
491 Knowledge Representation

Tutorial Exercise

Default Logic
(These are not necessarily the kinds of questions you should expect in an exam.)

Question 1 Determine all the extensions of the default theory:

D = { : ¬q,¬r
p

,
: ¬p,¬r
q

,
: ¬p,¬q
r

}, W = {}

Question 2 Determine all the extensions of the following default theories:

i) D = {p : ¬q
r

,
p : ¬r
q
}, W = {p}

ii) D = { : q

p
,

: q

q
,

: ¬q
¬q , }, W = {}

Do this by translating the above into the equivalent logic programs, computing the answer
sets, and then checking that the corresponding extensions really are extensions.

Question 3 Construct an example to show
α : β1, β2

γ
and

α : β1 ∧ β2
γ

are not equivalent.

Question 4 Check what is said about extensions in all the examples in the lecture notes,
and in particular

• the ‘Reggie and Ronnie are not both innocent’ example,

• and the example that demonstrates the existence of extensions is not guaranteed, viz.

D = { : p

¬p }, W = {}

Question 5 (Optional) Prove the following properties of CnR(W ) given in the lecture
notes:

• W ⊆ CnR(W ) (‘inclusion’)

• CnR(W ) ⊆ CnR(W ∪X), any set of formulas X (CnR is monotonic)
which is equivalent to A ⊆ B ⇒ CnR(A) ⊆ CnR(B)

• X ⊆ CnR(W ) ⇒ CnR(W ∪X) ⊆ CnR(W ) (‘cut’ alias ‘cumulative transitivity’)
which is equivalent to W ⊆ W ′ ⊆ CnR(W ) ⇒ CnR(W ′) ⊆ CnR(W )

• CnR(CnR(W )) ⊆ CnR(W ) (‘closure’)
(Recall that CnR monotonic implies ‘cut’ is equivalent to ‘closure’)

• CnR is a classical consequence relation

• Th(W ) ⊆ CnR(W ) (‘supraclassical’)

• CnR(W ) is the smallest set of formulas S such that S = Th(W ∪ TR(S) ).

Question 6 (from 2009 exam)

Let D be the following set of default rules, and let W = {p ∨ q,¬q}.

D = {p : h, s

h
,
¬q : ¬s,¬t

k
,

h : ¬s ∧ t
q → ¬t ,

h : s, t

p→ t
,

k : ¬s,¬t
s→ q

}

Show that the following two sets of formulas are extensions of (D,W )

(i) Th({p ∧ ¬q, h ∧ t}) (ii) Th({p ∧ ¬q, k ∧ ¬s})

and that the following two are not

(iii) Th({p ∧ ¬q, h ∧ ¬s}) (iv) Th({p ∧ ¬q, k ∧ t})

Show your working.

Without computing the reduct, explain why

(v) Th({p ∧ ¬q, h ∧ t, k ∧ ¬s})

could not be an extension of (D,W ).

Question 7 (Marek & Truszczyński Thm 3.50, p66)

Prove that, if E is an extension of (D,W ) then for every X ⊆ E, E is an extension of
(D,W ∪X).

(This is the essence of cumulative transitivity (‘cut’) for default logic.)

Hint: You need to show E = CnDE(W ∪X). Show the two halves separately:

E ⊆ CnDE(W ∪X) and CnDE(W ∪X) ⊆ E

Question 8 (Marek & Truszczyński Ex 3.51, p67)

Let W = ∅ and

D = { : ¬b,¬d
a

,
: ¬b,¬d
c

,
: ¬a,¬c
d

,
a : ¬c
b
}

Confirm that Th({d}) and Th({a, c}) are both extensions of (D,W ).

(D,W ∪ {a}) also has two extensions. One is Th({a, c}) (as we know from the previous
question). The other one is Th({a, b}). Confirm this. Note that from the previous question,
if E is an extension of (D,W ) then E is an extension of (D,W ∪X) for every X ⊆ E. But
(as in the example) there may be other extensions of (D,W ) unrelated to E.



