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ABSTRACT

Events are particularly important pieces of knowledge, as
they represent activities of special significance within an or-
ganisation: the automated recognition of events is of utmost
importance. We present RTEC, an Event Calculus dialect
for run-time event recognition and its Prolog implementa-
tion. RTEC includes a number of novel techniques allow-
ing for efficient run-time recognition, scalable to large data
streams. It can be used in applications where data might
arrive with a delay from, or might be revised by, the under-
lying event sources. We evaluate RTEC using a real-world
application.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms

Languages

Keywords

pattern matching, event processing, event calculus

1. INTRODUCTION

Systems for symbolic event recognition (‘event pattern
matching’) accept as input a stream of time-stamped simple,
derived events (SDE). A SDE (or ‘low-level event’, ‘short-
term activity’) is the result of applying a computational
derivation process to some other event, such as an event
coming from a sensor [19]. Using SDE as input, event recog-
nition systems identify composite events (CE) of interest—
collections of events that satisfy some pattern. The ‘defi-
nition’ of a CE (or ‘high-level event’, ‘long-term activity’,
‘situation’ [1]) imposes temporal and, possibly, atemporal
constraints on its subevents, that is, SDE or other CE.

Numerous recognition systems have been proposed in the
literature—see [8, 22] for two recent surveys. Recognition
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systems with a logic-based representation of CE definitions,
in particular, have recently been attracting attention. They
exhibit a formal, declarative semantics, in contrast to other
types of recognition system that often rely on an informal
and/or procedural semantics. Cugola and Margara [7], for
example, point out that almost all ‘complex event processing
languages’ and several ‘data stream processing languages’
lack a rigorous, formal semantics. Eckert and Bry [12] note
that the semantics of ‘event query languages’ are often some-
what ad hoc, unintuitive and generally have an algebraic
and less declarative flavour. Paschke and Kozlenkov [22]
state that the classical and most commercial ‘production
rule languages’ lack a declarative semantics.

Note that logic-based CE recognition systems may be used
in combination with existing non-logic-based event process-
ing infrastructures and middleware (see [21] for an example).

Non-logic-based CE recognition systems have proven to
be, overall, more efficient than logic-based ones and, thus,
most industrial applications employ the former type of sys-
tem. To address this issue, we present an efficient dialect
of the Event Calculus (EC) [15], called ‘Event Calculus for
Run-Time reasoning’ (RTEC). EC is a logic programming
language for representing and reasoning about events and
their effects. In addition to inheriting the aforementioned
benefits of logic-based approaches, EC is a good candidate
for CE recognition for the following reasons. First, it has
built-in axioms for complex temporal representation, includ-
ing the formalisation of inertia, which allow for succinct CE
definitions and thus code maintenance. Second, it has direct
routes to machine learning. Inductive logic programming
techniques, such as [23], may be used to facilitate the con-
struction of CE definitions. Third, EC has direct routes to
reasoning under uncertainty. Probabilistic frameworks, such
as [14], may be employed to address issues like noisy SDE
streams and imprecise knowledge of CE definitions.

RTEC includes a number of novel implementation tech-
niques designed to support efficient CE recognition, scalable
to large SDE and CE volumes. A form of caching stores the
results of sub-computations in computer memory to avoid
unnecessary recomputations. A set of interval manipulation
constructs simplify CE definitions and improve reasoning ef-
ficiency. A simple indexing mechanism means that RTEC is
only slightly affected by SDE that are irrelevant to the CE
we want to recognise and so can operate without additional
SDE filtering modules. Finally, a ‘windowing’ mechanism
supports real-time CE recognition. RTEC remains efficient
and scalable in applications where SDE arrive with a (vari-
able) delay from, or are revised by, the underlying SDE de-



tection system: RTEC can update the already recognised
CE, and recognise new CE, when SDE arrive with a delay
or following correction or revision.

We evaluate RTEC experimentally using a real-world ap-
plication: event recognition for city transport management
(CTM). The code of RTEC, the CTM CE definition library,
and the datasets on which the experimental evaluation was
performed, are directly available from the authors.

The paper is organised as follows. Section 2 describes
CTM. Section 3 outlines the RTEC representation with some
examples from CTM. Section 4 presents the algorithms. An
experimental evaluation is given in Section 5. In Section 6
we compare RTEC with related work, and in Section 7 we
summarise and outline further directions.

2. CITY TRANSPORT MANAGEMENT

In the context of PRONTO project we are developing a
recognition system to support city transport management
(CTM).! The system is being tested in the city of Helsinki,
Finland. Buses and trams are equipped with in-vehicle sen-
sors that send measurements such as GPS coordinates, accel-
eration information, in-vehicle temperature and noise levels
to a central server, providing information about the current
status of the transport system (for example, the location of
buses and trams on the city map). Given the SDE extracted
from these sensors, and from other data sources such as dig-
ital maps, CE are recognised related to the punctuality of a
vehicle, passenger and driver comfort, passenger and driver
safety, and passenger satisfaction, among others. The recog-
nised CE are made available to the transport control centre
in order to facilitate resource management. The choice of
CE, and their definitions in terms of SDE, were specified by
the domain experts (end users).

3. EVENT CALCULUS

Our CE recognition system is a logic programming (Pro-
log) implementation of an Event Calculus (EC) dialect. EC
[15] is based on a many-sorted, first-order predicate calcu-
lus, and is used for representing and reasoning about events
and their effects. For the dialect introduced here, RTEC,
the time model is linear and includes integers. Where F' is a
fluent—a property that is allowed to have different values at
different points in time—the term F' =V denotes that fluent
F has value V. Boolean fluents are a special case in which
the possible values are true and false. Informally, "=V holds
at a particular time-point if F'=1V has been initiated by an
event at some earlier time-point, and not terminated by an-
other event in the meantime (law of inertia).

