Executable Specification of Open Multi-Agent Systems

Alexander Artikis'? and Marek Sergot?

! Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”,
Athens 15310, Greece

2 Electrical € Electronic Engineering Department,
Imperial College London, SW7 2BT, UK

3 Department of Computing,

Imperial College London, SW7 2BZ, UK

E-mail: a.artikis@acm.org, mjs@doc.ic.ac.uk

Abstract. Multi-agent systems where the agents are developed by parties with competing interests, and where
there is no access to an agent’s internal state, are often classified as ‘open’. The members of such systems may
inadvertently fail to, or even deliberately choose not to, conform to the system specification. Consequently, it is
necessary to specify the normative relations that may exist between the members, such as permission, obligation,
and institutional power. We present a framework being developed for executable specification of open multi-agent
systems. We adopt a bird’s eye view of these systems, as opposed to an agent’s perspective whereby it reasons
about how it should act. This paper is devoted to the presentation of various examples from the NetBill protocol
formalised in terms of institutional power, permission and obligation. We express the system specification in
the Event Calculus and execute the specification by means of a logic programming implementation. We also
give several example formalisations of sanctions for dealing with violations of permissions and obligations. We
distinguish between an open multi-agent system and the procedure by which an agent enters and leaves the
system. We present examples from the specification of a role-management protocol for NetBill, and demonstrate
the interplay between such a protocol and the corresponding multi-agent system.

1. Introduction

A multi-agent system (MAS) is often classified as ‘open’ when there is no guarantee of benevolent
behaviour and there is no access to an agent’s internal state. Examples of open MAS of this
sort are electronic markets, virtual organisations and digital right management applications. It
has been argued that many practical applications in the future will be realised in terms of open
MAS. Not surprisingly, there is a growing interest in the MAS community in these systems
( [77,55,85,70,72,86,18] are but a few examples). Rosenschein and Zlotkin give the following
description of this type of MAS:

“The agents that we are interested in looking at are heterogeneous, self-motivated agents.
[..] Agents do not necessarily have a notion of global utility. Each agent operating from your
machine is interested in what your idea of utility is and in how to further your notion of
goodness. [..] Agents do not act benevolently unless it’s in their interest to do so. They do
not necessarily share information, they do not necessarily do things that other agents ask
them to do unless they have a good reason for doing so.” [60, p.354]

We here consider a MAS as open if it exhibits the following characteristics:
— The internal architectures of the members are not publicly known.
— Members do not necessarily share a notion of global utility.

— The behaviour and the interactions of the members cannot be predicted in advance.
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The first of these characteristics implies that an open MAS may be composed of agents
with different internal architectures. Therefore, we will treat open MAS as heterogeneous ones.
Moreover, there is no direct access to an agent’s mental state and so we can only make inferences
about that state. The second characteristic implies that the members of an open MAS may fail
to, or even choose not to, conform to the system specifications in order to achieve their individual
goals (this is what Minsky and Ungureanu [49] referred to as inadvertent and malicious violations
respectively). And further, open MAS are always subject to unanticipated outcomes in their
interactions [35].

Often in the literature open MAS are those where agents may enter or leave the system at any
time (see, for example, [77,85,35,59]). Usually, agents enter or leave a system by participating in
a role-management protocol, that prescribes the ways for applying for membership, withdrawing
from a system, and so on. The specification of a role-management protocol is application-specific.
Our definition of a MAS as open is irrespective of the protocols that specify the ways by which
agents enter or leave the system.

In this paper we are concerned with presenting ezxecutable specifications of open MAS. We
adopt a bird’s eye view of these systems, as opposed to an agent’s own perspective whereby
it reasons about how it should act. Moreover, we view open MAS as instances of normative
systems [38]. A feature of this type of system is that actuality, what is the case, and ideality,
what ought to be the case, do not necessarily coincide. Therefore, we specify what is permitted,
prohibited and obligatory. Moreover, we explicitly represent the institutional powers [62,39] of
the agents, and maintain the standard, long established distinction between institutional power,
permission and physical capability. Institutional power refers to the standard feature of any
normative system whereby designated agents, when acting in specified roles, are empowered by
an institution to create relations or states of affairs of special significance within the institution
(such as when an agent is empowered by an institution to award a contract and thereby create
a set of normative relations between the contracting parties).

In order to illustrate the concept of institutional power and the distinction between insti-
tutional power, permission and physical capability, this paper is devoted to the presentation
of various examples formalised in terms of these concepts. In previous publications we were
concerned with other aspects of normative systems; in [3] we presented a comparison of action
formalisms for open MAS specification while in [2] we presented a specification of a dispute
resolution protocol. In these previous papers we discussed the process of role-management but did
not formalise it. Here we present an example specification of a protocol for managing applications
for membership in an open MAS, withdrawal, etc, and demonstrate the interplay between such
a protocol and the corresponding MAS.

We encode specifications of open MAS in executable action languages. In this paper we employ
the Event Calculus (EC) [41], a simple and flexible formalism that is very easily and efficiently
implemented for an important class of computational tasks. It thus provides a practical means
of implementing an executable system specification.

The remainder of this paper is organised as follows. First, we present an example that we
will use throughout the paper in order to illustrate the way we develop executable specifications
of open MAS. This example is a variation of the NetBill protocol [73] that is used for buying
and selling digital information on the Internet. Second, we describe the version of the Event
Calculus that we employ to specify NetBill. Third, we present our specification of NetBill,
which is a formalisation of the social constraints (or social laws) of NetBill expressed in terms of
the institutional powers, permissions and obligations of the participants, as well as the sanctions
that may be applied in order to deal with the violation of the social constraints. Fourth, we
present an example specification of a role-management protocol for NetBill. In the penultimate
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Figure 1. A Variation of the NetBill Payment Protocol.

section of the paper we present an execution of the specifications of NetBill and the associated
role-management protocol. Finally, we compare our work to related approaches in the literature,
and outline directions for further research.

2. Running Example: The NetBill Protocol

We employ a variation of the NetBill protocol [73] in order to demonstrate the way we construct
executable specifications of open MAS. Figure 1 shows the participants and a run of the protocol.
Initially, the consumer requests a quote for a set of goods and the merchant replies with the
quote. Then, the consumer accepts the quote. Following the quote acceptance, the merchant
sends the goods to an Intermediation Server (IS), while the consumer constructs an Electronic
Payment Order (EPO) describing the transaction, and sends it to IS. Finally, IS takes care of
the transfer of funds and sends a receipt to the merchant and the consumer — the consumer’s
receipt is accompanied by the merchant’s goods.

IS acts as a trusted third party; it may ‘cancel’ a transaction, that is, refrain from transferring
the funds to the merchant’s account and sending the goods to the consumer, if the consumer’s
EPO does not clear or the merchant’s goods are not of the agreed quality.

Clearly NetBill is an open MAS; it is composed of heterogeneous agents that have conflicting
goals and act competitively. Actuality may not coincide with ideality: a merchant may over-
advertise its goods, a consumer’s EPO may not clear, and so on. Therefore, it is necessary to
specify the rules expressing what constitutes ideal behaviour, and what are the consequences
of deviating from such behaviour. The rules must define additional facts of special significance
to NetBill, such as when a contract is established between two parties, when an agent is eligi-
ble to participate in NetBill, and so on. In the following sections we will present an example
specification of NetBill addressing these issues.
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To simplify the presentation and to keep the example manageable, we omit detailed discussion
of the procedure that is followed to transfer the funds to the merchant’s account, and the actions
of IS in general (see the dotted lines in Figure 1). In the following sections we will focus on the
consumers’ and the merchants’ actions, which are represented in Figure 1 by the continuous
lines.

3. The Event Calculus

We have been using three action languages with direct routes to implementation to express
protocol specifications:

1. The Event Calculus (EC) [41], a formal, intuitive and well-studied action language (see [3]
for an EC specification of a contract-net protocol).

2. The C+ language [32], a formalism with an explicit transition systems semantics (see [2]
for a C'+ specification of a dispute resolution protocol).

3. The nC+ language [65,14], an extended form of C'+ designed specifically for representing
simple normative and institutional concepts (see [64] for a nC+ specification of a simple
resource sharing protocol).

Each formalism has its advantages and disadvantages for open MAS specifications. (See [3]
for a comparison of their relative strengths.) In this paper we will use EC because an EC imple-
mentation (in terms of logic programming) has proved to be more efficient than a C'+ or nC+
implementation (employing the Causal Calculator, a software tool supporting computational
tasks regarding the C'+ language) for the provision of ‘run-time services’. (A description of such
services is presented in Section 6.)

EC, introduced by Kowalski and Sergot [41], is a formalism for representing and reasoning
about actions or events and their effects in a logic programming framework. In this section we
briefly describe the version of the EC that we employ. EC is based on a many-sorted first-order
predicate calculus. For the version used here, the underlying time model is linear and it may
include real numbers or integers. Where F' is a fluent (a property that can have different values
at different points in time), the term F' =V denotes that fluent F' has value V. Boolean fluents
are a special case in which the possible values are true and false. Informally, F'=V holds at a
particular time-point if F'=1V has been initiated by an action at some earlier time-point, and
not terminated by another action in the meantime.

