇒ e, s, f |=F P′

F
e, s, f |=F falseF ⇔ never
e, s, f |=F ∅F ⇔ f ≡ ∅F

e, s, f |=F α�PC ⇔ ∃c, x. e(α) = x ∧ f ≡ x�c ∧ e, s, c |=C PC

e, s, f |=F PF ∗ P′
F

⇔ ∃f1, f2. f ≡ f1 + f2 ∧ e, s, f1 |=F PF ∧ e, s, f2 |=F P′
F

e, s, f |=F αrPF ⇔ ∃x, f ′. e(α) = x ∧ f ≡ (νx)(f ′) ∧ e, s, f ′ |=F PF

e, s, f |=F PF −∗ P′
F
⇔ ∀f ′. e, s, f ′ |=F PF ∧ (f + f ′)�⇒ e, s, f + f ′ |=F P′

F
e, s, f |=F α −r PF ⇔ ∃x, f ′. e(α) = x ∧ f ′ ≡ (νx)(f) ∧ e, s, f ′ |= PF

e, s, f |=F f ⇔ f ≡ e(f)
e, s, f |=F B ⇔ ~B�s = true
e, s, f |=F ∃var.PF ⇔ ∃v. e, s[var 7→ v], f |=F PF

e, s, f |=F ∃lvar.PF ⇔ ∃v. e[lvar 7→ v], s, f |=F PF

e, s, f |=F Nα.PF ⇔ ∃x. x#e,f∧ e[α 7→ x], s, f |=F PF

Fig. 4. Satisfaction Relations of Context Logic for Tree Fragments.

We also use specific formulae for our tree fragment model. The tree context
specific formulae are standard and include the variable α which expresses that
a tree context is a context hole labeled whose label is the value of variable α. The
specific connectives for tree fragments consist of ∅F, describing an empty tree
fragment, and α�PC, describing a tree context satisfying PC with hole address
given by the value of variable α. This specific formula α�PC is analogous to
the atomic formula n 7→ n1, ..., nn except that we work with hole variables not
node identifier variables. We also have existential quantification over location
name, tree context and tree fragment variables. Finally, we add the tree context
expression formula @α which describes a tree context that contains α free; the
analogous formula for tree fragments is derivable.

Definition 10 (Formulae). The formulae of Context Logic for tree fragments include
tree context formulae PC and tree fragment formulae PF given by:

PC ::=
PC ⇒ PC | falseC

| ∅C | α | n[PC] | PC ⊗ PC

| T | c | 〈c〉 | B | @α

PF ::=
PF ⇒ PF | falseF Classical formulae
| PF ∗ PF | PF −∗ PF | αrPF | α −r PF Structural formulae
| ∅F | α�PC Specific formulae
| f | B Expression formulae
| ∃var.PF | ∃lvar.PF | Nα.PF Quantification

Notice that the structure of the tree fragment formulae are orthogonal to the
structure of the tree context formulae. It is easy to adapt this approach to other
data structures such as sequences and terms.

Definition 11 (Satisfaction Relation). Given a logical environment e and a variable
store s, the semantics of Context Logic for tree fragments (see Figure 4) is given by two
satisfaction relations e, s, c |=C PC and e, s, f |=F PF defined on tree contexts and tree
fragments.

Definition 12 (Derived Formulae). The standard classical logic connectives are
derived from false and⇒ as usual, and the following useful formulae are defined:

tree(PC) , PC ∧ ¬∃α.@α
n , n[∅C]

◦[PC] , ∃m. m[PC]

♦PF , trueF ∗ PF

Hα.PF , Nα. αrPF

12 Philippa Gardner and Mark Wheelhouse

Formula tree(PC) describes a complete tree. Formula n allows us to drop the
need to mention when a subtree is empty. Formula ◦[PC] allows us to drop the
identifier of a node. Formula ♦PF allows us to express that, somewhere in the
tree fragment, PF holds. Finally, the hiding quantification, Hα, is shorthand for
revelation over a fresh label.

Example 6 (Context Logic Examples).

(a) The tree fragment formula α�n[γ]∗β�m[δ] describes a tree fragment consist-
ing of a node n with address α and context hole γ and node m with address
β and context hole δ; the n and m are non-equal. Now consider the fragment
formula:

ω�n[γ] ⊗ m[δ] ⇔ α, βr(ω�α ⊗ β ∗ α�n[γ] ∗ β�m[δ])

The first formula states that the nodes n and m are siblings with address
ω. The second formula states that the node n has address α, the node m has
address β and the holes α and β are siblings with addressω. The labels α and
β are revealed in the fragment and thus these two formulae are equivalent.
The separation connective ∗ allows us to add more pieces to the tree fragment
and the revelation connectiver allows us to link up, and break apart, these
pieces.