Following Prolog’s syntax, variables start with an upper-
case letter (and are universally quantified, unless otherwise
indicated) while predicates and constants start with a lower-
case letter. The holdsAt predicate is used to express that a
fluent has a particular value at a given time. An instance of
an event type is denoted by means of happensAt. For exam-
ple, happensAt(temperature_change(11, bus, cold), 5) repre-
sents the occurrence of event type temperature_change(11,
bus, cold) at time-point 5. When it is clear from context, we
do not distinguish between an event (fluent) and its type.
As in other versions of EC, an event description in RTEC
includes axioms that define the event instances (with the
use of the happensAt predicate), the effects of events (with
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the use of the initiatedAt and terminatedAt predicates), and
the values of the fluents (with the use of the initially, holdsAt
and holdsFor predicates), as well as other, possibly atempo-
ral, information. Table 1 summarises the RTEC predicates.
The last three items in the table are interval manipulation
predicates specific to RTEC.

Table 1: Main predicates of RTEC.

Predicate Meaning
happensAt(E, T) Event E is occurring at time T'
initially(F'=V) The value of fluent F' is V

at time 0
holdsAt(F =V, T) The value of fluent F is V
at time T’

holdsFor(F' =V, I) I is the list of maximal intervals

for which F'=V holds continuously
initiatedAt(F'=V, T') At time T a period of time
for which F'=V is initiated

terminatedAt(F' =V, T) At time T a period of time
for which F'=V is terminated

I is the list of maximal intervals
produced by the union of the lists
of maximal intervals of list L

union_all(L, TI)

I is the list of maximal intervals
produced by the intersection of the
lists of maximal intervals of list L

intersect_all(L, I)

relative_ I is the list of maximal intervals
complement_all(I’, L, I) produced by
the relative complement
of the list of maximal intervals I’
with respect to every list
of maximal intervals of list L

We represent instantaneous SDE and CE by means of hap-
pensAt, while durative SDE and CE are represented as flu-
ents. The task generally is to compute, for every durative
CE of interest, the maximal intervals for which that CE
holds.

Next we give a few example representations of CE defini-
tions from CTM. The city transport officials are interested
in computing, for instance, the intervals during which a ve-
hicle is (non-)punctual. This may be achieved in RTEC as
follows:

initially (punctuality (-, ) = punctual) (1)

initiatedAt(punctuality (Id, VT) = punctual, T)
happensAt(enter_stop(Id, VT, Stop, scheduled), -), (2)
happensAt(leave_stop(Id, VT, Stop, scheduled), T)

initiatedAt(punctuality (Id, VT) = punctual, T)
happensAt(enter_stop(Id, VT, Stop, early), _), (3)
happensAt(leave_stop(Id, VT, Stop, scheduled), T)

initiatedAt(punctuality(Id, VT) = non_punctual, T) <

happensAt(enter_stop(Id, VT, _, late), T) (4)
initiatedAt(punctuality (Id, VT) = non_punctual, T) + (5)
happensAt(leave_stop(Id, VT, _, early), T)
initiated At(punctuality (Id, VT') = non_punctual, T) < ©6)
happensAt(leave_stop(Id, VT, _, late), T)

enter_stop and leave_stop are instantaneous SDE,



determined from sensor data and a database of timetable
information. Id represents the id of a vehicle, VT repre-
sents the type of a vehicle (bus or tram), Stop is the code
of a stop, and ‘.’ is an ‘anonymous’ Prolog variable. Ini-
tially, every vehicle is punctual. Thereafter punctuality is
affected by the enter_stop and leave_stop events. A vehicle
is said to be punctual if it arrives at a stop on or before the
scheduled time, and leaves the stop at the scheduled time.
A vehicle is said to be non-punctual if it arrives at a stop af-
ter the scheduled time, or leaves the stop before or after the
scheduled time. Computing the maximal intervals during
which a vehicle is continuously (non-)punctual is achieved
by computing the maximal intervals of punctuality using
the built-in holdsFor predicate. RTEC provides a number of
shorthand constructs to make the writing of initiatedAt rules
more concise; we omit the details to save space.

Transport officials are also interested in recognising punc-
tuality change. Consider the following CE definition:

happensAt(punctuality_change(Id, VT, Value), T) +
holdsFor(punctuality(Id, VT) = Value, I), 7)
(T,-) el
T #0

This rule uses holdsFor to compute the maximal intervals for
which a vehicle is continuously (non-)punctual. Punctuality
changes at the first time-point of each of these intervals—
see the penultimate condition of rule (7). There are other,
equivalent ways to express this definition but since punctu-
ality intervals are to be computed anyway, this method is
convenient.

Briefly, to compute the maximal intervals during which
a fluent F' has value V' continuously, that is, to compute
holdsFor(F' =V, I), we find all time-points Ts at which F =V
is initiated, and then, for each Ts, we compute the first time-
point T after T, at which F =V is terminated. The time-
points at which F'=V is initiated are computed with the
use of initiatedAt rules. The time-points at which F=V is
terminated are computed with the use of broken:

broken(F =V, Tf)

terminatedAt(F =V, Ty) (8)
broken(F'=V1, T) +

initiatedAt(F = Va, T5), (9)

Vi#Vs

According to rule (9), if F'=V; is initiated at T, then effec-
tively F'=V1 is terminated at time T, for all other possible
values Vi of F. Rule (9) ensures, therefore, that a fluent
cannot have more than one value at any time. The RTEC
implementation stores holdsFor intervals as they are com-
puted for any given fluent F': thereafter intervals for F' are
retrieved from the computer memory without the need for
re-computation.?

In addition to the domain-independent definition of
holdsFor, an event description may include domain-dependent
holdsFor rules, in particular to define a CE in terms of SDE
and other CE. Such rules typically use interval manipulation
constructs. RTEC supports three such constructs: union_all,
intersect_all and relative_complement_all (see Table 1). Given

2In Artificial Intelligence and other works on EC, this is
often referred to as a form of ‘caching’. We will avoid the
use of this term, however, in case of possible confusion with
other uses of the term.

a list L of maximal intervals, union_all(L, I) computes the
list I of maximal intervals corresponding to the union of the
maximal intervals of L. Consider the following examples:

union_all([[(5, 20), (26, 30)], [, [(28, 35)]], [(5,20), (26,35)))
union_all([[(5, 20), (26, 30)], [(1, 4), (21, 26)]],
[(1,4), (5,20), (21, 30)])