An action description in EC includes axioms that define, among other things, the action oc-
currences (with the use of happens predicates), the effects of actions (with the use of initiates and
terminates predicates), and the values of the fluents (with the use of initially, holdsAt and holdsFor
predicates). Table I summarises the main EC predicates. Variables (starting with an upper-case
letter) are assumed to be universally quantified unless otherwise indicated. Predicates, function
symbols and constants start with a lower-case letter.
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Table I. Main Predicates of the Event Calculus.

Predicate Meaning
happens( Act, T ) Action Act occurs at time T
initially( F=V") The value of fluent F is V at time 0
holdsAt( F=V, T) The value of fluent F'is V' at time T'

holdsFor( F'= V', Intervals ) The value of fluent F' is V during Intervals

initiates( Act, F=V, T')  The occurrence of action Act at time T'
initiates a period of time for which
the value of fluent F is V

terminates( Act, F=V, T ) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F' is V

The domain-independent definition of the holdsAt predicate is as follows:

holdsAt( F=V, T ) —
initially( F =V ), (1)
not broken( F=V, 0, T")

holdsAt( F=V, T ) «
happens( Act, T' ),
T < T, (2)
initiates( Act, F=V, T"),
not broken( F=V, T', T")

According to axiom (1) a fluent holds at time 7" if it held initially (time 0) and has not been
‘broken’ in the meantime, that is, terminated between times 0 and 7. Axiom (2) specifies that a
fluent holds at a time T if it was initiated at some earlier time 7" and has not been terminated
between T" and T'. not represents negation by failure [11]. The domain-independent predicate
broken is defined as follows:

broken( F:V, Tl, T3 ) —
happens( Act, Ty ), (3)
Ty <Ty T><T1Ts5,
terminates( Act, FF=V, Ty )

F =V is ‘broken’ between 717 and T3 if an event takes place in that interval that terminates
F =V. A fluent cannot have more than one value at any time. The following domain-independent
axiom captures this feature:

terminates( Act, F=V, T ) «—
initiates( Act, F=V', T ), (4)
V£V

Axiom (4) states that if an action Act initiates F =V’ then Act also terminates F =V, for all
other possible values V' of the fluent F'. We do not insist that a fluent must have a value at every
time-point. In this version of EC, therefore, there is a difference between initiating a Boolean
fluent F'=false and terminating F' = true: the first implies, but is not implied by, the second.
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We make two further comments regarding this version of EC. First, axioms (1)—(4) specify
that a fluent does not hold at the time it was initiated but does hold at the time it was terminated.
This is the usual convention in EC. Second, in addition to axioms (1)—(4), there are further
domain-independent axioms defining the holdsFor predicate, which is the predicate for computing
the (maximal) intervals in which a fluent holds. To save space we do not show any holdsFor
outputs in the example runs shown later in Section 6 and for this reason we omit the definition
of holdsFor.

In the following sections we present a logic programming implementation of an Event Calculus
action description, called EClp, expressing the NetBill specification.

4. Social Constraints

We specify social constraints (social laws) at design-time; furthermore, we assume that their
specification does not change at run-time. There are several advantages to specifying social
constraints at design-time [51]:

— Since the system designers’ design-time resources are usually greater than the agents’ run-
time resources, some problems may be better solved by the designers at design-time than
they would be solved at run-time by the agents.

— In case ‘effective’ social constraints are difficult to specify, the environment may be modified
(at design-time) in a way that will simplify the task of devising social constraints (for
example, adding traffic lights in a two-dimensional grid where mobile robots move).

— A design-time specification of social constraints may keep the agents from arriving at many
of the conflicts to begin with. If the agents are aware of the social constraints before
the commencement of the execution of an open MAS, they may produce their strategies
according to the constraints and, therefore, avoid run-time conflicts.

Moreover, the existence of social constraints before the commencement of agent activities
facilitates agents to decide whether or not to enter an open MAS. Similarly, agent designers
may decide whether or not to deploy their agents in an open MAS based on the specification of
social constraints. A framework for ‘dynamic specifications’, that is, specifications developed at
design-time but modifiable at run-time, is an area of current work and is discussed in the last
section of the paper.

We view open MAS from an external perspective (also referred to as meta-perspective by
Werner [81, p.7]). Our specification is based only on externally observable states of affairs and
not on the internals of the member agents. Furthermore, the specification of social constraints
refers to the externally observable behaviour of the agents and not to the way agents reason
about their behaviour. Apart from these externally specified constraints, agents (usually) have
to comply with a different set of constraints, that is, a set of internal constraints imposed on
them by their designers (say). These are part of the agents’ architectures and may be in conflict
with the social (external) constraints. In the NetBill protocol, for instance, a merchant may be
permitted to present a quote that is associated with any possible price. Such a permission is
externally specified, as part of the NetBill protocol. According to its own strategy, however, as
determined by its designers, a merchant agent may not be ‘permitted’ to present a quote with
a price that is less than the cost of the associated goods.

Note that agents may not be aware of all externally specified constraints of a MAS. The issue
of making available the constraints of a MAS to the members is discussed in Section 6.
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We maintain the standard, in the study of social and legal systems, long established distinc-
tion between permission, physical capability and institutional power. Jones and Sergot [39] cite
Makinson [44] to illustrate the distinction between these concepts:

“[Clonsider the case of a priest of a certain religion who does not have permission, according
to instructions issued by the ecclesiastical authorities, to marry two people, only one of whom
is of that religion, unless they both promise to bring up the children in that religion. He may
nevertheless have the [institutional] power to marry the couple even in the absence of such
a promise, in the sense that if he goes ahead and performs the ceremony, it still counts as
a valid act of marriage under the rules of the same church even though the priest may be
subject to reprimand or more severe penalty for having performed it.” [44, p.409]

Jones and Sergot further point out that “one may imagine circumstances in which it is not
practically possible for the priest to marry the couple (because, say, he is sick or otherwise
incapacitated), although he is still empowered to do so” [39, p.431].

Accordingly, we present a four-level specification of the social constraints of an open MAS,
that expresses:

— the physical capabilities (what is practically possible),
— institutional powers,

— permissions, prohibitions and obligations of the agents,

the sanctions and enforcement strategies that deal with the performance of forbidden actions
and non-compliance with obligations.

These levels of specification are presented in the following sections.

Recall that we express MAS specifications by means of EC action descriptions. The main
actions and fluents of the EC action description expressing the NetBill specification are displayed
in Tables II and III respectively. Note that we have simplified slightly. In general it could be that
consumer C' has several concurrent requests/contracts pending at any time to purchase goods
GD at price P from merchant M, and we should add another parameter (a transaction ID)
to each action and fluent in order to identify uniquely which specific request/purchase is being
referred to in acceptance/payment actions. For simplicity we will ignore this minor complication.
It is easily fixed (by adding a transaction ID), and is not important for the purposes of this paper.

4.1. PuvysicAL CAPABILITY

We begin by specifying all the possible events that can occur in the system being modelled and
thus all of its possible behaviours/evolutions (‘runs’ or ‘traces’ in other terminology), including
in particular the possible actions that can be performed by each agent. We refer to these as
the ‘physical capabilities’ of the agents. We specify separately (later sections) which of these
possible actions are permitted, obligatory, or prohibited, and which have special significance or
meaning when we specify ‘powers’.

The NetBill example, or rather the fragment we are presenting in detail, has comparatively
few ‘physical capability’ constraints. However, for the sake of a concrete example, consider the
following possibility.

Suppose that in the system being modelled there is some kind of mechanism in the interface
used by the consumer which constrains the Electronic Payment Orders (EPO)s it is able to
compose and transmit. This interface, let us suppose, enables a consumer to send an EPO if it
has the available funds, but otherwise not (say).
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Table II. Main Actions of the NetBill Specification.

Action Textual Description

request_quote(C, M, GD) consumer C' requests a quote from merchant M
concerning goods described as GD

present_quote(M, C';, GD, P) merchant M presents a quote to consumer C
concerning goods described as GD at price P

accept_quote(C, M, GD, P) consumer C accepts a quote from merchant M
concerning goods described as GD at price P

send _EPO(C, IS, GD, P) consumer C sends to the Intermediation Server IS
an electronic payment order of amount P concerning
the contract on goods described as GD

send_goods(M, 1S, GD, G)  merchant M sends to the Intermediation Server IS
the goods G concerning the contract on GD

Example 1 (Physical Capability) A consumer can send an EPO if it has the available funds:

holdsAt( can(C, send_EPO(C,1S,GD, P)) =true, T ) «
holdsAt( bank_account(C) =(Bal, Av), T ), (5)
Av > P

Physical capability is expressed with the can fluent (see Table III). bank_account(C') =(Bal, Av)
records consumer C’s current balance Bal (the total amount currently in the account) and avail-
able balance Av (the current balance plus overdraft protection funds). Clearly such information
need not be available to the other NetBill participants. Axiom (5) expresses that an agent C'
can send an EPO of amount P if its available balance Av is greater or equal to P.

The representation of physical capability in the EC specification includes further (application-
specific) axioms of the following form:

incons( physical_capability(send_EPO(C,1S,GD, P)) ) «
happens( send_.EPO(C,1S,GD,P), T ), (6)
holdsAt( can(C, send_EPO(C,1S,GD, P)) = false, T")

Here incons is a predicate expressing a type of ‘narrative inconsistency’. Every narrative, that
is, every record of events that have occurred and their times of occurrence, is first checked for
consistency by evaluating the query incons(Type). Here Type is a variable that will return a term
representing the type of inconsistency if one is present. A narrative of events is ‘inconsistent’ if
it includes actions that are not physically possible (at a particular time).

