
Computational aspects of the FLBC framework

Aspassia Daskalopulu a,*, Marek Sergot b

aDepartment of Computer Science, King’s College London, The Strand, London WC2R 2LS, UK
bDepartment of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK

Abstract

Recent research has sought to develop formal languages for business communication as more expressive, flexible and

powerful alternatives to current electronic data interchange (EDI) standards, with potential benefits both for business-to-

business exchanges in e-commerce and for general intra-organizational communication. A prominent approach in this area has

become known as the formal language for business communication (FLBC) and is grounded on speech act theory, event

semantics, thematic roles, and first-order logic (FOL). In this paper, we discuss some of the specific technical choices for the

representation of messages in the original FLBC framework and propose two modifications. The first eliminates a problematic

modal logical component from the representations of messages; the second transforms the message representation into

Skolemised clausal form. Focusing on two different computational tasks, we illustrate how existing computational methods can

be employed directly on the resulting representation for messages. We also propose an alternative formulation for messages

using C-logic and discuss possible extensions to the resulting modified FLBC framework, for example, in establishing whether

an exchange is meaningful and in compliance with the setting in which the parties have pre-agreed to operate. Finally, we

consider some open problems and identify directions for future developments. D 2002 Elsevier Science B.V. All rights

reserved.

Keywords: Formal languages for business communication; Electronic data interchange (EDI); Electronic commerce; Speech acts; Event

semantics; Thematic roles; Logic programming

0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0167 -9236 (02 )00016 -7

1. Introduction

Recent research has sought to develop formal

languages for business communication as more

expressive, flexible and powerful alternatives to cur-

rent electronic data interchange (EDI) standards, with

potential benefits both for business-to-business

exchanges in an e-commerce setting and for general

intra-organizational communication in the context of

office automation systems. A prominent approach in

this area has become known as the formal language

for business communication (FLBC). First proposed

by Kimbrough and his associates (see e.g. [12–17]),

FLBC is grounded on speech act theory, event seman-

tics and first-order logic (FOL). Work on its further

development and deployment continues.

The main premise underlying FLBC is that mes-

sages exchanged between parties are made up of

statements that can be analysed and represented in

the F(P) framework of speech act theory. Speech act

theory, whose origins are traced in the work of Austin

[1] and Searle [22], is concerned with the analysis and

* Corresponding author.

E-mail addresses: aspassia@dcs.kcl.ac.uk (A. Daskalopulu),

mjs@doc.ic.ac.uk (M. Sergot).

www.elsevier.com/locate/dsw

Decision Support Systems 33 (2002) 267–290



Table 1

Austin’s [1] classification of illocutionary forces

Illocutionary force Explication Performative verbs

Verdictives Giving a verdict by a jury arbitrator or umpire,

or giving an estimate, reckoning or appraisal.

An exercise of the speaker’s judgement.

Committing the hearer/others to certain future conduct.

Acquit, convict, grade, assess, locate, measure, find

(as a matter of fact), rule, diagnose, etc.

Exercitives Assertion of influence or exercise of powers

or rights. Giving a decision that something is

to be so. Creating obligations, permissions or

prohibitions for the hearer/others.

Appoint, vote, order, urge, advise, warn, dismiss,

demote, name, bequeath, proclaim, resign, nominate,

recommend, etc.

Commissives Committing the speaker to a course of action.

Assuming an obligation or declaring intention.

Promise, undertake, intend, plan, shall, adopt, oppose,

guarantee, consent, etc.

Behabitives Describing the speaker’s reaction to other people’s

behaviour or states of affairs. Adopting an attitude.

Apologize, thank, commiserate, resent, welcome,

protest, challenge, etc.

Expositives Describing views, clarifying reasons, arguments

and communications.

Affirm, deny, state, identify, inform, postulate,

interpret, agree, etc.

representation of utterances. In Austin’s terms, each

utterance has a locutionary aspect (what is being said,

the truth-functional content, the P-component), an

illocutionary aspect (the force in saying something,

the speaker’s attitude towards the content, the F-

component) and a perlocutionary aspect (what is

achieved by saying something, what effect the speaker

intends the utterance to have on the hearer). Speech

act theory seeks to identify the main types of utter-

ances in terms of their illocutionary aspect and pro-

vide a systematic explication for each of these types in

terms of the information conveyed between a speaker

and a hearer and the conditions in which it is used

successfully. Illocutionary forces are identified by

verbs, which may be explicitly used by a speaker or

alluded to in a given context. Hence, there are as

many ways for a speaker to express the same attitude

towards a given content as there are available appro-

priate verbs. For example, to issue a promise to meet

his interlocutor, a speaker might say, ‘‘I promise to

meet you,’’ or ‘‘I will meet you,’’ or ‘‘I will be there’’

(in the context of a dialogue) and so on. Speech act

theory offers general categorization schemes for illo-

cutionary forces (for example, [1, 2, 23]). The relative

merits and disadvantages of each scheme are beyond

the scope of this paper. However, in all categorization

schemes, clusters of specific verbs are grouped

together under the illocutionary force that they are

all meant to convey and they all share the perlocu-

tionary aspect associated with that illocutionary force.

For illustration, Table 1 summarizes Austin’s [1]

classification of illocutionary forces and shows some

examples of specific verbs associated with each type.

In contrast to current EDI representations, FLBC

attempts to represent messages by making their pri-

mary function (whether they are offers, acceptances to

offers, promises, requests for services or goods,

instructions for payment and so on—the F-compo-

nent) and their locutionary content (the P-component)

explicit. The F-component of a message is identified

and represented using event semantics and thematic

roles [21] expressed in FOL, essentially in the same

way that ‘semantic cases’ of case grammars [6, 7]

have been used in FOL representations in artificial

intelligence (see e.g. [18, Ch.2]). As Kimbrough [13]

points out, in this way, verbs can be represented as

FOL predicates which take events as their arguments,

and verb modifiers (thematic roles) correspond to

FOL predicates that associate individuals and events.

Kimbrough demonstrates through an example how all

predicates required for such representation fall into

three categories, namely application-specific predi-

cates, thematic roles and kernel vocabulary. This,

Kimbrough argues, makes the approach all the more

attractive as it indicates that it is feasible to construct

public, broad-utility lexicons and goes some way

towards providing standards to replace current EDI

schemes. In FLBC, each message is also associated

with various conditions. Such conditions explicate,

for instance, what makes a promise ‘kept’, a request

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290268



‘honored’, an assertion ‘veridical’ and so on, depend-

ing on the type of the message.

In this paper, we do not question the motivation

and general spirit of the FLBC approach, which

seem to us to be clear and well established, but

rather discuss some of the specific technical choices

in the original FLBC scheme for the representation

of messages. Some of our comments are based on

our previous experiences in modelling exchanges

that establish contractual relations between parties

[5]. Such exchanges typically include statements

such as requests, promises and assertions of a

promissory nature as well as information-seeking

questions. The aim of the paper is to suggest some

simplifications of the FLBC representation scheme

and identify prospects and directions for further

development. In what follows, we concentrate

mainly on the representation of promissory state-

ments, but the points we wish to make apply gen-

erally to the FLBC representation scheme. For

illustration purposes, we use an example that is

similar to those used by Kimbrough [13]. It should

be noted that some of the issues raised in this paper

are discussed also in a recent work by Kimbrough

(see e.g. [14]) which may be seen as a way of

endorsing some of the points raised here.

