
Modelling unreliable and untrustworthy agent

behaviour

Marek Sergot

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, UK
mjs@doc.ic.ac.uk

Summary. It cannot always be assumed that agents will behave as they are sup-
posed to behave. Agents may fail to comply with system norms deliberately, in open
agent systems or other competitive settings, or unintentionally, in unreliable envi-
ronments because of factors beyond their control. In addition to analysing system
properties that hold if specifications/norms are followed correctly, it is also necessary
to predict, test, and verify the properties that hold if system norms are violated, and
to test the effectiveness of introducing proposed control, enforcement, and recovery
mechanisms. C+++ is an extended form of the action language C+ of Giunchiglia,
Lee, Lifschitz, McCain, and Turner, designed for representing norms of behaviour
and institutional aspects of (human or computer) societies. We present the permis-
sion component of C+++ and then illustrate on a simple example how it can be used
in conjunction with standard model checkers for the temporal logic CTL to verify
system properties in the case where agents may fail to comply with system norms.

1 Introduction

It is a common assumption in many multi-agent systems that agents will be-
have as they are intended to behave. Even in systems such as impact [1],
where the language of ‘obligation’ and ‘permission’ is employed in the specifi-
cation of agent behaviour, there is an explicit, built-in assumption that agents
always fulfill their obligations and never perform actions that are prohibited.
For systems constructed by a single designer and operating on a stable and
reliable platform, this is a perfectly reasonable assumption.

There are at least two main circumstances in which the assumption must
be abandoned. In open agent societies, where agents are programmed by dif-
ferent parties, where there is no direct access to an agent’s internal state, and
where agents do not necessarily share a common goal, it cannot be assumed
that all agents will behave according to the system norms that govern their
behaviour. Agents must be assumed to be untrustworthy because they act on
behalf of parties with competing interests, and so may fail, or even choose not
to, conform to the society’s norms in order to achieve their individual goals.

2 Marek Sergot

It is then usual to impose sanctions to discourage norm violating behaviour
and to provide some form of reparation when it does occur. The second cir-
cumstance is where agents may fail to behave as intended because of factors
beyond their control. This is likely to become commonplace as multi-agent sys-
tems are increasingly deployed on dynamic distributed environments. Agents
in such circumstances are unreliable, but not because they deliberately seek
to gain unfair advantage over others. Imposition of sanctions to discourage
norm violating behaviour is pointless, though there is a point to specifying
reparation and recovery norms. There is a third, less common, circumstance,
where deliberate violations may be allowed in order to deal with exceptional
or unanticipated situations. An example of discretionary violation of access
control policies in computer security is discussed in [2].

In all these cases it is meaningful to speak of obligations and permissions,
and to describe agent behaviour as governed by norms, which may be vio-
lated, accidentally or on purpose. In addition to analysing system properties
that hold if specifications/norms are followed correctly, it is also necessary to
predict, test, and verify the properties that hold if these norms are violated,
and to test the effectiveness of introducing proposed control, enforcement, and
recovery mechanisms.

In previous work [3, 4, 5] we presented a framework for specifying open
agent societies in terms of permissions, obligations, and other more complex
normative relations. Norms are represented in various action formalisms in
order to provide an executable specification of the agent society. This work,
however, did not address verification of system properties, except in a limited
sense. In another strand of work [6, 7], we have addressed verification of system
properties but that was in the specific context of reasoning about knowledge
in distributed and multi-agent systems. We showed that by adding a simple
deontic component to the formalism of ‘interpreted systems’ [8] it is possible
to determine formally which of a system’s critical properties are compromised
when agents fail to behave according to prescribed communication protocols,
and then to determine formally the effectiveness of introducing additional
controller agents whose role is to enforce compliance.

In this paper we conduct a similar exercise, but focussing now on agent
behaviours generally rather than on communication and epistemic properties
specifically. We present the main elements of a formalism C+++ which we
have been developing for representing norms of behaviour and institutional
aspects of (human or computer) societies [9]; we then present a simple example
to sketch how it can be used in modelling unreliable/untrustworthy agent
behaviour.

C+++ is an extended form of the action language C+ of Giunchiglia, Lee,
Lifschitz, McCain, and Turner [10], a formalism for specifying and reasoning
about the effects of actions and the persistence (‘inertia’) of facts over time.
An ‘action description’ in C+ is a set of C+ rules which define a transition
system of a certain kind. Implementations supporting a range of querying and
planning tasks are available, notably in the form of the ‘Causal Calculator’

Modelling unreliable and untrustworthy agent behaviour 3

CCalc. Our extended version C+++ provides two main extensions. The first
is a means of expressing ‘counts as’ relations between actions, also referred to
as ‘conventional generation’ of actions. This feature will not be discussed in
this paper. The second extension is a way of specifying the permitted (accept-
able, legal) states of a transition system and its permitted (acceptable, legal)
transitions. This will be the focus of attention in this paper.

A main attraction of the C+ formalism compared to other action languages
in the AI literature is that it has an explicit semantics in terms of transition
systems and also a semantics in terms of a nonmonotonic formalism (‘causal
theories’, summarised below) which provides a route to implementation via
translations to executable logic programs. The emphasis in this paper is on
the transition system semantics. Transition systems provide a bridge between
AI formalisms and standard methods in other areas of computer science. We
exploit this link by applying standard temporal logic model checkers to verify
system properties of transition systems defined using the language C+++.

