
The action language C+

‘Nonmonotonic causal theories’
(Outline)

Marek Sergot

Imperial College London

The action language C+
action description

in C+

transition
system

causal
theory

literal completion
(propositional logic)
satisfaction solver

iCCalc

(extended)
logic program
(answer sets)

logic program
(event calculus

style)

EC+

model
checkers

(e.g. NuSMV) � U

?

R
-�

	

	 RW

	

j

Marek Sergot (Imperial College London) 2 / 23

Example

alive(a)
alive(b)
¬loaded

aim=a load aim=b shoot

target[i+1]=X ⇐ aim[i]=X

target=X after aim=X

aim=X causes target=X

Marek Sergot (Imperial College London) 3 / 23

Example

alive(a)
alive(b)
¬loaded

target=a target=b

aim=a load aim=b shoot

target[i+1]=X ⇐ aim[i]=X

target=X after aim=X

aim=X causes target=X

Marek Sergot (Imperial College London) 4 / 23



Example

alive(a)
alive(b)
¬loaded

aim=a load aim=b shoot

alive(a)[0] alive(b)[0] ¬loaded[0]

aim[0]=a load[1] aim[2]=b shoot[3]

Marek Sergot (Imperial College London) 5 / 23

Example

alive(a)
alive(b)
¬loaded

target=a target=b

aim=a load aim=b shoot

loaded[i+1] ⇐ load[i]

loaded after load

load causes loaded

Marek Sergot (Imperial College London) 6 / 23

Example

alive(a)
alive(b)
¬loaded loaded

target=a target=b

aim=a load aim=b shoot

loaded[i+1] ⇐ load[i]

loaded after load

load causes loaded

Marek Sergot (Imperial College London) 7 / 23

Example

alive(a)
alive(b)
¬loaded loaded ¬loaded

target=a target=b

aim=a load aim=b shoot

¬loaded[i+1] ⇐ shoot[i]

¬loaded after shoot

shoot causes ¬loaded

Marek Sergot (Imperial College London) 8 / 23



Example

alive(a)
alive(b)
¬loaded loaded ¬loaded

target=a target=b

aim=a load aim=b shoot

¬alive(X)[i+1] ⇐ shoot[i] ∧ loaded[i] ∧ target[i]=X

¬alive(X) after shoot ∧ loaded ∧ target=X

shoot causes ¬alive(X) if loaded ∧ target=X

Marek Sergot (Imperial College London) 9 / 23

Persistence

loaded[i+1] f loaded[i]

First guess:

loaded[i+1] ← loaded[i], not¬loaded[i+1]

loaded[i] : loaded[i+1]
loaded[i+1]

‘Nonmonotonic causal theories’:

loaded[i+1] ← not¬loaded[i], not¬loaded[i+1]

: loaded[i], loaded[i+1]
loaded[i+1]

Marek Sergot (Imperial College London) 10 / 23

‘Nonmonotonic causal theories’

: loaded[i], loaded[i+1]
loaded[i+1]

loaded[i+1] ← not¬loaded[i], not¬loaded[i+1]

loaded[i+1] ⇐ loaded[i+1] ∧ loaded[i]

That is sometimes equivalent to:

loaded[i] : loaded[i+1]
loaded[i+1]

loaded[i+1] ← loaded[i], not¬loaded[i+1]

Marek Sergot (Imperial College London) 11 / 23

‘Nonmonotonic causal theories’

P ⇐ Q ∧ R ∧ . . . ∧ S

: Q, R, . . . , S
P

P ← not¬Q, not¬R, . . . , not¬S

¬alive(X)[i+1] ⇐ shoot[i] ∧ loaded[i] ∧ target[i]=X

¬alive(X)[i+1] ← not¬shoot[i], not¬loaded[i], not¬target[i]=X

which is sometimes equivalent to

¬alive(X)[i+1] ← shoot[i], loaded[i], target[i]=X
Marek Sergot (Imperial College London) 12 / 23



‘Fluent dynamic laws’

F if G after H

F[i+1] ⇐ G[i+1] ∧ H[i]

α causes F if H

F if > after α ∧ H

F[i+1] ⇐ α[i] ∧ H[i]

shoot causes ¬alive(X) if loaded ∧ target=X

¬alive(X) after shoot ∧ loaded ∧ target=X

¬alive(X)[i+1] ⇐ shoot[i] ∧ loaded[i] ∧ target[i]=X

Marek Sergot (Imperial College London) 13 / 23

‘Fluent dynamic laws’

inertial alive(X)

alive(X)[i+1] f alive(X)[i]

¬alive(X)[i+1] f ¬alive(X)[i]

alive(X)[i+1] ⇐ alive(X)[i+1] ∧ alive(X)[i]

¬alive(X)[i+1] ⇐ ¬alive(X)[i+1] ∧ ¬alive(X)[i]

alive(X) if alive(X) after alive(X) !!