2. Event descriptions and thematic roles

Consider the following exchange between Peter and Susan:

Peter: I would like to order a pizza from your menu please.

Susan: Certainly. What kind of pizza would you like and what size?

Peter: The ‘‘Good Earth Vegetarian’’* please, but without onions. Large, please.

Susan: Very well, that will be £13.95, cash please. What is the address?

Peter: 12 Hunger Lane. How long will that be?

Susan: It is now 7 p.m. and we promise to deliver within half an hour. If our driver takes any longer than that, we

deduct £1.00 from your bill.

Peter: Ok, thank you.

* The menu description of ‘‘Good Earth Vegetarian’’: mushrooms, onions, red and green peppers, all topped

with mozzarella.

The utterances that make up the exchange, such as Peter’s request that initiates it, Susan’s acknowl-

edgement and promise for delivery and Peter’s promise for payment, among others, can be analysed in

order to identify their primary function and then be represented in FOL. The individual utterances of the

exchange are represented in speech act theoretic terms using event semantics and thematic roles. Let us

first illustrate Kimbrough’s idea by showing how one of the utterances (Peter’s request for the delivery of

a pizza) can be represented. The representation we show is different in several important respects from the

one originally proposed by Kimbrough. We discuss these differences and possible variations in later

sections.

Kimbrough’s idea is essentially the following. Every utterance conforms to the F(P) framework of speech act

theory, that is, every utterance U can be rewritten in F(P) form (UZ F(P)), where F is an illocutionary force (such

as ‘assert’, ‘promise’, ‘request’, ‘confirm’, etc.) and P is the propositional content of the utterance. For example,

the F(P) structure of the utterance ‘‘Peter requested that Susan deliver a pizza’’ is request(‘‘Susan delivers a pizza

to Peter’’).

For the utterances of interest, both the F-component and the P-component can be represented as events

whose attributes are described in terms of thematic roles [21]. Thus, the statement ‘‘Peter requested that Susan

deliver a pizza’’ can be modelled as a requesting event with Peter as its agent, Susan as its recipient and whose

‘theme’ or ‘content’ is another event, the delivering of a pizza. Pictorially, Peter’s request can be viewed as

shown in Fig. 1.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 269



In Fig. 1, the propositional content of the example utterance (‘‘Peter requested that Susan deliver a pizza’’) is

modelled as a delivery event with Susan as its agent, Peter as its beneficiary and the pizza (which can be

described, if desirable, in more detail in terms of its size and toppings) as its ‘theme’. A rendition in first-order

logic is as follows, where the pizza is left for the moment unanalyzed; we assume that g is a name constant for

it.

After Skolemization and conversion to normal form, this FOL representation gives rise to the following

collection of assertions, where e1 and e2 are now Skolem constants naming the request and delivery events.

Fig. 1. A request for delivery.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290270



Susan’s promise to deliver a pizza to Peter can be represented in similar fashion as an event of type ‘promise’

whose ‘theme’ is another event of type ‘delivery’.

Nested utterances can be represented straightforwardly in the same manner. For example, the utterance ‘‘Peter

requests that Susan promises to deliver a pizza’’ can be expressed as a requesting event whose ‘theme’ is a

promising event whose ‘theme’ is a delivery event (and similarly for longer chains of nested events).

The collection of thematic roles employed in the original FLBC framework by Kimbrough is drawn from a

scheme of Parsons [21]. Table 2 shows some examples of such roles (or ‘semantic cases’ in case grammar terms).

In the representation fragments (A1) and (A2) above, we restricted ourselves to ‘agent’, ‘theme’ and ‘recipient’ for

the sake of simplicity. Any collection of thematic roles can be used as predicates associating events with their

individual aspects, as appropriate, and the representation can be easily adjusted to accommodate them. As

Kimbrough observes, some standard lexicon of roles will have to be agreed by the various parties in any given

application; there seems to be nothing problematic about reaching such an agreement.

The representation constructed so far for two of the utterances of the example has two features that we wish to

comment on at this point. First, we have represented messages (Peter’s request for delivery and Susan’s promise

for delivery) prima facie. That is to say, we have constructed logical formulations of the messages as they appear

without reference to the context in which they are exchanged. Such context might include, for example: agreed

conversation policies between the parties to an exchange; agreed procedures for interpreting messages and for

deriving inferences from them to establish what a party’s appropriate subsequent response to a received message

might be or to determine what action a party might be expected to take as a result of issuing a message; an agreed

lexicon of predicates and terms to be used in messages, and so on. The assumption is that standard routine

messages of the type intended for representation in FLBC, exchanged in the normal course of business, will not

have to contain explicit representations of all the procedures and conventions agreed by the parties for the conduct

of their business. This assumption is a feature of the original FLBC framework and we see no reason to question it.

Table 2

Examples of thematic roles from Kimbrough [13]

Role Description

Agent Volitional initiator of the action

Patient Object or individual undergoing the action

Theme Object or individual moved by the action

Goal Individual toward which the action is directed

Source Object or individual from which something is

moved by the event, or from which the event originates

Experiencer Individual experiencing some event

Beneficiary Object that benefits from the event

Location Place at which the event is situated

Instrument Secondary cause of event; the object or individual

that causes some event that in turn causes the event to take place

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 271



Second, as demonstrated with the example representation so far, we allow events themselves to be the ‘themes’

of other events in exactly the same way that (physical) objects can be the themes of events. Thus, the delivery

event stipulated by Peter is the theme (or ‘direct object’) of the requesting event that he initiates, and the delivery

event stipulated by Susan is the theme of the promising event that she puts forward, just as a pizza g is the theme of

a delivery event. In this way, the content of an F-event (such as a request or a promise event) is directly accessible

in the representation in the same way that the content of a P-event (such as a delivery event) is accessible.
Queries of the form ‘‘what does Peter request?’’ can be answered as easily as queries of the form ‘‘what does
Susan deliver?’’ This is one important respect in which our representation differs from Kimbrough’s
original proposal. We will return to this point in Section 4 below.

We are aware that in adopting this use of the term ‘theme’ as a synonym for ‘patient’ or ‘direct object’, we are

departing from the set of thematic roles suggested by Parsons [21] and followed by Kimbrough in FLBC. This is

just for simplicity: we do not need, for the purposes of this paper, to distinguish between the ‘theme’, ‘patient’ and

‘direct object’ of an event. We choose ‘theme’ as a suitably neutral term for all three.

In addition to providing means of querying message representations in order to extract the features of interest, it

is also straightforward to devise tools to help with the construction of FLBC representations. In particular, it is

possible to formulate various constraints that a message must satisfy and arrange for these constraints to be

checked as the representation is constructed. For example, one cannot meaningfully deliver something to oneself,

one cannot meaningfully promise to deliver something to oneself, one cannot meaningfully promise to perform

something in the past, and so on. Such constraints are easily expressed and checked using standard computational

methods. These constraints can express common sense features of events, legal requirements or other requirements

that the parties might have agreed to abide by between themselves. The ability to express such constraints is an

important advantage of the FLBC representation as we see it and of great practical significance.