Two points of clarification: (1) We do not distinguish in this paper between
deliberate and unintentional norm violation, and (2) we are modelling agent
behaviour from an external “bird’s eye” perspective. We do not discuss an
agent’s internal state or its internal reasoning mechanisms.

2 The language C+

The language C was introduced by Giunchiglia and Lifschitz [11]. It applies
the ideas of ‘causal theories’ to reasoning about the effects of actions and
the persistence (‘inertia’) of facts (‘fluents’), building on earlier suggestions
by McCain and Turner. C+ extends C by allowing multi-valued fluents as
well as Boolean fluents and generalises the form of rules in various ways.
The definitive presentation of C+, and its relationship to ‘causal theories’, is
[10]. An implementation supporting a range of querying and planning tasks
is available in the form of the Causal Calculator (CCalc)1.

We present here a concise, and necessarily rather dense, summary of the
language. Some features (notably ‘statically determined fluents’) are omitted
for simplicity. There are also some minor syntactic and terminological differ-
ences from the version presented in [10], and we give particular emphasis to
the transition system semantics.

Syntax and semantics We begin with σ, a multi-valued, propositional signa-
ture, which is partitioned into a (non-empty) set σf of fluent constants and
a (non-empty) set σa of action constants. For each constant c ∈ σ there is a
finite, non-empty set dom(c) of values. For simplicity, in this paper we will
assume that each dom(c) has at least two elements. An atom of the signature
is an expression c=v, where c ∈ σ and v ∈ dom(c). c=v is a fluent atom when
c ∈ σf and an action atom when c ∈ σa. A Boolean constant is one whose

1 http://www.cs.utexas.edu/users/tag/cc

4 Marek Sergot

domain is the set of truth values {t, f}. When c is a Boolean constant, we
often write c for c=t and ¬c as a shorthand for c=f. Formulas are constructed
from the atoms using the usual propositional connectives. The expressions ⊤
and ⊥ are 0-ary connectives, with the usual interpretation. A fluent formula

is a formula whose constants all belong to σf ; an action formula is a formula
whose constants all belong to σa, except that ⊤ and ⊥ are fluent formulas but
not action formulas.

An interpretation of a multi-valued signature σ is a function mapping every
constant c to some v ∈ dom(c); an interpretation X is said to satisfy an atom
c=v if X(c) = v, and in this case we write X |= c=v. The satisfaction relation
|= is extended from atoms to formulas in accordance with the standard truth
tables for the propositional connectives. We let the expression I(σ) stand for
the set of interpretations of σ. For convenience, we adopt the convention that
an interpretation X of σ is identified with the set of atoms that are satisfied
by X , i.e., X |= c=v iff c=v ∈ X for any atom c=v of σ.

Every action description D of C+ defines a labelled transition system
〈S,A, R〉 where

• S is a (non-empty) set of states, each of which is an interpretation of the
fluent constants σf of D; S ⊆ I(σf);

• A is a set of transition labels, sometimes referred to as action labels or
events ; A is the set of interpretations of the action constants σa, A = I(σa);

• R is a set of transitions, R ⊆ S × A × S.

For example: suppose there are three agents, a, b, and c which can move in
direction E, W , N , or S, or remain idle. Suppose (for the sake of an example)
that they can also whistle as they move. Let the action signature consist of
action constants move(a), move(b), move(c) with domains {E,W,N, S, idle},
and Boolean action constants whistle(a), whistle(b), whistle(c). Then one pos-
sible interpretation of the action signature, and therefore one possible transi-
tion label, is {move(a)=E,move(b)=N,move(c)=idle ,whistle(a),¬whistle(b),
whistle(c)}.

Because every transition label ǫ is an interpretation of the action signature
σa, action formulas α can be evaluated on the transition labels. We sometimes
say that a transition (s, ǫ, s′) is a transition of type α when ǫ |= α.

An action descriptionD in C+ is a set of causal laws, which are expressions
of the following three forms. A static law is an expression:

F if G (1)

where F and G are fluent formulas. Static laws express constraints on states.
A fluent dynamic law is an expression:

F if G after ψ (2)

where F and G are fluent formulas and ψ is any formula of signature σf ∪ σa.
Informally, (2) states that fluent formula F is satisfied by the resulting state

Modelling unreliable and untrustworthy agent behaviour 5

s′ of any transition (s, ǫ, s′) with s∪ ǫ |= ψ, as long as fluent formula G is also
satisfied by s′. Some examples follow. An action dynamic law is an expression:

α if ψ (3)

where α is an action formula and ψ is any formula of signature σf ∪σa. Action
dynamic laws are used to express, among other things, that any transition
of type α must also be of type α′ (α′ if α), or that any transition from a
state satisfying fluent formula G must be of type β (β if G). Examples will
be provided in later sections.

The C+ language provides various abbreviations for common forms of
causal laws. We will employ the following in this paper.