(b) The tree fragment formula α�n[γ] ∗ β�m[tree(c)] describes a tree fragment
consisting of a single node n at address α and a complete tree with top
node m at address β. This formula is the precondition of the small axiom of
appendChild. In particular, due to the satisfaction relation for ∗, we know
that node n cannot appear in the tree with top node m without violating
the unique location name requirement of the tree fragment. This style of
formula allows us to capture the tree fragments required for the successful
running of the move subtree commands of our update language, elegantly
expressing both the case where the trees at n and m are disjoint and the case
where n is an ancestor of m.

(c) The tree fragment formula ∃c.Hα. ((α�n[∅C] −∗ (α −r PF)) ∗ α�n[tree(c)])
describes a tree fragment which can be split into a complete tree with top
node n at addressα and a tree fragment, that when extended by node nwith
the empty tree beneath it satisfies some property PF. The use ofr hides the
labelα allowing us to pull the tree with top node n out of the larger fragment.
The use of −r describes putting the extracted tree fragment back into the
larger fragment. If this tree fragment has had the subtree at n removed then
the property PF must now hold. This formula is the weakest precondition
of the deleteSubtree(n) command.

5 Local Hoare Reasoning

We use the logic defined in Section 4 to provide local Hoare reasoning about
programs written in the language defined in Definition 6. First we give a fault
avoiding partial correctness interpretation of local Hoare triples following [18].

Small Specifications for Tree Update 13
{∅F} skip {∅F}

{∅F ∧ (n = n0)} n := N {∅F ∧ (n = N[n0/n])}
{∅F ∧ (t = t0)} t := T {∅F ∧ (t = T[t0/t])}
{α�n[tree(c)]} t := copy(n) {α�n[tree(c)] ∧ (t = 〈n[tree(c)]〉)}

{α�m[β ⊗ n[δ] ⊗ γ] ∧ (n′ = n0)} n′ := getUp(n) {α�m[β ⊗ n[n0/n
′][δ] ⊗ γ] ∧ (n′ = m)}

{α�n[δ] ⊗ m[β] ∧ (n′ = n0)} n′ := getRight(n) {α�n[n0/n
′][δ] ⊗ m[β] ∧ (n′ = m)}

{α�m[β ⊗ n[δ]] ∧ (n′ = n0)} n′ := getRight(n) {α�m[β ⊗ n[n0/n
′][δ]] ∧ (n′ = null)}

{α�n[δ ⊗ m[β]] ∧ (n′ = n0)} n′ := getLast(n) {α�n[n0/n
′][δ ⊗ m[β]] ∧ (n′ = m)}

{α�n[∅C] ∧ (n′ = n0)} n′ := getLast(n) {α�n[n0/n
′][∅C] ∧ (n′ = null)}

{α�n[β]} deleteNode(n) {α�β}
{α�n[tree(c)]} deleteSubtree(n) {α�n[∅C]}

{α�n[β]} insertNodeAbove(n) {α�◦[n[β]]}
{α�n[β]} insertRight(n, T) {α�n[β] ⊗ T}

{α�n[γ] ∗ β�m[δ]} moveNodeAbove(n, m) {α�m[n[γ]] ∗ β�δ}
{α�n[γ] ∗ β�m[δ]} appendNode(n, m) {α�n[γ ⊗ m[∅C]] ∗ β�δ}

{α�n[γ] ∗ β�m[tree(c)]} appendSub(n, m) {α�n[γ ⊗ tree(c)] ∗ β�m[∅C]}

Fig. 5. Small Axioms for the Tree Update Language.

Definition 13 (Local Hoare Triples). Recall the evaluation relation relating con-
figuration triples C, s, f, terminal states s, f and faults. The fault-avoiding partial cor-
rectness interpretation of local Hoare Triples is given below:

{PF} C {QF} ⇔ ∀e, s, f. f ree(C)∪ f ree(P)∪ f ree(Q) ⊆ dom(s) ∧ e, s, f |=F PF

⇒ C, s, f 6 fault ∧ ∀s′, f ′.C, s, f s′, f ′⇒ e, s′, f ′ |=F QF

Definition 14 (Small Axioms). The Small Axioms are given in Figure 5.

