Imperial College The action language C+

action description

f in C+

The action language C+

transition
‘Nonmonotonic causal theories’ ,sysfffm causal
(Qutline) T theory
model
Marek Sergot checkers

(e.g. NuSMV) ‘ W

Imperial College London literal completion (extended) - - -»- logic program
(propositional logic) logic program (event calculus
satisfaction solver (answer sets) style)
iCCalc

Marek Sergot (Imperial College London) 2/23
Example Example
aim=a load aim=>b shoot aim=a load aim=>b shoot
® @ @ @ ® ® @ @ @ ®
alive(a) alive(a)
alive(b) alive(b)
—=loaded =loaded
target=a target=>b
target(i+11=X < aim[i]=X target[i+1]1=X < aim[i]=X
target=X after aim=X target=X after aim=X
aim=X causes target=X aim=X causes target=X

Marek Sergot (Imperial College London) 3/23 Marek Sergot (Imperial College London) 4/23

aim=a load aim=>b shoot

[@ @ @ L
alive(a)
alive(b)
—loaded

alive(a)[0] alive(b)[0] =loaded[0]
aim|[0]=a load[1] aim|[2]=b shoot[3]

aim=a load aim=b shoot

o @ @ @ L
alive(a)
alive(b)
—loaded loaded
target=a target=b

loaded[i+1] < loadli]
loaded after load
load causes loaded

aim=a load aim=b shoot

® @ @ @ L
alive(a)
alive(b)
—loaded
target=a target=b

loaded[i+1] < loadli]
loaded after load
load causes loaded

aim=a load aim=b shoot

o @ @ @ @
alive(a)
alive(b)
—loaded loaded —loaded
target=a target=b

=loaded[i+1] < shoot[i]
—loaded after shoot
shoot causes —loaded

Example

Persistence

aim=a load aim=b shoot loaded[i+1] v loaded]i]
@ @ @ @
alive(a) First guess:
alive(b) loaded[i+1] < loaded[i], not =loaded[i+1]
=loaded loaded =loaded
target=a target=>b loaded|i]: loaded[i+1]

—alive(X)[i+1] & shootli] A loaded|i] A target[i]=X
—alive(X) after shoot A loaded A target=X
shoot causes —alive(X) if loaded A target=X

Marek Sergot (Imperial College London)

‘Nonmonotonic causal theories’

s loaded|i], loaded[i+1]
loaded[i+]1]

loaded[i+1] « not—=loaded[i], not =loaded[i+1]

loaded[i+1] < loaded[i+1] A loaded|i]

That is sometimes equivalent to:

loaded(i]: loaded[i+1]
loaded[i+1]

loaded[i+1] « loaded[i], not =loaded[i+]1]

Marek Sergot (Imperial College London)

loaded[i+1]

‘Nonmonotonic causal theories’:

loaded[i+1] « not—loaded[i], not —loaded[i+1]

: loaded|i], loaded[i+1]
loaded[i+1]

9/23 Marek Sergot (Imperial College London) 10/23

‘Nonmonotonic causal theories’

P& QARAN...AS

‘O, R, ..., S
P

P <« not—-Q, not—=R, ..., not=S

—alive(X)[i+1] & shootli] A loaded|i] A target[i]=X

—alive(X)[i+1] « not=shoot[i], not =loaded|[i], not —target[i]=X

which is sometimes equivalent to

—alive(X)[i+11 « shootlil, loaded[il, target[il=X
11/28 Marek Sergot (Imperial College London) 12/23

‘Fluent dynamic laws’

Fif G after H
Fli+1] <« G[i+1] A H[i]

a causes F if H
Fif T aftera A H
Fli+1] < «a[i] A H[i]

shoot causes -alive(X) if loaded A target=X
—alive(X) after shoot A loaded A target=X
—alive(X)[i+1] & shootli] A loaded|i] A target[i]=X

Marek Sergot (Imperial College London)

‘Static laws’

happy(mary) if malive(a) A —alive(b)

happy(mary)li] & =—alive(a)[i] A —alive(b)[i]

default =happy(X)
—happy(X)[i] & —happy(X)[i]

—happy(X) if =happy(X) I

Marek Sergot (Imperial College London)

13/23

15/23

‘Fluent dynamic laws’

inertial alive(X)

alive(X)[i+1] ¢~ alive(X)[i]
—alive(X)[i+1] e~ —alive(X)[i]

alive(X)[i+1] < alive(X)[i+1] A alive(X)[i]
—alive(X)[i+1] & —alive(X)[i+1] A —alive(X)[i]

alive(X) if alive(X) after alive(X) I
—alive(X) if —alive(X) after —alive(X)

Marek Sergot (Imperial College London) 14/23

How to compute?

Given action description D (and causal theory I'2).
(m is maximum timestamp: the length of paths/runs/histories of interest)

Assume D (and causal theory I'?) are definite.
‘Definite’: for every causal rule

F<G

Fis a literal or L.

Marek Sergot (Imperial College London) 16/23

How to compute?

Given definite action description D (and causal theory I'?).

Method 1 Translate I'2 to extended logic program and compute its
answer sets.

(Detail: not quite. We want models not answer sets.

Add p < not-p; —p < notp for every atom p. A detail.)

Marek Sergot (Imperial College London)

Literal completion

For a definite causal theory I', translate to set of (classical) formulas
comp(l'):
F < G;

: becomes F & G;V---VG,
F < G,

If F is an atom and there are no causal rules with F as the head then
F & L (which is logically equivalent to —F).

A causal rule L & G becomes —G.
Models of causal theory I" are the (classical) models of the formulas

comp().

Marek Sergot (Imperial College London)

17/23

19/23

How to compute?

Given definite action description D (and causal theory I'?).
Method 2 Construct the (classical) propositional formula
comp(l“ﬁ)

Use a sat-solver to compute the (ordinary, classical) models of comp(T'2).
This is the method used in the ‘Causal Calculators’ CCalc and iCCalc.

Marek Sergot (Imperial College London) 18/23

What to compute: ‘Prediction’

‘Prediction’:
— Initially F.
— Partially specified events of type «[0], a[1],..., a[k] happen.
— Is it possible that G holds in state m? How?

We want to know whether
comp(T2y U {F[0], a[0], (1], ..., alk], G[m]}
is satisfiable.

If satisfiable, a propositional sat-solver will return all models.

Marek Sergot (Imperial College London) 20/23

What to compute: ‘Prediction’ (2) What to compute: ‘Planning’

‘Prediction’ (2):

— Initially F. Planning
. - — Initially F.
— Partially specified events of type a[0], a[1], ..., a[k] happen. oul- G
— Goal: G.

— Does it follow that G holds in state m?

We want to know whether We try consecutively fork =0,1,...,m:

D . .
comp(l"ﬁ) ULFIO]. a[OL. a[1]. alk]} E Gm] comp(I',)) U{F[0] A G[k]} satisfiable ?

The sat-solver returns all models, and these contain a representation of
In other words, ‘ ,
the ‘plan’: e[0],e[1],..., e[k—1].

2yu(F 11, ... - isfiable ?
comp(ly) ULFI0] al0L, afll. ... alk], ~Glm]} satisfiable (This is not really planning.)

Marek Sergot (Imperial College London) 21/23 Marek Sergot (Imperial College London) 22/23

Transition system

Given an action description D:

I'Y — states
I'? — (labelled) transitions

I'> — paths/runs/traces of length m

Marek Sergot (Imperial College London) 23/23