α causes F if G expresses that fluent formula F is satisfied by any state fol-
lowing the occurrence of a transition of type α from a state satisfying
fluent formula G. It is shorthand for the dynamic law F if ⊤ after G ∧ α.
α causes F is shorthand for F if ⊤ after α.

nonexecutable α if G expresses that there is no transition of type α from a
state satisfying fluent formula G. It is shorthand for the fluent dynamic
law ⊥ if ⊤ after G ∧ α, or α causes ⊥ if G.

inertial f states that values of the fluent constant f persist by default (‘iner-
tia’) from one state to the next. It is shorthand for the collection of fluent
dynamic laws f=v if f=v after f=v for every v ∈ dom(f).

Of most interest are definite action descriptions, which are action descrip-
tions in which the head of every law (static, fluent dynamic, or action dy-
namic) is either an atom or the symbol ⊥, and in which no atom is the head
of infinitely many laws of D. We will restrict attention to definite action de-
scriptions in this paper.

Now for the semantics. (See [9] for further details.)
Let Tstatic(s) stand for the heads of all static laws in D whose bodies are

satisfied by s; let E(s, ǫ, s′) stand for the heads of all fluent dynamic laws in
D whose bodies are satisfied by the transition (s, ǫ, s′); and let A(ǫ, s) stand
for the heads of all action dynamic laws whose bodies are satisfied by the
transition (s, ǫ, s′).

Tstatic(s) =def {F | F if G is in D, s |= G}

E(s, ǫ, s′) =def {F | F if G after ψ is in D, s′ |= G, s ∪ ǫ |= ψ}

A(ǫ, s) =def {α | α if ψ is in D, s ∪ ǫ |= ψ}

Let D be a definite action description and σf its fluent signature. A set s
of fluent atoms is a state of D iff it satisfies the static laws of D, that is, iff

• s |= Tstatic(s) (i.e., Tstatic(s) ⊆ s)

(s, ǫ, s′) is a transition of D iff s and s′ are interpretations of the fluent sig-
nature σf and ǫ is an interpretation of the action signature σa such that:

6 Marek Sergot

• s |= Tstatic(s) (Tstatic(s) ⊆ s; s is a state of D)
• s′ = Tstatic(s

′) ∪ E(s, ǫ, s′)
• ǫ |= A(ǫ, s) (A(ǫ, s) ⊆ ǫ)

One can see from the definition that s′ is a state of D when (s, ǫ, s′) is a
transition of D.

Paths Finally, when 〈S,A, R〉 is a labelled transition system, a path of length
m is a sequence s0 ǫ0 s1 · · · sm−1 ǫm−1 sm (m ≥ 0) such that (si−1, ǫi−1, si) ∈
R for i ∈ 1..m. We will also be interested in infinite (ω length) paths.

Causal theories The language C+ can be regarded as a higher-level notation
for defining particular classes of theories in the non-monotonic formalism of
‘causal theories’, and indeed this is how it is presented in [10]. For present
purposes the important points are these: for every (definite) action description
D and non-negative integer m there is a natural translation from D to a
causal theory ΓD

m which encodes the paths of lengthm in the transition system
defined byD; moreoever, for every definite causal theory ΓD

m
there is a formula

comp(ΓD
m) of (classical) propositional logic whose (classical) models are in 1-1

correspondence with the paths of length m in the transition system defined by
D. Thus, one method of computation for C+ action descriptions is to construct
the formula comp(ΓD

m) from the action description D and then employ a
(standard, classical) satisfaction solver to determine the models of comp(ΓD

m
).

This is the method employed in the ‘Causal Calculator’ CCalc.
We summarise the main steps for completeness; the reader may wish to

skip the details on first reading. A full account is given in [10].
A causal theory of signature σ is a set of expressions (‘causal rules’) of the

form
F ⇐ G

where F and G are formulas of signature σ. F is the head of the rule and G
is the body. A rule F ⇐ G is to be read as saying that F is ‘caused’ if G is
true, or (perhaps better), that there is an explanation for the truth of F if G
is true.

Let Γ be a causal theory and let X be an interpretation of its signature.
The reduct ΓX is the set of all rules of Γ whose bodies are satified by the
interpretation X : ΓX =def {F | F ⇐ G is a rule in Γ and X |= G}. X is a
model of Γ iff X is the unique model (in the sense of multi-valued signatures)
of ΓX .

A causal theory Γ is definite if the head of every rule of Γ is an atom or ⊥,
and no atom is the head of infinitely many rules of Γ. Every definite causal
theory Γ can be translated into a formula comp(Γ) of (classical) propositional
logic via the process of ‘literal completion’: for each atom c=v construct the
formula c=v ↔ G1 ∨ · · · ∨ Gn where G1, . . . , Gn (n ≥ 0) are the bodies of
the rules of Γ with head c=v; comp(Γ) is the conjunction of all such formulas
together with formulas ¬F for each rule of the form ⊥ ⇐ F in Γ. The models

Modelling unreliable and untrustworthy agent behaviour 7

of a definite causal theory Γ are precisely the (classical) models of its literal
completion, comp(Γ).

Given an action description D in C+, and any non-negative integer m,
translation to the corresponding causal theory ΓD

m
proceeds as follows. The

signature of ΓD
m is obtained by time-stamping every fluent and action constant

of D with non-negative integers between 0 and m: the (new) atom f [i]=v
represents that fluent f=v holds at integer time i, or more precisely, that
f=v is satisfied by the state si of a path s0 ǫ0 · · · ǫm−1 sm of the transition
system defined by D; the atom a[i]=v represents that action atom a=v is
satisfied by the transition ǫi of such a path. In what follows, ψ[i] is shorthand
for the formula obtained by replacing every atom c=v in ψ by the timestamped
atom c[i]=v.

