Imperial College London

The action language *C*+ 'Nonmonotonic causal theories' (Outline)

Marek Sergot

Imperial College London

 $target[i+1]=X \iff aim[i]=X$ target=X after aim=Xaim=X causes target=X

3/23

11/23

 $loaded[i+1] \leftarrow loaded[i], \text{ not } \neg loaded[i+1]$

 $\neg alive(X)[i+1] \leftarrow shoot[i], loaded[i], target[i]=X$

Marek Sergot (Imperial College London

F if G after H $F[i+1] \leftarrow G[i+1] \land H[i]$

 $\alpha \text{ causes } F \text{ if } H$ $F \text{ if } \top \text{ after } \alpha \land H$ $F[i+1] \Leftarrow \alpha[i] \land H[i]$

shoot causes $\neg alive(X)$ if loaded \land target=X $\neg alive(X)$ after shoot \land loaded \land target=X $\neg alive(X)[i+1] \Leftarrow$ shoot[i] \land loaded[i] \land target[i]=X

Marek Sergot (Imperial College London)

'Static laws'

 $happy(mary) \text{ if } \neg alive(a) \land \neg alive(b)$ $happy(mary)[i] \Leftarrow \neg alive(a)[i] \land \neg alive(b)[i]$

 $default \neg happy(X)$ $\neg happy(X)[i] \Leftarrow \neg happy(X)[i]$

 \neg *happy*(*X*) if \neg *happy*(*X*) !!

'Fluent dynamic laws'

inertial *alive(X)*

 $alive(X)[i+1] \iff alive(X)[i]$ $\neg alive(X)[i+1] \iff \neg alive(X)[i]$

 $\begin{aligned} alive(X)[i+1] &\Leftarrow alive(X)[i+1] \land alive(X)[i] \\ \neg alive(X)[i+1] &\Leftarrow \neg alive(X)[i+1] \land \neg alive(X)[i] \end{aligned}$

alive(X) if alive(X) after alive(X) !! $\neg alive(X)$ if $\neg alive(X)$ after $\neg alive(X)$

Marek Sergot (Imperial College London)

How to compute?

Given action description *D* (and causal theory Γ_m^D). (*m* is maximum timestamp: the length of paths/runs/histories of interest)

Assume *D* (and causal theory Γ_m^D) are definite. 'Definite': for every causal rule

 $F \Leftarrow G$

F is a literal or \perp .

13/23

14/23

How to compute?

Given *definite* action description D (and causal theory Γ_m^D).

Method 1 Translate Γ_m^D to extended logic program and compute its answer sets.

(Detail: not quite. We want models not answer sets.

Add $p \leftarrow \text{not} \neg p$; $\neg p \leftarrow \text{not} p$ for every atom p. A detail.)

How to compute?

Given *definite* action description D (and causal theory Γ_m^D).

Method 2 Construct the (classical) propositional formula

 $comp(\Gamma_m^D)$

Use a sat-solver to compute the (ordinary, classical) models of $comp(\Gamma_m^D)$. This is the method used in the 'Causal Calculators' CCalc and iCCalc.

Marek Sergot (Imperial College London)

18/23

Marek Sergot (Imperial College London) 17/23 Literal completion What to compute: 'Prediction' For a *definite* causal theory Γ , translate to set of (classical) formulas 'Prediction': $comp(\Gamma)$: — Initially F. $F \Leftarrow G_1$ $\left. \begin{array}{c} \vdots \\ F \leftarrow G_n \end{array} \right\} \quad \text{becomes} \quad F \leftrightarrow G_1 \lor \cdots \lor G_n$ — Is it possible that G holds in state m? How? We want to know whether If F is an atom and there are no causal rules with F as the head then $F \leftrightarrow \bot$ (which is logically equivalent to $\neg F$). $comp(\Gamma_m^D) \cup \{F[0], \alpha[0], \alpha[1], \ldots, \alpha[k], G[m]\}$ A causal rule $\perp \leftarrow G$ becomes $\neg G$. is satisfiable. Models of causal theory Γ are the (classical) models of the formulas $comp(\Gamma)$.

— Partially specified events of type $\alpha[0], \alpha[1], \ldots, \alpha[k]$ happen.

If satisfiable, a propositional sat-solver will return all models.

What to compute: 'Prediction' (2)

'Prediction' (2):

— Initially F.

- Partially specified events of type $\alpha[0], \alpha[1], \ldots, \alpha[k]$ happen.
- Does it follow that G holds in state m?

We want to know whether

 $comp(\Gamma_m^D) \cup \{F[0], \alpha[0], \alpha[1], \ldots, \alpha[k]\} \models G[m]$

In other words,

```
comp(\Gamma_m^D) \cup \{F[0], \alpha[0], \alpha[1], \ldots, \alpha[k], \neg G[m]\} satisfiable ?
```

What to compute: 'Planning'

'Planning'

— Initially F.

— Goal: *G*.

We try *consecutively* for k = 0, 1, ..., m:

 $comp(\Gamma_k^D) \cup \{F[0] \land G[k]\}$ satisfiable ?

The sat-solver returns all models, and these contain a representation of the 'plan': $e[0], e[1], \ldots, e[k-1]$.

22/23

(This is not really planning.)

Marek Sergot (Imperial College London)

Marek Sergot (Imperial College London)

Transition system

Given an action description *D*:

 Γ_0^D — states

 Γ_1^D — (labelled) transitions

 Γ_m^D — paths/runs/traces of length *m*

21 / 23