491 Knowledge Representation

Tutorial Exercise

Fixpoint semantics for definite programs SOLUTIONS

Question 1

(a) Let $IDB = \{ p \leftarrow q, r ; q \leftarrow s \}$ and $EDB = \{ r, s \}$. Clearly $Cl_{IDB}(EDB) = \{ p, q, r, s \}$. Compute $Cl_{IDB}(EDB) = T'_{IDB}\uparrow^{\omega}(EDB)$: $T'_{IDB}\uparrow^{0}(EDB) = EDB = \{ r, s \}$ $T'_{rpp}\uparrow^{1}(EDB) = T'_{rpp}(\{ r, s \}) = \{ q \} \cup \{ r, s \}$

$$T'_{IDB}\uparrow^{1}(EDB) = T'_{IDB}(\{r,s\}) = \{q\} \cup \{r,s\}$$
$$T'_{IDB}\uparrow^{2}(EDB) = T'_{IDB}(\{q,r,s\}) = \{p,q\} \cup \{q,r,s\}$$
$$T'_{IDB}\uparrow^{3}(EDB) = T'_{IDB}(\{p,q,r,s\}) = \{p,q\} \cup \{p,q,r,s\}$$
$$\vdots$$
$$T'_{IDB}\uparrow^{\omega}(EDB) = \{r,s\} \cup \{q,r,s\} \cup \{p,q,r,s\}$$

Compare $T_{IDB}\uparrow^{\omega}(EDB)$:

$$T_{IDB}\uparrow^{0}(EDB) = EDB = \{r, s\}$$

$$T_{IDB}\uparrow^{1}(EDB) = T_{IDB}(\{r, s\}) = \{q\}$$

$$T_{IDB}\uparrow^{2}(EDB) = T_{IDB}(\{q\}) = \emptyset$$

$$T_{IDB}\uparrow^{3}(EDB) = T_{IDB}(\emptyset) = \emptyset$$
:
$$T_{IDB}\uparrow^{\infty}(EDB) = \{r, s\} \cup \{q\} = \{q, r, s\}$$
(b) Let $IDB = \{p \leftarrow q, r; q \leftarrow s; r\}$ and $EDB = \{s\}$.
Clearly $Cl_{IDB}(EDB) = \{p, q, r, s\}$.
Compute $Cl_{IDB}(EDB) = T'_{IDB}\uparrow^{\infty}(EDB)$:

$$T'_{IDB}\uparrow^{0}(EDB) = EDB = \{s\}$$

$$T'_{IDB}\uparrow^{1}(EDB) = T'_{IDB}(\{s\}) = \{q, r\} \cup \{s\}$$

$$T_{IDB}^{*}\uparrow^{2}(EDB) = T_{IDB}^{'}(\{q, r, s\}) = \{p, q, r\} \cup \{q, r, s\}$$
$$T_{IDB}^{*}\uparrow^{3}(EDB) = T_{IDB}^{'}(\{p, q, r, s\}) = \{p, q, r\} \cup \{p, q, r, s\}$$
$$\vdots$$

$$T'_{IDB}\!\uparrow^{\omega}(EDB)=\{s\}\cup\{q,r,s\}\cup\{p,q,r,s\}$$

Compare $T_{IDB}\uparrow^{\omega}(EDB)$:

$$T_{IDB}^{0}(EDB) = EDB = \{s\}$$

$$T_{IDB}^{1}(EDB) = T_{IDB}(\{s\}) = \{q, r\}$$

$$T_{IDB}^{2}(EDB) = T_{IDB}(\{q, r\}) = \{p, r\}$$

$$T_{IDB}^{3}(EDB) = T_{IDB}(\{p, r\}) = \{r\}$$

$$\vdots$$

$$T_{IDB}^{\omega}(EDB) = \{s\} \cup \{q, r\} \cup \{p, r\} \cup \{r\} = \{p, q, r, s\}$$

So here $T_{IDB}\uparrow^{\omega}(EDB)$ happens to come out the same as $Cl_{IDB}(EDB)$. Part (a) was intended to show that this is not guaranteed.

Question 2

Part(a): Base case (n = 0): $T_P \uparrow^0(X) = X$ and $T'_P \uparrow^0(X) = X$. Inductive hypothesis: suppose $T_P \uparrow^k(X) \subseteq T'_P \uparrow^k(X)$. By monotony of T_P : $T_P(T_P \uparrow^k(X)) \subset T_P(T'_P \uparrow^k(X))$

Since $T_P(I) \subseteq T_P(I) \cup I$:

$$T_P(T_P\uparrow^k(X)) \subseteq T'_P(T'_P\uparrow^k(X))$$

And so:

$$T_P\uparrow^{k+1}(X)\subseteq T'_P\uparrow^{k+1}(X)$$

That completes the proof. Further: $T_P \uparrow^{\omega}(X) = \bigcup_{n \ge 0} T_P \uparrow^n(X) \subseteq \bigcup_{n \ge 0} T'_P \uparrow^n(X) = T'_P \uparrow^{\omega}(X).$

Part (b): to show $T_P \uparrow^n(\emptyset) \subseteq T_P \uparrow^{n+1}(\emptyset)$. Base case (n = 0): $T_P \uparrow^0(\emptyset) = \emptyset$, and $\emptyset \subseteq T_P \uparrow^1(\emptyset)$. Inductive hypothesis: suppose $T_P \uparrow^k(\emptyset) \subseteq T_P \uparrow^{k+1}(\emptyset)$. By monotony of T_P :

 $T_P(T_P\uparrow^{k}(\emptyset)) \subseteq T_P(T_P\uparrow^{k+1}(\emptyset))$ $T_P\uparrow^{k+1}(\emptyset) \subseteq T_P\uparrow^{(k+1)+1}(\emptyset)$

That completes the proof.