Now, for every static law F if G in D and every i ∈ 0 ..m, include in ΓD
m

a causal rule of the form
F [i] ⇐ G[i]

For every fluent dynamic law F if G after ψ in D and every i ∈ 0 ..m−1,
include a causal rule of the form

F [i+1] ⇐ G[i+1] ∧ ψ[i]

And for every action dynamic law α if ψ in D and every i ∈ 0 ..m−1, include
a causal rule of the form

α[i] ⇐ ψ[i]

We also require the following ‘exogeneity laws’. For every fluent constant f
and every v ∈ dom(f), include a causal rule:

f [0]=v ⇐ f [0]=v

And for every action constant a, every v ∈ dom(a), and every i ∈ 0 ..m−1,
include a causal rule:

a[i]=v ⇐ a[i]=v

(There are some further complications in the full C+ language concerning
‘statically determined’ fluents and non-exogenous actions, which we are ig-
noring here for simplicity.)

It is straightforward to check [10] that the models of causal theory ΓD

m,
and hence the (classical) models of the propositional logic formula comp(ΓD

m
),

correspond 1-1 to the paths of length m of the transition system defined by
the C+ action description D. In particular, models of comp(ΓD

1) encode the
transitions defined by D and models of comp(ΓD

0) the states defined by D.
Given an action description D and a non-negative integer m, the ‘Causal

Calculator’ CCalc performs the translation to the causal theory ΓD

m
, con-

structs comp(ΓD

m
), and then invokes a standard propositional satisfaction

solver to find the (classical) models of comp(ΓD

m). So, for example, plans of
length m from an initial state satisfying fluent formula F to a goal state

8 Marek Sergot

satisfying fluent formula G can be found by determining the models of the
(classical) propositional formula comp(ΓD

m) ∧ F [0] ∧G[m].
It must be emphasised, however, that C+ is a language for defining la-

belled transition systems (of a certain kind), and is not restricted to use with
CCalc. A variety of other languages can be interpreted on the transition
system defined by a C+ action description. In particular, in later sections we
will look at the use of the branching time temporal logic CTL for expressing
system properties to be checked on transition systems defined by C+.

Example (trains)

The following example is used in [12, 13] to illustrate the use of alternating-
time logic (ATL) for determining the effectiveness of ‘social laws’ designed
to co-ordinate the actions of agents in multi-agent system. We will use the
example for a different purpose: in this section, to illustrate use of the language
C+, and in later sections, to show how the extended form C+++can be used
to analyse variants of the example in which agents may fail to obey social
laws.

There are two trains, a and b, with a running clockwise round a double
track, and b running anti-clockwise. There is a tunnel in which the double
track becomes a single track. If the trains are both inside the tunnel at the
same time they will collide. The tunnel can thus be seen as a kind of critical
section, or as a resource for which the trains must compete.

t

W E

a b

There are obviously many ways in which the example can be formulated.
The following will suffice for present purposes. Although it may seem unnec-
essarily complicated, this formulation is convenient for the more elaborate
versions of the example to come later.

Let fluent constants loc (a) and loc (b) represent the locations of trains
a and b respectively. They both have possible values {W, t,E}. For action
constants, we take a and b with possible values {go, stay}. (Action constants
act(a) and act(b) may be easier to read but we choose a and b for brevity.)

The C+ action description representing the possible movements of the
trains is as follows. We will call this action description Dtrains.

inertial loc (a), loc (b)

train a moves clockwise:

a=go causes loc (a)=t if loc (a)=W

a=go causes loc (a)=E if loc (a)=t

a=go causes loc (a)=W if loc (a)=E

Modelling unreliable and untrustworthy agent behaviour 9

train b moves anti-clockwise:

b=go causes loc (b)=t if loc (b)=E

b=go causes loc (b)=W if loc (b)=t

b=go causes loc (b)=E if loc (b)=W

collisions:

collision iff loc (a)=t ∧ loc (b)=t % for convenience

nonexecutable a=go if collision

nonexecutable b=go if collision

The Boolean fluent constant collision is introduced for convenience.2 The
example can be formulated perfectly well without it.

The transition system defined by Dtrains is shown in Fig. 1.

EW WW t W

EE WE t E

E t W t t t

a· a· a·

a· a· a·

a· a·

·b

·b

·b

·b

·b

·b

·b

·b

Fig. 1. The transition system for the trains example. A state label such as EW

is short for {loc (a)=E, loc (b)=W}. Horizontal edges, labelled a·, are transitions in
which train a moves and b does not. Vertical edges, labelled ·b, are transitions in
which train b moves and a does not. Diagonal edges, unlabelled in the diagram, are
transitions in which both trains move. Reflexive edges, corresponding to transitions
in which neither train moves, are omitted from the diagram to reduce clutter.