As another example, suppose that a consumer C is always able to compose and transmit
a send_EPO message (there is no mechanism constraining these actions in the system being
modelled), but there is a mechanism in the Intermediation Server’s implementation that enables
it to transfer the amount P only when C’s available balance is greater or equal to P. Or again,
to take a different example, suppose there is no such mechanism in the Intermediation Server’s
implementation: the Intermediation Server is able to transfer any amount P (or any amount P
within specified bounds) but is permitted to do so only when C’s available balance is greater or
equal to P. We discuss the specification of permissions in a later section.

The specification of what we are calling ‘physical capability’ abstracts away some detail. We
are not modelling here the details of how messages are actually transmitted, the reliability of the
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Table III. Main Fluents of the NetBill Specification.

Boolean Fluent Textual Description
can(Ag, Act) agent Ag is capable of performing Act
pow(Ag, Act) agent Ag is empowered to perform Act
per(Ag, Act) agent Ag is permitted to perform Act
obl(Ag, Act) agent Ag is obliged to perform Act
request(M, C', GD) consumer C requested a quote from merchant M

regarding goods described as GD

contract(M, C'; GD, P) a contract has been established between merchant M and
consumer C regarding goods described as GD at price P

suspended(Role, Ag) agent Ag is suspended from acting as a Role

violation(Role, Ag) agent Ag acting in Role violated
a particular social constraint

Non-Boolean Fluent Domain Textual Description
bank _account(Ag) 7 x N agent Ag’s current and available balance
role_of (Ag) P({consumer,

merchant,

iServer}) the roles that agent Ag occupies

quote(M, C, GD, P) N the expiry time of merchant M’s valid
quote to consumer C regarding goods
described as GD at price P

ad_count(M, C) Z the number of unsolicited quotes
presented to consumer C' by merchant M

suspendedUntil( Role, Ag) N agent Ag is suspended from acting as
a Role until some future time

communication channels, the precise mechanisms by which messages are constructed are sent,
and so on. The specification of ‘physical capability’ is intended to abstract away implementation
and other details that we do not wish to model. U

For the NetBill example used as the running example in this paper we impose no further
constraints on the capability to perform the remaining protocol actions.

In order to express the effects of a protocol action we need to distinguish between the act of
bringing about a state of affairs (such as accepting an offer) and the act by means of which that
state of affairs is brought about (such as sending a message with a particular form of words).
Accepting a quote, by means of (say) sending a TCP/IP message, does not necessarily create a
‘contractual obligation’ (in a sense that will be made clear later) on the recipient to deliver the
goods. It is only if the acceptance of the quote is signalled by an agent with the institutional
power to accept the quote that the recipient will be obliged to deliver the goods. The same act
performed by an agent without this power has no effect on the recipient’s obligations, though it
may have other effects. An account of institutional power is presented next.
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4.2. INSTITUTIONAL POWER AND VALID ACTIONS

The term institutional (or ‘institutionalised’) power refers to the characteristic feature of an
institution, legal system, formal organisation, or informal grouping, whereby designated agents,
often when acting in specific roles, are empowered to create or modify facts of special significance
in that institution, institutional facts [63,62], usually by performing a specified kind of act (such
as when a priest performs a marriage, or an agent signs a contract, or the chairperson of a formal
meeting declares the meeting closed).

According to the account given by Jones and Sergot [39], institutional power can be seen as
a special case of a more general phenomenon whereby an action, or a state of affairs A, because
of the rules and conventions of an institution, counts, in that institution, as an action or state
of affairs B (such as when sending a letter with a particular form of words counts as making an
offer, or raising a hand counts as making a bid at an auction).

In some circumstances it is unnecessary to isolate and name all instances of the acts by
means of which agents exercise their institutional powers. In the NetBill protocol, for example,
it is convenient to say that ‘the consumer ¢ accepted a quote ¢ (issued by merchant m)’ and
let the context disambiguate whether we mean by this that the consumer performed an action,
such as sending a message of a particular form via a TCP/IP socket connection, by means
of which the acceptance of the quote is signalled, or whether the consumer actually issued an
acceptance, in the sense that a contract is established between the consumer and the merchant.
We disambiguate in these circumstances by attaching the label ‘valid’ to act descriptions. We
say that an action is valid at a point in time if and only if the agent that performed that action
had the institutional power to perform it at that point in time.

When we say that ‘the consumer ¢ accepted a quote ¢ (issued by merchant m)’ we mean,
by convention, merely that c signalled its intention to accept ¢; this act was not necessarily
effective in establishing a contract between ¢ and m. In order to say that a contract has been
established, we say that the action ‘consumer ¢ accepted a quote ¢’ was wvalid: not only did ¢
signal its intention to accept ¢, but also ¢ was empowered to accept ¢ at that time. Similarly,
inwalid is used to indicate lack of institutional power: when we say that the action ‘consumer
c accepted a quote ¢’ is invalid we mean that c signalled its intention to accept ¢ but did not
have the institutional power to accept that quote at that time (and so the attempt to establish
a contract was not successful).

We are aware that this use of the term ‘valid’ is not ideal and may be inappropriate in some
contexts. Terms such as ‘valid’, ‘in order’, ‘proper’ (and ‘invalid’, ‘out of order’, ‘improper’)
have specific meanings in particular contexts. However, these contexts are relatively few, and
the same meaning is not always given in each. It is difficult to find a suitably neutral term; in
this paper we will keep the term ‘valid’.

The specification of institutional power is application-specific. Here, we present a few examples
for the sake of a concrete NetBill illustration.

Example 2 (Institutional Power) A merchant is empowered to present a quote to any con-
sumer about any type of good at any price:

holdsAt( pow(M, present_quote(M,C,GD, P))=true, T ) «—
holdsAt( role_of (M )= M _Roles, T ), merchant € M_Roles, (7)
holdsAt( role_of(C')=C_Roles, T ), consumer € C_Roles

According to the above axiom, an agent M is empowered to present a quote to an agent C' about
goods described as GD at price P if M occupies the role of merchant and C occupies the role
of consumer. The Boolean fluent pow expresses the institutional power to perform an action.
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(Recall that Tables III and II present the intended informal readings of the fluents and actions,
respectively, employed in the example EC specification.) The role_of fluent, whose value is a
set of role names, records the set of roles each agent occupies at any time. The ways in which
agents may acquire or lose roles are presented in later sections. O

Alternatively, we may choose to employ a stricter specification of the power to present a
quote, as in the following example.

Example 3 (Institutional Power) A merchant is empowered to present a quote to a con-
sumer about a type of good, provided that the consumer has requested a quote about that type
of good:
holdsAt( pow(M, present_quote(M,C,GD, P))=true, T ) «—
holdsAt( role_of(M)= M _Roles, T'), merchant € M _Roles, (8)
holdsAt( role_of(C)=C_Roles, T'), consumer € C_Roles,
holdsAt( request(C, M,GD)=true, T )

The request fluent records the pending requests of each consumer at any given time.

Suppose that C' no longer occupies the consumer role after requesting a quote from merchant
M. Then M is no longer empowered to present a quote to C since, according to the conditions
(line 3) of axiom (8), a merchant is empowered to present quotes to consumers only. Similarly, if
M ceases to occupy the merchant role then it loses all powers associated with that role, including
the power to present quotes. O

Example 4 (Institutional Power) A consumer is empowered to accept a quote if that quote
was issued in a valid manner by a merchant, and the quote has not expired.

initiates( present_quote(M,C,GD, P), quote(M,C,GD,P)=T+10, T ) < ()
holdsAt( pow(M, present_quote(M,C,GD, P)) =true, T)

The fluent quote represents that a quote (with the specified parameters) is pending. It is initiated
by a valid present_quote action, that is, by a present_quote performed by a merchant who
currently has the power to issue such quotes. The value of a quote fluent records the time that
the quote expires (say 10 time-points after the issue of the quote).

The power to accept a quote is expressed as follows:

holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T ) «—
holdsAt( role_of(C)=C_Roles, T ), consumer € C_Roles,

holdsAt( role_of (M) = M _Roles, T ), merchant € M_Roles, (10)
holdsAt( quote(M,C,GD, P) = QuoteT, T ),
QuoteT > T

The last two conditions of the above axiom (lines 4-5) require that a quote has not expired.
Note, again, that if M ceases to occupy the merchant role after issuing a valid quote then C
loses its power to accept M’s quote, even if the quote has not expired. Furthermore, C' will be
empowered to accept quotes as long as it occupies the consumer role. O

Accepting a quote when having the power to do so, establishes a contract between the two
parties in question:

initiates( accept_quote(C, M,GD, P), contract(M,C,GD,P)=true, T ) « (11)
holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T")
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A contract creates a set of further powers of the contracting parties; these are expressed simi-
larly to the ones presented above. Additionally, a contract creates a bundle of permissions and
obligations, one of which is presented in the following section (Example 8).

4.3. PERMISSION AND OBLIGATION

We now specify what actions, valid or invalid, are to be classified as permitted or obligatory. Such
a specification is application-specific. In some cases, permissions are associated with institutional
powers.