3. Structured descriptions of objects

It might be felt that there is something suspicious about naming events in this manner and then making one

event the ‘theme’ (or ‘patient’ or ‘direct object’) of another. Indeed, even the idea of naming events—some of

which may never actually happen—may already seem to be philosophically suspect.

We now wish to argue that there is nothing problematic about the use of these devices. The argument hinges on

the difference between constants that name-specific individuals and constants that are used essentially as internal

system identifiers on which representations of complex structured objects are built.

Let us turn first to the content (‘theme’) of the delivery event requested by Peter, the pizza. This has been

represented by a name constant g, that is, by a unique identifier for a specific pizza. Now, this may seem strange: in

the context of ordering a pizza, is it much more likely that Peter requests an instance of a particular type of pizza
rather than a specific pizza by name (‘that one’)—but the latter is not impossible. Although it is rather
fanciful to imagine customers requesting the delivery of a specific pizza by name, it is very easy to think of
other similar examples where ordering by name is normal. When John sends to Mary an offer to buy her
car, he is not offering to purchase an instance of a type of car but a specific car that he will identify by
name. When Jim, a car dealer, orders a Diablo Avenger from his supplier, on the other hand, he does not
order a specific Diablo Avenger by name but an instance of a car of that type. In general, we shall need to
distinguish in the representation between constants that are names of specific objects and constants that are
identifiers for unnamed instances of a given type of (structured) object.

In the pizza example, it is likely that the content of the requested delivery event is not a specific named pizza but

an instance of a particular type of pizza. That being so, the theme of the delivery event is naturally represented in

FOL by the following existentially quantified statement.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290272



We earlier suggested that the constant g in the representation could be seen as a name for a pizza. However, it

can also be seen as the Skolem constant introduced by the Skolemization of the existentially quantified statement

above. We assume that there will be some convention for distinguishing name constants from Skolem constants:

henceforth in this paper, we shall point out Skolem constants where they are not obvious from context. The

constant g in the earlier representation was intended to be a Skolem constant.

Exactly similar considerations arise in relation to the representation of events. Constants e1, e2,. . . are

intended to be seen as internal identifiers used for building a structured representation of an event. They can also be

seen as Skolem constants resulting from the Skolemization of existentially quantified expressions listing the

attributes (thematic roles) of events.

The following examples illustrate how such Skolemization can express a variety of different forms.

(a) Susan promises that a named pizza, f, will be delivered (without specifying by whom).

The corresponding collection of assertions is as follows.

(b) Susan promises that a pizza (of a type) will be delivered (by her).

Replace the named pizza f by a Skolem constant (p1, say); add agent(e3, susan).

In FOL, with existential quantifiers:

promise(e2). delivery(e3).

agent(e2, susan). recipient(e3, peter).

recipient(e2, peter). theme(e3, f).

theme(e2, e3). pizza(f).

promise(e2). delivery(e3).

agent(e2, susan). agent(e3, susan).

recipient(e2, peter). recipient(e3, peter).

theme(e2, e3). theme(e3, p1).

pizza(p1).

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 273



(c) Susan promises that a pizza (of a type) will be delivered by an employee of hers.

Replace agent(e3, susan) by an assertion about Skolem constant a1 (say) instead.

In FOL, with existential quantifiers:

(d) Susan promises that a pizza (of a type) will be delivered by John at 7:00 p.m.

Replace the Skolem constant a1 by the name constant john; assert the time of the promised event e3.

In FOL, with existential quantifiers:

Event names are naturally seen as Skolem constants, that is, as placeholders on which the structured

representation of an event can be built rather than as name constants.

3.1. Logics of complex objects

The distinction between named objects and (named) instances of types of objects is a central feature of object-

oriented representations, where instances may be identical in every attribute yet still represent distinct individuals.

‘Object logics’, developed in the late 1980s and early 1990s, draw upon the areas of object orientation and logic

programming to provide a framework for representing and reasoning with structured information. From object

orientation, they inherit the concepts of object identity, the notion of a complex object and mechanisms for object

classification and property inheritance. From logic programming, they inherit the concepts of unification and

answer substitution and a strategy for deductive query processing. See e.g. [9] for a survey of the main approaches,

promise(e2). delivery(e3).

agent(e2, susan). agent(e3, a1).

recipient(e2, peter). employee_of(a1, susan)

theme(e2, e3). recipient(e3, peter).

theme(e3, p1).

pizza(p1).

promise(e2). delivery(e3).

agent(e2, susan). agent(e3, john).

recipient(e2, peter). recipient(e3, peter).

theme(e2, e3). theme(e3, p1).

pizza(p1).

time(e3, 7).

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290274



beginning with O-logic [20], and then following with further developments such as extended O-logic [11], F-logic

[10] and C-logic [4]. The field seems to have fallen dormant recently, subsumed to a large extent under the

development of ‘description logics’ (though the emphasis there is slightly different). For present purposes, C-logic

is particularly convenient. It provides a shorthand for FLBC representations, which is both practical and natural,

and—perhaps more importantly—allows us to expand on our remarks about the use of Skolem constants as

identifiers for structured representations of complex objects.

In object logics, a complex object is represented as a term of the language. In C-logic, object descriptions take

the following form.

The value of an attribute may be simple, an enumerated type or another object description. For example, the

following C-logic term represents an instance of type pizza.

Informally, a C-logic term can be read as asserting the existence of an object of the specified type and structure;

in the example above, a pizza object with the stated structure and attributes. Formally, the semantics in C-logic is

defined directly in terms of object, attribute and value structures. There is also a translation of each C-logic term

into an equivalent set of FOL conjunctions in which object identifiers become constant symbols, class names are

represented by unary predicates, and attributes are represented by binary predicates that take object identifiers (or

rather the constants introduced in the translation) and values as their arguments. The general form of a C-logic

object term shown above is thus translated into the following set of FOL sentences.

Peter’s request for delivery of a pizza of a specific type can be represented in C-logic as follows.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 275



His request for delivery of a specific named pizza g, on the other hand, can be represented as follows.

Similarly, Susan’s promise for the delivery of a pizza of a specific type can be represented as follows.

It should be easy to see how C-logic constructs can be written for other variations of Susan’s promise that were

discussed earlier. (In all of these examples, persons Susan and Peter are represented using simple constants.

Naturally, they could also be represented as structured objects of type person whose name attributes have the

values ‘Susan’ and ‘Peter’, respectively.)

As examples (C1.1) and (C1.2) illustrate, such a representation affords an explicit distinction between two kinds

of constants, namely those that name object/event instances and those that name object/event types. There are

further advantages to using C-logic terms for the representation of messages. The formulation in C-logic is more

concise than the formulation via collections of assertions, and the relation between F-events and the P-events they

bear as their themes is easier to note. The representation allows deductive retrieval of information to the level of

detail that is of interest. We can, for example, pose queries to retrieve the agent, or recipient or theme, or all of

these features of a promising or requesting event. Regarding queries about the theme of such promising or

requesting events, we can in turn retrieve the whole structured term or any particular attributes of interest. For

example, the evaluation of the query ‘‘what did Susan promise?’’ against (C2.1) could yield an answer at the

required level of granularity ranging from ‘‘a delivery’’ to ‘‘a delivery of a pizza’’ to the full description of the

stipulated delivery e4 and its pizza p3 content.