And hence, to show: $T'_P \uparrow^n(\emptyset) = T_P \uparrow^n(\emptyset)$. Base case (n = 0): $T'_P \uparrow^0(\emptyset) = \emptyset = T_P \uparrow^0(\emptyset)$. Inductive hypothesis: suppose $T'_P \uparrow^k(\emptyset) = T_P \uparrow^k(\emptyset)$.

$$\begin{split} T'_{P}\uparrow^{k+1}(\emptyset) &= T'_{P}(T'_{P}\uparrow^{k}(\emptyset)) \\ &= T'_{P}(T_{P}\uparrow^{k}(\emptyset)) \quad (\text{inductive hypothesis}) \\ &= T_{P}(T_{P}\uparrow^{k}(\emptyset)) \cup T_{P}\uparrow^{k}(\emptyset) \\ &= T_{P}\uparrow^{k+1}(\emptyset) \cup T_{P}\uparrow^{k}(\emptyset) \\ &= T_{P}\uparrow^{k+1}(\emptyset) \quad (\text{because } T_{P}\uparrow^{k}(\emptyset) \subseteq T_{P}\uparrow^{k+1}(\emptyset)) \end{split}$$

That completes the proof.

Further: $T_P \uparrow^{\omega}(\emptyset) = \bigcup_{n \ge 0} T_P \uparrow^n(\emptyset) = \bigcup_{n \ge 0} T'_P \uparrow^n(\emptyset) = T'_P \uparrow^{\omega}(\emptyset).$

Question 3 A set X of atoms is a Herbrand model of $IDB \cup EDB$

iff	$T_{IDB\cup EDB}(X) \subseteq X$	(1)
iff	$T_{IDB}(X) \cup EDB \subseteq X$	(2)
iff	$T_{IDB}(X) \subseteq X$ and $EDB \subseteq X$	(3)

So the least set of atoms satisfying (1) is also the least set of atoms satisfying (3), which is $Cl_{IDB}(EDB)$ by definition.

You can also do this by checking that $T'_{IDB\cup EDB}\uparrow^n(\emptyset) = T'_{IDB}\uparrow^n(EDB).$

Question 4 Cl_{IDB} is a classical consequence operator:

• $X \subseteq Cl_{IDB}(X)$ by definition of Cl_{IDB} .

• To show $Cl_{IDB}(Cl_{IDB}(X)) \subseteq Cl_{IDB}(X)$:

(i) $Cl_{IDB}(X) \subseteq Cl_{IDB}(X)$ (obviously)

(ii) $Cl_{IDB}(X)$ is closed under the rules IDB (by definition).

But the smallest set of atoms satisfying (i) and (ii) is by definition the closure of $Cl_{IDB}(X)$ under the rules IDB, i.e. $Cl_{IDB}(Cl_{IDB}(X))$. So $Cl_{IDB}(Cl_{IDB}(X)) \subseteq Cl_{IDB}(X)$.

• Suppose $X_1 \subseteq X_2$. Then $X_1 \subseteq X_2 \subseteq Cl_{IDB}(X_2)$. So:

(i) $X_1 \subseteq Cl_{IDB}(X_2)$

(ii) $Cl_{IDB}(X_2)$ is closed under the rules IDB (by definition).

But the smallest set of atoms satisfying (i) and (ii) is by definition $Cl_{IDB}(X_1)$. So $Cl_{IDB}(X_1) \subseteq Cl_{IDB}(X_2)$.

Notice that the third property (monotony of Cl_{IDB}) does not depend on monotony of T_{IDB} . But if IDB are not definite, then T_{IDB} is not necessarily monotonic, and then there is no guarantee that Cl_{IDB} exists. **Question 5** Since $\{r\} \subseteq Cl_{IDB}(\{r\})$ there are four candidates for $Cl_{IDB}(\{r\})$, if it exists:

- Cl_{IDB}({r}) = {r}?
 No: {r} is not closed under rules IDB: T_{IDB}({r}) = {p,q} ⊈ {r}.
- $Cl_{IDB}(\{r\}) = \{p, r\}$ or $Cl_{IDB}(\{r\}) = \{q, r\}$?

No: not unique. $\{p, r\}$ is closed under rules IDB: $T_{IDB}(\{p, r\}) = \{p\} \subseteq \{p, r\}$. Consider the subsets of $\{p, r\}$: $\{r\}$ is not closed under rules IDB (see above), and $\{p\}$ and \emptyset do not contain $\{r\}$.

However: the same holds for $\{q, r\}$, by the same argument.

So $\{p, r\}$ is not the *unique* smallest set X such that ..., and nor is $\{q, r\}$.

• $Cl_{IDB}(\{r\}) = \{p, q, r\}?$

No: not minimal. $\{p, q, r\}$ is closed under rules IDB: $T_{IDB}(\{p, q, r\}) = \emptyset \subseteq \{p, q, r\}$. But $\{p, q, r\}$ is not the smallest such set containing $\{r\}$: the subset $\{p, r\}$ is also closed under IDB, for example (above).