Example 5 (Permission) An agent is permitted to perform an action if it is empowered to
perform that action:

holdsAt( per(Ag, Act) =true, T ) «

12
holdsAt( pow(Ag, Act) =true, T) (12)

The fluent per expresses permission. O

In the example above an agent is always permitted to exercise its institutional powers. In
other examples the relationship between power and permission could be even stronger: in a
given example it may be that an agent is permitted to perform an action if and only if it
is empowered to perform that action. Axiom (12) would then be strengthened accordingly. In
general, however, there is no standard, fixed relationship between power and permission. It is
commonplace in many organisations and institutions that an agent Ag is permitted to perform
an action Act even if Ag is not empowered to perform Act, or that Ag is not permitted to
perform Act even if Ag is empowered to do so. Consider the following examples.

Example 6 (Permission) A merchant is permitted to present a quote to a consumer if the
consumer has requested a quote, or the merchant has not already issued ‘too many’ unsolicited
quotes.

holdsAt( per(M, present_quote(M,C,GD, P))=true, T ) «
holdsAt( role_of (M )= M _Roles, T'), merchant € M _Roles,

holdsAt( role_of(C)=C_Roles, T ), consumer € C_Roles, (13)
holdsAt( request(C, M,GD) =true, T )

holdsAt( per(M, present_quote(M,C,GD, P))=true, T ) «—
holdsAt( role_of (M )= M _Roles, T' ), merchant € M _Roles,
holdsAt( role_of(C)=C_Roles, T ), consumer € C_Roles, (14)
holdsAt( ad_count(M,C) = Count, T ),
Count < 10

Axiom (13) states that it is permitted to present a quote to a consumer that has requested
one. (Recall that the request fluent records pending consumer requests.) Axiom (14) states that
a merchant M is permitted to present a quote, provided that M has not already issued ‘too
many’ unsolicited quotes. The ad_count(M, C) fluent records the number of unsolicited quotes
merchant M has currently issued to consumer C'. It is incremented whenever an unsolicited
quote is presented, expressed as follows:

initiates( present_quote(M,C,GD, P), ad_count(M,C)=AC+1, T ) «—
holdsAt( request(C, M,GD) =false, T ) (15)
holdsAt( ad_count(M,C)=AC, T")
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The value might also be decremented, say after a specified time has elapsed. The details will be
application-specific. (The full source of this example specification, available on request, includes
rules for determining ad_count(M, C) for the sake of a concrete illustration.)

This type of permission may be specified in order to protect consumers from the merchants’
over-advertising their goods.

Suppose that the power to present a quote is expressed as in Example 2. In this case, a
merchant M may be empowered to present a quote to a consumer C' but forbidden to exercise this
power — if, for example, C' has not requested a quote and M has issued ‘too many’ unsolicited
quotes in the past. Exercising this power will empower C' to accept the quote (see Example 4) but
M may be subject to penalty for performing this forbidden action (sanctions and enforcement
strategies are discussed in the following section). This is similar to Makinson’s Catholic marriage
example cited earlier.

In the above example, certain valid actions are not permitted. We might also want to specify
whether invalid actions are permitted or not. In some cases, we might wish to say that all invalid
actions are forbidden: for instance, that a merchant M is not permitted to send a quote message
unless currently empowered to make valid quotes. In other cases, we might want to permit
certain invalid actions. Suppose for example that the power to present a quote is expressed as in
Example 3. Here M may be permitted to present a quote even though the quote is invalid; for
instance, M may be permitted to issue a quote to C although C' has not requested one, provided
that ad_count(M, C) < 10. In this case presenting a quote will not empower C to accept it,
but M will not be subject to penalty for sending quote messages as a means, for instance, of
advertising its goods. (I

Example 7 (Permission) A consumer is permitted to accept a quote if it is empowered to do
so, and it can afford the associated price.

holdsAt( per(C, accept_quote(C, M,GD, P)) =true, T ) «—
holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T ),
holdsAt( bank_account(C') :(Bal,Av), ),
Av > P

(16)

Recall that the bank_account fluent expresses an agent’s current and available balance. This
information may be seen as a certificate that a consumer C must provide to the entity computing
permissions, powers, etc, so that it can be determined whether C' is permitted or not to accept a
quote. (A discussion about the run-time computation of a protocol state, including the agents’
permissions current at each time, is presented in Section 6.) As already mentioned, the details
of an agent’s bank account need not be available to the other NetBill participants.

According to this example, a consumer may be empowered to accept a quote (see Example
4) but forbidden to exercise this power if it cannot afford the associated price. Exercising this
power will create a contract (see axiom (11)) but the consumer may be subject to penalty for
violating this prohibition.

This type of permission could be specified in order to deter agents from establishing a contract
when there is a high probability that they will not be able to comply with its terms, in this case
to pay the merchant when the goods are delivered. A stricter specification would require that a
consumer’s current balance, rather than its available balance, should be greater or equal to the
quoted price (that is, the last line of axiom (16) being Bal > P). O

Note that, like institutional power, permission does not imply (and is not implied by) physical
capability.
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Other example specifications of permission in NetBill may include that a merchant is per-
mitted to sell a type of good up to a specified price (for example, songs in 128kbps mp3 format
should not be priced more than €0.99), a merchant is forbidden to advertise the same type of
good at different prices to different consumers, and so on. A contract creates a set of further
permissions/prohibitions to the contracting parties; for example, the consumer is forbidden to
send a payment order that does not cover the agreed amount, the merchant is forbidden to
deliver goods that do not meet the agreed quality, and so on.

In the NetBill example, a contract creates a set of obligations on the contracting parties:

Example 8 (Obligation) A consumer is obliged to pay the agreed price to the contracting
merchant by a specified deadline.

Accepting a quote, while having the power to do so (that is, establishing a contract), obliges
the consumer to pay the agreed price:

initiates( accept_quote(C, M,GD, P), obl(C,send_ EPO(C,IS,GD, P))=true, T ) «—
holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T ), (17)
holdsAt( role_of(1S)=1S_Roles, T ), iServer € IS_Roles

The obl fluent expresses obligation. The above obligation is discharged by sending an Electronic
Payment Order (EPO) of (at least) the agreed amount:

initiates( send_EPO(C,1S,GD, P), obl(C, send_.EPO(C,1S,GD, P"))=false, T ) «
holdsAt( obl(C, send_EPO(C,IS,GD, P')) =true, T ), (18)
P>P

The obligation should be discharged by a specified deadline. This is represented in our specifi-
cation by a timeout event that takes place at a specified time (the time by which the obligation
should be discharged) after the valid acceptance of a quote. The timeout, which has as parameter
the goods description of the accepted quote, terminates the aforementioned obligation, if the
obligation holds at the time of the timeout:

initiates( timeout(GD), obl(C,send_EPO(C,1S,GD, P))=false, T ) « (19)
holdsAt( obl(C, send_.EPO(C,1S,GD, P)) =true, T')

If the obligation does hold at the time of the timeout, that is, if the obligation has not been
discharged, then the timeout will have additional effects: the application of sanctions to the
consumer (see the following section). ]

In a similar way we may specify the merchant’s obligation to deliver the goods.

In general, like powers and permissions, the specification of obligations is application-specific.
It is important, however, to maintain consistency of the specification of permissions and obliga-
tions on the same MAS. For instance, an agent should not be forbidden and obliged to perform
the same action at the same time. In the NetBill example, a consumer should not be obliged to
send an EPO of amount P and permitted to send an EPO of amount less than P, and so on.

Determining what actions are permitted, prohibited or obligatory enables the classification
of the behaviour of individual agents and the MAS as a whole into categories such as ‘social’
or ‘anti-social’, ‘acceptable’ or ‘unacceptable’, ‘desirable’ or ‘undesirable’, and so on. Usually,
the behaviour of an agent is considered ‘anti-social’ or ‘unacceptable’ if that agent performs
(certain) forbidden actions or does not comply with (some of) its obligations. Furthermore,
based on the behaviour of the individual agents, it is possible to classify the behaviour of the
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MAS. For instance, the state of a MAS may be considered ‘unacceptable’ at a point in time if
the majority of its members have violated their obligations at that point in time.

4.4. SANCTION

The fourth level of specification expresses the sanctions and enforcement strategies that deal
with ‘anti-social’ or ‘undesirable’ behaviour. We are concerned with the following issues:

1. when is an agent sanctioned, and
2. what is the penalty that an agent has to face (in the case that it does get sanctioned).

The specification of both of these issues is application-dependent.
In the presented NetBill example we want to reduce or eliminate, and therefore penalise, the
following types of ‘undesirable’ behaviour:

— where the merchant presents a quote, or the consumer accepts a quote, when forbidden to
do so, and

— non-compliance with a contract’s obligations (the consumer fails to pay the merchant the
agreed price, or the merchant fails to deliver goods exactly as described in the contract).

The penalties for such ‘sanctionable’ behaviour may come in many different forms. The
following examples illustrate some of the possibilities. We consider the aforementioned types
of behaviour in turn.