¬alive(X) if ¬alive(X) after ¬alive(X)

Marek Sergot (Imperial College London) 14 / 23

‘Static laws’

happy(mary) if ¬alive(a) ∧ ¬alive(b)

happy(mary)[i] ⇐ ¬alive(a)[i] ∧ ¬alive(b)[i]

default ¬happy(X)

¬happy(X)[i]⇐ ¬happy(X)[i]

¬happy(X) if ¬happy(X) !!

Marek Sergot (Imperial College London) 15 / 23

How to compute?

Given action description D (and causal theory ΓD
m).

(m is maximum timestamp: the length of paths/runs/histories of interest)

Assume D (and causal theory ΓD
m) are definite.

‘Definite’: for every causal rule

F ⇐ G

F is a literal or ⊥.

Marek Sergot (Imperial College London) 16 / 23



How to compute?

Given definite action description D (and causal theory ΓD
m).

Method 1 Translate ΓD
m to extended logic program and compute its

answer sets.
(Detail: not quite. We want models not answer sets.
Add p← not¬p; ¬p← not p for every atom p. A detail.)

Marek Sergot (Imperial College London) 17 / 23

How to compute?

Given definite action description D (and causal theory ΓD
m).

Method 2 Construct the (classical) propositional formula

comp(ΓD
m)

Use a sat-solver to compute the (ordinary, classical) models of comp(ΓD
m).

This is the method used in the ‘Causal Calculators’ CCalc and iCCalc.

Marek Sergot (Imperial College London) 18 / 23

Literal completion

For a definite causal theory Γ, translate to set of (classical) formulas
comp(Γ):

F ⇐ G1
...

F ⇐ Gn

 becomes F ↔ G1 ∨ · · · ∨ Gn

If F is an atom and there are no causal rules with F as the head then
F ↔ ⊥ (which is logically equivalent to ¬F).

A causal rule ⊥ ⇐ G becomes ¬G.

Models of causal theory Γ are the (classical) models of the formulas
comp(Γ).

Marek Sergot (Imperial College London) 19 / 23

What to compute: ‘Prediction’

‘Prediction’:

— Initially F.

— Partially specified events of type α[0], α[1], . . . , α[k] happen.

— Is it possible that G holds in state m? How?

We want to know whether

comp(ΓD
m) ∪ {F[0], α[0], α[1], . . . , α[k], G[m]}

is satisfiable.

If satisfiable, a propositional sat-solver will return all models.

Marek Sergot (Imperial College London) 20 / 23



What to compute: ‘Prediction’ (2)

‘Prediction’ (2):

— Initially F.

— Partially specified events of type α[0], α[1], . . . , α[k] happen.

— Does it follow that G holds in state m?

We want to know whether

comp(ΓD
m) ∪ {F[0], α[0], α[1], . . . , α[k]} |= G[m]

In other words,

comp(ΓD
m) ∪ {F[0], α[0], α[1], . . . , α[k], ¬G[m]} satisfiable ?

Marek Sergot (Imperial College London) 21 / 23

What to compute: ‘Planning’

‘Planning’

— Initially F.

— Goal: G.

We try consecutively for k = 0, 1, . . . ,m:

comp(ΓD
k ) ∪ {F[0] ∧ G[k]} satisfiable ?

The sat-solver returns all models, and these contain a representation of
the ‘plan’: e[0], e[1], . . . , e[k−1].

(This is not really planning.)

Marek Sergot (Imperial College London) 22 / 23

Transition system

Given an action description D:

ΓD
0 — states

ΓD
1 — (labelled) transitions

ΓD
m — paths/runs/traces of length m

Marek Sergot (Imperial College London) 23 / 23


