
491 Knowledge Representation

Extended Logic Programs

Marek Sergot
Department of Computing
Imperial College, London

February 2014 (v1.6b)

Extended logic programs (Gelfond & Lifschitz) combine negation-by-failure not with clas-
sical truth-functional (‘strong’, ‘explicit’) negation ¬. The semantics is given in terms of
answer sets — a generalisation of the definition of stable model.

Syntax

A normal logic program (sometimes a ‘general logic program’) is a set of clauses of the
form:

A ← B1, . . . , Bm (m ≥ 0)

where A is an atom and every Bi is an atom or of the form not Ai where Ai is an atom.
not denotes negation by failure. Henceforth we’ll call an expression of the form notAi a
nbf-literal.

From now on a literal is an expression of the form A or ¬A where A is an atom.

An extended logic program is a set of clauses of the form

L ← L1, . . . , Lm (m ≥ 0)

where L is a literal and every Li is either a literal or a nbf-literal of the form notL′i where
L′i is a literal.

The literal L is the head of the clause; L1, . . . , Lm is the body of the clause. When the
body is empty (n = 0 above) the arrow ← is usually omitted.

As usual we’ll write head(r) for the head of a clause r (except now it can be a literal not
just an atom), body−(r) for the set of literals Li where notLi is in the body of r, and
body+(r) for the literals in the body of r that are not nbf-literals. (body+(r) and body−(r)
might not be disjoint.)

For example, if r is the clause:

¬p← p, not¬s, not q,¬t

then head(r) = ¬p, body+(r) = {p,¬t} and body−(r) = {¬s, q}.

Clearly extended logic programs contain normal logic programs (and definite logic pro-
grams) as a special case.

1

Simple story (basic idea)

Treat literals ¬A as if they were atoms. Reducts, answer sets, splitting sets, etc, then work
exactly as usual, except that an answer set will be a set of literals not a set of atoms as in
the case of normal logic programs. There will have to be some refinements to deal with the
case that an answer set contains both A and ¬A but we will leave that aside for a minute.

Example (Basic idea: treat all literals ¬A as if they were atoms)

p(X)← q(X), not ¬p(X)

¬p(X)← r(X), not p(X)

(Cf. the example of the ‘Nixon diamond’: p is ‘pacifist’, q is ‘Quaker’, r is ‘Republican’.)

Suppose first we add {q(a)←}.
Take splitting set {q(a),¬q(a), r(a),¬r(a)}. Simplifying leaves one clause

{p(a)← not ¬p(a)}

Answer set is {p(a)} ∪ {q(a)}.

Now suppose we add {q(a)← ; ¬p(a)←}.
Take splitting set {q(a),¬q(a), r(a),¬r(a)}. Simplifying leaves two clauses

{p(a)← not ¬p(a) ; ¬p(a)←}

Answer set is {¬p(a)} ∪ {q(a)}.

Suppose we add {r(b)←}.
Take splitting set {q(b),¬q(b), r(b),¬r(b)}. Simplifying leaves one clause

{¬p(b)← not p(b)}

Answer set is {¬p(b)} ∪ {r(b)}.

Now suppose we add {q(c)← ; r(c)←}.
Take splitting set {q(c),¬q(c), r(c),¬r(c)}. Simplifying leaves two clauses

{p(c)← not ¬p(c) ; ¬p(c)← not p(c)}

So two answer sets: {p(c)} ∪ {q(c), r(c)} and {¬p(c)} ∪ {q(c), r(c)}
(and no way to choose between them).

2

Semantics — Answer sets

For an extended logic program P , the set of literals in the language of P is denoted Lit(P)
(or just Lit when P is obvious from context).

The literals A and ¬A (any atom A) are said to be complementary.

For shorthand, when L is a literal (i.e., of the form A or ¬A), L denotes the literal
complementary to L: when L = A then L = ¬A; when L = ¬A then L = A.

For a normal logic program, a stable model is a set of atoms.

For extended logic programs, an answer set is a set of literals.

As in the case of stable models for normal logic programs, answer sets for an extended
logic program P will be defined in terms of a reduct.

