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Abstract. We present two new variants of the suffix tree which allow much larger genome se-
quence databases to be handled efficiently. The method is based on a new linear time construction
algorithm for “sparse” suffix trees, which are subtrees of the whole suffix tree. The new data struc-
tures are called the paged sufficx tree (PST) and the distributed suffiz tree (DST). Both tackle the
memory bottleneck by constructing subtrees of the full suffix tree independently and are designed
for single processor and distributed memory parallel computing environments (e.g. Beowulf clus-
ters), respectively. The standard operations on suffix trees of biological importance are shown to
be easily translatable to these new data structures. While none of these operations on the DST
require inter-process communication, many have optimal expected parallel running times.

1 Introduction

The suffix tree is the key data structure of computational pattern matching which allows a multitude of
sophisticated operations to be performed efficiently (see e.g. [3, 12]). In the field of bioinformatics this
includes whole genome alignment [6], analysis of repetitive elements [17], and fast protein classification
[7], amongst many others. However, the main obstacle to more widespread acceptance of these methods
remains that of memory use. Suffix trees have high memory overheads, and the poor memory locality, both
of their construction and of querying algorithms, make disk-based implementations highly problematic.

Generally, the existing approaches to tackling this memory bottleneck can be divided into two cate-
gories. On the one hand, there are those that attempt to improve the implementation of the suffix tree
itself, at the cost of limiting the maximum problem size (see e.g. [16]). On the other hand, related data
structures have been developed which have lower memory overheads at the cost of either restricting
the range of queries that can be performed or increasing their time complexity (e.g. suffix arrays [18],
level-compressed tries [2] and suffix cactuses [14], sparse suffix trees [15]).

To tackle significantly larger problem sizes (e.g. data that is hundreds of times larger than available
RAM) a disk-based scheme would be desirable. However, as a result of the poor locality mentioned
above, most existing applications of disk-based schemes assume that the order of node traversal to be
performed at query time is known in advance. Ferragina and Grossi have studied the efficient external
memory construction of string indices in general [8, 9, 10]. To the authors’ knowledge, these methods
have not yet been applied to large-scale bioinformatics problems.

We present here two new data structures for problems of intermediate size—that is, problems larger
than can be handled by existing suffix tree/array methods but small enough that the input can be stored
entirely in real memory—a range of at least an order of magnitude. To give some indication, the new
methods allow us to store and analyse the whole human genome, perform cross species pattern matching
on all available bacterial genomes at once, or search a large EST database, using a small cluster of
standard PC’s. The data structures are termed the distributed suffiz tree (DST) and the paged suffiz
tree (PST). They are both based on a new extension of Ukkonen’s suffix tree construction algorithm [19]



which allows subtrees of a suffix tree to be constructed efficiently in space proportional to the size of the
resultant data structure and not the whole suffix tree. This enables a suffix tree to be either distributed
over a number of computing nodes (and queried in parallel) or for a single node to compute independent
subtrees successively, querying each in turn. By effectively splitting the input string lexicographically (not
into contiguous substrings) we show that all the most popular biologically inspired operations on suffix
trees exhibit optimal or near optimal parallel speedups. Furthermore problems which would previously
have been impossible to solve due to their size can now be tackled efficiently, either in parallel or serial
and with modest hardware requirements.

The DST and PST construction algorithms have been implemented in C on an 8 processor distributed
memory parallel computer, increasing by a factor of 7.65 the size of the largest database that could be
indexed. Exact set matching and repeat finding procedures for random data have also been implemented
and performed on the DST. The results, not shown here for space reasons, showed substantial speedups
(with average efficiencies in excess of 90% and 99%, respectively) and exhibited good scalability, con-
firming the theoretical analysis [5]. For systematically biased genetic data, preliminary results show that
simple load balancing schemes can successfully increase the parallel efficiency of biological operations to
close to 90%.