Definition 15 (Inference Rules). The local reasoning inference rules include the
standard Hoare Logic Rules for Sequencing, Consequence, Disjunction, Auxiliary Vari-
able Elimination, If-Then-Else, While-Do, and local reasoning rules for Fresh Label
Elimination, Separation Frame and Revelation Frame:

F L E:
{PF} C {QF}

{ Nα.PF} C { Nα.QF}

A V E:
{PF} C {QF}

{∃n.PF} C {∃n.QF}
n < Free(C)

R F:
{PF} C {QF}

{αrPF} C {αrQF}

S F:
{PF} C {QF}

{PF ∗ RF} C {QF ∗ RF}
Mod(C) ∩ Free(RF) = {}

The Auxiliary Variable Elimination and Separation Frame rules are standard
from Separation Logic. The Revelation Frame rule is the natural consequence of
having restriction in the model. The Fresh Label Elimination rule is analogous
to the Auxiliary Variable Elimination rule.
Our reasoning system is sound. The weakest preconditions of our tree update
commands (given in Figure 6) are derivable; proof in full paper [8]. This means
that our local Hoare reasoning is complete for straight line code.

6 Examples

We provide specifications for each of the example programs given in section 2.
We make the assumption that all locally defined variables, such as temp in the
appendChild program, are disjoint from all other program variables.

14 Philippa Gardner and Mark Wheelhouse

{PF} skip {PF}

{∃n0. (n = n0) ∧ PF[N/n]} n := N {PF}

{∃t0. (t = t0) ∧ PF[T/t]} t := T {PF}

{∃c.Hα.♦α�n[tree(c)] ∧ (α −r PF[〈n[tree(c)]〉/t])} t := copy(n) {PF}

{∃m, n0.Hα, β, γ, δ.♦α�m[β ⊗ n[δ] ⊗ γ] ∧ (n′ = n0) ∧ (α, β, γ, δ −r PF[m/n′])} n′ := getUp(n) {PF}

{∃m, n0.Hα, β, δ.
♦α�n[δ] ⊗ m[β] ∧ (n′ = n0) ∧ (α, β, δ −r PF[m/n′])

∨ ♦α�m[β ⊗ n[δ]] ∧ (n′ = n0) ∧ (α, β, δ −r PF[null/n′])
} n′ := getRight(n) {PF}

{∃m, n0.Hα, β, δ.
♦α�n[δ ⊗ m[β]] ∧ (n′ = n0) ∧ (α, β, δ −r PF[m/n′])
∨ ♦α�n[∅C] ∧ (n′ = n0) ∧ (α −r PF[null/n′])

} n′ := getLast(n) {PF}

{Hα, β. ((α�β −∗ (α, β −r PF)) ∗ α�n[β])} deleteNode(n) {PF}

{∃c.Hα. ((α�n[∅C] −∗ (α −r PF)) ∗ α�n[tree(c)])} deleteSubtree(n) {PF}

{Hα, β. ((α�◦[n[β]] −∗ (α, β −r PF)) ∗ α�n[β])} insertNodeAbove(n) {PF}

{Hα, β. ((α�n[β] ⊗ T −∗ (α, β −r PF)) ∗ α�n[β])} insertRight(n, T) {PF}

{Hα, β, γ, δ. (((α�m[n[γ]] ∗ β�δ) −∗ (α, β, γ, δ −r PF)) ∗ (α�n[γ] ∗ β�m[δ]))} moveNodeAbove(n, m) {PF}

{Hα, β, γ, δ. (((α�n[γ ⊗ m[∅C]] ∗ β�δ) −∗ (α, β, γ, δ −r PF)) ∗ (α�n[γ] ∗ β�m[δ]))} appendNode(n, m) {PF}

{∃c.Hα, β, γ. (((α�n[γ ⊗ tree(c)] ∗ β�m[∅C]) −∗ (α, β, γ −r PF)) ∗ (α�n[γ] ∗ β�m[tree(c)]))} appendSub(n, m) {PF}

Fig. 6. Weakest Preconditions of the atomic commands given in Figure 3.

appendChild: In example 1 of section 2 we gave the program appendChild. Its
specification and derivation are:

{α�n[γ] ∗ β�m[tree(c)]}
appendChild(n, m)