The fact that C-logic expressions have both direct semantics and a translation into FOL makes it possible to mix

C-logic expressions (used for syntactic convenience) with FOL expressions that represent additional information

about the messages and the context in which parties exchange them or constraints that can be used to establish

whether the exchange is meaningful. In this way, prima facie representations of messages can be syntactically

distinguishable from context and constraint representations while at the same time directly usable by the same

computational methods.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290276



4. The a–b–c–d representation

We turn now to the original FLBC framework [13] and in particular to its method for associating the

representation of events such as requests, promises and other speech acts, with representations of the propositional

content of those acts. Kimbrough [13] observes that statements about promissory utterances such as ‘‘Susan

promised Peter to deliver a pizza’’ can be paraphrased as ‘‘there is a promising event in which the speaker (agent)

is Susan and the recipient is Peter, and in which Susan keeps this promise if and only if she does something that

causes there to be a delivery of pizza to Peter.’’ The representation of Susan’s promise in the original FLBC

framework takes the following form. For simplicity, we assume that Susan promises to deliver a specific named

pizza f—nothing turns on this.

Notice that there is no explicit association of the promise event e with the delivery event that is promised; that

relationship is captured implicitly through the set of conditions specifying what renders the promise ‘kept’. The

sake(eV,e) condition is required to ensure that several different promises to deliver (the same kind of) pizza are

not all automatically kept by one single delivery. This condition is sometimes omitted when similar examples are

discussed in Kimbrough’s papers; we understand (personal communication) that such a condition is intended to be

included. We conjecture later in Section 5.1 why this condition is sometimes included and sometimes not—there is

a certain ambiguity in the term ‘kept’.

The 5 in the representation (K1) is a modal necessity operator to be read as ‘it is necessarily the case that’ or ‘in

all possible worlds, it is the case that’. The use of the modal operator 5 raises a number of very difficult problems.

We discuss this aspect of the representation separately in the following section.

The general form of representations such as (K1) is the following.

Here, a corresponds to the conjunction specifying the type of message (promise, request, etc.) and attributes

such as its agent and its recipient (but not its ‘theme’). c is the device by which the a-event is associated to its

content: promises can be ‘kept’, requests can be ‘honored’, assertions can be ‘veridical’, and so on. d stands for the

conditions that need to be satisfied in order for the given message to be accorded to the status c in the

representation (K1) and d corresponds to the set of conditions describing the promised delivery event. More

generally still, it is sometimes convenient to attach further conditions to the content of the a-event. The general

form of an FLBC message is therefore (‘the a–b–c–d form’) as follows:

The b component stands for the extra conditions and is empty in all the examples considered so far. We will

discuss this component later in Section 5.

4.1. Elimination of the modal logical component

The use of the modal operator 5 in the a–b–c–d representation raises a number of what seem to us to be very

severe problems. First, there is the question of which specific modal operator to employ. What kind of logical

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 277



properties should it exhibit? It has been suggested that nothing much may turn on the choice: it can be left to

personal preference. However, this seems very unsatisfactory. Surely, it cannot be completely arbitrary. There must

be some principles on which to choose between the candidates. This is a far from trivial matter, however,

especially when, as here, details of interactions between the modal operator and quantifiers have to be considered

as well. Second, besides the choice of the operator itself, the representation is no longer in FOL. Standard FOL

methods—for reasoning with the representation, answering queries, checking constraints, and so on—are not

immediately applicable.

Kimbrough suggests that the modal operator 5 can be eliminated by translating expressions such as (K1) into

FOL by encoding the accessibility relation in the semantics of 5 in the representation. Thus the statement ‘‘Susan

promised Peter to deliver a pizza’’ can be paraphrased as ‘‘there is a promising event in the actual world, a* , of

which the agent is Susan and the recipient is Peter, and for any possible world w accessible from the actual world

a* , the promise is kept in that world, if and only if there is a delivery event eV in that world, such that Susan is the
agent of the event, the beneficiary of the event is Peter, and the theme of the event is the pizza.’’ This leads to the

following representation in FOL.

However, this raises two further issues, namely: (i) what is an appropriate definition for the accessibility relation

(which is another way of asking what properties the modal operator 5 should exhibit); and (ii) how can this

representation be used (queried, checked)?

Here is an alternative suggestion. Instead of quantifying over possible worlds, let us quantify over possible

events. This requires no additional machinery, simplifies the representation and brings it back within the scope of

standard computational methods for FOL. Quantifying over possible events suggests the following representation

in place of the original (K1).

The binary predicate kept(e,eV) can be read as expressing that promise e is ‘kept’ (perhaps ‘fulfilled’ might

be better) by the occurrence of the event eV. Clearly, the method can be generalised to any similar representation in

the general a–b–c–d form. In place of

we are suggesting the following FOL formulation.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290278



We are not claiming of course that the two representations (K1) and (qK1) are formally equivalent; that would

depend on detailed properties of the operator 5 amongst other things. We are suggesting that (qK1) preserves the

spirit of the original FLBC while offering considerable advantages in terms of simplicity and ease of use.

Besides providing a means of circumventing the limitations of material implication (! ), the main function of

the modal operator 5 in the a–b–c–d representation is to provide a device for creating intensional contexts. It is

generally accepted, for example, that promising, in common with most other types of speech acts, creates

intensional contexts in which substitution of equivalents cannot be done confidently: ‘‘. . .[T]o promise that you

will come to the party is not the same as to promise that you will skip Esmeralda’s wedding, even if you skip

Esmeralda’s wedding if and only if you come to the party’’ [13]. If x promises P and P is logically equivalent to Q,

it does not necessarily follow that x promises Q. If Q turns out to be false, however, then it does follow (according

to Kimbrough and we agree) that the promise of P is broken (not kept). The modal 5 operator is Kimbrough’s

device for creating a suitable intensional context. Our suggestion is that quantifying over possible events also

provides a means for creating intensional contexts.

In Skolemised form, (qK1) can be written as follows.

Because of the translation between C-logic and FOL, the representation (qK1V) can also be rewritten using the

structured C-logic syntax to specify the attributes of the event e3. The details are simple and so we do not show

them here.

The biconditional in the last sentence can be rewritten as two separate implications.

Both these can be converted to clausal form and the resulting sets of clauses can be used for computational

purposes in different ways as we now discuss.

4.2. Retrieval method

We take it that the purpose of FLBC is to make what is being requested, promised, delivered and so on in a

message perspicuous within the context of agreed predicates for the types of speech acts employed, the name

constants used and so on. The formulation of messages in the a–b–c–d scheme makes the handling of retrieval

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 279



queries awkward. Suppose that one wants to determine what Susan promises. One way is by inspecting the

representation, that is, by scanning or parsing the representation to extract the component d following the X
symbol. If that is to be the retrieval method, however, then there is no particular value in adopting a logical

formulation in the first place: any convenient syntactic device would do just as well.

