491 KNOWLEDGE REPRESENTATION 491 KNOWLEDGE REPRESENTATION

Tutorial Exercise Tutorial Exercise
Splitting Sets Splitting Sets
SOLUTIONS

Use splitting sets to compute stable models of the following:

Question 1 Let’s take the splitting set U = {q, s}. {p, ¢, s} is also a splitting set. We'll

1. p« q nots
look at that one later.

T« p, not ¢, not s

s« mnot ¢
p <« g, not s

¢ < not s
r <« p, not ¢, not s
2. § «— mnot ¢ U:{(LS}
T« p, not q q < not s
g« p, not r
s« 1, not s The bottom part has two stable models: {¢} and {s}. Consider them in turn.
3. (a) p— mnotg 1. {¢} Simplifying the top part gives the program {p «—}. This obviously has just one
req stable model, {p}.
(b) p <« mot g A stable model of the original program is therefore {¢} U {p}.
re—gq
r 2. {s} Simplifying the top part gives ). This obviously has just one stable model, §.
(¢) p«<— not g A stable model of the original progam is {s} U@ = {s}.
re—gq
r There are no other stable models.
q Just to check, suppose we started with the other splitting set U = {p, ¢, s}.
4. can_fly < bird, not ab_bird r < p, not ¢, not s
cant_fly < bird, ab_bird P+ g, not s U={p,q,s}
ab_bird < ostrich s« mnot ¢
bird < ostrich q < not s
bird
cant_fly We need to find stable models of the bottom part. We can split again:
5. Suppose that logic program P contains a clause p <+ ¢, not s

5+ mnot ¢ U ={q,s}

p<«r,notp ¢ < not s

where p does not occur anywhere else in P. (In particular, p is not defined in P.) One can see there are two stable models: one is {p, ¢} and the other is {s}.
Show that there is no stable model of P that contains . In both cases, simplifying the top part of the original program gives us @. So the original
program has two stable models: {p, ¢} and {s}. (Same as above.)



Question 2 (Note in passing that there is no stable model containing . Why? See
Question 5.)

There are two splitting sets: {p} and {p,q,7}. The first seems easier to handle. So we
have:

r < p, not ¢q
q < p, not r
S+ 1, not s

p U ={p}
The bottom part obviously has one stable model: {p}. Simplifying the top part gives:

r < not ¢
q < not r
$«— 1, not s

This program can be split thus:

S« 1, not s
r+ not ¢ U ={q,r}
q < not r

There are two stable models for the bottom part: {¢} and {r}.

Simplifying {s < r, not s} with {q} relative to U’ = {q,7} gives {}. This has one stable
model, ). So one stable model for the original program is § U {q¢} U {p} = {p,q}.
Simplifying {s < r, not s} with {r} relative to U’ = {q,r} gives {s < not s}. This has
no stable model. (Check: there are only two candidates, {s} and @, and neither is stable.)
So {r} for the bottom part does not yield a stable model for the original program.

There is only one stable model for the original program, viz. {p, ¢}.
(We already knew there could not be one containing r.)

(Thanks to Tim Pierce and Robin Bennett for pointing out some errors in earlier versions
of this handout.)

Question 3 In each case take the splitting set U = {r, ¢}.

1. p+« not g
T g U=A{rq}
The (unique) stable model of the bottom part is (.
Simplifying the top part gives {p}. This has one stable model {p}.
So the only stable model of the original program is § U {p} = {p}.
2. p+« not g

re—gq U={rq}
.

The (unique) stable model of the bottom part is {r}.
Simplifying the top part gives {p}. This has one stable model {p}.
So the only stable model of the original program is {r} U {p} = {r,p}.

3. p+« mnotg
req U={r.q}
r
q
The (unique) stable model of the bottom part is {r, ¢}.

Simplifying the top part gives (). This has one stable model, .
So the only stable model of the original program is {r, ¢} U® = {r, ¢}.

Question 4 Take the splitting set U = {bird, ostrich}. One could also use the splitting
set {bird, ostrich, ab_bird}.

can_fly «<— bird, not ab_bird

cant_fly «— bird, ab_bird

cant_fly

ab_bird < ostrich

bird — ostrich U = {bird, ostrich}
bird

The stable model of the bottom part is obviously {bird}. Simplifying the top part with
{bird} and relative to U = {bird, ostrich} gives:

can_fly < not ab_bird
cant_fly «— ab_bird
cant_fly

This has the same form as part (b) of the previous question. There is thus one stable
model, {can_fly,cant_fly}, and so one stable model for the original program: {bird} U
{can_fly, cant_fly}.

(As an expression of default rules about flying birds and ostriches, the above formulation
is obviously inadequate.)

Question 5 P contains a clause
p < r, not p

where p does not occur anywhere else in P. (In particular, p is not defined in P.)
Clearly P can be split with the clause above in the top part and everything else in P in
the bottom part. (The splitting set is all atoms of P except p.)

If r belongs to a stable model of P, it must belong to a stable model of the bottom part.
Suppose there is such a model. Then simplifying the top part using this stable model will
give us

{p < not p}
But that program has no stable model. (Easy to check.)