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅C}

{α�n[γ] ∗ β�m[tree(c)]}
{Hδ. α�n[γ] ∗ β�m[δ] ∗ δ�tree(c)}
insertRight(m, ◦[∅T]);
{Hδ. α�n[γ] ∗ β�m[δ] ⊗ ◦[∅T] ∗ δ�tree(c)}
temp := getLeft(m);
{Hδ. α�n[γ] ∗ β�m[δ] ⊗ temp[∅C] ∗ δ�tree(c)}
{α�n[γ] ∗ β�m[tree(c)] ⊗ temp[∅C]}
{Hδ, ǫ. α�n[γ] ∗ β�δ ⊗ ǫ ∗ δ�m[tree(c)] ∗ ǫ�temp[∅C]}
appendSub(temp, m);
{Hδ, ǫ. α�n[γ] ∗ β�δ ⊗ ǫ ∗ δ�m[∅C] ∗ ǫ�temp[tree(c)]}
appendNode(n, m);
{Hδ, ǫ. α�n[γ ⊗ m[∅C]] ∗ β�δ ⊗ ǫ ∗ δ�∅C ∗ ǫ�temp[tree(c)]}
appendSub(m, temp);
{Hδ, ǫ. α�n[γ ⊗ m[tree(c)]] ∗ β�δ ⊗ ǫ ∗ δ�∅C ∗ ǫ�temp[∅C]}
deleteNode(temp)
{Hδ, ǫ. α�n[γ ⊗ m[tree(c)]] ∗ β�δ ⊗ ǫ ∗ δ�∅C ∗ ǫ�∅C}

{α�n[γ ⊗ m[tree(c)]] ∗ β�∅C}

The appC(n, m) program below has equivalent behavior to appendChild(n, m)
modulo renaming of the tree at m, and an analogous specification:

appC(n, m) , t := copy(m);
deleteTree(m);
insertLast(n, t)

{α�n[γ] ∗ β�m[tree(c)]}
appC(n, m)

{α�n[γ ⊗ 〈m[tree(c)]〉] ∗ β�∅C}

The derivation of this specification is similar to the derivation of appendChild
given above. In multi-holed Context logic we could give small specifications for
each of the atomic commands used to construct the appC program. However,
we cannot provide a small specification for appC directly from the small axioms
of these atomic commands. As we discussed in the introduction, we instead
must use a specification with a context variable C to describe the linking context
between nodes n and m.

Node Manipulation: In examples 2, 3 and 4 of section 2 we gave three node
manipulation programs; simple(n), nodeSwap(n, m) and nodeCycle(n). The spec-
ifications for each of these programs are:

{α�n[m[β] ⊗ γ]}
simple(n)

{α�m[n[β] ⊗ γ]}

{α�n[γ] ∗ β�m[δ]}
nodeSwap(n, m)
{α�m[γ] ∗ β�n[δ]}

{α�n[m[β] ⊗ γl[δ]]}
nodeCycle(n)

{α�l[n[β] ⊗ γm[δ]]}

The derivations of these specifications are shown in Figure 7.

Small Specifications for Tree Update 15

simple derivation:

{α�n[m[β] ⊗ γ]}
insertNodeAbove(n);
{α� ◦ [n[m[β] ⊗ γ]]}
temp := getUp(n);
{α�temp[n[m[β] ⊗ γ]]}
first := getFirst(n);
{α�temp[n[first[β] ⊗ γ]] ∧ (m = first)}
moveNodeAbove(first, n);
{α�temp[n[first[β]] ⊗ γ] ∧ (m = first)}
moveNodeAbove(temp, first);
{α�first[temp[n[β] ⊗ γ]] ∧ (m = first)}
deleteNode(temp)
{α�first[n[β] ⊗ γ] ∧ (m = first)}
{α�m[n[β] ⊗ γ]}

nodeSwap derivation:

{α�n[γ] ∗ β�m[δ]}
insertNodeAbove(n);
{α� ◦ [n[γ]] ∗ β�m[δ]}
temp := getUp(n);
{α�temp[n[γ]] ∗ β�m[δ]}
moveNodeAbove(m, n);
{α�temp[γ] ∗ β�n[m[δ]]}
moveNodeAbove(temp, m);
{α�m[temp[γ]] ∗ β�n[δ]}
deleteNode(temp)
{α�m[γ] ∗ β�n[δ]}

nodeCyclederivation:

{α�n[m[β] ⊗ γl[δ]]}
first := getFirst(n);
{

α�n[first[β] ⊗ γl[δ]]
∧ (first = m)

}

last := getLast(n);
{

α�n[first[β] ⊗ γlast[δ]]
∧ (first = m) ∧ (last = l)

}

nodeSwap(n, last);
{

α�last[first[β] ⊗ γn[δ]]
∧ (first = m) ∧ (last = l)

}

nodeSwap(n, first)
{

α�last[n[β] ⊗ γfirst[δ]]
∧ (first = m) ∧ (last = l)

}

{α�l[n[β] ⊗ γm[δ]]}

Fig. 7. Derivations of the specifications for simple, nodeSwap and nodeCycle.