3 The language C+++

C+++ is an extended form of the language C+ designed for representing norms
of behaviour and institutional aspects of (human or computer) societies [9]. It
provides two main extensions to C+. The first is a means of expressing ‘counts
as’ relations between actions, also referred to as ‘conventional generation’ of

2 For readers familiar with C+, a law of the form F iff G is used here as shorthand
for the pair of laws F if G and default ¬F . default ¬F is a C+ abbreviation for
the law ¬F if ¬F .

10 Marek Sergot

actions. That will not be discussed further in this paper. The second extension
is a way of specifying the permitted (acceptable, legal) states of a transition
system and its permitted (acceptable, legal) transitions.

Syntax and semantics An action description of C+++ defines a coloured

transition system, which is a structure of the form: 〈S,A, R, Sg, Rg〉 where
〈S,A, R〉 is a labelled transition system of the kind defined by C+ action
descriptions, and where the two new components are

• Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

• Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—we
call Rg the ‘green’ transitions of the system.

We refer to the complements S − Sg and R− Rg as the ‘red states’ and ‘red
transitions’, respectively. Semantical devices which partition states (and here,
transitions) into two categories are familiar in the field of deontic logic where
are known to yield rather simplistic logics; full discussion of their adequacy is
outside the scope of this paper. It is also possible to consider a more elaborate
structure, of partially coloured transition systems in which states and transi-
tions can be green, red, or uncoloured, but we shall not present that version
here.

A coloured transition system 〈S,A, R, Sg, Rg〉 must further satisfy the fol-
lowing constraint:

• if (s, ǫ, s′) ∈ Rg and s ∈ Sg then s′ ∈ Sg.

We refer to this as the green-green-green constraint. The idea is that occur-
rence of a permitted (green) transition in a permitted (green) state must
always lead to a permitted (green) state. All other possible combinations of
green/red states and green/red transitions are allowed. In particular, and
contra the assumptions underpinning John-Jules Meyer’s construction of ‘dy-
namic deontic logic’ [14], a non-permitted (red) transition can result in a
permitted (green) state. Similarly, it is easy to devise examples in which a
permitted (green) transition can lead to a non-permitted (red) state. Some
illustrations will arise in the examples to be considered later. The only com-
bination that cannot occur is the one eliminated by the ‘green-green-green’
constraint: a permitted (green) transition from a permitted (green) state can-
not lead to a non-permitted (red) state.

The language C+++ extends the language C+ with two new forms of rules.
A state permission law is an expression of the form

not-permitted F (4)

where F is a fluent formula. An action permission law is an expression of the
form

not-permitted α if ψ (5)

Modelling unreliable and untrustworthy agent behaviour 11

where α is an action formula and ψ is any formula of signature σf ∪ σa.
not-permitted α is an abbreviation for not-permitted α if ⊤. It is also convenient
to allow two variants of rule forms (4) and (5), allowing oblig F as an abbrevia-
tion for not-permitted ¬F and oblig α as an abbreviation for not-permitted ¬α.

Informally, in the transition system defined by an action description D, a
state s is red whenever s |= F for any state permission law not-permitted F . All
other states are green by default. A transition (s, ǫ, s′) is red whenever s∪ǫ |= ψ
and ǫ |= α for any action permission law not-permitted α if F after ψ. All other
transitions are green, subject to the ‘green-green-green’ constraint which may
impose further conditions on the possible colouring of a given transition.

Let D be an action description of C+++. Dbasic refers to the subset of
laws of D that are also laws of C+. The transition system defined by D has
the states S and transitions R that are defined by its C+ component, Dbasic,
and green states Sg and green transitions Rg given by Sg =def S − Sred,
Rg =def R−Rred where

Sred =def {s | s |= F for some law not-permitted F in D}

Rred =def {(s, ǫ, s
′) | s ∪ ǫ |= ψ, ǫ |= α for some law not-permitted α if ψ in D}

∪ {(s, ǫ, s′) | s ∈ Sg and s′ /∈ Sg}

The second component of the Rred definition ensures that the ‘green-green-
green’ constraint is satisfied.

Example Consider the trains example of section 2. A collision is undesirable,
unacceptable, not permitted (‘red’). Construct an action description D1 of
C+++ by adding to the C+ action description Dtrains of section 2 the state
permission law

not-permitted collision (6)

The coloured transition system defined by D1 is the transition system of Fig. 1
with the collision state tt coloured red and all other states coloured green. The
three transitions leading to the collision state are coloured red because of the
green-green-green constraint; all other transistions, including the transition
from the collision state to itself, are green.

Causal theories Any (definite) action description of C+++ can be translated
to the language of (definite) causal theories, as follows. Let D be an action de-
scription and m a non-negative integer. The translation of the C+ component
Dbasic of D proceeds as usual. For the permission laws, introduce two new
fluent and action constants, status and trans respectively, both with possible
values green and red. They will be used to represent the colour of a state and
the colour of a transition, respectively.

For every state permission law not-permitted F and time index i ∈ 0 ..m,
include in ΓD

m a causal rule of the form status[i]=red ⇐ F [i], and for every
i ∈ 0 ..m, a causal rule of the form status[i]=green ⇐ status[i]=green to specify
the default colour of a state. A state permission rule of the form oblig F
produces causal rules of the form status[i]=red ⇐ ¬F [i].

