
491 Knowledge Representation

Tutorial Exercise

Splitting Sets

Use splitting sets to compute stable models of the following:

1. p ← q, not s

r ← p, not q, not s

s ← not q

q ← not s

2. p

r ← p, not q

q ← p, not r

s ← r, not s

3. (a) p ← not q

r ← q

(b) p ← not q

r ← q

r

(c) p ← not q

r ← q

r

q

4. can fly ← bird, not ab bird

cant fly ← bird, ab bird

ab bird ← ostrich

bird ← ostrich

bird

cant fly

5. Suppose that logic program P contains a clause

p← r, not p

where p does not occur anywhere else in P . (In particular, p is not defined in P .)

Show that there is no stable model of P that contains r.

491 Knowledge Representation

Tutorial Exercise

Splitting Sets

SOLUTIONS

Question 1 Let’s take the splitting set U = {q, s}. {p, q, s} is also a splitting set. We’ll
look at that one later.

p ← q, not s

r ← p, not q, not s

s ← not q U = {q, s}
q ← not s

The bottom part has two stable models: {q} and {s}. Consider them in turn.

1. {q} Simplifying the top part gives the program {p←}. This obviously has just one
stable model, {p}.

A stable model of the original program is therefore {q} ∪ {p}.

2. {s} Simplifying the top part gives ∅. This obviously has just one stable model, ∅.

A stable model of the original progam is {s} ∪ ∅ = {s}.

There are no other stable models.

Just to check, suppose we started with the other splitting set U = {p, q, s}.

r ← p, not q, not s

p ← q, not s U = {p, q, s}
s ← not q

q ← not s

We need to find stable models of the bottom part. We can split again:

p ← q, not s

s ← not q U ′ = {q, s}
q ← not s

One can see there are two stable models: one is {p, q} and the other is {s}.

In both cases, simplifying the top part of the original program gives us ∅. So the original
program has two stable models: {p, q} and {s}. (Same as above.)

1



Question 2 (Note in passing that there is no stable model containing r. Why? See
Question 5.)

There are two splitting sets: {p} and {p, q, r}. The first seems easier to handle. So we
have:

r ← p, not q

q ← p, not r

s ← r, not s

p U = {p}

The bottom part obviously has one stable model: {p}. Simplifying the top part gives:

r ← not q

q ← not r

s ← r, not s

This program can be split thus:

s ← r, not s

r ← not q U ′ = {q, r}
q ← not r

There are two stable models for the bottom part: {q} and {r}.

Simplifying {s ← r, not s} with {q} relative to U ′ = {q, r} gives {}. This has one stable
model, ∅. So one stable model for the original program is ∅ ∪ {q} ∪ {p} = {p, q}.

Simplifying {s ← r, not s} with {r} relative to U ′ = {q, r} gives {s ← not s}. This has
no stable model. (Check: there are only two candidates, {s} and ∅, and neither is stable.)
So {r} for the bottom part does not yield a stable model for the original program.

There is only one stable model for the original program, viz. {p, q}.

(We already knew there could not be one containing r.)

(Thanks to Tim Pierce and Robin Bennett for pointing out some errors in earlier versions
of this handout.)

Question 3 In each case take the splitting set U = {r , q}.

1. p ← not q

r ← q U = {r , q}

The (unique) stable model of the bottom part is ∅.

Simplifying the top part gives {p}. This has one stable model {p}.

So the only stable model of the original program is ∅ ∪ {p} = {p}.

2. p ← not q

r ← q U = {r , q}
r

The (unique) stable model of the bottom part is {r}.

Simplifying the top part gives {p}. This has one stable model {p}.

So the only stable model of the original program is {r} ∪ {p} = {r , p}.

2

3. p ← not q

r ← q U = {r , q}
r

q

The (unique) stable model of the bottom part is {r , q}.

Simplifying the top part gives ∅. This has one stable model, ∅.

So the only stable model of the original program is {r , q} ∪ ∅ = {r , q}.

Question 4 Take the splitting set U = {bird , ostrich}. One could also use the splitting
set {bird , ostrich, ab bird}.

can fly ← bird, not ab bird

cant fly ← bird, ab bird

cant fly

ab bird ← ostrich

bird ← ostrich U = {bird , ostrich}
bird

The stable model of the bottom part is obviously {bird}. Simplifying the top part with
{bird} and relative to U = {bird , ostrich} gives:

can fly ← not ab bird

cant fly ← ab bird

cant fly

This has the same form as part (b) of the previous question. There is thus one stable
model, {can fly, cant fly}, and so one stable model for the original program: {bird} ∪
{can fly , cant fly}.

(As an expression of default rules about flying birds and ostriches, the above formulation
is obviously inadequate.)

Question 5 P contains a clause

p← r, not p

where p does not occur anywhere else in P . (In particular, p is not defined in P .)

Clearly P can be split with the clause above in the top part and everything else in P in
the bottom part. (The splitting set is all atoms of P except p.)

If r belongs to a stable model of P , it must belong to a stable model of the bottom part.
Suppose there is such a model. Then simplifying the top part using this stable model will
give us

{p← not p}

But that program has no stable model. (Easy to check.)

3