A term of the form (7%, T.) represents the closed-open inter-
val [T, T.). The implementation of all interval manipulation
constructs, including union_all, is available with the code of
RTEC.

intersect_all(L, I) computes the list of maximal intervals I
such that [ is the intersection of the lists of maximal intervals
of list L. Consider the following examples:

intersect_all([[(5, 2

0),(26,30)], [(28,35)]], [(28,30)))
]

intersect_all([[(5, 20), (26, 30)], [(1, ) (21,26), (30,40)]], )

relative_complement_all(I’, L, T) computes the list of maximal
intervals I such that I is the relative complement of the list
of maximal intervals I’ with respect to the maximal intervals
of list L. Below are two examples:

relative_complement_all([(5, 20), (26, 50)],

[(1,4), (18,22)], (28,
,18),(26,28), (35,
(

(5 )
(5,20), (26,50), (60,
((1,4), [
(

35)1),
50))
70)],
52,80)]],

[
[
[
relative_complement_all(]
[[(1,4),(55,65)], [], [(
[(5,20), (26,50)])
Three example domain-dependent holdsFor rules using the
interval manipulation constructs of RTEC are the following;:

holdsFor(driving_quality(Id, VT) = high, I) +
holdsFor(driving_style(Id, VT) = uncomfortable, I'),
holdsFor(driving_style(Id, VT) = unsafe, I'), (10)

holdsFor(punctuality(Id, VT) = punctual, I""),
relative_complement_all(I"’, [I', I"'], T)

holdsFor(driving_quality(Id, VT) = medium, I) <
holdsFor(driving_style(Id, VT) = uncomfortable, I'), 1
holdsFor(punctuality(Id, VT) = punctual, I"), (1)
intersect_all([I', I"], I)

holdsFor(driving_quality(Id, VT) = low, I) <
holdsFor(driving_style(Id, VT) = unsafe, I'),
holdsFor(punctuality(Id, VT) = non_punctual, 1"),
union_all([I", I"], T)

(12)

Recall that punctuality was defined by rules (1)—(6). The
definition of the driving_style CE is omitted to save space.
High quality driving is recognised when a vehicle is punctual
and the driving style is neither unsafe nor uncomfortable.
Medium quality driving is recognised when the driving style
is uncomfortable and the vehicle is punctual. Low quality
driving is recognised when the driving style is unsafe or the
vehicle is non-punctual. Again, RTEC provides some higher-
level constructs to make such holdsFor specifications more
readable and more concise. For example, rules (10)—(12)



can be written in the form:

driving_quality(Id, VT) = high iff
driving_style(1d, VT) # uncomfortable,
driving_style(Id, VT) # unsafe,
punctuality(Id, VT) = punctual

driving_quality(Id, VT) = medium iff
driving_style(1d, VT) = uncomfortable,
punctuality(Id, VT) = punctual

driving_quality(Id, VT) = low iff
driving_style(Id, VT) = unsafe or
punctuality(Id, VT) = non_punctual

Further details are omitted here.

The use of interval manipulation constructs leads to a con-
cise definition of the CE concerning driving quality. In the
absence of these constructs, one would have to adopt the
traditional style of EC representation, that is, identify all
possible conditions in which driving_quality(Id, VT) = high
(respectively, medium, low) is initiated, in all combinations,
all conditions in which this CE is terminated, and then use
the domain-independent holdsFor predicate to compute the
maximal intervals of the CE. Such a formalisation is much
more complex and lower-level than the representation us-
ing interval manipulation as in rules (10), (11) and (12). In
general, the interval manipulation constructs of RTEC may
significantly simplify the definitions of durative CE. With
the use of union_all, for example, we are able to develop suc-
cinct representations of most CE in the CTM application.
The interval manipulation constructs can also lead to much
more efficient CE recognition.

Fluents defined in terms of initiatedAt and terminatedAt
rules, and whose maximal intervals are computed by means
of the domain-independent holdsFor rules, such as punctuality,
are called simple. Fluents defined in terms of domain-
dependent holdsFor rules, such as driving_quality, or domain-
dependent holdsAt rules (not shown here), are called stati-
cally determined.

4. RUN-TIME EVENT RECOGNITION

Typically, CE recognition has to be efficient enough to
support real-time decision-making, and scale to very large
numbers of SDE. These SDE may not necessarily arrive at
the CE recognition system in a timely manner, that is, there
may be a (variable) delay between the time at which SDE
take place and the time at which they arrive at the CE recog-
nition system (see [25] for a further discussion). Moreover,
SDE may be revised, or even completely discarded in the
future. Consider, for example, the case where the param-
eters of a SDE were originally computed erroneously and
are subsequently revised, or the retraction of a SDE that
was reported by mistake, and the mistake was realised later
[2]. Note that SDE revision is not performed by the CE
recognition system, but by the underlying SDE detection
system. The effects of SDE revision are computed by the
CE recognition system, provided that the latter supports
such functionality.

RTEC performs run-time CE recognition by querying,
computing and storing the maximal intervals of fluents and
the time-points in which events occur. CE recognition takes
place at specified query times Q1,Q2,.... At each query
time @; only the SDE that fall within a specified interval—
the ‘working memory’ or ‘window’ (WM)—are taken into

consideration: all SDE that took place before or on Q;— WM
are discarded. This is to make the cost of CE recognition
dependent only on the size of WM and not on the complete
SDE history. As a consequence, of course, ‘windowing’ will
potentially change the answer to some queries. Some of the
stored sub-computations may have to be checked and possi-
bly recomputed. Much of the detail of the RTEC algorithms
is concerned with this requirement.

The size of WM, as well as the temporal distance between
two consecutive query times—the ‘step’ (Q;—Q;—1)—is cho-
sen by the user. Consider the following cases:

o WM<Q;—Qi—1, that is, WM is smaller than the step.
In this case, the effects of the SDE that took place in
(Qi—1, Qi— WM] will be lost.

e WM=Q;—Qi—1. In this case, no information will be
lost, provided that all SDE arrive at RTEC in a timely
manner, and there is no SDE revision. If SDE do not
arrive in a timely manner, then the effects of SDE that
took place before @); but arrived after @); will be lost.
Furthermore, if SDE are revised, the effects of the revi-
sion of SDE that took place before ; and were revised
after QQ; will be lost.

o WM>Q;—Q;—1. In the common case that SDE arrive
at RTEC with delays, or there is SDE revision, it is
preferable to make WM longer than the step. In this
way, it will be possible to compute, at Q;, the effects of
SDE that took place in (Q;— WM, Q;_1], but arrived
at RTEC after (Q;—1. Moreover, it will be possible to
compute, at Q;, the effects of the revision of SDE that
took place in (Q;— WM, Q;—1] and were revised after
Qi-1.