Example 9 (Sanction) A merchant presents a quote when forbidden to do so.
The following axiom expresses a possible penalty for this type of ‘sanctionable’ behaviour:

initiates( present_quote(M,C,GD, P), bank_account(M)=(Bal—f, Av—f), T ) «
holdsAt( per(M, present_quote(M,C,GD, P))=false, T'),
holdsAt( bank_account(M)=(Bal, Av), T ),
Bal > f

(20)

Here a fine f is deducted from the merchant M’s bank account whenever M presents a quote
while being forbidden to do so. If the fine f is greater than the merchant M’s current balance
then the amount deducted from M’s account is f+f x i, that is, an interest ¢ on f is also deducted:

initiates( present_quote(M,C,GD, P),
bank_account(M) =(Bal—(f+fxi), Av—(f+[fxi)), T )
holdsAt( per(M, present_quote(M,C,GD, P)) =false, T'), (21)
holdsAt( bank_account(M)=(Bal, Av), T ),
Bal < f, Av > (f+fxi)

Notice that axioms (20) and (21) do not cover the case where the merchant has insufficient
funds to pay the fine, that is, the case where Av < f. We will comment on that presently. First
we want to point out that axioms (20) and (21) are just an approximation of what we want to
specify. They do not refer to the actions of paying a fine or transferring funds. They say merely
that a merchant’s bank balance decreases by a certain amount in the specified circumstances.
They do not say how the balance is decreased, how the funds are transferred, or to whom. This
is because we have simplified the example in order to keep it manageable. In a more complete
formalisation the Intermediation Server (IS) and the banks shown in Figure 1 would also be
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included as roles in the NetBill protocol, and we would specify the possible actions (practical
capabilities), powers, permissions, and obligations for agents occupying those roles in similar
style to those shown for the consumer and merchant. We omit these details since they require
more space than we have available here. There are many possibilities depending on how bank
accounts are administered and managed. For example, one possible specification for NetBill is
that (i) IS is empowered (in specified circumstances) to request (or demand, or simply effect)
the transfer of funds from the merchant’s and consumer’s bank accounts, and (ii) IS has an
obligation to exercise this power in certain circumstances (such as when a merchant is required
to pay a fine). The specification can be formalised in exactly the same manner as that shown
for the merchant and consumer roles. For the simplified version of the example presented in this
paper, we assume that the IS always fulfills its obligations, and we represent the effects of its
actions on the merchant’s bank account without referring to its actions explicitly.

Consider now the remaining case Av < f in which merchant M does not have sufficient funds
available to pay the fine f. According to axioms (20) and (21), M could present quotes when
forbidden to do so without facing any penalty. There are several ways of dealing with this case.
Recall that a merchant is forbidden to issue ‘too many’ unsolicited quotes (in the example, more
than 10 to any one customer). Suppose, for the sake of a concrete example, that if the number
of unsolicited quotes made by a merchant M to a customer C' exceeds a specified limit (say
when ad_count(M, C') > 100) then the merchant M becomes suspended, that is, loses its power
to present a quote. The conditions for this form of suspension can be expressed as follows:

holdsAt( suspended(merchant, M) =true, T ) «
holdsAt( role_of (M )= M _Roles, T' ), merchant € M _Roles,
holdsAt( ad_count(M,C) = Count, T ),
Count > 100

(22)

suspended(merchant, M) = true expresses that agent M is a suspended merchant. (Suspended
consumers can be treated likewise.)

The effects of suspension on the merchant’s power to present a quote are expressed (assuming
the specification in Example 2) by adjusting axiom (7) as follows:

holdsAt( pow(M, present_quote(M,C,GD, P))=true, T ) «—
holdsAt( role_of(M)= M _Roles, T'), merchant € M _Roles, (7)
holdsAt( role_of(C)=C_Roles, T ), consumer € C_Roles,
holdsAt( suspended(merchant, M) =false, T")

The alternative specification of power to present a quote expressed by axiom (8) in Example 3
can be adjusted similarly.

A suspended merchant, that is, a merchant without the institutional power to present quotes,
has no means of empowering consumers to accept its quotes and thus no means of establishing
contracts. The penalty, however, is not permanent. The value of the ad_count(M, C) fluent may
decrease over time. M would thereby cease to be suspended and would re-acquire its powers.

Naturally becoming a suspended merchant has implications on the powers and permissions
that are due to the agent’s role as a merchant; the powers and permissions that an agent may
have due to other roles it occupies are not affected. Il

Example 10 (Sanction) A consumer accepts a quote when forbidden to do so.
We record violations of this prohibition as follows:
initiates( accept_quote(C, M, GD, P), violation(consumer,C)=true, T ) «
holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T"), (23)
holdsAt( per(C, accept_quote(C, M,GD, P))=false, T")
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(In this example we are not concerned with the case in which a consumer is forbidden but not
empowered to accept a quote.) The fluent wviolation(R, Ag) records Ag’s violation of a social
constraint when acting in role R. Exercising the power to accept a quote while being forbidden
to do so is not necessarily penalised. In particular, for this example specification we chose to say
that if the consumer C pays the contracting merchant M the agreed price then C’s violation of
the prohibition will be ignored. On the other hand, if C fails to pay the agreed price then it will
face a more severe penalty (for failing to pay the price) than it would have had it not violated
the aforementioned prohibition. The following example presents this type of penalty. U

Example 11 (Sanction) A consumer does not comply with its obligation to pay the merchant.

We could specify various penalties for the failure to pay the agreed price by the specified
deadline. For instance, we could apply a monetary penalty when the consumer violates its
obligation to pay, that is, a fine could be deducted from the consumer’s account whenever this
occurs. The formalisation of such a penalty would be similar to the one expressed by axioms
(20) and (21) in Example 9. Alternatively (or additionally), depending on whether or not the
consumer C' had earlier violated the prohibition to accept a quote, C' could be suspended,
disqualified or even banned from NetBill for failing to comply with the obligation to pay the
agreed price. Consider the following formalisation:

initiates( timeout(GD), suspendedUntil(consumer,C)=T+10, T ) «
holdsAt( obl(C, send_EPO(C, IS,GD, P)) =true, T ), (24)
holdsAt( violation(consumer,C) =false, T )

suspendedUntil(consumer, C') = T" expresses that C' is a suspended consumer until time 7”. The
above axiom states that C’s violation of its obligation to send an Electronic Payment Order
(EPO) at T suspends C until 7410 (say). A suspended consumer loses temporarily the power
to accept a quote (and thus establish a contract):

holdsAt( pow(C, accept_quote(C, M,GD, P)) =true, T ) «—
holdsAt( role_of(C)=C_Roles, T ), consumer € C_Roles,
holdsAt( role_of (M )= M _Roles, T ), merchant € M _Roles,

holdsAt( quote(M,C,GD, P) = QuoteT, T ), (10")
Quotel > T,

holdsAt( suspendedUntil(consumer, Consumer) = SusT, T ),

SusT < T

Axiom (10') is a modification of axiom (10), expressing the power to accept a quote, capturing
the possibility that a consumer may be suspended.

The penalty expressed by axioms (24) and (10") concerns the case in which the agent occu-
pying the consumer role violated the obligation to send an EPO but had not earlier violated
the prohibition to accept the quote (see the last condition of axiom (24)). If the agent had
additionally violated this prohibition then it would have lost the consumer role:

initiates( timeout(GD), role_of(C)=C_Roles \ {consumer}, T )«
holdsAt( 0bl(C, send_EPO(C, IS,GD, P)) =true, T ),
holdsAt( violation(consumer,C') =true, T ),
holdsAt( role_of(C)=C_Roles, T")

(25)

Losing the consumer role means that all powers, permissions and obligations associated with that
role are lost. (This is in contrast to becoming a suspended consumer whereby one (temporarily)
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loses some or all powers and permissions associated with the consumer role, but retains the non-
discharged obligations of that role.) A more severe penalty would have been the disqualification
of the agent from NetBill, that is, the agent would lose all the roles it occupied. Disqualification
may or may not be accompanied by a ban. A disqualified agent may re-apply to enter NetBill;
a banned agent may not. This issue is discussed in Section 5.

Note that the violation of the obligation to send an EPO may or may not cancel the trans-
action between the contracting parties. (For instance, the merchant may be in favour of the
completion of the transaction although the consumer has paid a smaller amount than the agreed
one, in order to cash the consumer’s payment.) The formalisation of this issue is not presented
here. [l

Similarly we may specify penalties for the remaining types of ‘sanctionable’ behaviour, in-
cluding a merchant’s non-compliance with its obligation to deliver the goods.

An additional or alternative type of penalty could be expressed in terms of bad reputation —
for instance, a consumer not fulfilling its obligation to pay the merchant may receive ‘negative
feedback’. Reputation mechanisms are frequently used in open MAS (see [16,84,61] for a few
examples). We will not discuss any examples of such mechanisms in this paper.

Sanctions are one means by which an open MAS may discourage ‘undesirable’ or ‘anti-social’
behaviour. Another possible enforcement strategy is to try to devise additional controls that
will force agents to comply with their obligations or prevent them from performing forbidden
actions. In the NetBill example, the forbidden presentation of a quote may be physically blocked.
The general strategy of designing mechanisms to force compliance and eliminate non-permitted
behaviour is what Jones and Sergot [38] referred to as regimentation. Regimentation devices have
often been employed in order to eliminate ‘undesirable’ behaviour in computational systems.
Interagents [57], for example, enforce the rules of the FishMarket auction house to the buyer
and seller agents. Sentinels [40] monitor and, when necessary, modify some aspects of the agent
interactions in order to provide ‘exception handling’ services. Controllers [49] enforce the ‘law-
governed interaction’ regulatory mechanism in open MAS. It has been argued [38], however,
that regimentation is rarely desirable (it results in a rigid system that may discourage agents
from entering it [56]), and not always practical. In any case, violations may still occur even when
regimenting a computational system (consider, for instance, a faulty regimentation device). For
all of these reasons, we have to allow for non-compliance and sanctioning and not rely exclusively
on regimentation mechanisms.