Question 9 Optional: this is definitely not the kind of question you would get in an
exam.

In the first set of lecture notes (‘Logic Databases (Knowledge Bases)’) there were mentioned
two possible formalisations of the ‘Closed World Assumption’:

cwa(W )
def
= Th(W ∪ {¬p | p ∈ atoms(L) and p /∈ Th(W )})

cwa′(W )
def
= Th(W ∪ {¬p | p ∈ atoms(L) and p /∈ cwa′(W )})

(In the first set of lecture notes I wrote D for ‘database’. I have switched to so W as not
to confuse with sets of default rules.)

The first definition is Reiter’s original formalisation of the ‘Closed World Assumption’,
which pre-dates default logic by about 10 years. It is reasonably straightforward to inves-
tigate its formal properties. What about the second definition? Is it even well defined?

The basic idea is familiar enough. We want cwa′(W ) to be the smallest set of formulas
satisfying the equation above; there may be more than one such set cwa′(W ), in which case
we have to decide whether we want skeptical (intersection) or credulous (union) versions.

As we have seen, ‘X is the smallest set of formulas such that [conditions mentioning X]’
can be ambiguous. So here is a more careful definition.

Let E be a set of formulas. E is a cwa-extension of W when E = Γ(W,E) where Γ(W,E)
is the smallest set S of formulas such that

S = Th(W ∪ {¬p | p ∈ atoms(L) and p /∈ E})

Now the question: cwa′(W ) can be formulated as a Reiter default theory? How?

First figure out what the default rules should be and then check that the extensions cor-
respond to the cwa-extensions defined above.

(For the last step, look at the last part of Question 5.)

(This page deliberately left blank)



491 Knowledge Representation

Tutorial Exercise

Default Logic
SOLUTIONS

Question 1 Three extensions: Th({p}), Th({q}), Th({r}).

Question 2

i) The standard translation gives the following (normal) logic program:

r ← p, not q

q ← p, not r

p

Taking the splitting set {p} gives (eventually) two stable models (answer sets): {p, q} and
{p, r}. So the default theory has two extensions: Th({p, q}) and Th({p, r}).

ii) The standard translation gives the following (extended) logic program:

p← not ¬q
q ← not ¬q
¬q ← not q

Taking the splitting set {q,¬q} gives two answer sets for the bottom part, {q} and {¬q}.
After simplifying, we get two simplified top parts: {p ←} and ∅, respectively. So we end
up with two answer sets for the complete program: {p, q} and {¬q}.
The default theory has two extensions: Th({p, q}) and Th({¬q}).

Question 3 Consider
: p, q

r
and

: p ∧ q
r

.

The consistency check of the first one requires only that p and q individually are consistent;
the second requires that p and q together are consistent. For example, both p and q
individually are consistent with ¬(p∧ q) (which is equivalent to ¬p∨¬q), whereas p∧ q is
clearly not consistent with ¬(p ∧ q).
So let’s take W = {¬p∨¬q}. Th({¬p∨¬q, r}) is an extension of W with the first default
but is not an extension of W with the second one.

Question 4

• To reduce writing I will rewrite the example in this form:

D = {s(a) : a

a
,
s(b) : b

b
}, W = {s(a), s(b),¬(a ∧ b)}

Let’s consider E1 = Th(W ), E2 = Th(W ∪ {a}), E3 = Th(W ∪ {a, b}) = L. The case
Th(W ∪ {b}) is obviously symmetric to E2.

Note that, because ¬(a ∧ b) ∈ W , E2 = Th(W ∪ {a}) = Th(W ∪ {a,¬b}).

DE1 = {s(a)

a
,
s(b)

b
}. CnDE1 (W ) = Th(W ∪ {a, b}) = L 6= E1.

DE2 = {s(a)

a
}. CnDE2 (W ) = Th(W ∪ {a}) = E2.

DE3 = {}. CnDE3 (W ) = Th(W ) 6= E3.