(WM is also called ‘tumble window’ [8] when
WM<Q;—Q;—1 and ‘pane window” when WM>Q;—Q;—1.)
Note that even when WM>Q;—Q;—1 information may be
lost. The effects of SDE that took place before or on Q;— WM
and arrived after QQ;—1 are lost. Similarly, the effects of the
revision of SDE that took place before or on Q;— WM and
were revised after QQ;—1 are lost. To reduce the possibility
of losing information, one may increase the size of WM; in
this case, however, recognition efficiency will decrease. In
what follows we give an illustrative example and a detailed
account of how the ‘windowing’ works in CE recognition.

4.1 Illustrative Example

Figure 1 illustrates the windowing algorithm of RTEC. In
this example we have WM>Q;—Q;—1. To avoid clutter, Fig-
ure 1 shows streams of only five SDE. These are displayed
below WM, with dots for instantaneous SDE and lines for
durative SDE. In this example, we are interested in recog-
nising just two CE:

o CEgimpie, represented as a simple fluent. The starting
and ending points as well as the maximal intervals of
CFEsimpie are displayed directly above WM in Figure 1.

e CFE,q, represented as a statically determined fluent.
For illustration purposes, we define the maximal inter-
vals of C'Ey4 to be the union of the maximal intervals of
the two durative SDE displayed in Figure 1. The max-
imal intervals of CE,q are displayed above the CEgimpie
intervals in Figure 1.
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Figure 1: Windowing in RTEC.

To simplify the illustration, we assume that both CEgimpie
and CFE,q are defined only in terms of SDE, that is, they are
not defined in terms of other CE.

Figure 1 shows the steps that are followed in order to per-
form CE recognition at an arbitrary query time, say Q13s.
This figure shows the SDE available at QQ13s. All SDE that
took place before or on Q137— WM were retracted at (Q137.
Between Q137 and Q138 several SDE arrived at the system,
some of which took place before Q137. For illustration pur-
poses, these are represented by thick lines and dots in Fig-
ure 1(a). The effects of SDE that arrived between Q137
and @138 and took place before or on QQ135— WM are lost.
Figure 1(b) shows that all SDE that took place before or
on Q33— WM are discarded. All SDE that took place in
(Q13s— WM, Q138] will be considered in the CE recognition
process at Q13s. The interval of each durative SDE that
started before Q138 — WM and ended after that time is partly
retracted: RTEC retracts the sub-interval up to and includ-
ing Q13s— WM. Figure 1(b) shows the interval of a SDE that
is partly retracted in this way: the discarded sub-interval is
grayed out.

Apart from discarding all SDE as described above, we also
discard at @; all CE intervals in (Q;— WM, @;]. These in-
tervals might not hold given the SDE that arrived or were
revised after ;1 since it is possible that some of these
SDE took place in (Q;— WM, Q;—1]. Determining which CE
intervals should be partly or completely retracted can be
computationally very expensive. See Section 6 for a discus-
sion. Therefore, we choose to discard all CE intervals in
(Qi— WM, Q;] and compute everything from scratch.

RTEC does not manipulate the CE intervals that have
ended before or on Q;— WM. Depending on the user re-
quirements, these intervals may be stored in a database for
retrospective inspection of the activities of a system. (To
avoid clutter, Figure 1(a) shows only the CE intervals com-
puted at Q137.)

Figure 1(b) shows that the last interval of CEsq at Q137
was partly retracted when CE recognition started at Q1ss.
This happened because the starting point of the interval was

before Q138 — WM while its ending point was after that time.
The part of the interval that was retracted is grayed out in
Figure 1(b).

The maximal intervals of statically determined CE are
computed by evaluating domain-dependent holdsFor rules. In
the example, we calculate the maximal intervals of CEsq by
computing the union of the lists of maximal intervals of the
two durative SDE shown in Figure 1. Note that, at Q13s,
only the SDE intervals in (Q13s— WM, Q13s] are considered
in the computation of the CFEyq intervals.

It may happen that the first interval of a statically deter-
mined CE computed at @Q; starts immediately after Q;— WM.
Moreover, it is possible that there is an interval of such a
CE that ends on Q;— WM. In the example, the second inter-
val of CFEyq was partly retracted and, as a result, ended on
Q13— WM. In order to deal with such cases, RTEC amal-
gamates the last interval taking place before or on Q;,— WM
with the first interval taking place in (Q:— WM, Q;]. The
result of this process for CFE,q at Q138 is exactly the same
interval as the second interval of CFEyy that was computed
at Q137: compare the second interval of CFEs4 shown in Fig-
ure 1(c) with the second interval of this CE shown in Figure
1(a). In other words, in this example, the SDE that arrived
after Q137 and took place in (Q13s— WM, Q137] did not affect
the intervals of CFEyq. Had CE,; been defined in a different
way, say as the intersection of the lists of maximal intervals
of the two durative SDE in Figure 1, then the intervals of
CEsq would have changed in (Q13s— WM, Q137].

Figure 1 also shows the way in which the intervals of the
simple fluent CEgimpie are computed at Q13s. Arrows facing
upwards (downwards) denote the starting (ending) points of
CE,q intervals. First, the last interval of CFEgimpie is com-
pletely retracted, and only the starting point of that inter-
val is kept. See Figure 1(b). This interval is retracted be-
cause it starts before QQ13s— WM and ends after that time.
It is simpler to retract this interval completely and recon-
struct it with the use of its starting point and the domain-
independent holdsFor rules, rather than keeping the sub-
interval that takes place before Q35— WM, and possibly
amalgamating it later with another interval, as we do for
CE expressed as statically determined fluents.