5. Social Roles

A social role r is associated with a set of social constraints prescribing the behaviour of the agents
occupying r. These constraints express the powers, permissions and obligations associated with
r. Axioms (10) and (16)—(19), for instance, express a few powers, permissions and obligations
associated with the consumer role.

A role r is also associated with a set of ‘conditions’ that an agent must satisfy in order to
be eligible to occupy r. It should be possible to determine whether or not an agent satisfies
the conditions of a role without having to access its internals. In NetBill, for example, we may
specify that an agent satisfies the conditions of the consumer role if its current bank balance is
over a specified limit.

To occupy a role in an open MAS, agents usually participate in a role-management protocol.
Protocols of this form are typical in distributed systems — in resource sharing applications
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Table IV. Actions and Fluents of a Role-Management Protocol in the Context of
NetBill.

Action Textual Description

apply(Ag, RAA, Role) agent Ag applies for Role
to role assigning authority RAA

assign(RAA, Ag, Role) role assigning authority RAA assigns Role to agent Ag

withdraw(Ag, RAA, Role) agent Ag submits its resignation from Role
to role assigning authority RAA

Fluent Domain Textual Description

role_cond(Role, Ag) Boolean agent Ag satisfies the conditions of Role
applied(Role, Ag) Boolean agent Ag has a pending valid application for Role

merchants N the number of agents occupying
the merchant role in NetBill

consumers N the number of agents occupying
the consumer role in NetBill

in the fields of Collaborative Multimedia Computing and Computer-Supported Co-operative
Work, for example, session control protocols [19,20] prescribe, among other things, ways for
joining, withdrawing from, inviting to join, and excluding from, a session (in which resources
are shared/accessed). Accordingly, we present a simple example role-management protocol that
specifies the ways in which an agent may join, or withdraw from NetBill, and the conditions in
which an agent is (temporarily or permanently) removed from NetBill. Table (IV) presents the
actions and a number of fluents of the EC action description expressing the role-management
protocol specification. (As will be shown later, there are a number of fluents in common between
the EC action descriptions expressing NetBill and its role-management protocol.)

According to a typical procedure for joining an open MAS, that is, acquiring a role in that
MAS, agents apply for roles and a role assigning authority accepts or rejects applications. The
decision-making of the role assigning authority is informed by, among other things:

— whether or not an applicant satisfies the conditions of a role,
— whether or not an applicant has been banned from a MAS (see Example 11), and

— whether or not the assignment of a role to an agent is consistent with the ‘structure’ of a
MAS. In NetBill, for example, we may require (say) that the number of consumers is at
most twice the number of merchants.

A role assigning authority may additionally consider the issue of ‘role conflict’ [37] or ‘flow
down’ [71], that is, the case in which an agent occupies roles with conflicting permissions and
obligations. One way to avoid a role conflict is to set the role conditions in such a way that it
is impossible for an agent to satisfy at the same time the conditions of roles with conflicting
permissions and obligations. Consequently, a role assigning authority would not proceed to role
assignments that create role conflicts. This solution requires, however, that an agent satisfies the
conditions of a role as long as it occupies the role (as opposed to satisfying the role conditions
only when role assignment is considered).
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Example procedures for deciding to award or deny a role are:

— chair-designated: an elected agent assigns roles,

election: the members of a role assigning committee (comprised of existing MAS members
or other elected agents) vote on role assignment,

argumentation: the members of a role assigning committee debate on role assignment,
— lottery scheduling: role assignment operates on a probabilistic basis.

Formalisations of voting and argumentation procedures may be found in [54,2] respectively.
A simple example of role assignment, in the context of NetBill, is presented next.

Example 12 (Role Assignment) An agent satisfies the conditions of the consumer role if its
current balance is greater or equal to 1000:

holdsAt( role_cond(consumer,C') =true, T ) «
holdsAt( bank_account(C)=(Bal, Av), T ), (26)
Bal > 1000

role_cond(R, Ag) = true expresses that agent Ag satisfies the conditions of role R (see Table IV).
Only valid applications for roles are considered; the power to apply for the consumer role is
expressed as follows:

holdsAt( pow(C, apply(C, RAA, consumer)) =true, T' ) «
holdsAt( role_of(C)=C_Roles, T'), consumer ¢ C_Roles,
holdsAt( role_of(RAA)=RAA_Roles, T ), authority € RAA_Roles, (27)
holdsAt( applied(consumer,C') =false, T'),
holdsAt( role_cond(consumer, C') =true, T ),
holdsAt( banned(C) =false, T")

An agent C is empowered to apply for the consumer role to a role assigning authority RAA if

C:

does not already occupy that role (line 2 of the above axiom),

— does not have a pending application for that role (line 4) — the applied fluent records
pending valid role applications,

— satisfies the conditions of that role (line 5), and
— has not been banned from NetBill — denoted by banned(C') =false (line 6).

We have specified the power of a role assigning authority RAA to assign the consumer role
to an agent as follows:

holdsAt( pow(RAA, assign(RAA, C, consumer)) =true, T ) «
holdsAt( role_of(RAA) = RAA_Roles, T), authority € RAA_Roles,
holdsAt( applied(consumer,C') =true, T ),
holdsAt( merchants=M, T ),
holdsAt( consumers=C, T ),
M > ((C+1)/2)

(28)

mjs-IGPL-artser-final.tex; 30/06/2009; 16:44; p.20



21

According to the above axiom, the conditions for being empowered to assign the consumer role
to an agent C include that C has a pending application for that role, and a role assignment is
in accordance with the ‘structure’ of the MAS; in this example, the number of consumers is at
most twice the number of merchants. The fluents merchants and consumers indicate the number
of existing merchants and consumers respectively.

For simplicity, in this example we do not consider the issue of role conflict.

Assume that a role assigning authority is indeed empowered to assign the consumer role to
an agent. The decision to proceed to, or refrain from, the assignment may be based on one of
the aforementioned procedures (voting, argumentation, etc). The reader is referred to the cited
papers for example formalisations of such procedures.

The direct effects of a valid role assignment are expressed in terms of the role_of fluent. In
this example, the applicant occupies the consumer role:

initiates( assign(RAA, C, consumer), role_of(C)={consumer} U C_Roles, T ) «
holdsAt( pow(RAA, assign(RAA, C, consumer)) =true, T ), (29)
holdsAt( role_of(C')=C_Roles, T)

A valid role assignment also has indirect effects on the pow, per and obl fluents: the successful
applicant now holds the powers, permissions and obligations of a consumer. O

In addition to expressing the process of role assignment, a role-management protocol pre-
scribes the ways in which an agent may successfully withdraw from a role, and describes the
conditions in which an agent gets disqualified or banned from a MAS. Withdrawing from a role,
or losing a role (due to, say, disqualification or ban), implies losing the powers, permissions and
obligations of that role. An example procedure of role withdrawal is presented next.

Example 13 (Role Withdrawal) An agent is empowered to withdraw from the merchant
role if it: (i) occupies that role, (ii) has no pending quotes, and (iii) has no pending obligations:

holdsAt( pow (M, withdraw(M, RAA, merchant)) =true, T ) «
holdsAt( role_of (M) = M _Roles, T), merchant € M _Roles,
holdsAt( role_of(RAA) = RAA_Roles, T), authority € RAA_Roles, (30)
not ( holdsAt( quote(M,C,GD,P)=QT, T ), QT >T ),
not holdsAt( obl(M, send_goods(M,C’',GD', P")) =true, T )

The penultimate condition of the above axiom (line 4) requires that all quotes of the merchant
agent (if any) have expired. If there is a quote that has not expired then an agent may not
successfully withdraw from the merchant role because a consumer may accept the quote and
thus create a contract between them. Clearly this condition to withdrawal can be lifted in
other examples. According to the last condition of the above axiom (line 5), an agent that has
pending obligations to deliver goods may not withdraw from the merchant role and thus avoid
discharging these obligations. In general, an agent that has pending obligations due to a role
that it occupies may not withdraw from that role as long as these obligations are not terminated
(that is, discharged, or violated and sanction applied). [l

Considering the issue of (temporarily or permanently) losing a role, in Section 4.4 we showed
ways in which an agent may be disqualified or even banned from a MAS, due to its ‘anti-social’
behaviour. An additional reason for role revocation, or role suspension, could be the failure
to satisfy the conditions of the role one occupies. In other words, it may be required, for a
particular MAS, that an agent satisfies the conditions of a role as long as it occupies that role.
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A formalisation of role suspension due to failure to satisfy the role conditions is the following:

holdsAt( suspended(Role, Ag) =true, T ) «—
holdsAt( role_of(Ag) = Ag-Roles, T'), Role € Ag_Roles, (31)
holdsAt( role_cond(Role, Ag) =false, T )

For instance, a consumer will be suspended as long as its current balance is less than 1000 (see
axiom (26) for the conditions of the consumer role). Similarly, we may express role revocation
due to failure to satisfy the role conditions.

Note that ‘anti-social’ behaviour and the failure to satisfy the role conditions are not the
only ways of losing a role. For example, a role-management protocol may allow for time-bound
memberships, that is, roles are assigned for a specified time period, after which the agent loses
the associated powers, permissions and obligations.

