491 KNOWLEDGE REPRESENTATION

Extended logic programs: Disjunction

Marek Sergot
Department of Computing
Imperial College, London

November 2017

Disjunction (1) — ‘shifting’

We have seen that the disjunction ‘A or B’ (A and B literals) can be approximated by
means of a construct sometimes called ‘shifting’.

Example

a4 notb
b nota } has answer sets {a}, {b}

Why ‘approximation’?

a4 not b
b+ mnota has one answer set {a}
a+ b

Fine. But consider:

a < notb
b+ nota
a+ b
b+ a

has no answer sets!! (Check for yourself.)

"Shifting’ is a good encoding of disjunction in certain circumstances — for instance, when
the disjuncts are mutually exclusive.

Disjunction (2) — ’Choice rules’

As we have seen (in the notes on ASP solvers) the disjunction ‘A or B’ (A and B literals)
can also be expressed by means of a ‘choice rule’ (choose any subset) together with an
integrity constraint (but not the empty subset), or using a cardinality constraint:

1{A, B} +

And as we have seen, the choice rule can be expressed as an extended logic program, as

follows.

Example:

a < not a’
b < not ¥
f < not a,

a < mnot a
b < not ¥
[+ not a,
a+ b

a < mnot a
b < not ¥
f < not a,
a+ b
b+ a

not b, not f

not b, not f

not b, not f

a' < not a
b+ not b has answer sets {a,b'}, {d’,b}, {a,b}

a + not a

/
Ve moth has answer sets {a,b'}, {a,b}

a < not a

b+ not b
has answer sets {a, b}



Disjunctive logic programs

This part is for BACKGROUND INTEREST only. Details are not examinable. I have
included it because you will see references to disjunctive logic programs, e.g. in the guide
to clingo.

Clauses are as in extended logic programs or of the form
A;BeLlw--aLm

A and B are literals: i.e., either of the form p or —p where p is an atom. L; are literals or
nbf-literals as usual, i.e., of the form p, =p, not p or not —p where p is an atom.

A ; B is sometimes written A | B. You can read it as the disjunction A or B’ — except
that disjunction in disjuctive logic programs has a particular special meaning that comes
out because of its minimality semantics.

Answer sets are defined as usual, in terms of reducts. Given a disjunctive logic program
P and a set of literals X, the reduct P¥X is defined in the usual way: delete from P any
clause which has a literal not B in its body where B € X; delete all other literals not C'
in the remaining clauses (i.e., those conditions not C' which are satisfied in X, i.e., where

C ¢ X).

The reduct P¥ contains no occurrences of negation-by-failure. We have the usual ‘stability
requirement’: X is an answer set of P iff X is an answer set of PX. The difference is that
now there is the possibility of disjunction in clauses, the answer set of PX might not be
unique (unlike for extended logic programs, where the reduct is a set of definite clauses,
and the answer set — the least Herbrand model — is unique.)

So what is the answer set of disjunctive logic program without negation-by-failure, i.e., of
a set of definite clauses or clauses of the form

A;BeLlw-wLm (1)

where A, B, Ly, ..., L, are all literals (no negation-by-failure).
Let X be a set of literals. X satisfies a clause of the form (1) if whenever {Ly,..., L, } C X
then either A € X or B € X (or both). Just as you would expect.

Now, by definition, X is an answer set of a disjunctive logic program P without negation-
by-failure if X is a minimal set of literals that satisfies all the clauses of P. (Or as we also
say, when X is a minimal Herbrand model of P.)

All this seems very natural. But look at some simple examples. (Negation-by-failure works
the same way—via reducts—as in extended logic programs.)

Simplest example:

asb« } models: {a}, {b}, {a,b}
answer sets (minimal): {a}, {b}

a;b«+ models: {a}, {a,b}

a<b answer sets (minimal): {a}

Z ’(_b : models: {a,b}

b a answer sets (minimal): {a, b}

clingo, and many other ASP solvers, do not support disjunctive logic programs. (The
computational complexity is much higher, because of the built-in minimality feature.)

And it is not clear how useful this reading of disjunction is for knowledge representation
anyway. (It is useful for some algorithmic tasks.)