For an answer set S (a set of literals):

• the atom A is true in S if A ∈ S;

• the nbf-literal notA is true in S if A /∈ S;

• the literal ¬A is true in S if ¬A ∈ S;

• the nbf-literal not¬A is true in S if ¬A /∈ S.

TP is defined as usual except now it maps sets of literals to sets of literals.

Tp(X)
def
= {head(r) |r is a ground instance of a clause in P ,

body+(r) ⊆ X, body−(r) ∩X = ∅ }

Why ‘answer set’ and not ‘stable model’?

Because, for an extended logic program P , an answer set of P is not necessarily a model
of P .

p(a)← not ¬q(a)
¬q(b)

{p(a),¬q(b)} is the answer set. But it’s not a model. Why? Because it’s not an interpre-
tation – the truth values of p(b), q(a) are not specified.

(You could think of {p(a),¬q(b)} as representing a three-valued interpretation

{p(a) 7→ t, p(b) 7→ u, q(a) 7→ u, q(b) 7→ f}

but I won’t pursue three-valued interpretations/models in these notes.)

3

Answer sets of an extended logic program P

First, consider programs P without any occurrences of negation-by-failure not.

The answer set of a program P without any occurrences of negation-by-failure not is the
smallest (set inclusion) subset S of Lit(P) such that:

• S is closed under the rules of P : for any clause L← L1, . . . , Ln of P , if {L1, . . . , Ln} ⊆
S then L ∈ S, i.e. TP (S) ⊆ S;

• if S contains a pair of complementary literals A and ¬A, then S = Lit(P).

How do we know such a set S exists and/or is unique? Knaster-Tarski theorem (remem-
ber?). We will check this claim later in the course.

Notice:

• There is only one answer set containing complementary literals: it is (by definition)
Lit(P). (But see comments later on ‘irritating point of detail’. We are really only
interested in consistent answer sets.)

• Every program P without any negation-by-failure not has a unique answer set which
will be denoted M(P). (Though it may be inconsistent, i.e. Lit(P).)

• For a program P without negation-by-failure not and without any ‘explicit’ negation
¬ (i.e., a definite clause program), the complementary literal condition does not
apply, and M(P) is the least Herbrand model of P .

Now the general case.

Let P be an extended logic program without variables. (i.e., form all ground instances of
a program with variables).

For any set S of literals, P S (the reduct) is the logic program obtained from P by deleting:

• each clause that has a condition notL in its body where L ∈ S;

• each condition of the form notL in the bodies of the remaining clauses.

P S is obviously a logic program with no occurrences of negation-by-failure not.

Clearly this is just the generalisation of reduct as in the definition of stable models, but
now with literals and not just atoms.

The answer sets of P are those satisfying the equation:

S = M(P S)

So this is exactly as for stable models for normal logic programs, but generalising to deal
with literals in clauses and answer sets and not just atoms.

(And remember: P S has no occurrences of negation-as-failure not; but it may have oc-
currences of ¬. M(P S) does not denote the least Herbrand model of P S. It is the least
Herbrand model of P S when P S contains no occurrences of ¬.)

4

Example One version of the birds-ostriches can fly example. (We’ll consider some other
versions in a minute.)

• Typically, a bird can fly.

• Except that ostriches, which are birds, cannot fly.

• And wounded birds cannot fly.

Here is one possible formulation as an extended logic program.

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X)

¬can fly(X) ← ostrich(X)

abnormal bird(X) ← bird(X), wounded(X)

¬can fly(X) ← wounded(X)

And some facts:

bird(arthur). ¬wounded(arthur).
ostrich(bill).

bird(colin). wounded(colin).

¬ostrich(dave). wounded(dave).

If we construct the answer sets we get just one: the facts above plus {bird(bill)} plus

{ can fly(arthur), abnormal bird(bill), abnormal bird(colin),

¬can fly(bill), ¬can fly(colin), ¬can fly(dave) }

In summary we can interpret the answer set like this:

bird ostrich wounded abnormal bird can fly

arthur yes unknown no unknown yes

bill yes yes unknown yes no

colin yes unknown yes yes no

dave unknown no yes unknown no

So in this version:

abnormal bird(X) blocks can fly(X)

ostrich(X) implies ¬can fly(X)

wounded(X) implies ¬can fly(X)

Note: we need to say that an ostrich is an abnormal bird, because otherwise we get
inconsistent answer set for any ostrich. (And likewise for wounded birds.)