12 Marek Sergot

For every action permission law not-permitted α if ψ and time index i ∈
0 ..m−1, include in ΓD

m a causal rule of the form trans[i]=red ⇐ α[i]∧ψ[i], and
for every i ∈ 0 ..m−1, a causal rule of the form trans[i]=green ⇐ trans[i]=green

to specify the default colour of a transition. An action permission law of the
form oblig α if ψ produces causal rules of the form trans[i]=red ⇐ ¬α[i]∧ψ[i].

Finally, to capture the ‘green-green-green’ constraint, include for every
i ∈ 0 ..m−1 a causal rule of the form

trans[i]=red ⇐ status[i]=green ∧ status[i+1]=red (7)

It is straightforward to show [9] that models of the causal theory ΓD

m
corre-

spond to all paths of length m through the coloured transition system defined
by D, where the fluent constant status and the action constant trans encode
the colours of the states and transitions, respectively.

Notice that, although action descriptions in C+++ can be translated to
causal theories, they cannot be translated to action descriptions of C+: there
is no form of causal law in C+ which translates to the green-green-green
constraint (7).

In addition to permission laws of the form (4) and (5), which are conve-
nient but rather restrictive, the C+++ language allows distinguished fluent
and action constants status and trans to be used explicitly in formulas and
causal laws. The atoms status=red and trans=red can then be regarded as
what are sometimes called ‘violation constants’ in deontic logic. It is also
easy to allow more ‘shades’ of red and green to allow different notions of per-
mitted/legal/acceptable to be mixed. We will not employ that device in the
examples discussed in this paper.

Example (trains, continued)

The action description D1 of the previous section states that collisions are not
permitted but says nothing about how the trains should ensure that collisions
are avoided. Suppose, for the sake of an example, that we impose additional
norms (social laws), as follows: no train is permitted to enter the tunnel unless
the other train has just emerged. (We assume that this will be observed by
the train that is preparing to enter.) Will such a law be effective in avoiding
collisions?

To construct a C+++ action description D2 for this version, ignore (6) and
instead add to the C+ action description Dtrains the following laws. First, it is
convenenient to define the following auxiliary action constants (all Boolean):

enter (a) iff a=go ∧ loc (a)=W

exit (a) iff a=go ∧ loc (a)=t

enter (b) iff b=go ∧ loc (b)=E

exit (b) iff b=go ∧ loc (b)=t

(8)

Modelling unreliable and untrustworthy agent behaviour 13

Again, these are introduced merely for convenience; the example can be con-
structed easily enough without them. Now we formulate the social laws:

not-permitted enter (a) if loc (b)6=W

not-permitted enter (b) if loc (a)6=E
(9)

The coloured transition system for this version of the example is shown
in Fig. 2. Notice that since we are now using green/red to represent what is
permitted/not permitted from the point of view of train behaviour, we have
discarded the state permission law (6). Consequently the collision state tt

is coloured green not red. We could combine the two notions of permission
expressed by laws (6) and (9), for instance by introducing two different shades
of green and red and relating them to each other, but we do not have space
to discuss that option here.

EW WW t W

EE WE t E

E t W t t t

a

a
b

bab

a

b

Fig. 2. Coloured transition system defined by action description D2. Dotted lines
indicate red transitions. All states and all other transitions are green. Reflexive edges
(all green) are omitted for clarity.

How do we test the effectiveness of the social laws (9)? Since the causal
theory ΓD2

1 encodes the transitions defined by D2, the following captures the
property that if both trains comply with the social laws, no collisions will
occur.

comp(ΓD2

1) |= ¬collision [0] ∧ trans[0]=green → ¬collision [1] (10)

This can be checked, as in CCalc, by using a standard sat-solver to determine
that the formula comp(ΓD2

1)∧¬collision [0]∧trans[0]=green∧collision [1] is not
satisfiable. The property (10) is equivalently expressed as:

comp(ΓD2

1) |= ¬collision [0] ∧ collision [1] → trans[0]=red (11)

which says that a collision occurs only following a transition in which either
one train or both violate the norms.

14 Marek Sergot

Notice that comp(ΓD2

1) 6|= trans[0]=green → ¬collision [1]: as formulated
by D2, the transition from a collision state to itself is green.

One major advantage of taking C+ as the basic action formalism, as we see
it, is its explicit transition system semantics, which enables a wide range of
other analytical techniques to be applied. In particular, system properties can
be expressed in the branching time temporal logic CTL and verified on the
transition system defined by a C+ or C+++ action description using standard
model checking systems.

We will say that a formula ϕ of CTL is valid on a (coloured) transition
system 〈S, I(σa), R, Sg, Rg〉 defined by C+++ action descriptionD when s∪ǫ |=
ϕ for every s ∪ ǫ such that (s, ǫ, s′) ∈ R for some state s′. The definition is
quite standard, except for a small adjustment to allow action constants in ϕ
to continue to be evaluated on transition labels ǫ. (And we do not distinguish
any particular set of initial states; all sets in S are initial states.) We will also
say in that case that formula ϕ is valid on the action description D.