The method is simple to apply. Almost any current bioinformatic technique that relies on suffix trees
can be modified to take advantage of DSTs or PSTs, greatly extending the range of problem sizes that
can be tackled. Also, complex or time consuming queries, such as the preliminary stages of matching all
ESTs against the human genome, can be performed with optimal or near optimal efficiency in parallel. In
the next section we first describe the new data structures and then present the construction algorithms.
We then present the expected time efficiencies of a sample of operations on the DST and show empirical
results using a snapshot of the sequencing of human chromosomes 21, 22, and X.

Construction algorithms for two previous types of (sparse) suffix tree have been considered in [15]
and [1]. The first work considers suffix trees that contain only evenly spaced suffixes of the text. This
allows pattern matching to be performed on a single, smaller, suffix tree at the cost of increasing the
running time of the query. The definition of suffix links proposed there is not suitable for the class of
sparse suffix trees we consider as it depends on properties of evenly spaced suffixes that do not hold
in general. However, the construction algorithm presented here can be viewed as an extension of that
work. The method in [1] uses a quite different word-oriented approach that relies on delimiters between
“words” in the text. These delimiters may not overlap and so the method can not be directly applied to
the problem of constructing subtrees of a suffix tree.

2 Distributed and Paged Suffix Trees

A suffix tree of input string ¢ is a compacted trie of the suffixes of t. We define a sparse suffix tree (SST)
of input string ¢ to be a compacted trie of a subset of the suffixes of ¢. Here, we are interested in the
special case where all the suffixes in this subset start with the same prefix z and assume from now on
that all SSTs are of this type. Both distributed suffiz trees (DST) and paged suffiz trees (PST) are simply
collections of SSTs defined in this way. The most efficient use for a PST is for applications where the
different SSTs can be queried successively and independently. In that case the SSTs will be constructed
on a single processor only as they are needed and then discarded before the next one is required. We
concentrate on the DST from now on to simplify the explanation and return to the PST in Section 2.4.
The SSTs in a PST are defined in exactly the same way as they are for a DST.



Usually, a single SST will be held at each computing node and the union of the path labels of the
leaves of these SSTs will be the full set of suffixes of ¢. In other words, every suffix of ¢ will be represented
by exactly one SST at exactly one of the computing nodes. An example DST and the corresponding
standard suffix tree are given in Figures 1 and 2.

In this case the prefixes for the 6 different SSTs are aa, ac, ca, cc, a$ and $. Each SST has been
connected to a central root node. The sparse suffix links will be explained below but the most important
feature is that in the standard suffix tree the suffix links can point the full width of the tree. In the DST
the new links point only to nodes that are within the same SST. This allows the SSTs to be constructed
independently without any inter-process communication.
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Fig. 1. The SSTs for aacacccacacaccacaaa$ with their respective root nodes labelled 744, Tac, T'ca, Tee, Tag and rg.
The sparse suffix links for the valid sets Via, Vac, Vea, Vee, Vag and Vg are marked with dashed arrows. Note that
the final suffixes, a$ and $, are included but typically will not be used.

2.1 Preliminaries

We call the input string ¢ and assume that n = |¢| throughout this paper. The characters of ¢ are drawn
from an ordered alphabet X and we let o = | X|. t[i, j] represents the substring of ¢ starting at position
i and terminating at position j, inclusively. A suffix of ¢ is said to be repeated if it occurs at least once
as a non-suffix substring of ¢. We also need to be able to specify which suffixes of ¢ are to be included
in an SST. This is done by considering a short prefix string z, and a set of start positions, V., for those
suffixes of the input which have the string z as a prefix. V, is also called the valid set. We say that a
substring s of ¢ is valid if z is a prefix of s and that an interval I[i, j] is valid (with respect to V, and t)
if i € V,. We say that s is a valid suffiz for for I[i, j] if s = t[k, j] for some k € V, and k > i. Note that
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Fig. 2. The standard suffix tree of aacacccacacaccacaaa$ with standard suffix links. This is for comparison with
the merged tree in Figure 1. See the text for further explanation.

it is possible that a valid suffix for an interval may be shorter than the fixed prefix z, depending on the
characters that follow directly in the input string.