(Thanks to Jinyi Shan and Nuri Cingillioglu, MEng4 2016-17, for pointing out some minor
but confusing omissions in earlier versions of these notes.)

5

Example Here is a formulation in the style of previous examples:

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X)

abnormal bird(X) ← bird(X), wounded(X)

And some facts:

bird(arthur).

ostrich(bill).

bird(colin). wounded(colin).

wounded(dave).

Viewing the above as a normal logic program with stable model semantics we get the
following stable model:

{ bird(arthur), can fly(arthur),

bird(bill), ostrich(bill), abnormal bird(bill),

bird(colin), wounded(colin), abnormal bird(colin),

wounded(dave) }

This is a stable model — a set of atoms. Since it is a Herbrand model, we interpret it like
this:

bird ostrich wounded abnormal bird can fly

arthur yes no no no yes

bill yes yes no yes no

colin yes no yes yes no

dave no no yes no no

Syntactically a normal logic program (like the one above) is also a special case of an
extended logic program. Viewing the same set of rules as an extended logic program with
answer set semantics, we read

{ bird(arthur), can fly(arthur),

bird(bill), ostrich(bill), abnormal bird(bill),

bird(colin), wounded(colin), abnormal bird(colin),

wounded(dave) }

as an answer set — a set of literals — not a model. This answer set says:

bird ostrich wounded abnormal bird can fly

arthur yes unknown unknown unknown yes

bill yes yes unknown yes unknown

colin yes unknown yes yes unknown

dave unknown unknown yes unknown unknown

6

To get the same answers as given by the normal logic program we need to add extra rules
to express the ‘Closed World Assumption’ implicit in the normal logic program.

¬can fly(X) ← not can fly(X)

¬bird(X) ← not bird(X)

¬ostrich(X) ← not ostrich(X)

¬wounded(X) ← not wounded(X)

An extended logic program can provide much more precision. For example, here is another
possible formulation as an extended logic program:

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X)

¬can fly(X) ← ostrich(X)

abnormal bird(X) ← bird(X), wounded(X)

¬ostrich(X) ← not ostrich(X)

¬wounded(X) ← not wounded(X)

Facts:

bird(arthur).

ostrich(bill).

bird(colin). wounded(colin).

wounded(dave).

bird ostrich wounded abnormal bird can fly

arthur yes no no unknown yes

bill yes yes no yes no

colin yes no yes yes unknown

dave unknown no yes unknown unknown

The above is just one possible formulation out of many. For example, we can adjust the
‘Closed World’ specifications. As another illustration, here is a more cautious formulation.

Remove

¬ostrich(X) ← not ostrich(X)

and replace

abnormal bird(X) ← ostrich(X)

with

abnormal bird(X) ← not ¬ostrich(X)

7

Now we can’t conclude, e.g.
can fly(arthur)

until we add explicitly
¬ostrich(arthur)

Obviously there are other possible formulations. And as the examples get more complex
so the number of possible variations increases. We can say precisely what we want to say
(even if we don’t always know what it is we want to say).

Example: further refinement Typically ostriches do not fly. But there are exceptions
. . . .

One possible formulation:

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X), not abnormal ostrich(X)

¬can fly(X) ← ostrich(X), not abnormal ostrich(X)

...

As written above, an abnormal ostrich can fly because an abnormal ostrich is not an
abnormal bird.

Compare:

can fly(X) ← bird(X), not abnormal bird(X)

bird(X) ← ostrich(X)

abnormal bird(X) ← ostrich(X)

¬can fly(X) ← ostrich(X), not abnormal ostrich(X)

can fly(X) ← abnormal ostrich(X)

...

Here, an abnormal ostrich is still an abnormal bird. It can fly, not because it is a bird, but
because it is an abnormal ostrich.

Which of these formulations is better? Take your pick. (It depends on what you want to
say.)

More suggestions later.

8

Example

• Europeans are typically civilised, unless they are not civilised.

• Football supporters are typically not civilised, unless they are educated.