In CTL, the formula AXϕ expresses that ϕ is satisfied in the next state in
all future branching paths from now.3 EX is the dual of AX : EXϕ ≡ ¬AX¬ϕ.
EXϕ expresses that ϕ is satisfied in the next state of some future branching
path from now. The properties (10) and (11) can thus be expressed in CTL
as follows:

¬collision ∧ trans=green → AX¬collision (12)

or equivalently ¬collision ∧ EX collision → trans=red. It is easily verified by
reference to Fig. 2 that these formulas are valid on the action description D2.
Also valid is the CTL formula EX trans=green which expresses that there is
always a permitted action for both trains. This is true even in collision states,
since the only available transition is then the one where both trains remain
idle, and that transition is green. The CTL formula EF collision is also valid
on D2, signifying that in every state there is at least one path from then on
with collision true somewhere in the future.4

4 Example: a simple co-ordination mechanism

We now consider a slightly more elaborate version of the trains example. In
general, we want to be able to verify formally whether the introduction of
additional control mechanisms—additional controller agents, communication
devices, restrictions on agents’ possible actions—are effective in ensuring that
agents comply with the norms (‘social laws’) that govern their behaviour.
For the trains, we might consider a controller of some kind, or traffic lights,
or some mechanism by which the trains communicate their locations to one
another. For the sake of an example, we will suppose that there is a physical

3 s0 ∪ ǫ0 |= AX ϕ if for every infinite path s0 ǫ0 s1 ǫ1 · · · we have that s1 ∪ ǫ1 |= ϕ.
4 s0 ∪ ǫ0 |= EF ϕ if there is an (infinite) path s0 ǫ0 · · · sm ǫm · · · with sm ∪ ǫm |= ϕ

for some m ≥ 0.

Modelling unreliable and untrustworthy agent behaviour 15

token (a metal ring, say) which has to be collected before a train can enter
the tunnel. A train must pick up the token before entering the tunnel, and it
must deposit it outside the tunnel as it exits. No train may enter the tunnel
without possession of the token.

To construct the C+++ action description D3 for this version of the exam-
ple, we begin as usual with the C+ action description Dtrains of section 2. We
add a fluent constant tok to represent the position of the token. It has values
{W,E, a, b}. tok=W represents that the token is lying at the West end of the
tunnel, tok=a that the token is currently held by train a, and so on. We add
Boolean action constants pick (a), pick (b) to represent that a (resp., b) picks
up the token, and drop (a), drop (b) to represent that a (resp., b) drops the to-
ken at its current location. For convenience, we will keep the action constants
enter (a), enter (b), exit (a), exit (b) defined as in D2 of the previous section.

The following causal laws describe the effects of picking up and dropping
the token. To avoid duplication, x and l are variables ranging over a and b
and locations W, E, t respectively.

inertial tok

tok=l if loc (x)=l after drop (x)
nonexecutable drop (x) if tok 6=x

pick (x) causes tok=x
nonexecutable pick (x) if loc (x)6=tok

The above specifies that the token can be dropped by train x only if train
x has the token (tok=x), and it can be picked up by train x only if train x
and the token are currently at the same location (loc (x)=tok). Notice that,
as defined, an action drop (x)∧x=stay drops the token at the current location
of train x, and drop (x) ∧ x=go drops it at the location of train x after it has
moved. (The fluent dynamic law drop (x) causes tok=l if tok=x ∧ loc (x)=l
would drop the token at the location of train x before it moved.) Since tok=t

is not a well-formed atom, it is not possible that (there is no transition in
which) the token is dropped inside the tunnel. pick (x) ∧ x=go represents an
action in which train x picks up the token and moves with it. More refined
representations could of course be constructed but this simple version will
suffice for present purposes.

The action description D3 is completed by adding the following permission
laws:

not-permitted enter (x) if tok 6=x ∧ ¬pick (x)

oblig drop (x) if exit (x) ∧ tok=x
(13)

It may be helpful to note that in C+++, the first of these laws is equivalent
to

oblig pick (x) if enter (x) ∧ tok 6=x

The coloured transition system defined by action description D3 is larger
and more complicated than that for D2 of the previous section, and cannot
be drawn easily in its entirety. A fragment is shown in Fig. 3.

16 Marek Sergot

– tW

t W

t W

tW–

–E t

Et

E t –

E t

EW

EW–

–EW

EW

–EE

EE

EE–

EE

WW

–WW

WW

WW–

–WE

WE

WE

WE–

–Wt

Wt

W t

W t –

– t E

t E

tE

t E–

– t t

t t

t t

t t –

Fig. 3. Fragment of the coloured transition system defined by D3. The figure shows
all states but not all transitions. The dash in state labels indicates the position of
the token: it is at W/E when the dash is on the left/right, and with train a/b when
the dash appears above the location of a/b. Dotted lines depict red transitions. All
other depicted transitions, and all states, are green.

One property we might wish to verify on D3 is that collisions are guaran-
teed to be avoided if both trains comply with the norms (‘social laws’). Using
the ‘Causal Calculator’ CCalc, we can try to determine whether

comp(ΓD3

m
) |= ¬collision [0] ∧ trans[0]=green ∧ . . .

∧ trans[m−1]=green → ¬collision [m]

that is, whether the formula comp(ΓD

m)∧¬collision [0]∧ trans[0]=green∧ · · · ∧
trans[m−1]=green∧collision [m] is satisfiable. But what should we take as the
length m of the longest path to be considered? In some circumstances it is
possible to find a suitable value m for the longest path to be considered but
it is far from obvious in this example what that value is, or even if one exists.