Let z be a string of length greater than or equal to 1. We say (t,V,) is an input pair if V, is the
valid set. We write sst(t, V) for the sparse suffix tree of ¢ using the valid set V,. For a sparse suffix tree
T = sst(t,V,) and an arbitrary set of strings S, we say that 7' = T augmented by S if T" is the sparse
suffix tree of the valid suffixes of the input pair (¢,V,) and the strings in S.

We call the concatenation of the edge labels on the path from the root to some position in the SST
(either a node, or somewhere on an edge between two nodes) the path label of that position. To avoid
confusion between strings and nodes, we use the notation w to label a node whose path label is w. A
string which is a path label of some node is called nodal. A string which corresponds to any path label
in the tree is said to occur in the tree.

Ezxample 1. Consider the input
s = agacagc$ with 2z =ag

The valid set is V, = {1,5} and sst(¢,V,) has two leaves labelled agacage and age and one branching
node labelled @g. The root has only one child.
2.2 Building the DST

We are able to construct the DST of string ¢ in O(n) time in parallel with no communication overheads
apart from the one-off cost of sending the input to the different nodes. This communication can be



achieved on most modern local area networks by broadcasting the data to all nodes simultaneously,
making the entire construction time O(n). The time complexity can be achieved trivially, of course, by
simply constructing the full suffix tree at each computing node using Ukkonen’s algorithm [19] and then
pruning it to remove unwanted nodes and edges. However, the assumption we make is that this will not
be possible for large problems due to memory constraints and so a novel construction method is required.

To construct the DST in linear time we show how to construct an SST in linear time and simply run
the algorithm in parallel for the different prefixes that are chosen. The resulting algorithm uses space at
each node which is proportional to the size of the SST constructed, as required.

Sparse suffix links

Suffix links play a critical role in the linear time construction of suffix trees. However, the standard
definition is not sufficient for SSTs as, in general, a substring of ¢t and its longest suffix may have
different prefixes. Moreover, suffixes that are shorter than the length of the prefix z have to be considered
separately. Online construction proceeds by reading in one character at a time from the input and stepping
down in the tree until there is a mismatch. At this point a new edge or node is inserted and a jump is
made in the tree to a new position, from which the process is continued. To perform this jump we need
to consider the longest suffix of the current position which might require an additional edge or node in
the tree, either using the current character or when more data is read in. Suffix links are used to perform
this traversal and it is a fundamental property that if the current position is a node then there will be a
corresponding node to which the jump should be made. A new definition of suffix links is required.

Definition 1. Consider an input pair (t,V,) and sparse suffiz tree T = sst(t,V,). Let aw be nodal in T
and v be the longest repeated suffix of aw that occurs in T'. A sparse suffix link or ssl is an unlabelled
edge from aw to the root if [v| < |z| and from aw to U, otherwise.

The following proposition shows that sparse suffix links are always well defined in a sparse suffix tree.

Proposition 1. Consider an input pair (¢t,V,) and sparse suffic tree T = sst(t,V,). Let aw be nodal in
T and v be the longest repeated suffiz of aw that occurs in T. If |v| > |z| then v is nodal and therefore
the sparse suffiz link from aw to U is well defined.

Proof. If aw is nodal then there must be at least two occurrences of aw in ¢, each with a different
character directly to its right. v must occur as a suffix of both occurrences. Therefore there are two
occurrences of v in ¢ with different characters directly to their right. If |v| > |z| then v must be valid (as
v occurs in T'). This implies that v is nodal in T, as required. O

We must also ensure that the total number of steps required by the construction algorithm is linear
and that the correct positions can be visited by the sparse suffix links. A full proof is provided in [5].
Here we show which suffixes need to be inspected at each stage of construction and argue that this can
be done efficiently.

The demonstration is an extension of that provided in [11] for standard suffix trees. First we need
some further definitions. The valid set V, is always with respect to input string ¢. When the valid set is
applied to a prefix p of ¢, any start positions that are greater than |p| are simply discarded.