It may seem that the conditions d representing the content of the promise cannot be retrieved from the a–b–
c–d representation using standard (deductive) query evaluation methods. It is true that a query on the c-
component, in this example (where e3 is the constant serving as the object identifier for the promising event

brought about by Susan) a query of the form: ?-kept(e3, X) does not work. Depending on the query

processing mechanism employed, possible answers generated by this query are either yes/no or a conjunction of

conditions dV such that 8e(kept(e3, e) X yV(e3, e)) is a logical consequence of the representation. Even

in the latter case, there is no guarantee that the retrieved conditions dV will be identical to the d-conditions as
written in the representation: dV will be logically equivalent to d but not necessarily identical to d. This is
clearly undesirable. As already discussed, promising and many other kinds of speech acts create
intensional contexts in which substitution of equivalents cannot be performed confidently: to know what
was promised, we need to be able to retrieve exactly the conditions d and not merely something logically
equivalent to d.

However, there is a way of using standard computational methods (such as Prolog or C-logic) to retrieve

elements of the message from its representation. As already observed, the biconditional defining ‘kept’ in (qK1V)
can be rewritten as two separate implications, both of which can be rewritten in clausal form. For retrieval

purposes, the useful half is the following

which is rewritten in clausal form as follows.

Here, we have employed the standard notation for clauses as used in logic programming and the Prolog

convention that strings beginning with upper case letters are variables. As usual, all variables in the clauses are

implicitly universally quantified.

The clauses (qK3V) give us a simple means of retrieving any element of the description of the content of e3.

In order to retrieve it, we add to the representation the (temporary) additional assertion: kept(e3, e999)

where e999 (say) is any new constant not appearing in the representation. This temporary assertion is necessary

to provide a value for the E variable and to satisfy the body of the clauses that essentially specify the content of

the promise e3. The value of any attribute of interest of the theme of e3 can be retrieved by formulating queries

at the required level of detail. For instance, to determine the agent, beneficiary and theme of the promised event

(the delivery), the query is ?-agent(e999, X), beneficiary(e999, Y), theme(e999, Z).

This works very simply in Prolog and can be easily combined with C-logic notation if desired. Nested events

(‘‘Peter promises Jim that he will request Susan to . . .’’) can also be treated in this way though some care needs

to be taken to keep track of the temporary assertions. The procedure of making the temporary ‘kept’, ‘honored’,

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290280



(more generally c) assertions, evaluating the query and then removing the temporary assertions can be packaged

up for the user’s convenience. In similar fashion, it is also possible, though a little more awkward, to use the

method in checking that a message under construction satisfies any constraints.

Thus, this is our first suggested modification: abandon the modal operator and quantify over possible events

instead: rewrite the c X d component in clausal form. In order to retrieve elements of a message from its

representation, make a temporary assertion c, and then query the d attributes of interest either in FOL or using C-

logic notation (or some other variant thereof).

4.3. Discussion

How does this modified a–b–c–d representation using quantifiers compare to the representation scheme

introduced in the opening sections, where the content of a promise (or request or other message type) was

represented by making an explicit assertion that one event is the ‘theme’ of another? In fact, the two representation

schemes are much more closely related than may at first appear as we now show.

Suppose that for the purposes of retrieval, instead of packaging up temporary ‘kept’ assertions, we add once and

for all the assertion: kept(e3, th(e3)) or more generally, the clause shown below.

Now, when we wish to extract, say the beneficiary of the event promised by Susan in e3, it is enough to

evaluate the following query. ?-beneficiary(th(e3), X)

There is no need to make any temporary assertions of any kind.

Notice that clause (u) is the Skolemised form of the following general statement.

The intended reading is that for any promising event e there is an event eV which, if it occurred, would render

the promise in e kept. It is not to be read as stating that every promise is actually kept. Again, it may be felt
that there is something philosophically suspect about the naming of hypothetical events in this manner.
What if event eV never occurs or never could occur? What happens (Kimbrough, private communication)
when the impossible is promised (as it often is)? As discussed earlier in Section 3, we have no difficulty in
naming hypothetical events. There is nothing any more problematic in our view about referring to an event
which does not or could not exist than there is in referring to a pizza object which does not or could not
exist. The names are simply place holders used for building structured representations.

The representation (qK3V) can be further simplified. Since e3 is a promising event, the kept condition in the

clauses of (qK3V) can be resolved away, yielding the following set of simpler clauses.

Now one can see that this is essentially identical to the representation we employed in the earlier sections of the

paper, except that there we used a constant e4 to identify the theme of e3 instead of the functional term th(e3),

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 281



and we associated e4 to e3 by means of the predicate theme. We could have written th(e3)=e4; that is, in

place of the version above of (qK3W) we could have the following.

We find it more convenient (and flexible) to write theme(e3, e4) instead. We also avoid the problems of

reasoning explicitly with equality in the representation.

Clearly, the method can be generalised to other kinds of speech acts: for every requesting event e, there is an

event th(e) which, if it occurred, would make the request ‘honored’; for every asserting event e (that asserts the

occurrence of an event), there is an event th(e) which, if it occurred, would make the assertion ‘veridical’, and so

on. The clausal form is shown below.

This then is our second suggested modification: for practical purposes, instead of defining ‘kept’ (or ‘honored’

or ‘veridical’, or more generally c) for an event e in full, simply express the corresponding d conditions as a set of

assertions specifying the required properties of event th(e). The term th(e) stands for the (unnamed) event that

is the ‘theme’ of e. As a further modification, replace th(e) by a new constant eV, and add theme(e, eV) to

the representation. This last step is optional (though we prefer it since it is much more flexible and easier to deal

with).

5. Monitoring the performance of business exchanges

It is natural to explore whether we could also make use of the other part of the ‘kept’ definition, i.e.

in order to provide an extended representation system in which one could check whether a promise had in fact been

kept, or more generally, in which the performance of promises, requests, replies, the evolution of the message and

business exchanges generally could be monitored. This seems to be outside the original motivation for FLBC but

let us consider it.

Whether or not we employ the original a–b–c–d representation or the suggested alternatives discussed in the

previous sections, we have to be able to distinguish in the representation between descriptions of events that could

happen and descriptions of events that have actually happened.

Thus, let us add another possible attribute to the representation of events: mode(e, actual) will represent

that event e has actually happened. (We could have used a unary predicate ‘actual’ just as well. The binary

predicate mode fits better with C-logic syntax.)

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290282



Now we have to be careful. As suggested in Section 4, if we read kept(e,eV) as the one saying that

(promise) e would be kept by eV if eV occurred, we need another predicate, say actually_kept, defined as

follows.

We shall have a reason to adjust this definition presently. (Naturally, we could also reserve the use of the

predicate ‘kept’ for this sense of actually kept and use a different predicate for encoding the d conditions defining

the content of the promise. We leave it like this.)

For use in combination with the clausal versions of the a–b–c–d representation in Section 4, the definition

above produces the following clause:

if we choose to use the th device, or

if (as we do) we prefer the use of a theme assertion to the use of the function symbol th.

We have omitted the clause corresponding to the ‘only if’ half of the definition of actually_kept on the

assumption that the resulting representation is to be executed as a logic program in Prolog or C-logic or some other

variant. The ‘only if’ part is then provided implicitly by the usual semantics of logic programs.

Exactly similar considerations apply to formulating conditions for determining when requests are (actually)

honored, when directives are (actually) obeyed and correspondingly for other speech act types of interest.