The problem can be formulated conveniently as a model checking problem
in CTL. The CTL formula E[trans=greenU collision] expresses that there is
at least one path with collision true at some future state and trans=green

Modelling unreliable and untrustworthy agent behaviour 17

true on all intervening transitions.5 So the property we want to verify can be
expressed in CTL as follows:

¬collision → ¬E[trans=greenU collision] (14)

It can be seen from Fig. 3 that property (14) is not valid on the action de-
scription D3: there are green transitions leading to collision states, from states
where there is already a train inside the tunnel without the token. However,
as long as we consider states in which both trains are initially outside the
tunnel, the safety property we seek can be verified. The following formula is
valid on D3:

loc (a)6=t ∧ loc (b)6=t → ¬E[trans=green U collision] (15)

We are often interested in the verification of formulas such as (14) and (15)
which express system properties conditional on norm compliance (conditional
on all transitions being green). Verfication of such properties is particularly
easy: translate the coloured transition system M = 〈S,A, R, Sg, Rg〉 to the
transition system M′ = 〈Sg,A, Rg〉 obtained by deleting all red states and red
transitions from M. Now, since in CTL E[⊤Uϕ] ≡ EFϕ, instead of checking,
for example, formula (15) on M we can check whether

loc (a)6=t ∧ loc (b)6=t → ¬EF collision (16)

is valid on M′. This is a standard model checking problem.

5 Conclusion

We have presented the permission component of the action language C+++

and sketched how it can be applied to modelling systems in which agents
do not necessarily comply with the norms (‘social laws’) that govern their
behaviour. Space limitations prevented us from discussing more elaborate ex-
amples where non-compliance with one set of norms imposes further norms
for reparation and/or recovery. We are currently working on the use of C+++

as the input language for various temporal logic model checkers, CTL in par-
ticular. Scaleability is of course an issue; however, here the limits are set by
the model checking techniques employed and not by the use of C+++. At the
MSRAS workshop, our attention was drawn to the model checking technique
of [15] which uses program transformations on constraint logic programs repre-
senting transition systems to verify formulas of CTL. Since action descriptions
in C+, and in C+++, can be related via causal theories to logic programs [10],
this presents an interesting avenue to explore.

5 s0∪ǫ0 |= E[ϕ1 U ϕ2] if there is an (infinite) path s0 ǫ0 · · · sm ǫm · · · with sm∪ǫm |=
ϕ2 for some m ≥ 0 and with si ∪ ǫi |= ϕ1 for all 0 ≤ i < m.

18 Marek Sergot

References

1. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross,
R.: Heterogeneous Agent Systems. MIT Press, Cambridge (2000)

2. Rissanen, E., Sadighi Firozabadi, B., Sergot, M.J.: Towards a mechanism for
discretionary overriding of access control (position paper). In: Proc. 12th Inter-
national Workshop on Security Protocols, Cambridge, April 2004. (2004)

3. Artikis, A., Pitt, J., Sergot, M.J.: Animated specification of computational so-
cieties. In Castelfranchi, C., Johnson, W.L., eds.: Proc. 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’02),
Bologna, ACM Press (2002) 1053–1062

4. Artikis, A., Sergot, M.J., Pitt, J.: Specifying electronic societies with the Causal
Calculator. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented Soft-
ware Engineering III. Proc. 3rd International Workshop (AOSE 2002), Bologna,
July 2002. LNCS 2585, Springer (2003) 1–15

5. Artikis, A., Sergot, M.J., Pitt, J.: An executable specification of an argumenta-
tion protocol. In: Proc. 9th International Conference on Artificial Intelligence
and Law (ICAIL’03), Edinburgh, ACM Press (2003) 1–11

6. Lomuscio, A., Sergot, M.J.: Deontic interpreted systems. Studia Logica 75

(2003) 63–92
7. Lomuscio, A., Sergot, M.J.: A formalisation of violation, error recovery, and

enforcement in the bit transmission problem. Journal of Applied Logic 2 (2004)
93–116

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

9. Sergot, M.: The language C+++. In Pitt, J., ed.: The Open Agent Society. Wiley
(2004) (In press). Extended version: Technical Report 2004/8. Department of
Computing, Imperial College, London.

10. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artificial Intelligence 153 (2004) 49–104

11. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation:
Preliminary report. In: Proc. AAAI-98, AAAI Press (1998) 623–630

12. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time:
Effectiveness, feasibility, and synthesis. Technical report, Dept. of Computer
Science, University of Liverpool (2004) Submitted.

13. Jamroga, W., van der Hoek, W., Wooldridge, M.: On obligations and abilities. In
Lomuscio, A., Nute, D., eds.: Proc. 7th International Workshop on Deontic Logic
in Computer Science (DEON’04), Madeira, May 2004. LNAI 3065, Springer
(2004) 165–181

14. Meyer, J.J.: A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic 29 (1988) 109–
136

15. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In: Proceedings of Sec-
ond ACM-Sigplan International Workshop on Verification and Computational
Logic (VCL’01), Florence, September 2001. (2001) 85–96 Expanded version:
Technical Report R.544, IASI-CNR, Rome.