In general, a specification of a more complex role-management protocol would express, among
other things:

— additional procedures for role-management such as inviting to join a MAS;

— the conditions in which an agent is said to be permitted, or obliged, to apply for, assign, or
withdraw from, a role (or perform any other action of a role-management protocol), and

— the sanctions that are applied in the case of non-conformance with the aforementioned
permissions and obligations.

Such a specification would be similar to that of NetBill presented in the previous sections
or to other protocol specifications presented elsewhere [3,2]. We omit the details here to save
space.

6. Executing the Specification

6.1. PROTOCOL ANIMATION

In order to illustrate our framework for executable specifications, in this section we animate an
example run of NetBill and the associated role-management protocol. A part of the narrative of
events of this run is displayed in the first two columns of Table V; the messages concerning the
role-management protocol are indented whereas the messages concerning NetBill are not. The
third column of Table V shows the roles of each NetBill participant; for brevity the merchant role
is denoted by m and the consumer role by c. For illustration purposes we chose a specification
including all axioms presented in this paper apart from (7’) (axiom (7) is used instead), (8), (10)
(axiom (10') is used instead), (22) and (31). Other choices could of course have been made and
the animation repeated for those.

Given a set of temporally-ordered events (a narrative), we may query our Event Calculus
logic programming (EClp) implementation to determine the system state current at each time.
For example, to find out whether ag; is empowered to present a quote at time-point 15, we
compute the following query:

? — holdsAt( pow(ag;, present_quote(ags, C, GD, P)) =true, 15 )

We discuss next the system states of the run displayed in Table V.
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Table V. A Sample Run of NetBill and its Role-Management Protocol.

Time Action Roles

15 present_quote(ag:, ags, booka, 23) agi:m, ags:c, ags:mc

20 apply(agy, raa, c) agi:m, ags:c, ags:mc

21 apply(ags, raa, c) agi:m, age:c, ags:mc

22 accept_quote(ags, agz, booka, 23) agi:m, ags:c, ags:mc

23 assign(raa, ag;, c) agi:m, agz:c, ags:mc

24 send_goods(ag:, iServer, booka, 1100101") agi:m, ags:c, ags:mc, aga:c
25 withdraw(ags, raa, c) agi:m, ags:c, ags:mc, aga:c
28  send_EPO(ags, iServer, booka, 13) agi:m, agz:c, ags:mec, aga:c
32 timeout(booka) agi:m, ags:c, ags:mc, ags:c
33 withdraw(ag; , raa, m) agi:m, ags:c, ags:m, ags:c
34 present_quote(ags, ags, musica, 40) agz:c, ags:m, ags:c

43 present_quote(ags, ag;, musicg, 40) ags:c, ags:m, ags:c

44 withdraw(ags, raa, m) ags:c, ags:m, ags:c

45  accept_quote(agy, ags, musicg, 40) agz:c, ags:m, ags:c

46 apply(agy, raa, m) ags:c, ags:m, ags:c

47 assign(raa, ag;, m) agz:c, ags:m, aga:c

48  accept_quote(agz, ags, musica, 40) agz:c, ags:m, ags:mc

49  send_EPO(agy, iServer, musicg, 40) agz:c, ags:m, ags:mc

50  request_quote(agz, ags, musica) aga:c, ags:m, aga:mec

52 present_quote(ags, ags, musica, 44) agz:c, ags:m, ags:mc

55 timeout(musicp) ags:c, ags:m, aga:me

ago:c, ags:sm, ags:mc

Initially, agent ag; occupied the role of merchant, ags occupied the role of consumer, and
ags occupied both roles (see the third column of Table V). At time-point 15 ag; presented a
quote to ags concerning books at price 23. According to axiom (7), ag; was empowered to
perform the aforementioned action because it occupied the role of merchant and ags occupied
the role of consumer. Consequently, according to axioms (9) and (10'), ags become empowered
at time-point 16 to accept the quote of ag;. Indeed, ags accepted the quote of ag; at time-point
22, thus establishing a contract between them (see axiom (11)), creating a bundle of powers,
permissions and obligations for them. At time-point 24 ag; sent the goods to the Intermediation
Server (iServer) while at the next time-point ags attempted to withdraw from the consumer
role: ags sent a withdraw message to the role assigning authority raa. This attempt was not
successful because ags was not empowered to withdraw from the consumer role at the time,
since ags had a pending obligation to send an Electronic Payment Order (EPO) concerning the
contract on booky (see Example 13).

At time-point 28 ags attempted to discharge its obligation by sending an EPO; the amount,
however, was less than the agreed one (13 instead of 23) and thus the obligation was not
discharged — see axiom (18). ags made no further attempts to discharge its obligation by the
time the transaction over book4 ended. Consequently, the timeout that took place at time-point
32, signalling the end of the transaction over book,, initiated a sanction for ags. More precisely,
ags lost the role of consumer (see axiom (25)) because it did not comply with its obligation to
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send an EPO, and it violated earlier the prohibition to accept ag;’s quote — at time-point 22
ags was forbidden to accept the quote, although empowered to accept it, because ags could not
afford the associated price (see axiom (16)).

During the negotiation over books between ag; and ags, two agents, ag, and ags, attempted
to enter NetBill by applying for the consumer role — see time-points 20 and 21 respectively. Both
applications were valid (see axiom (27)) because ag; and ags did not occupy the consumer role,
did not have pending applications for that role, satisfied the conditions of that role, expressed
in this example by axiom (26), and were not banned from NetBill. Moreover, due to axiom (28),
the role assigning authority raa became empowered to assign them the consumer role because
the constraint that the number of consumers is at most twice the number of merchants would
not be violated if ag; and ags; were assigned the consumer role. At time-point 23 raa chose to
assign the consumer role to agy;, although it did not assign that role to ags. (Recall that we
have not specified permissions and obligations concerning role-management. Consequently, in
this example there is no obligation on raa to award a role to an agent.)

After the end of the transaction over booka, ag; successfully withdrew from the merchant role
and, effectively, withdrew from NetBill, since ag; did not occupy any other role. ag;’s withdrawal
was successful because ag; had no pending quotes or obligations (see axiom (30)).

At time-points 34 and 43 ags initiated respectively two negotiation threads: one concerning
musicy and agz, and one concerning musicg and ag;. At time-point 44 ags attempted to
withdraw from the merchant role. This attempt was unsuccessful because ags had two pending
quotes — the ones mentioned above — at the time. Both quotes were eventually accepted (see
time-points 45 and 48); however, only one contract was established, that between ags and ag,
regarding musicg. The quote concerning musics had expired by time-point 48 and, therefore,
the acceptance of ags did not establish a contract. At time-point 49 ag; sent an EPO to iServer
concerning the transaction over musicg, thus discharging its obligation to pay (see axiom (18)).
ags, however, did not discharge its obligation to send the goods. Consequently, the timeout that
took place at time-point 55, signalling the end of the transaction over musicg, initiated a time
period for which ags was suspended from the merchant role (indicated in Table V by sm).

The example narrative displayed in Table V includes two types of activity that took place
during the transaction between ags and ag; over musicp: first, at time-point 46 ag, applied for
the merchant role, and at time-point 47 it was assigned that role. Second, at time-point 50 a
negotiation thread was initiated by ags concerning musicq and ags.

6.2. RUN-TIME CONFIGURATIONS

A protocol state, including the powers, permissions, obligations, sanctions and roles that are
associated with each agent at each time, computed by the EClp implementation, may be
publicised at run-time to (a subset of) the participants of a protocol, or their designers. Such
run-time services may be provided by a central server or in various distributed configurations.
Each protocol participant, for example, may have available an EClp module in order to compute
its powers, permissions, obligations, and so on — see Figure 2(a). In another setting, some
protocol participants may have direct access to the protocol state by means of a local EClp
module, whereas other agents may rely on trusted third parties (TTP)s for such information
— see Figure 2(b). A further discussion of the possible run-time configurations, including the
issues that arise in each configuration (such as the policy followed by a TTP for the disclosure
of the protocol state), will be presented elsewhere.
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Figure 2. Run-Time Configurations: Solid arrows indicate agent communication and dotted arrows indicate
request for information concerning the protocol state.

7. Discussion

Several approaches have been proposed in the literature for the specification of open MAS —
see, for example, [5,6,43,65,4,76,7,75,42,33,15,12,36,78]. An influential approach has been
the work of Moses, Shoham, Tennenholtz and colleagues [50,51,68,69,74,26]. These researchers
focus on the specification of ‘social laws’ that govern the behaviour of the members of ‘artificial
social systems’. In brief, a social law is a set of prohibitions that, if respected, enable agents to
co-exist in a shared environment and pursue their goals. Social laws do not express any other
normative relations apart from permissions/prohibitions. This is probably due to the fact that
the applications that have been studied in the context of the artificial social systems approach
(for example, mobile robots moving along a two-dimensional grid [69, Section 2] or a circular
automated assembly line [26, Section 3.1]) can be mainly described in terms of physical actions
rather than communicative actions, and brute facts rather than institutional facts [63,62]; being
in physical possession of an object, for example, is a brute fact (it can be observed), whereas
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being the owner of that object is an institutional fact. It is assumed, moreover, that agents will
be implemented in such a way that all social laws are respected. The question of what happens
when a social law is not respected has received little attention.