If the last, or any other interval of CEgjmpie that was com-
puted at Q137, had started after Q13s— WM, then both the
interval and its starting point would have been discarded
when the CE recognition process commenced at Q13s.

All ending (and starting) points after Q13— WM, com-
puted at @137, are also discarded.

The second step we take concerning CFEgimpie at Q13s is to
calculate its starting and ending points. We compute these
points by evaluating initiatedAt and broken rules. To evaluate
the conditions of such rules we only consider SDE that took
place in (Q13s— WM, Q13s]. Figure 1(c) shows the starting
and ending points of CEgimpie in (Q138—WM,Q138]. Note
that the last ending point of CEgimpie that was computed at
Q137 was invalidated in the light of the new SDE that be-
came available at Q13s (compare Figures 1(c)—(a)). More-
over, another ending point was computed at an earlier time.

The final step we take in order to recognise CEgimpie at
Q138 is to use the domain-independent holdsFor predicate to
calculate the maximal intervals of CEginpie given its starting
and ending points. The second interval of CFgimpie became
shorter than that computed at Q137 (compare Figures 1(c)—
(a)), while the last interval of CFEsjmpie is open: given the



SDE available at Q13s, we say that CEgimpie holds since time
t, where ¢ is the last starting point of CEimpie-

The example presented above illustrates the possibility
that, when SDE arrive with a variable delay, CE intervals
computed at an earlier query time may be, partly or com-
pletely, retracted at the current or a future query time. (And
similarly if SDE are revised.) Depending on the require-
ments of the application, RTEC may report to the user:

e CE as soon as they are recognised, even if the intervals
of these CE may be partly or completely retracted in
the future.

e CE whose intervals may be partly, but not completely,
retracted in the future, that is, CE whose intervals
start before or on Q;+1— WM and end after that time.

e only CE whose intervals will not be even partly re-
tracted in the future, that is, CE whose intervals end
before or on Q;+1— WM.

4.2 RTEC Operation

In this section we first present the compilation stage of
RTEC and then discuss the way RTEC operates at run-time.
The run-time activities of RTEC consist of the mechanisms
for discarding ‘old’ SDE and the CE recognition process it-
self.

4.2.1 Compilation

Before the commencement of run-time activities, RTEC
compiles the CE definitions into a format that allows for
more efficient CE recognition. This is a process transparent
to the user. Any shorthand abbreviations are also expanded
at this stage. The aim of the transformation is to eliminate
the number of unsuccessful evaluations of holdsFor, and to
introduce additional indexing information. In particular, all
holdsFor atoms appearing in a CE definition are rewritten
using specialised predicates, depending on whether they ap-
pear in the head or the body of a rule, and whether they
concern a simple or a statically determined fluent. Specif-
ically, holdsFor atoms appearing in the head of a domain-
dependent rule, that is, a rule for computing the maximal
intervals of statically determined fluents, are rewritten us-
ing the predicate holdsForSDFluent. holdsFor atoms appearing
in the body of a rule are translated into holdsForRecognised-
SimpleFluent atoms or holdsForRecognisedSDFluent atoms ac-
cording to whether they concern simple fluents or statically
determined ones.

RTEC computes CE intervals in a bottom-up manner: it
first recognises ‘level-1’ CE, that is, CE defined only in terms
of SDE, then it recognises ‘level-2’ CE, that is, CE defined
in terms of at least one level-1 CE and a (possibly empty)
set of SDE, then it recognises ‘level-3’ CE, that is, CE de-
fined in terms of at least one level-2 CE and a (possibly
empty) set of SDE and level-1 CE, and so on. In other
words, when recognising a CE C' all CE C; appearing in the
body of each rule defining C' will already have been recog-
nised and their intervals stored. holdsForRecognisedSDFluent
and holdsForRecognisedSimpleFluent are defined as follows:

holdsForRecognisedSimpleFluent(Index, F=V, I) +
simpleFList(Index, F=V, I, _)

holdsForRecognisedSDFluent(Indez, F=V, I) +
sdFList(Index, F=V, I, )

(13)

(14)

simpleFList and sdFList are the predicates used to store the
‘cache’ of computed intervals in Prolog’s dynamic working
memory. The third argument in each case stores the list
of intervals starting in (Q;— WM, Q;] for which simple (re-
spectively, statically determined) fluent F' has value V. The
first argument is an index that allows for the fast retrieval
of stored intervals for a given fluent even in the presence of
very large numbers of fluents. (We index events in a similar
manner.) This is very important in large-scale applications.
We show the effects in the experiments presented in Sec-
tion 5. RTEC adds the index at the compilation stage in
the transformation to holdsForRecognisedSDFluent and holds-
ForRecognisedSimpleFluent. The choice of index for a fluent
is declared by the user. In the CTM application, for ex-
ample, the index of all CE fluents is the vehicle id, since
all queries tend to be about specific vehicles. More details
on how these specialised holdsFor predicates are used with
simpleFList and sdFList in the CE recognition process will be
given in Section 4.2.3.

4.2.2 Forget Mechanism

At each query time Q;, RTEC first discards—*forgets’—
all SDE that end before or on @Q;— WM. For each SDE
available at Q;, RTEC:

e Completely retracts the SDE if the interval attached
to it ends before or on Q;— WM.

e Partly retracts the interval of the SDE if it starts be-
fore or on ;— WM and ends after that time. For each
SDE type there can be at most one such interval. More
precisely, RTEC retracts the SDE interval (Start, End)
and asserts the interval (Q;— WM, End).

4.2.3 Composite Event Recognition

After ‘forgetting’” SDE, RTEC recognises the CE of inter-
est, that is, computes and stores the intervals of each such
CE fluent. At the end of CE recognition at each query time
Q, all computed fluent intervals are stored as simpleFList and
sdFList assertions in Prolog memory, indexed by fluent as de-
scribed above. For example, I in sdFList(Indez, CEqq, I, PE)
represents the intervals of statically determined fluent CFE4
starting in (Q;— WM, Q;], sorted in temporal order. PE
stores the interval, if any, ending at Q;— WM. When the
user queries the maximal intervals of CEsq, RTEC amalga-
mates PE with the intervals in I, producing a list of maximal
intervals ending in [Q;— WM, Q;] and, possibly, an open in-
terval starting in [Q;— WM, Q;]. In what follows, we present
how RTEC computes and stores the maximal intervals of
fluents at each @;. Computing and storing the time-points
of instantaneous events is simpler and so we do not present
the details here to save space.