• Even educated football supporters, on the other hand, are not civilised if they are
drunk.

Here is one possible formulation as an extended logic program (out of many):

civil(X) ← european(X), not ¬civil(X)
¬civil(X) ← football supporter(X), not ab football supporter(X)

ab football supporter(X) ← football supporter(X), educated(X)

¬civil(X) ← football supporter(X), drunk(X)

There are many other possible formulations, depending on what it is we want to say exactly.

Does the one shown above work as intended? Maybe. We have to check. (Tutorial exercise.)

Here is another possible formulation (out of many):

civil(X) ← european(X), not ab european civil(X)

¬civil(X) ← football supporter(X), ¬educated(X), not civil(X)

ab european civil(X) ← european(X), football supporter(X), ¬educated(X)
¬civil(X) ← football supporter(X), drunk(X)

Does this one work as intended? Maybe. Maybe not. (Tutorial exercise.)

What about an uneducated football supporter, not European, who we can see is civilised?

¬educated(pablo). football supporter(pablo).

¬european(pablo). civil(pablo).

We should be able to add exceptions like this (it says ‘typically’).

That aside, what about football supporters who are not known to be educated, and not
known to be not educated? We could add

¬educated(X) ← not educated(X)

or

educated(X) ← not ¬educated(X)
depending on which way round we wanted the default to work.

And similarly for drunk.

Again we see the precision available here — even if it is not always clear from the imprecise
English formulation what exactly the rules are trying to say.

We will look at some more systematic ways of approaching these examples in a minute.

9

Exception structures

If we have ‘explicit’ negation ¬, and negation by failure, why do we need all these ‘ab-
normality predicates’ as well? Because without, we don’t express the exception structure
properly.

d1. Typically, a bird can fly. Except that . . .

d2. Typically ostriches, which are birds, cannot fly.

Consider this formulation:

can fly(X) ← bird(X), not ¬can fly(X)

¬can fly(X) ← ostrich(X), not can fly(X)

bird(X) ← ostrich(X)

Suppose frank is an ostrich. Can he fly or not?

Unknown, according to this formulation — There are two answer sets (Cf. ‘Nixon dia-
mond’).

The above does not capture the exception structure properly. Rule d2 is an exception to
rule d1, not the other way round.

Solution?

(1) Use some ‘abnormality predicates’, or something similar.

can fly(X) ← bird(X), not ab bird fly(X)

¬can fly(X) ← ostrich(X), not can fly(X)

ab bird fly(X) ← ostrich(X)

bird(X) ← ostrich(X)

(2) Devise some way of specifying priorities — saying which default rule takes priority
in case of conflicting conclusions.

Some suggestions for doing (2) by converting to (1) will come in a minute.

10

Irritating point of detail – Inconsistent answer sets?

What are we going to do about programs like the following?

P1 = {¬p← q ; p← q ; q }
P2 = {¬p← not q ; p← not q }

In practice we don’t have them. In practice, answer set solvers automatically build in
an extra constraint that ensures answer sets are consistent (don’t have complementary
literals).

However : for technical reasons it is convenient to allow inconsistent answer sets in very
special circumstances. Here are some remarks, for the sake of completeness.

Recall that, by definition, the answer set of a program P without negation-by-failure (not)
is the smallest (set inclusion) subset S of Lit(P) such that:

• S is closed under the rules of P : TP (S) ⊆ S;

• if S contains a pair of complementary literals A and ¬A, then S = Lit(P).

So for any logic program P there are only two possibilities:

• all answer sets of P are consistent (no complementary literals); or

• X = Lit(P) is the only answer set of P .

This isn’t quite as obvious as it seems.

Example

P1 = {¬p← q ; p← q ; q}

P1 has no occurrences of negation-as-failure. Its answer set is M(P1). Since there are
complementary literals p and ¬p in any set S closed under TP1 , M(P1) by definition is
Lit(P1), i.e., {p, ¬p, q, ¬q}.

Example

P2 = {¬p← not q ; p← not q}

P2 is different: it has occurrences of negation-by-failure. Does it have any answer sets?

Suppose that S is an answer set and consider separately the two cases q ∈ S and q /∈ S.