We noted earlier in Section 4 that in the original a–b–c–d representation, the sake condition is sometimes

included and sometimes not when Kimbrough discusses similar examples. We conjecture that perhaps one reason

for this is that there is a certain ambiguity in the intended use of ‘kept’ in the a–b–c–d representation of
promises in the original FLBC framework. The sake condition is only really necessary when determining
whether a promise has actually been made. As already observed, this is outside the original motivation of
FLBC though sometimes implicit in some of the discussions.

The actually_kept definition above and its corresponding clausal representation, however, embody an

important over-simplification which we turn to now.

5.1. When is a promise kept?

In the example message exchange of Section 2, Peter requests (e1) a particular kind of delivery event (labelled

e2 in the representation shown). Susan responds (e3) by promising a delivery event (labelled e4 in the

representation). Suppose that a delivery event e16 (say) is added to the representation and recorded as being in

response to Susan’s promise.

In C-logic syntax, the representation of Susan’s promise is as follows.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 283



The representation of the delivery event e16 is as follows (C-logic syntax).

Notice that the identifiers for the two pizzas are different; we are assuming here that the pizza promised was not

identified by name.

It would seem natural to say that according to the representation, Susan’s promise in e3 has been (actually) kept

by the delivery event e16. However, the earlier formulation of actually_kept, that is

does not work: the theme of e3 is e4, not e16. What we require is a refined definition to express the intuition that

‘‘a promise is kept if something that matches what was promised becomes actual.’’ The clausal form is shown

below.

The predicate matches will be defined separately below.

It seems to us that recording the occurrence of the delivery event simply by asserting: mode(e4, actual) is

quite unworkable. For one thing, we would then be unable to record extra attributes of the delivery event, such as

the name of the driver, the time of delivery, the person accepting delivery, and so on, without thereby altering the

representation of what it was that Susan promised in e3. For example, adding agent (e4, dave) to the

representation would indicate not only that Dave delivered the pizza but that Susan had promised that Dave

would deliver the pizza (which she did not). Moreover, in the example, Susan’s promise (e3) to deliver pizza

(e4) was made in response to a request (e1) from Peter that pizza be delivered (e2). Why then record the

actual delivery of the pizza by the assertion mode(e4, actual) and not by the assertion mode(e2,

actual)? Why the difference between e2 (the content of Peter’s request) and e4 (the content of Susan’s

promise) in the first place? In the representation style that has been adopted throughout, event-naming constants

are merely devices for building structured representations, whether they are viewed as Skolem constants as in

FOL or as object identifiers as in C-logic. e2 and e4 and now e16 are different event descriptions for the same

reason that the pizza identifier p4 in the description of event e4 cannot be the same as the pizza identifier p16 in

the description of event e16.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290284



Here, matches_object will be defined in similar style to specify when two (here, pizza) descriptions match

one another. Again, as a first shot, we can require that all the attributes of the stipulated (pizza) description T1 must

be present in the actual pizza description T2. To be written in full, these definitions of matches and

matches_object require a list of the possible attributes for each type of object but that is easily supplied.

Athough such definitions will be adequate for simple purposes, one can see that they are only approximations.

First, suppose buyer X orders a pizza with mushroom, cheese and peppers topping but is actually delivered a pizza

that has not only mushrooms, cheese and peppers topping, but bacon and pepperoni topping too. Does the pizza

match the specification of the pizza that was ordered? Of course, one could say that the value of the topping

attribute of the ordered pizza is {mushroom, cheese, peppers} and the value of the topping attribute of the

delivered pizza is {mushroom, cheese, peppers, bacon, pepperoni} and the values of these two attributes are not the

same (this cannot be distinguished in C-logic but could be done using some other variant), but that is really beside

the point. Suppose that in addition to the ordered toppings, the pizza was delivered with slices of ham laid over the

top. Would such a pizza be regarded as matching what had been ordered? Not if it had been ordered by a vegetarian

perhaps, or suppose that the promised pizza was supposed to come with mushrooms in the topping but when

delivered, it is found to contain a topping made almost entirely of cheese and peppers with just the tiniest slivers of

mushrooms present. Would that pizza match the description of what had been ordered?

Second, deciding when to deem a promise as ‘kept’, an obligation fulfilled, even a pizza ‘delivered’, are in

general far from trivial matters. Much of the litigation that arises in the course of a business exchange will centre

on resolving conflicting views of what renders a promise ‘kept’. Much of the detail in trading conventions, such as

the UN convention governing the sale of goods, is concerned with spelling out the conditions under which an item

is deemed to have been ‘delivered’, the time a message is deemed to have been ‘received’, and so on.

Of course, it is difficult to imagine how some of these points could arise in connection with promises to deliver

a pizza. However, not all business messages will be about pizzas. Suppose Susan’s promise had been about the

delivery not of pizza but of some other very expensive perishable object, or suppose Peter had requested and been

promised the delivery of a thousand pizzas to be delivered every day at a specified time and place. In those

circumstances, we surely would be concerned with determining much more precisely the exact specification of

each pizza and what exactly it means to ‘deliver’. In our experience of representing contracts in areas of

construction and engineering [5], much of the detailed content of a contract was concerned with precisely this

issue, and not only are the details spelled out, there are agreed mechanisms for testing that each item (each pizza

for our example here) meets the specified standard, agreed equipment to be used for measurements, agreed

arbitration mechanisms and so on. During the contract formation stage, the parties try to anticipate such

eventualities and agree explicit terms that will determine the conditions under which a promise will be deemed

as having been ‘kept’. At the very least, they will agree on the arbitration mechanisms to be used should any

dispute arise during the performance of the contract. During the resolution of disputes, knowledge of common

How then do we determine that the actual occurrence of event e16 and the delivery of pizza p16 matches the

event e4 promised by Susan and the promised pizza p4? As a first shot, we can at least require that the stipulated

attributes of the promised event (Y in the definition below) are all features of the actual event (Z):

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 285



business practice, common sense, existing legislation, even precedent, might be used to assist in establishing

whether requirements have been met.

In general terms then, the predicate matches is essentially a representation of the concept of ‘counts as’

discussed by Jones and Sergot [8] in the context of formalising qualification/classification norms, that is to say, the

rules that specify the conditions under which, within a given context agreed by two or more parties (their contract),

a promise is deemed as kept, or more generally, a state of affairs A is deemed to count, for the purposes of the

agreement, as state of affairs B.

We are not suggesting that all this needs to be represented in an FLBC message. On the contrary, our

understanding is that FLBC is intended for the representation of routine business exchanges that take place within

some agreed context.We have already made this point in the Introduction. For simple messages about simple things,

matches as defined above is going to be adequate. As we move to more complicated messages, we will need to

consider whether to represent something of the procedures andmechanisms bywhich the performance of the business

exchanges will be determined. The definition of matches will then become increasingly case-specific and of

arbitrary complexity. However, this does not mean that the formal representation of such mechanisms is necessarily

difficult. In practice, we see little difficulty in formalising the application-specific conditions that define matches

(and hence actually_kept). Our point is that these conditions, which are required for the purpose of

monitoring the performance of business exchanges, are not the same as the conditions that appear in the definition

of kept, the device by which the content of a promise (or other type of speech act) is represented in FLBC.