Definition 2. Consider input pair (p,V.) and a valid repeated suffix s of p. Denote the set of such
suffizes by R(p,V,). We define this set to include the empty string, €. Let a(p) be the longest suffix in
R(p, V).



Ezample 2. Consider input string ¢t = aabaaa with prefix p = aabaa and V,, = {1,4,5}. a(p) = aa and
R(p, Vao) = {aa, €}.

It is an important property of R(p,V,) that all its elements must, by definition, either have length
zero or be at least as long as the prefix string z.

Theorem 1. Consider the input pair (t,V.) with p, a proper prefix of t. Let a be the character in t that
directly follows the prefiz p. Consider also the set, S, of valid suffizes, sa, for I[1, |pa|] such that

la(p)al = |sa| > |a(pa)|
and s € R(p,V,). Then sst(pa,V,) = sst(p,V.) augmented by S.

Proof. Let sa be a valid suffix for I[1, |pa|]. We need to insert this new suffix into the tree if and only
if s € R(p,V,) but sa ¢ R(pa,V,) (s = € is a special case). In this case sa corresponds to a leaf in
sst(pa, V) but s does not correspond to a leaf in sst(p, V) so a new node is necessary.

1. If |sa| > |a(p)a| then s ¢ R(p,V,). But s is valid and thus corresponds to a leaf in sst(p, V). In such
a case sa will correspond to the same leaf in sst(pa, V,) by the implicit growing of the corresponding
open edge. No action is needed.

2. If |a(p)a| > |sa| > |a(pa)| then sa ¢ R(pa,V). To determine whether any action is needed we
consider the first part of the inequality which gives us |a(p)| > |s|. In this case s € R(p,V,) and
therefore a new leaf sa must be added.

3. If |a(pa)| > |sa| then either sa € R(pa, V) or none of the non-suffix occurrences of sa is valid. Recall
that either |s| > |z| or |s| = e. Consider the two cases:

(a) |s| > |z|- sa is a valid suffix for I[1, |pa|] and therefore z is a prefix of sa. As sa is a suffix of
a(pa) it now follows that sa € R(pa, V). No action is needed.

(b) s =e. sa is simply the first character of z and must therefore occur in p (as a(pa) has non-zero
length). Therefore no action is needed.

So we need only consider case 2 to insert any new leaves required. Therefore only suffixes, sa, satisfying
|a(p)a| > |sa| > |a(pa)| where s € R(p,V,) need to be inserted into sst(p,V;) as required. O

The positions in the tree of successive elements of R(p, V) can be visited using sparse suffix links in
an analogous way to the way positions of successive suffixes are visited in a standard suffix tree. The
total number of these suffixes is O(n) and, assuming that |z| is constant, the total time taken to visit all
their positions is also O(n). Therefore, the whole construction algorithm runs in O(n) time.

Theorem 2. For a input pair (¢,V,) with |2| > 1, sst(t,V,) can be constructed in O(n) time, where
n = |t.

Proof. There are two main differences between our SST construction algorithm and the suffix tree con-
struction algorithms of [19] and [15]. The first is that we use ssl’s instead of suffix links and the second
is that we must apply a different rule if we follow an ssl to the root. If we ignore this extra rule for a
moment, the running time follows closely the reasoning that is presented in the previous papers and so
we do not describe it further here. However, if an ssl is followed to the root then the position of the
longest repeated prefix of the current suffix may be anywhere between the root and its child node. The
position of the next suffix which must be inserted into the tree can trivially be found however, by simply



stepping down in the tree, one character at a time. The characters of the next valid suffix in ¢ are used
to step down until a mismatch is found. As the next valid suffix must, by definition, have z as a prefix no
mismatch will be found before the first child node is reached. Each time an ssl is followed the index of the
current suffix being considered increases. This index is never decreased, so the total number of ssl’s that
are followed is O(n). Therefore, the total number of one character steps taken down the tree is O(n|z|).
Assuming that |z| is bounded above by a small constant, the total running time for the algorithm is
therefore O(n) as required. O