Listing 1 shows the pseudo-code of recogniseSDFluent, that
is, the procedure for computing and storing the intervals
of statically determined fluents. First, RTEC retrieves the
maximal intervals of a statically determined fluent CFqq
computed at @;—1 and checks if there is such an interval
that starts before or on Q;— WM and ends after or at that
time. If there is such an interval then the sub-interval, if any,
after Q;— WM will be discarded. As already mentioned, we
compute all CE intervals from scratch in (Q;— WM, Q;]. To
determine if there is an interval of CFEyq that starts before
or on @;— WM and ends after or at that time, RTEC looks
through the intervals stored in sdFList. See Listing 1. At



Listing 1 recogniseSDFluent(CFEsq, Index, Q;—WM)

Listing 2 recogniseSimpleFluent( CEsimpie, Index, Q;— WM)

{partly discard the statically determined fluent interval,
if any, that starts before or on Q;— WM and ends after}
{terms (7%, Te) in RTEC represent intervals [T, Tec)}
sdFList(Index, CEsq, OldI, OldPE)
amalgamate( OldPE, OldI, OldList)
if OldList # [] then
if Start, End : (Start, End) € OldList A
End>Q;— WM A Start<Q;— WM then
PE: =[(Start, Qi— WM+1)]
else
PE: =]
end if
end if
{compute statically determined fluent intervals}
holdsForSDFluent( CEgq, I)
retract(sdFList(Index, CEyq, OldI, OldPE))
assert(sdFList(Index, CEsq, I, PE))

this point, OldI represents the intervals of CFs; computed
at Q;—1. These intervals are temporally sorted and start in
(Qi—1— WM, Qi—1]. OldPE stores the interval, if any, ending
at Q;—1— WM. RTEC amalgamates OldPE with the inter-
vals in OldI, producing OldList. RTEC goes through the
maximal intervals in OldList until an interval that ends af-
ter or on QQ;— WM is found. If such an interval is found, then
the sub-interval before or on Q;— WM is stored. See PFE in
Listing 1.

At the second step of recogniseSDFluent, RTEC evaluates
holdsForSDFluent rules to compute the intervals of CFEqq. Re-
call that, at the compilation stage, RTEC transforms all
holdsFor rules concerning statically determined fluents into
holdsForSDFluent rules. The intervals of CFEss computed at
the previous query time @;—1 are not used. The computed
list of intervals I of CFEs4, along with PE, are stored in
sdFList, replacing the intervals computed at Q;—1. (As men-
tioned above, to answer user queries, RTEC amalgamates
PE with the intervals in I.)

Listing 2 shows the pseudo-code of recogniseSimpleFluent,
that is, the procedure for computing and storing simple flu-
ent intervals. Similarly to recogniseSDFluent, this procedure
has two main parts. First, RTEC checks if there is a max-
imal interval of the fluent CFEgimpie that starts before or on
Q;— WM and ends after that time. This is determined by
looking through the intervals stored in simpleFList. If there
is such interval then it will be discarded, while its starting
point will be kept—see OldSPoint in Listing 2.

At the second step of recogniseSimpleFluent, RTEC com-
putes the starting points of CEsimpie, without considering the
starting points calculated at Q;—1. The computed starting
points, along with OldSPoint, are given as input to holdsFor-
SimpleFluent, into which holdsFor calls computing the maximal
intervals of simple fluents were translated at compile time.
This predicate is defined as follows:

holdsForSimpleFluent([], _, []) (15)
holdsForSimpleFluent(Spoints, CEgimpie, 1)
SPoints # [], (16)

computeEndingPoints( CEsimpie, EPoints),
makelntervalsFromSEPoints(SPoints, EPoints, I)

If the list of starting points is empty (first argument) then

{keep the starting point of the simple fluent interval, if
any, that starts before or on Q;— WM and ends after}
simpleFList(Index, CFEsimpie, OldI, OldPE)
amalgamate( OldPE, OldI, OldList)
if OldList # [] then
if Start, End : (Start, End) € OldList N
End>Q,—WM+1 N Start<Q;— WM then
OldSPoint: =[Start]
else
OldSPoint: =[]
end if
end if
{compute simple fluent intervals}
computeStartingPoints( CEsimpie, NewSPoints)
holdsForSimpleFluent( OldSPoint U NewSPoints, CEsimpie, 1)
computeSimpleFList(I’, Q;— WM, I, PE)
retract(simpleFList(Index, CEsimpie, OldI, OIdPE))
assert(simpleFList(Index, CFEsimpie, I, PE))

the empty list of intervals is returned (see rule (15)). Oth-
erwise, holdsForSimpleFluent computes the ending points of
the simple fluent, without considering the ending points cal-
culated at @Q;—1, and then uses makelntervalsFromSEPoints to
compute its maximal intervals given its starting and ending
points (see rule (16)).

The first interval computed by holdsForSimpleFluent could
start at Q;— WM or earlier, as there may be a starting point
computed at the first step of recogniseSimpleFluent.
computeSimpleFList sets the part of the first interval up to
or on Q;— WM to PE. The remaining sub-interval, along
with the remaining maximal intervals, are recorded in I.
I and PFE are stored in simpleFList, replacing the intervals
computed at Q;—1.

4.3 Complexity

In this section, we analyse the complexity of the ‘forget’
mechanism and the computation of statically determined
fluent intervals. Due to space limitations, it is not possible
to present a complete account of the complexity of RTEC.

In the analysis below, m(S, E) denotes the number of
time-points in the interval (S, E]—we assume discrete time.
m(S, E)/2 is thus the maximum number of maximal inter-
vals in (S,E]. The number of time-points in WM,
m(Q;— WM, Q;), is denoted in short by mwy. The maxi-
mum number of maximal intervals in WM is m /2.