6. Other extensions and open problems

The modified FLBC framework can be extended further in a number of ways, some of which are

straightforward and do not pose significant technical or theoretical problems. For example, should it be desirable,

times can be associated with events by extending the set of thematic roles (attributes in C-logic formulations) and

an underlying temporal framework may be used to reason about temporal relations between events and the states of

affairs created by those events. The event calculus [19] fits very easily in the FLBC framework for example.

For some applications, such as those aiming to support contractual activity, there may be value in having an

explicit representation of the obligations that are assumed by a party as a result of a promise issued to a counter-

party. One way of representing this explicitly is to use a framework such as the event calculus to specify the effects

of promising events in terms of the obligations and other relationships that they initiate and terminate. Another

way, simpler but less expressive, is via the use of general rules applicable to promissory messages, such as the one

shown below.

Similarly, we could develop general rules to express the relationship between keeping a promise and fulfilling

its associated obligation. We leave it to future research to determine the practical benefits of such extensions. When

formulating constraints on what makes an exchange of messages well formed, for example, it may be easier and

more natural to frame some of these constraints in terms of obligations rather than in terms of the promising events

that create them.

Apart from such relatively easy extensions, there are harder issues that need to be addressed. The content of a

promise (and other types of messages) is often much more complicated than a single one-off event. For instance, in

the terms of the pizza-ordering example, Susan might promise to deliver the pizza by motorbike if it is raining. She

might promise to deliver either thick-base pizza or thin-base pizza with extra cheese topping, depending on

availability. She might promise to deliver pizza every day at 7:00 p.m., packed in red heat-insulated boxes.

Although some of these examples are again rather fanciful in the context of a simple one-off pizza purchase, they

are perfectly normal in other business settings. If Susan is a pizza manufacturer and Peter is a retailer, Susan might

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290286



well promise to deliver a specified number of pizzas at a set time every day to varying specifications depending on

availability and with more or less complex pricing arrangements according to the types of pizza delivered. In some

of the sample engineering contracts we have previously examined [5], for example those concerning the supply of

natural gas, the details of how, how often, what quantity and what quality of gas is to be delivered were typically

given by an extremely complex set of interrelated conditional statements and procedures. They reveal conditional

promises, promises issued periodically, promises whose content is to be fulfilled periodically, and more complex

constructs exhibiting all of these in combination. Indeed, in the example exchange of this paper, Susan promises to

deliver a specified pizza by 7:30 p.m. or if after 7:30 p.m. to deduct £1.00 from the bill. The content of this promise

can be represented in different ways: as a single delivery event where the price depends conditionally on the time

of the delivery, or better perhaps, as two separate promises, one (unconditional) to deliver a pizza, and a second,

conditional one, to reduce the bill by £1.00 in case the time of the delivery is later than 7.30 p.m. The second is

arguably a more accurate representation of what Susan promised.

The treatment of simple conditional promises in FLBC is already an unresolved issue. In the original FLBC

framework, the b component of the a–b–c–d scheme is intended to be used for the representation of conditional

utterances of the form ‘‘x promises that if b, then d (will occur).’’ Thus, when Susan promises ‘‘if fax confirmation

is received by 7:00 p.m., then the pizza will be delivered by 7:30 p.m.,’’ the b component would be a

representation of the condition ‘‘if fax confirmation is received by 7:00 p.m.’’ Conditional elements of the

promise itself, such as how price depends on the time of delivery or how the mode of transport depends on whether

it is raining, can be accommodated within the d component, and likewise for the representation of conditional

requests (‘‘x requests that if it is raining, y should send a taxi’’), conditional directives and other speech acts.

The b component, which is empty in all the examples discussed earlier, does not hinder the translation to the

clausal version of the a–b–c–d scheme: the clauses of the representation simply include additional conditions

corresponding to b. Thus, for illustration, if the promise (e3) made by Susan had been a conditional one, of the

form ‘‘if fax confirmation is received by 7:00 p.m., then the pizza will be delivered by 7:30 p.m.,’’ the clausal

representation (qK3V) would come out as follows.

Here, confirmation_received(e3) stands for the condition ‘‘fax confirmation is received by 7:00

p.m.’’ There is nothing problematic about expressing this condition in full in the FLBC framework. We have

omitted the details so as not to distract from the main point we are seeking to make. (The argument e3 is necessary

to write the conditions out in full.)

In the simplified form corresponding to clauses (qK3W), where the ‘kept’ condition has been eliminated (and

replacing th(e3) by an explicit ‘theme’ assertion in the style we prefer), we obtain the following.

This is all quite straightforward. There is a problem, however: we are again faced with the question of how to

retrieve, from the representation, a description of what it was that Susan promised. A query such as ?-

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 287



theme(e3, X) which worked previously when b was empty now produces at best an answer qualified by

conditions b’ that are logically equivalent but not necessarily identical to b. All the points we made earlier in
Section 4 about the inadequacy of this kind of retrieval apply equally here. Similarly, any conditional
elements in the d component, such as varying prices, modes of delivery, and so on, can be expressed in the
framework but cannot be retrieved by querying the representation.

Notice that for the purposes of monitoring whether promises have in fact been kept, there is no problem:

whether a promise has actually been kept will depend only on whether it is possible to determine from the

representation that conditions b are established, and there is nothing problematic about that. Notice also that when

we are interested in monitoring whether promises have in fact been kept, there is no need to distinguish in the

representation between what we have been calling a conditional promise, a message or utterance of the form

and a conditional expression about the making of an unconditional promise of the form

Clearly, there is a difference between these two forms of expression. The difference can be ignored if the only

purpose of the representation is to support the monitoring of message exchanges. If the purpose of the

representation is to support the storage and retrieval of messages, however, then the difference cannot be ignored:

we have to be able to tell whether the message is of the first or second form, and since the retrieval by logical

deduction cannot be supported (as we have argued), conditional utterances of the first form remain problematic

even for the a–b–c–d scheme.

A possible solution is to express the content of a conditional promise (request, directive, assertion, and so on for

other types of messages) as another kind of structured object, an object with attributes pre-conditions (say) and

consequent, both of which have values which are (representations of) FOL formulas. This is an ugly and

unappealing approach, however, which we are not proposing to pursue.

7. Conclusion

We have made two suggested modifications to the

original FLBC representation scheme: first, to elimi-

nate the need for the problematic modal logical

component by replacing quantification over possible

worlds by quantification over possible events, and

second, to rewrite in Skolemised clausal form in order

to enable the application of readily available computa-

tional methods. An optional further modification,

which we prefer, allows one event description to be

recorded as the ‘theme’ (‘patient’ or ‘direct object’) of

another event. In his latest formulation, Kimbrough

[14] suggests that he agrees that such modification is

useful. The use of a syntax such as that of C-logic can

also be useful in the construction of complex struc-

tured representations.

We have pointed out two different computational

tasks, with different computational and representa-

tional requirements. Task 1 is to retrieve from the

FLBC representation of a message or utterance all the

components of interest, including in particular a repre-

sentation of what has been promised, requested, com-

manded, asserted, as the case may be. Task 2 is to

determine, given a representation of events that have

actually occurred, whether promises have in fact been

kept, requests honored, directives fulfilled, and so on,

in order to provide a system for monitoring the per-

formance of business and message exchanges. For

simple messages, both of these computational tasks

can be supported without difficulty using standard

computational methods.