The artificial social systems approach is not supported by a software implementation for
automated reasoning regarding the social laws of a system. In what follows we focus on ap-
proaches for the specification of open MAS that have direct routes to implementation and offer
computational support.

An approach supported by automated reasoning tools is the well-known work of Minsky and
colleagues on ‘Law-Governed Interaction’ (LGI) [45,49,86,47]. LGI is an abstract regulatory
mechanism that satisfies the following principles: statefulness, that is, the regulatory mechanism
is sensitive to the history of interaction between the regulated components, decentralisation,
for scalability, and generality, that is, LGI is not biased to a particular type of law. LGI is
an abstraction of a software mechanism called Moses [46, 48] which can be used to regulate
distributed systems. Moses employs regimentation devices — controllers (see Section 4.4) —
that monitor the behaviour of agents, block the performance of forbidden actions and enforce
compliance with obligations. Laws in Moses are written in pure Prolog or Java.

Esteva and colleagues [23,24,22,21,58,25,31] have devised a specification language to specify
open MAS as electronic institutions (e-institutions). The basic components of an e-institution
include those of role (standardised pattern of behaviour), dialogic framework (prescribing the
agent interactions), scene (expressing sub-groupings created in the context of a wider system),
and normative rule (the ‘rules of the game’). Normative rules specify the permissions and
obligations of the members of an e-institution.

Software tools for computational support of the e-institution specification language have been
developed. Islander [21], for instance, is an integrated development environment for specifying
e-institutions. A verification module is implemented which checks for, among other things, ‘norm
consistency’. A rule-based system [31] has also been developed for executing a set of normative
rules with the aim of providing run-time services, such as the computation of the permissions
and obligations of the agents current at each state. A precise equivalence, however, between
(fragments of) the formalism used for verification of ‘norm consistency’ with that used for
supporting run-time activities, has not been established. Consequently, it is not possible to, say,
verify a system specification for ‘norm consistency’ and then translate that specification to an
equivalent one for the provision of run-time services.

Another closely related line of research is the work of Singh and colleagues on commitment
protocols [70,71,79,72]. In this context ‘commitment’ can be seen as an obligation directed
from one agent to another. Commitment protocols have been formalised in various ways, giving
different types of semantics to the concept of commitment. Yolum and Singh [82,83], for instance,
have specified commitment protocols with the use of a subset of Shanahan’s ‘full version’ of
Event Calculus (EC) [66] — in this case NetBill was the running example. All ‘operations’ on
commitments — creating, discharging, cancelling, releasing, delegating, assigning commitments
— were formalised with the use of EC axioms. Moreover, an abductive EC planner [67] was
employed in order to compute planning queries regarding the EC specifications of commitment
protocols.

Singh and colleagues have also used the C+ language [32], an action formalism with explicit
transition systems semantics, to express commitment protocols — see [9,17,18] for a few recent
papers. (As mentioned earlier in the paper, in [3] we presented a comparison of C'+ and EC
with respect to open MAS specification.) Like EC, C'+ was employed to express all operations
on commitments as well as the effects of the agents’ actions. The Causal Calculator [32], a
software implementation using satisfiability (SAT) solvers to compute planning and narrative
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assimilation queries regarding C'+ formalisations, was employed to execute commitment protocol
specifications.

It is difficult to see how an interaction protocol for open MAS (such as a protocol for
e-commerce, negotiation, dispute resolution or voting) can be specified simply in terms of
commitments. The concept of institutional power is at least as important when specifying a
protocol and the meaning of protocol actions. In NetBill, for example, it is necessary to identify
the circumstances in which a consumer has the ‘legal capacity’ or institutional power to accept
a quote and, therefore, establish a contract. Similarly, it is important to specify the conditions
in which an agent is empowered to initiate proceedings against the other contracting party, the
circumstances in which an agent is empowered to apply for participation in NetBill, and so on.
It is not difficult to see that there are other protocols in which a specification simply in terms
of commitments is inappropriate.

Commitment protocols have also been studied by Colombetti and colleagues — see [80, 28,
29,27] for a few recent publications. In this line of work, unlike the approaches reviewed so far,
the concept of institutional power is represented. The formalisation of this concept, however,
is unclear. Although being empowered is a necessary condition for performing operations on
commitments in some cases, there are examples in which an agent may successfully modify a set
of commitments — create a commitment in which the agent is the creditor, cancel a commitment,
etc — without having the institutional power to modify these commitments. Moreover, exercising
the institutional power to perform an action is not always effective in creating or modifying a
set of institutional facts (even if the action is not blocked, say by a regimentation device). In
the formalisation presented in [27], for example, an agent Ag is empowered to assign any role to
some other agent. Exercising the power to assign role R, however, has no effects if R is not an
existing role of the protocol in question.

In the commitment protocol specifications there are examples in which an agent is empowered
to decrease the ‘trust’ in an agent [27]. Unless ‘trust’ is somehow seen as an institutional fact,
this is not a meaningful instance of institutional power.

Colombetti and colleagues have very recently [27] employed a dialect of EC to express com-
mitment protocols and a SAT-based implementation [52] to execute these protocols. However,
the computation of the supported tasks — narrative assimilation and planning — is inefficient
because the complete protocol history is recorded in the protocol states. Another implementation
route has been the use of a model checker for proving properties of a commitment protocol spec-
ification [80]. No comparison between the two implementation routes, in terms of representation
language expressiveness or computational efficiency, has been presented.

Related work from the field of computational organisation theory includes the work of Fox
and colleagues on enterprise modelling [30, 34]. In this approach a multi-agent organisation
is viewed as a set of agents playing roles in which they are acting to achieve specific goals,
according to various constraints defining the ‘rules of the game’. The rules are formalised with
the use of a dialect of the Situation Calculus [53], an implementation of which supports the
tasks of planning and narrative assimilation. (A comparison of the Situation Calculus and the
action formalisms EC and C'+ may be found in [52], for example.) Fox and colleagues identify
and represent several normative relations of the members of an organisation, such as obligation,
authority and empowerment. The representation of ‘empowerment’, however, is not clear. In
some cases ‘empowerment’ seems to coincide with the concept of institutional power presented
in our paper, in the sense that an empowered agent may create a set of institutional facts, such
as the establishment of a contract with a third party, while in other cases ‘empowerment’ seems
to coincide with permission, in the sense that performing an action will not be penalised.
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The main contribution of this paper then, and a key difference between our work and re-
lated research, is that we provide an explicit, unambiguous specification of institutional powers,
and distinguish between institutional power, permission/obligation and physical capability. To
illustrate this distinction we presented in this paper various example formalisations of physical
capability, institutional power, permission and obligation. Moreover, we presented example for-
malisations of sanctions that deal with the performance of forbidden actions and violation of
obligations. Consequently we do not have to rely exclusively on regimentation mechanisms.

Another difference of our work from related MAS research is that we distinguish between
an open MAS and the corresponding role-management process — applying for membership,
withdrawing from a MAS, and so on. To illustrate this distinction, we presented an example
formalisation of a role-management protocol for NetBill.

Our protocol specifications are executable. In Section 6 we presented an execution of NetBill
and the associated role-management protocol. A protocol specification may be executed at run-
time, for example, in order to compute the agents’ powers, permissions, obligations, and so on,
with the aim of informing the agents’ decision-making. The software implementations discussed
in this section — with the exception of Moses — operate essentially by generating a complete
(finite) model in one way or another. They thus require that the domain of each variable is
finite and known from the outset. For example, we would have to know from the outset all
possible participants of NetBill, all possible items for which a merchant may present quotes,
and so on. A run-time modification of the domain of a variable requires a re-compilation of the
specification. The procedure of re-compiling a specification can be very time-consuming, making
the associated software implementation unsuitable for the provision of run-time services. EClp,
in common with other rule-based, goal-directed (deductive) implementations, does not require
that the domain of a variable is finite or known from the outset. Consequently it is not required
to re-compile a specification at run-time.

Our EC implementation has proven to be faster than other action language implementations
we have tried (see [3] for comparisons), and can be further optimised by incorporating various
techniques proposed in the literature for narrative assimilation in EC (see [8] for example). Our
EC implementation, however, does not offer facilities for proving properties of a specification or
planning. A direction for further work is to employ a single formalism for narrative assimilation
and proving properties. Some first steps are reported in [13] which investigates methods for
efficient EC-like query evaluation for (a subset of) the C+ and nC+ languages, and for inte-
grating action descriptions in these languages with standard model checking systems (specifically
NuSMV [10]). Normative system properties expressed in temporal logics such as Computation
Tree Logic can then be verified by means of standard model checking techniques on a transition
system defined using the nC+ language.

Our executable specifications may be classified as ‘static’, in the sense that there is no support
for their run-time modification. In some open systems, however, environmental, social or other
conditions may favour, or even require, specifications modifiable during the system execution.
Consider, for instance, the case in which the participants of NetBill require to change the
conditions of the consumer role, or the allowed ratio between consumers and merchants. We are
currently working towards an infrastructure for ‘dynamic specifications’ [1], that is, specifications
that are developed at design-time but may be modified at run-time by the members of a system.
According to this infrastructure, at any time during the protocol execution an agent may attempt
to modify the protocol specification by initiating a ‘meta-protocol’ for deciding about — arguing,
negotiating, voting for/against — a proposed modification.
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