2.3 Experimental results

To test the sparse suffix tree construction algorithm we ran a series of experiments using random binary
data and different prefix lengths. A fixed prefix of the desired length was chosen for each test. For the
first test the prefix is set to “a”, for the second “aa” and so on. As there is no inter-node communication
requred in DST construction, the running times shown reflect the parallel running time for computing
all the SSTs of a DST on a cluster of computers (excluding the time to broadcast the input to the
different processors). The construction times for a PST can be calculted by multiplying the running
time for each prefix by the number of prefixes of that length. 20 bytes/valid suffix were required for our
implementation. More sophisticated implementations such as those described in [11] could significantly
reduce this number. The purpose here is to compare the new and old data structures using the same
implementation techniques.

The timings for different length prefixes are presented in Figure 3. The implementation is in C and
was run on a 512MB 800MHz AMD system running Linux 2.2.19. The construction of the complete
suffix tree slows drastically for inputs larger than 24.4 million characters. This is when real memory is
exhausted. With prefix “aa” the maximum size is 47.8 million. With prefixes “aa” and “aaa” it grows
to 94.4 million and 186.7 million respectively. So, using 8 SSTs and a binary alphabet, we are able to
construct a DST or PST for problems approximately 7.65 times larger than before.

2.4 Operations on the DST and PST

Gusfield [12] provides what can be regarded as a canonical list of major bioinformatic techniques on
suffix trees. The algorithms can be broadly classified into three categories according to how they perform
on a DST. The first category is that of exact pattern matching algorithms which have very fast serial
solutions. The only obstacle to their practical use is the size of the suffix tree that must be computed.
A DST will allow a much larger text to be indexed and each search will require only one processor
to perform a computation. This is in contrast to a segmentation of the text into contiguous sections
which would require all processors to perform calculations for each query. The second category consists
of operations such as the calculation of matching statistics [4] which can be performed on a DST but
for which there is little parallel speedup. The third category are the algorithms which both benefit from
being able to be run on larger data sets and which show optimal or near optimal speedup on a DST. It is
perhaps surprising that all commonly used bioinformatic operations fall into either the first or the third
category—that is, they perform traversals of the tree which can easily be translated to a DST without
incurring any communication overheads. There is, of course, another class of algorithms outside this list
which would require inter-process comunication if run on a DST. It is likely that these algorithms would
also be impractical to run on a PST as only one SST will be in real memory at any given time. It is an
open question which of them can be translated into efficient parallel algorithms on a DST.
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We now summarise the analysis of five representative problems from the first and third categories
described above. They are Longest Common Substring, Exact Local Matching (LCS, ELM), Maximal
Repeat Finding, All Pairs Suffix-Prefix [13] and Exact Set Matching. Full descriptions along with their
serial solutions using suffix trees can be found in Gusfield [12] and elsewhere. All five problems can
clearly be solved using a PST with the running time complexity, excluding the time to construct the
SSTs, exactly the same as for the serial case. We now examine their solutions on a DST.

Because we are interested in average case and not worst case analysis we make the commonly used
assumption that the input characters are independent and uniformly distributed (i.u.d.). In practice,
this assumption may not hold, of course; load balancing for systematically biased data is discussed at
the conclusion.

We suppose that there are k computing nodes and assume for simplicity that k¥ = o'?!, where o is
the alphabet size and z is the fixed prefix. Table 1 compares the expected running times for the solution
of these five problems using the fastest serial method (based on a standard suffix tree) and a parallel
method (based on distributed suffix trees). The derivation of these results is sketched briefly below.

Table 1. Post-construction average time complexities for five different problems using standard and distributed
suffix trees with k& computing nodes. r is the number of strings for the All Pairs Suffix-Prefix problem and the
number of patterns for Exact Set Matching.