That’s all I had in mind, but I suppose that strictly speaking one should check that all
possibilities have been exhausted, i.e., that there are no other extensions besides these two.
We could try to do this by translating to an extended logic program and finding its answer
sets. The formula ¬(a ∧ b) is in the wrong form, but it can be expressed in ASP style in
the form f ← a, b, not f . (You have seen that trick many times.)

So let’s compute the answer sets of:

s(a) a← s(a), not ¬a f ← a, b, not f
s(b) b← s(b), not ¬b

This is easy, using e.g. splitting sets. It’s not quite enough though. What this gives us are
the extensions of the default theory

D′ = {s(a) : a

a
,
s(b) : b

b
,
a ∧ b : ¬f

f
}, W ′ = {s(a), s(b)}

I dare say that’s equivalent to the default theory (D,W ) but it still remains to show they
are equivalent. Or: since ¬(a ∧ b) is propositionally equivalent to ¬a ∨ ¬b, we could also
try looking at answer sets of

s(a) a← s(a), not ¬a ¬a← not ¬b
s(b) b← s(b), not ¬b ¬b← not ¬a

What’s the difference? I wasn’t intending you to go this far in this question!

• The existence of extensions is not guaranteed. For example:

D = { : p

¬p }, W = {}

Suppose E is an extension of (D,W ).

• If ¬p ∈ E then DE = ∅ and E = Th(∅). But ¬p /∈ Th(∅) so contradiction.

• If ¬p /∈ E then DE = {¬p} and ¬p ∈ CnDE(∅), so contradiction again.

Question 5

• W ⊆ CnR(W ) (‘inclusion’). Trivial. Immediate from the definition of CnR(W ).

• CnR(W ) ⊆ CnR(W ∪X), any set of formulas X (CnR is monotonic).

CnR(W ) ⊆ CnR(W ∪ X) because CnR(W ∪ X) satisfies the three closure conditions for
CnR(W ) and by definition CnR(W ) is the smallest such set.

By definition, CnR(W ∪X) is closed under Th and closed under TR. So it just remains to
prove W ⊆ CnR(W ∪X). And we get this because W ⊆ W ∪X ⊆ CnR(W ∪X).



• X ⊆ CnR(W ) ⇒ CnR(W ∪X) ⊆ CnR(W ) (‘cut’ alias ‘cumulative transitivity’).

We can get this by showing that if X ⊆ CnR(W ) then CnR(W ) satisfies the three closure
conditions for CnR(W ∪ X) because (as above) CnR(W ∪ X) is the smallest such set by
definition.

Again, by definition CnR(W ) is closed under Th and closed under TR. So it just remains
to show that if X ⊆ CnR(W ) then W ∪X ⊆ CnR(W ). That’s easy: we have W ⊆ CnR(W )
and we are assuming X ⊆ CnR(W ).

• CnR(CnR(W )) ⊆ CnR(W ) (‘closure’).

Recall (first set of lecture notes) that CnR monotonic implies ‘cut’ is equivalent to ‘closure’.
The proof is given there.

• CnR is a classical consequence relation.

We have shown the three defining properties (inclusion, monotony, and cut or closure/idempotence).

• Th(W ) ⊆ CnR(W ) (‘supraclassical’)

W ⊆ CnR(W ) implies Th(W ) ⊆ Th(CnR(W )) because Th is monotonic. And Th(CnR(W )) ⊆
CnR(W ) by definition of CnR(W ).

• CnR(W ) is the smallest set of formulas S such that S = Th(W ∪ TR(S) ).

This is a bit more involved (longer) but the basic steps are more or less the same.

We need to show

1. CnR(W ) = Th(W ∪ TR(CnR(W )) )

2. If S = Th(W ∪ TR(S) ) then CnR(W ) ⊆ S.

First we show 1(a) Th(W ∪ TR(CnR(W )) ) ⊆ CnR(W ).