We have also discussed some further extensions

and some open problems. The first of the computa-

tional tasks—the retrieval of message components

from their representation—raises unresolved problems

concerning the representation of conditional mes-

sages/utterances, that is to say, in speech act terms,

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290288



utterances whose propositional content contains con-

ditional (and other more complex) constructs. Al-

though simple instances can be expressed in the

FLBC scheme, they cannot be retrieved using logical

querying methods. For the second computational task,

the monitoring of message exchanges, the existing

FLBC representation copes adequately with condi-

tional utterances but raises a different set of questions

about how to determine whether one event, typically

one that has actually occurred, matches the description

of another event, typically one representing the prop-

ositional content of a promise, request, directive, or

other speech act. The resolution of these two sets of

problems identifies directions for future develop-

ments.

Acknowledgements

We would like to thank Steve Kimbrough for many

valuable discussions and an anonymous reviewer for

helpful comments on the ideas presented in this paper.

References

[1] J.L. Austin, How to Do Things with Words, Clarendon Press,

Oxford, 1975.

[2] K. Bach, R.M. Harnish, Linguistic Communication and

Speech Acts, MIT Press, Cambridge, Mass, 1979.

[3] E. Charniak, D. McDermott, Introduction to Artificial Intelli-

gence, Addison-Wesley, Harlow, England, 1985.

[4] W. Chen, D. Warren, C-logic of complex objects, Proceedings

of the 8th ACM SICACT-SIGMOD-SIGART Symposium on

the Principles of Database Systems.

[5] A. Daskalopulu, Logic-Based Tools for the Analysis and Rep-

resentation of Legal Contracts, Doctoral Dissertation, Depart-

ment of Computing, Imperial College, University of London,

1999.

[6] C.J. Fillmore, The case for case, in: E. Bach, R.T. Harms

(Eds.), Universals in Linguistic Theory, Holt, Rinehart and

Winston, New York, 1968, pp. 1–88.

[7] C.J. Fillmore, The case for case reopened, in: P. Cole, J.M.

Sadock (Eds.), Syntax and Semantics 8: Grammatical Rela-

tions, Academic Press, New York, 1977, pp. 59–81.

[8] A.J.I. Jones, M.J. Sergot, A formal characterisation of institu-

tionalized power, Journal of the IGPL 4 (3) (1996) 429–445;

Valdés, Kraweitz, von Wright, Zimmerling (Eds.), Normative

Systems in Legal and Moral Theory, Duncker & Humblot,

Berlin, 1997.

[9] F.N. Kesim, Temporal Objects in Deductive Databases, Doc-

toral Dissertation, Department of Computing, Imperial Col-

lege, University of London, 1993.

[10] M. Kifer, G. Lausen, F-logic: a higher-order language for

reasoning about objects, inheritance and scheme, Proceedings

of the 8th ACM SICACT-SIGMOD-SIGART Symposium on

the Principles of Database Systems, 1989, pp. 134–146.

[11] M. Kifer, J. Wu, A logic for object-oriented logic program-

ming (Maier’s O-logic revisited), Proceedings of the 8th ACM

SICACT-SIGMOD-SIGART Symposium on the Principles of

Database Systems.

[12] S.O. Kimbrough, On electronic commerce, subatomic seman-

tics and the Cæsar’s stabbing, in: S.O. Sprague (Ed.), Proceed-

ings of the 30th Hawaii International Conference on Systems

Sciences, IEEE Computer Society Press, Los Alamitos, CA,

1997.

[13] S.O. Kimbrough, Formal language for business communica-

tion: sketch of a basic theory, International Journal of Elec-

tronic Commerce 3 (2) (1998) 23–44.

[14] S.O. Kimbrough, Reasoning about the objects of attitudes and

operators: towards a disquotation theory for representation of

propositional content, Proceedings of the 8th International

Conference on Artificial Intelligence and Law, ACM Press,

St. Louis, MO, 2001.

[15] S.O. Kimbrough, R.M. Lee, On illocutionary logic as a tele-

communications language, Proceedings of the 7th Internation-

al Conference on Information Systems, San Diego, CA, 1986,

pp. 15–26.

[16] S.O. Kimbrough, R.M. Lee, Formal aspects of electronic com-

merce: research issues and challenges, International Journal of

Electronic Commerce 1 (4) (1997) 11–30.

[17] S.O. Kimbrough, S.A. Moore, On automated message process-

ing in electronic commerce and work support systems: speech

act theory and expressive felicity, Transactions on Information

Systems 15 (4) 1997, pp. 321–367.

[18] R.A. Kowalski, Logic for Problem Solving, Elsevier, New

York, 1979.

[19] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events,

New Generation Computing 4 (1986) 67–95.

[20] D. Maier, A logic for objects, Proceedings of the Workshop on

Foundations of Deductive Databases and Logic Programming,

Washington, DC, 1986, pp. 6–26.

[21] T. Parsons, Events in the Semantics of English: A Study in

Subatomic Semantics, Current Studies in Linguistics, MIT

Press, Cambridge, MA, 1990.

[22] J.R. Searle, Speech Acts, Cambridge Univ. Press, Cambridge,

1969.

[23] J.R. Searle, Expression and Meaning, Cambridge Univ. Press,

Cambridge, UK, 1979.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290 289



Dr. Aspassia Daskalopulu holds a PhD in

Computer Science from Imperial College

London. Her doctoral research (sponsored

by a British Gas scholarship) focused on

the development of formal models of legal

contracts to support the design of agree-

ments and their a priori verification, the

semi-automated drafting of associated

documents and the verification of contrac-

tual transactions. Her current research pur-

suits aim to extend such techniques for the

design and verification of complex dynamic systems, the config-

uration of component-based systems that are subject to constraints

and the modelling of norm-governed organizations, especially in the

context of distributed and e-commerce applications. Besides aca-

demic activities, she is currently involved in industrially sponsored

research and consultancy. She held Lectureships at Brunel Univer-

sity and the Open University before joining King’s College London.

Marek Sergot is a professor of computa-

tional logic in the Department of Comput-

ing, Imperial College, London. He studied

Mathematics at Trinity College, Cam-

bridge, and then worked in mathematical

modelling before joining the Logic Pro-

gramming Section in the Department of

Computing at Imperial College in 1979.

His research is in the applications of logic

and logic programming to knowledge rep-

resentation, databases and the specifica-

tion of computer systems, with particular interests in the repre-

sentation of laws, rules, regulations, contracts and protocols, and in

the logics of norms, duties and rights, action, agency and time. He is a

former president of the International Association of Artificial Intelli-

gence and Law.

A. Daskalopulu, M. Sergot / Decision Support Systems 33 (2002) 267–290290


	Computational aspects of the FLBC framework
	Introduction
	Event descriptions and thematic roles
	Structured descriptions of objects
	Logics of complex objects
	The alpha-beta-gamma-delta representation

	Elimination of the modal logical component
	Retrieval method
	Discussion
	Monitoring the performance of business exchanges

	When is a promise kept?
	Other extensions and open problems

	Conclusion
	Acknowledgements
	References