4.3.1 Forget Mechanism

At each query time @Q;, RTEC first ‘forgets’ all available
SDE ending before or on Q;— WM. If the list of available
SDE is temporally sorted then RTEC stops processing SDE
as soon as it finds the first one that starts after Q;— WM.
In the common case that SDE arrive with a variable delay,
RTEC goes through the complete list of SDE available at Q;.
In the worst case, all SDE that took place in (0, Q;] arrive
between Q;—1 and Q;. The worst-case cost of the ‘forget’
mechanism is thus

O(n(m(0,Q;) +m(0,Q:—WM)) (17)

where n denotes the number of SDE types. This is the cost
of going through the SDE in (0,Q;] and retracting those
in (0,Q;—WM]. This situation may occur at most once



since all SDE ‘forgotten’ at @Q; are not available after Q;.
In practice, the cost of the ‘forget’ mechanism is bounded
by approximately

n(m(Qi—1— WM, Q;) + m(Qi—1— WM, Q;—WM)) (18)

that is, the SDE that took place before or on Q;—1— WM are
(typically) retracted at @Q;—1 and are not available at Q;.

4.3.2 Statically Determined Fluents

At the first step of recogniseSDFluent, RTEC searches the
maximal intervals of the fluent in question ending in
[Qi—1— WM, Q;—1] and, possibly, an open interval starting
in [Qi—1— WM, Q;—1]. The worst-case cost of this step is

o(% + 1) (19)

In practice, the number of maximal intervals of a fluent
ending in [Q;—1— WM, Q;_1] is considerably smaller than the
maximum number of maximal intervals in WM.

At the second step of recogniseSDFluent, RTEC evaluates
a holdsForSDFluent rule. The cost of evaluating such a rule is
limited by the sum of the cost of computing the intervals of
the fluents appearing in the body of the rule and the cost
of any interval manipulation operations. A fluent appearing
in the body of a holdsForSDFluent rule represents a SDE or a
CE. In either case, RTEC simply retrieves the fluent inter-
vals from the computer memory (this should not be confused
with WM). RTEC performs recognition bottom-up and thus
the intervals of all CE appearing in the body of a holdsForSD-
Fluent rule are already calculated when evaluating this rule:
RTEC need only retrieve the intervals stored in simpleFList
and sdFList. The third arguments of simpleFList and sdFList
record intervals starting in (Q;— WM, Q;], sorted in tempo-
ral order. Moreover, SDE intervals start in (Q;— WM, Q] as
earlier intervals have been retracted by the ‘forget’ mecha-
nism, and they are temporally sorted because RTEC sorts
the intervals of durative SDE used in the definitions of the
CE we want to recognise. Each fluent in the body of a holds-
ForSDFluent rule, therefore, has at most mwu/2 temporally
sorted maximal intervals.

The cost of the interval manipulation constructs of RTEC
is as follows. To compute the union of a list of lists of max-
imal intervals, RTEC recursively uses iset_union for calculat-
ing the union of two lists of maximal intervals. The cost of
iset_union is limited by the sum of the sizes of the two lists,
as this predicate operates under the assumption that each
list of maximal intervals is sorted. Furthermore, the size of
the output list of iset_union is limited by the sum of the sizes
of the two lists, as, in the worst case, the intervals of the
two input lists of iset_union are disjoint. Assuming x lists of
maximal intervals of size y, the cost of union_all is bounded
by:

x—1th iset_union

—N—
+.o4 2yty+ .ty ) =

1st iset_union  2nd iset_union

o 3+ ym
(52

To compute the intersection of a list of lists of maximal
intervals, RTEC recursively uses iset_intersection for calculat-
ing the intersection of two lists of maximal intervals. Like
iset_union, the cost of iset_intersection is limited by the sum of

(20)

the sizes of the two lists, as it operates under the assumption
that each list of maximal intervals is sorted. The size of the
output list of iset intersection is bounded by the size of the
longest input list. The cost of intersect_all is bounded by:

x—1th iset_intersection
~ N N
O( 2y +...+ 2y ) =

— 0(2y(a—1))

1st iset_intersection

relative_complement_all(I’, L, I') recursively uses iset_difference
to compute the relative complement of the list of maximal
intervals I’ with respect to each list of maximal intervals of
list L. The cost of iset_difference is limited by the sum of the
sizes of the two input lists. Moreover, the size of the output
list of iset difference is limited by the sum of the sizes of the
two lists. The cost of relative_complement_all, therefore, is the
same as that of union_all.

Assuming that in the body of a holdsForSDFluent rule there
are f fluents (SDE and CE)—in the worst case this is the
number of the fluent types of the event description—and k&
interval manipulation constructs, the cost of evaluating such
a rule is bounded by

O(f—i—k%(@—l)) (21)

This is the cost of retrieving f fluent intervals from the com-
puter memory plus k times the cost of the most expensive
interval manipulation construct (see formula (20)).

In practice, f and k are small, and the number of maximal
intervals of a fluent starting in (Q;— WM, Q;] is considerably
smaller than mW]\,{/Q.

S. EXPERIMENTAL RESULTS

We have evaluated RTEC experimentally on several ex-
ample domains. Here we will present experiments on CTM.
These experiments were performed on a computer with In-
tel 17 950@3.07GHz processors and 12GiB RAM, running
Ubuntu Linux 11.04 and YAP Prolog 6.2.0. The number of
processors varied by experiment, as described below. The
real datasets (collected in November 2011 in Helsinki) in-
clude only a subset of the anticipated SDE types as some
components detecting SDE were not functional. For that
reason, in order to provide a more systematic and more
stringent evaluation, we also performed experiments on ar-
tificially generated (synthetic) datasets as well as on real
data. The synthetic datasets include the instantaneous SDE
enter_stop, leave_stop, passenger_density_change,
temperature_change and noise_level_change, and the dura-
tive SDE abrupt_acceleration, abrupt_deceleration and
sharp_turn. Each synthetic SDE stream includes equal num-
bers of SDE types. In both cases—synthetic and real datasets
—the SDE are not chronologically ordered. Given a syn-
thetic or real SDE stream, RTEC recognises various CE
including punctuality, punctuality_change, driving_quality,
driving_style,  passenger_comfort,  driver_comfort and
passenger_satisfation. These were specified by the end users.