Problem Expected Running Time
Standard ST (Serial)|Distributed ST (Parallel)
LCS and ELM O(n) O(n/k)
Maximal Repeat Finding O(n) O(n/k)
All Pairs Suffix-Prefix O(n +r?) O((n+1r?)/k)
Exact Set Matching O(rlogn) O((rlogn)/k)

Longest Common Substring and Exact Local Matching

The serial solutions to these problems perform a full traversal of the suffix tree. As both the longest
common substring and an exact local match of two strings will have the same prefix by definition, the
problem can be solved by simply applying the serial solution to the SSTs in the DST in parallel. The
average running time is therefore determined by the expectation of the size of the largest SST. Assuming
i.u.d. characters in the input, this can be shown to be

E [mzax(|VZ|)] = % + o(n), asn — oo.

Maximal Repeat Finding

The serial solution to this problem also performs a full traversal of the suffix tree. Any pair of maximal
repeats will also have the same prefix by definition and so can be found in a single SST. Therefore the
average running time is determined as above.



All Pairs Suffix-Prefix

Definition 3. Given two strings S; and S;, any suffiz of S; that matches a prefiz of S; is called o suffix-
prefix match of S;, S;. Given a set of strings S = {S1,..., Sy} of total length n, the all-pairs suffix-prefix
problem s the problem of finding, for each ordered pair S;, S; in S, the longest suffiz-prefix match of S;,
S;.

The serial solution to this problem performs a depth-first search of a generalised suffix tree of the
input strings recording each suffix-prefix match in one of r stacks. Using a generalised DST the same
problem can be solved in parallel in optimal expected time. A full traversal must be made at each SST
and each suffix-prefix match has to be recorded. Call r, the number of strings in the input that have z
as a prefix. There can be no more than r,r suffix-prefix matches at each SST and therefore the running
time at each SST is O(|V;| 4+ r.7). The time to completion is the maximum of these times and it can

shown that
n+r? 9
]E[max(|Vz|+rzT) =2 +o(n + %), as m,r — 00.

Exact Set Matching

In the exact set matching problem there is a set P consisting of r patterns to be matched against a
text t of length n. For simplicity the patterns are assumed to be of equal length m and, to ensure that
the number of matches found by each string is bounded, we let m = log,(n/cg). The running time
calculation is complicated by the fact that the number of patterns sent to the relevant SST and the
size of the associated SST are both subject to random variation. The following bound on the expected
running time can be proved.

Theorem 3. Suppose the characters in the input text are i.u.d with alphabet size o and that there are r
patterns each with length m =log ,(n/co). Assume the characters in each of the patterns are also i.u.d.
with alphabet size o and let R be the mazimum running time of the computing nodes in a DST using
prefizes of equal length. Then for suitable constants A and -y,

E(R) < —(Am + 7vco) + o(rlogn), asn,r — 0o.

>l

3 Discussion

The algorithms presented here were implemented and tested on random data. For systematically biased
biological data the SSTs may not be as balanced as with random data. This is likely to decrease the
work done at some computing nodes at the expense of increasing it at others, thereby reducing the
overall parallel efficiency. Using a snapshot of the sequences available for human chromosomes 21 and 22
combined and that of chromosome X we were able to estimate the parallel efficiencies for maximal repeat
finding and exact local matching on a DST. We found that the efficiencies were 90 and 82 percent for 4
computing nodes and 72 and 61 percent for 16 nodes. In order to increase these figures we introduced a
simple load balancing scheme. An example of how it worked using 16 computing nodes follows.

Instead of considering the 16 different prefixes of length 2 for DNA data we consider all 64 prefixes of
length 3. The number of substrings of the input which start with each prefix was counted and, using this
information, the set of 64 prefixes was partitioned into 16 subsets as evenly as possible using a simple



greedy heuristic. Each computing node was then associated with one of the 16 subsets and a variant
of the SSTs described above was constructed. Instead of associating one prefix with each SST, the new
structure has a set of prefixes associated with it. So, an SST represented all the suffixes in the input
which started with any of the prefixes in the given set. In this way the size of the SSTs was evened
out considerably, thereby increasing the overall efficiency. For example, we were able to increase the
parallel efficiency of maximal repeat finding on chromosome X using 16 computing nodes from 61 to 89
percent. Simple load balancing schemes for the other problems listed above gave similar improvements
in efficiency for real genetic data.
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