(1) If q ∈ S, then the reduct P S
2 = ∅. M(∅) = ∅. But q /∈ ∅. Contradiction.

(2) If q /∈ S, then the reduct P S
2 = {p, ¬p}, and M(P S

2) = Lit(P2) by definition. But
q ∈ Lit(P2), so q ∈ M(P S

2), and hence q ∈ S if S is an answer set. Contradiction.

Conclusion: P2 has no answer sets.

11

Reduction to normal logic programs

Let P be an extended logic program.

For any predicate p occurring in P , let p∗ be a predicate of the same arity.
P ∗ stands for the normal logic program obtained from P by replacing ev-
ery occurrence of a negative literal ¬p(X1, . . . , Xn) by the new positive literal
p∗(X1, . . . , Xn).

For any subset S ⊆ Lit(P), S∗ stands for the set of atoms obtained from S
by replacing every negative literal ¬p(X1, . . . , Xn) in S by the positive literal
p∗(X1, . . . , Xn).

Proposition A consistent set S ⊂ Lit(P) (S 6= Lit(P)) is an answer set of an extended
logic program P if and only if S∗ is an answer set (stable model) of the normal logic
program P ∗.

So . . . An answer set will be a set of literals but apart from that reducts, stratification
results, splitting sets, . . . etc, work in exactly the same way but with (ground) literals
instead of (ground) atoms.

Notice: This proposition holds when S ⊂ Lit(P) is consistent (contains no complemen-
tary literals). What if S does contain complementary literals? The proposition does not
say. Some people find the following account helpful. (If you don’t, just ignore it.) It is
from notes Answer Set Programming by Torsten Schaub, Martin Gebser, Marius Schneider
(University of Potsdam):

A set X of literals is an answer set of a logic program P if X is an answer set of

P ∪ {B ← A,¬A | A ∈ Atoms(P), B ∈ Lit(P) }
If you don’t find this observation helpful, just ignore it. Either way you look at it, consider
the following example.

Example (from the notes by Torsten Schaub et al)

• P1 = { cross← not train }
– Answer set: { cross }

• P2 = { cross← ¬train }
– Answer set: ∅

• P3 = { cross← ¬train, ¬train←}
– Answer set: { cross, ¬train }

• P4 = { cross← ¬train, ¬train←, ¬cross←}
– Answer set: { cross, ¬cross, train, ¬train }

• P5 = { cross← ¬train, ¬train← not train, ¬cross←}
– No answer set (try train ∈ X and train /∈ X)

12

Priorities and exceptions: sketch

Here is a general method for dealing with exceptions, treating them as prioritized defaults.
The most general case is a bit more complicated than this, but here is a simple method
that works well for many examples.

There is a lot more that could be said about this. I am afraid I don’t have time.

‘Normal defaults’ For reasons that will be clear later when we look at Default Logic, I
am going to use the term normal default for rules of the following special forms:

A← L1, . . . , Lm, not ¬A
¬A← L1, . . . , Ln, not A

A is an atom, Li are literals, and there are no other occurrences of negation-by-failure not.
The terminology is from Reiter Default Logic.

Example

d1. Typically, a bird can fly.

can fly(X) ← bird(X), not ¬can fly(X)

d2. Except that, typically, ostriches cannot fly.

¬can fly(X) ← ostrich(X), not can fly(X)

Background knowledge:

bird(X) ← ostrich(X)

The problem is that ostriches are birds, so for them we get conflicting defaults, and multiple
answer sets.

The intention is that d2 takes priority over d1: d2 > d1.

Solution:

• Name the conditions under which a default applies.

• Look for conflicts (rules with conflicting heads).

• Add explicit conditions to express the priorities.

d1. can fly(X) ← applies(d1,X), not ¬can fly(X) % NOTE!

applies(d1,X) ← bird(X), not applies(d2,X).

d2. ¬can fly(X) ← applies(d2,X), not can fly(X)

applies(d2,X) ← ostrich(X)

bird(X) ← ostrich(X)

We could also add, say

¬can fly(X) ← dead(X) % no exceptions

13

Example (exceptions to exceptions)

d1. Examinations are typically pleasant.

pleasant(X) ← exam(X), not ¬pleasant(X)

d2. Except that examinations at Imperial College are typically not pleasant.