This is easy: W ⊆ CnR(W ) and TR(CnR(W )) ⊆ CnR(W ) imply W ∪ TR(CnR(W )) ⊆
CnR(W ). Now monotony of Th gives Th(W ∪ TR(CnR(W )) ) ⊆ Th(CnR(W )). But
Th(CnR(W )) ⊆ CnR(W ).

Now we show 1(b) CnR(W ) ⊆ Th(W ∪ TR(CnR(W )) ). We can do this by showing that
Th(W ∪ TR(CnR(W )) ) satisfies the closure conditions for CnR(W ).

• W ⊆ Th(W ∪ TR(CnR(W )) ) (inclusion Th)

• Th(W ∪ TR(CnR(W )) ) is closed under Th (closure/idempotence Th)

• Th(W∪TR(CnR(W )) ) is closed under the rules R, i.e., TR(Th(W∪TR(CnR(W )) )) ⊆
Th(W ∪ TR(CnR(W )) ). Because . . .

TR is monotonic, so from part 1(a) we have TR(Th(W∪TR(CnR(W )) )) ⊆ TR(CnR(W )).

But TR(CnR(W )) ⊆ W ∪ TR(CnR(W )) ⊆ Th(W ∪ TR(CnR(W )) ).

For part (2), we show that if S = Th(W ∪ TR(S) ) then S satisfies the closure conditions
for CnR(W ) (and hence, by definition, CnR(W ) ⊆ S):

• W ⊆ S because W ⊆ Th(W ∪ TR(S) ) (Th inclusion)

• Th(W ∪ TR(S) ) is closed under Th (Th closure/idempotence)

• TR(S) ⊆ Th(W ∪ TR(S) ) (Th inclusion). But Th(W ∪ TR(S) ) = S, so TR(S) ⊆ S,
as required.

Question 6 (from 2009 exam) Let D be as follows, and W = {p ∨ q,¬q}.

D = {p : h, s

h
,
¬q : ¬s,¬t

k
,

h : ¬s ∧ t
q → ¬t ,

h : s, t

p→ t
,

k : ¬s,¬t
s→ q

}

The calculations are routine, and quite straightforward if the definition (reduct + closure)
is followed.

(i) Let E1 = Th({p ∧ ¬q, h ∧ t}). Reduct DE1 = {p
h
,

h

q → ¬t ,
h

p→ t
}.

Compute the closure CnDE1 (W ) using the ‘base operator’. Here it is in detail (in more
detail than you need to show in an exam). I am writing Xi so as not to confuse with the
extensions Ei of parts (i)–(v). Note: Th({p ∨ q,¬q}) = Th({p,¬q}) = Th({p ∧ ¬q}).

X0 =W = {p ∨ q,¬q}
X1 =BDE1 (X0) = {p ∨ q,¬q} ∪ {h}
X2 =BDE1 (X1) = {p ∨ q,¬q} ∪ {h} ∪ {q → ¬t, p→ t}
X3 =BDE1 (X2) = X2

CnDE1 ({p ∨ q,¬q}) = Th({p ∨ q, ¬q, h, q → ¬t, p→ t})
= Th({p, ¬q, h, t}) = Th({p ∧ ¬q, h ∧ t}) = E1

There is a simple bit of propositional logic in the last step. In case you can’t see it:

Th({p ∨ q, ¬q, h, q → ¬t, p→ t}) = Th({p, ¬q, h, q → ¬t, p→ t})
= Th({p, ¬q, h, t, q → ¬t, p→ t})
= Th({p, ¬q, h, t, q → ¬t})
= Th({p, ¬q, h, t, t→ ¬q})
= Th({p, ¬q, h, t})

(ii) Let E2 = Th({p ∧ ¬q, k ∧ ¬s}). Reduct DE2 = {¬q
k
,

h

q → ¬t ,
k

s→ q
}.

Compute the closure CnDE2 (W ) using the ‘base operator’.

BDE2↑ω(W ) = {p ∨ q,¬q} ∪ {k} ∪ {s→ q}

CnDE2 (W ) = Th({p ∨ q,¬q} ∪ {k} ∪ {s→ q})
= Th({p, ¬q, k, ¬s}) = E2

(iii) Let E3 = Th({p ∧ ¬q, h ∧ ¬s}). Reduct DE3 = {¬q
k
,

h

q → ¬t ,
k

s→ q
}.