Hierarchical Queue: The specification and derivation of the queuePop program
from example 5 of section 2 are:

{α�n[m[tree(c)] ⊗ γ ⊗ i[β]]}
queuePop(n)

{α�m[γ ⊗ n[β] ⊗ i[tree(c)]]}

{α�n[m[tree(c)] ⊗ γ ⊗ i[β]]}
next := getFirst(n);
{α�n[next[tree(c)] ⊗ γ ⊗ i[β]] ∧ (next = m)}
info := getLast(n);
{α�n[next[tree(c)] ⊗ γ ⊗ info[β]] ∧ (next = m) ∧ (info = i)}
nodeSwap(n, info);
{α�info[next[tree(c)] ⊗ γ ⊗ n[β]] ∧ (next = m) ∧ (info = i)}
nodeSwap(next, info);
{α�next[info[tree(c)] ⊗ γ ⊗ n[β]] ∧ (next = m) ∧ (info = i)}
appendChild(next, info)
{α�next[γ ⊗ n[β] ⊗ info[tree(c)]] ∧ (next = m) ∧ (info = i)}
{α�m[γ ⊗ n[β] ⊗ i[tree(c)]]}

7 Conclusion
We have shown how to give small axioms for commands such as the appendChild
command, by developing Context Logic reasoning for tree fragments. It is
straightforward to transfer the techniques developed here to Featherweight
DOM [7]. For this paper, we have worked with the intuitive understanding of
what it means for command axioms to be small. With Raza, Gardner has devel-
oped the formal definitions of footprints and small specifications for abstract
local functions using Abstract Separation Logic [14]. It would be interesting to
extend this abstract theory to the tree fragments and reasoning studied here,
and prove that the axioms really are small.

We believe the results presented here form a pivotal step in the develop-
ment of Context Logic reasoning. The key point about Context Logic is that it
reasons about structured data at the same level of abstraction as the data itself.
Our previous work used various forms of separating application, which were
appropriate for the applications we had in mind. Here, we move nearer to Sep-
aration Logic reasoning. We use the separating conjunction for reasoning about
disjoint tree fragments, and the revelation connectives and freshness quantifi-
cation for reasoning about restriction. This reasoning style means that we can
pull out different tree fragments from the working tree, update them, and put
them back again in any undetermined order. The ideas in this paper provides us
with the technology to extend our reasoning to concurrent tree update following
O’Hearn’s work on concurrent Separation Logic [1],[13],[16].

16 Philippa Gardner and Mark Wheelhouse

References

1. S. Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375,
2007.

2. C. Calcagno, T. Dinsdale-Young, and P. Gardner. Adjuct elimination in context logic
for trees. In APLAS, 2007.

3. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL,
2005.

4. L. Cardelli and A. D. Gordon. Ambient logic. 2006.
5. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable

binding.
6. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Dom: Towards a formal

specification. In Plan-X: Programming Language Techniques for XML, 2008.
7. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local hoare reasoning about

dom. In PODS: Symposium on Principles of Database Systems, 2008.
8. P. Gardner and M. Wheelhouse. Small specifications for tree update, 2009.

http://www.doc.ic.ac.uk/∼mjw03/PersonalWebpage/papers.html.
9. P. Gardner and U. Zarfaty. Integrated reasoning about high-level tree update and a

low-level implementation. submitted to publication.
10. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data structures.

In POPL, pages 14–26, 2001.
11. R. Milner. A calculus of mobile processes, parts. I and II. Information and Computation,

100:1–77, 1992.
12. P. O’Hearn, J. Reynolds, and H. Yang. Local Reasoning about Programs that Alter Data

Structures, volume 2142. January 2001.
13. P. W. Ohearn. Resources, concurrency and local reasoning. In Theoretical Computer

Science, pages 49–67. Springer, 2004.
14. M. Raza and P. Gardner. Footprints in local reasoning. In FoSSaCS ’08: Proceedings

of the 11th International Conference on Foundations of Software Science and Computation
Structures, volume 4962, pages 201–215, London, UK, 2008. Springer.

15. G. Smith. Providing a formal specification for dom core level 1, 2009. PhD Thesis.
Ongoing work.

16. V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.
In In 18th CONCUR, pages 256–271. Springer, 2007.

17. W3C. Dom: Document object model. W3C recommendation, 2005.
http://www.w3.org/DOM/.

18. H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In FoSSaCS ’02:
Proceedings of the 5th International Conference on Foundations of Software Science and
Computation Structures, pages 402–416, London, UK, 2002. Springer-Verlag.