¬pleasant(X) ← ic exam(X), not pleasant(X)

d3. Except that examinations in DoC are typically pleasant.

pleasant(X) ← doc exam(X), not ¬pleasant(X)

Exceptions/priorities: d3 > d2 > d1.

Add applies, look for conflicts, add conditions to deal with priorities:

d1. pleasant(X) ← applies(d1,X), not ¬pleasant(X)
applies(d1,X) ← exam(X), not applies(d2,X)

d2. ¬pleasant(X) ← applies(d2,X), not pleasant(X)

applies(d2,X) ← ic exam(X), not applies(d3,X)

d3. pleasant(X) ← applies(d3,X), not ¬pleasant(X)
applies(d3,X) ← doc exam(X)

exam(X) ← ic exam(X)

ic exam(X) ← doc exam(X)

Note how the normal defaults are encoded! (It is not obvious why in this example, but it
will be in more complex ones.)

Note:

• The single fact exam(491) gives applies(d1,491) and hence pleasant(491).

• The single fact ic exam(491) gives applies(d2,491) and hence ¬pleasant(491).

• The single fact doc exam(491) gives both applies(d1,491) and applies(d3,491),
and hence pleasant(491) for two reasons. This is deliberate. You might not like it:
maybe you think d1 does not apply in this case. But that is much more complicated
to encode— and as it turns out, often not what we want anyway.

14

Example (football supporters)

First, express as normal defaults:

d1. Europeans are typically civilised.

civil(X) ← european(X), not ¬civil(X)

d2. Football supporters are typically not civilised, unless they are educated.

¬civil(X) ← football supporter(X), ¬educated(X), not civil(X)

Side remark: ‘unless’ is very ambiguous. Here I have chosen to represent ‘P if Q
unless R’ as P ← Q∧¬R. There are other possibilities, depending on what we think
‘unless’ means in this example. However, that is tangential to the point at issue
(defaults and exceptions) so I will not pursue it. (See modified example later.)

d3. Even educated football supporters, on the other hand, are not civilised if they are
drunk. (Typically)

¬civil(X) ← football supporter(X), educated(X), drunk(X), not civil(X)

Side remark: the condition educated(X) could be deleted but it is probably clearer
to leave it.

Exceptions/priorities: {d2, d3} > d1.

Encode, look for conflicts, add conditions to deal with priorities:

d1. civil(X) ← applies(d1,X), not ¬civil(X)
applies(d1,X) ← european(X), not applies(d2,X), not applies(d3,X)

d2. ¬civil(X) ← applies(d2,X), not civil(X)

applies(d2,X) ← football supporter(X), ¬educated(X)

d3. ¬civil(X) ← applies(d3,X), not civil(X)

applies(d3,X) ← football supporter(X), educated(X), drunk(X)

Try it out on different combinations of facts. (See tutorial exercises.)

15

Example (football supporters, modified)

Here is an example of a different kind of ‘unless’.

d1. Europeans are typically civilised.

civil(X) ← european(X), not ¬civil(X)

d2. Football supporters are typically not civilised . . .

¬civil(X) ← football supporter(X), not civil(X)

d′2. . . . unless they are educated.

civil(X) ← football supporter(X), educated(X), not ¬civil(X)

d3. Even educated football supporters, on the other hand, are not civilised if they are
drunk. (Typically)

¬civil(X) ← football supporter(X), educated(X), drunk(X), not civil(X)

Exceptions/priorities: d3 > d′2 > d2 > d1.

Encode, look for conflicts, add conditions to deal with priorities:

d1. civil(X) ← applies(d1,X), not ¬civil(X)
applies(d1,X) ← european(X), not applies(d2,X)

d2. ¬civil(X) ← applies(d2,X), not civil(X)

applies(d2,X) ← football supporter(X), not applies(d2dash,X)

d′2. civil(X) ← applies(d2dash,X), not ¬civil(X)
applies(d2dash,X) ← football supporter(X), educated(X), not applies(d3,X)

d3. ¬civil(X) ← applies(d3,X), not civil(X)

applies(d3,X) ← football supporter(X), educated(X), drunk(X)

16