One can already see that CnDE3 (W ) must contain k but k /∈ E3.

(If you want to compute CnDE3 (W ), notice that DE3 = DE2 .)

(iv) Let E4 = Th({p ∧ ¬q, k ∧ t}). Reduct DE4 = {p
h
,

h

q → ¬t ,
h

p→ t
}.

One can see that CnDE4 (W ) contains h but h /∈ E4.

(If you want to compute CnDE4 (W ), note DE4 = DE1 .)



(v) Let E5 = Th({p ∧ ¬q, h ∧ t, k ∧ ¬s}).
Expected answer in the exam: E1 ⊂ E5 (and E2 ⊂ E5). So E5 could not be an extension
of (D,W ): E1 and E2 are extensions of (D,W ) and extensions are minimal.

If you want to see it in more detail: {p∧¬q, h∧ t} ⊆ {p∧¬q, h∧ t, k∧¬s}. By monotony
of Th, Th({p ∧ ¬q, h ∧ t}) ⊆ Th({p ∧ ¬q, h ∧ t, k ∧ ¬s}). So E1 ⊆ E5. By a similar
argument, E2 ⊆ E5. But E1 6= E2, so E1 ⊂ E5 (and E2 ⊂ E5). Rest the same.

Question 7 (Marek & Truszczyński Thm 3.50, p66)

Suppose E is an extension of (D,W ), i.e., E = CnDE(W ). Suppose X ⊆ E.

First we want to show E ⊆ CnDE(W ∪X), i.e., CnDE(W ) ⊆ CnDE(W ∪X).

W ⊆ W ∪X ⇒ CnDE(W ) ⊆ CnDE(W ∪X) (CnDE monotonic)

(Nothing to do with X.)

For the other half:

First, E = CnDE(W ) and X ⊆ E so X ⊆ CnDE(W ).

And W ⊆ CnDE(W ). So W ∪X ⊆ CnDE(W ). Then:

W ∪X ⊆ CnDE(W ) ⇒ CnDE(W ∪X) ⊆ CnDE(CnDE(W )) (CnDE monotonic)

⇒ CnDE(W ∪X) ⊆ CnDE(W ) (CnDE closure/idempotence)

⇒ CnDE(W ∪X) ⊆ E

Question 8 D = { : ¬b,¬d
a

,
: ¬b,¬d
c

,
: ¬a,¬c
d

,
a : ¬c
b
}

E = Th({d}) E = Th({a, c}) E = Th({a, b})
DE = {

d
,
a

b
} DE = {

a
,
c
} DE = {a

b
}

CnDE(∅) = Th({d}) CnDE(∅) = Th({a, c}) CnDE(∅) = Th(∅)
E ∈ ext(D, ∅) : yes E ∈ ext(D, ∅) : yes E ∈ ext(D, ∅) : no

CnDE({a}) = Th({a, b, d}) CnDE({a}) = Th({a, c}) CnDE({a}) = Th({a, b})
E ∈ ext(D, {a}) : no E ∈ ext(D, {a}) : yes E ∈ ext(D, {a}) : yes

Question 9

Consider default rules Dcwa
def
= { : ¬p

¬p | p ∈ atoms(L)}.
Given a set E of formulas we get the following reduct

DE
cwa = {¬p | p ∈ atoms(L) and p /∈ E})

So the definition of Γ(W,E) can be re-formulated as the smallest set S of formulas such
that

S = Th(W ∪ TDE
cwa

(S) )

Look at the last part of Question 5. We can see that

Γ(W,E) = CnDE
cwa

(W )

E is defined to be a cwa-extension of W when E = Γ(W,E), which turns out to be
E = CnDE

cwa
(W ).

In other words, E is a cwa-extension of W precisely when E is an extension of the default
theory (Dcwa,W ).