Figure 2 shows a number of experimental results on syn-
thetic datasets regarding CE recognition for a single vehicle.
These were intended to test the effects of varying the size
of WM and the tolerance of RTEC to irrelevant SDE. The
figure shows the results of four sets of experiments. In the
first, only 10% of the SDE concern the vehicle for which we
perform CE recognition. In the second and the third, 30%
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Figure 2: CE recognition for a single vehicle.

and 50% respectively of the SDE concern this vehicle. In
the fourth case, all available SDE concern it. In every case,
RTEC computes and stores the intervals of 20 CE types—
this is the number of fluent and event types concerning an
individual vehicle. We also varied the size of WM. Figure
2 shows results of experiments in which WM varies from
3000 to 15000 SDE. The times displayed in this figure show
average CE recognition time in CPU milliseconds (ms).

In the present RTEC implementation, the indexing mech-
anism is very simple. (It merely exploits YAP Prolog’s
standard indexing on the functor of the first argument of
the head of a clause). Nevertheless, as shown in Figure 2,
the presence of irrelevant SDE affects recognition efficiency
only very slightly. This is a very important feature of our
approach as it means we do not have to rely on modules
filtering SDE.
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Figure 3: CE recognition for a single vehicle (real
datasets).

For comparison, Figure 3 shows the results of the same ex-
periments on real datasets. (Here the percentages of relevant
SDE are determined by the data that were collected.) As
explained earlier, the absence of several SDE types in the
real datasets simplified the CE recognition process, which
accounts for the apparent improvement in performance.

At each query time, RTEC first ‘forgets’ ‘old’ SDE and
then performs CE recognition. The times shown in Figures
3 and 2 do not include the time required by the ‘forget’
mechanism. The cost of this mechanism depends on the size
of WM as well as the size of the step between consecutive
query times Q,;—1 and @;. Figure 4 shows the average time
of the ‘forget’ mechanism under varying WM and step sizes.
When WM includes 7000 SDE and the step includes 3000
SDE, for example, the average time required by the ‘forget’
mechanism is 13 ms.
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Figure 4: ‘Forget’ mechanism in CTM.

The results shown in Figure 4 concern synthetic datasets.
The times achieved on real datasets are very similar and
therefore omitted.

For a given step, the time required by the ‘forget’ mecha-
nism mostly increases as WM increases. This is due to the
fact that RTEC has to go through a larger list of SDE when
deciding which ones to ‘forget’. For example, when WM in-
cludes 5000 SDE and the step includes 2000 SDE, the ‘forget’
mechanism of RTEC has to go through 7000 SDE at each
query time. If we set the size of WM to 9000 SDE and keep
the same step, the ‘forget’ mechanism of RTEC will have
to go through 11000 SDE at each query time. RTEC has
to go through the complete list of SDE available at a query
time, in order to decide which ones to ‘forget’, as the SDE
streams in the CTM application are not necessarily tempo-
rally sorted.

For a given WM, the time required by the ‘forget’ mech-
anism increases as the step increases. Like the case of in-
creasing WM, RTEC has to go through larger lists of SDE
when deciding which ones to ‘forget’. Unlike the case of in-
creasing WM, RTEC ‘forgets’ a larger number of SDE. For
example, when the step includes 3000 SDE, RTEC ‘forgets’
3000 SDE, when the step includes 5000 SDE, RTEC ‘forgets’
5000 SDE, and so on.
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Figure 5: Total RTEC time: CE recognition for a
single vehicle, 100% relevant SDE.

To compute the total time required by RTEC at each
query time, one has to add the time required by the ‘forget’
mechanism to the time required for CE recognition. Fig-
ure 5 shows the time required by RTEC under varying WM
and step sizes when all SDE are related to the vehicle for
which we perform CE recognition. The times shown in this
figure are produced by adding the times shown in Figure 4
and those corresponding to the ‘100% relevant SDE’ line of



Figure 2. Note that the cost of the ‘forget’ mechanism is
independent of how many SDE are related to the vehicle for
which we perform CE recognition.

Most of the results presented in Figures 5 and 4 con-
cern settings in which WM is larger than the step, that is,
WM>Q;—Qi—1. There are two settings in which
WM=Q,—Qi—1, and two settings in which WM<Q;,—Q,_1.
The sizes of WM and the step are chosen by the user (city
transport officials, in this application). Due to the variable
delay in SDE arrival in CTM, we expect that the user will
choose a setting in which WM>Q;—Q;_1.
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Figure 6: CE recognition for many vehicles (real and
synthetic datasets).

Figure 6 shows experimental results regarding CE recog-
nition for several vehicles. First, we perform CE recognition
for 10 vehicles on real datasets and synthetic datasets. Sec-
ond, we perform CE recognition for 100 vehicles on synthetic
datasets. We do not have real datasets at the scale of 100
vehicles. In the first case, each vehicle is associated with
10% of the SDE, while in the second case each vehicle is as-
sociated with 1% of the SDE. The times shown in Figure 6
do not include the time required by the ‘forget’ mechanism.
The cost of this mechanism is independent of the number of
vehicles for which we perform CE recognition and is shown
in Figure 4.

In these experiments, RTEC recognises and stores sub-
stantially greater numbers of CE than the number of CE
recognised in the experiments presented earlier. In the first
case (CE recognition for 10 vehicles), RTEC recognises 200
CE—20 CE are associated with each vehicle—while in the
second case (CE recognition for 100 vehicles), RTEC recog-
nises 2000 CE. Figure 6 shows that the substantial increase
of CE hardly affects the efficiency of CE recognition per ve-
hicle. For example, the average time required for CE recog-
nition for a single vehicle in the presence of 200 CE—divide
by 10 the times for ‘10 vehicles (synthetic data)’ and ‘10
vehicles (real data)’ in Figure 6—is almost the same as the
time required for CE recognition for a single vehicle in the
presence of 20 CE, as shown by the corresponding times for
‘10% relevant SDE’ of Figure 2 (respectively Figure 3).

This result may seem surprising. One may have expected
that evaluating rules (13) and (14), for example, would take
longer and longer as the number of CE increases, because we
would have to go through longer lists of CE in order to re-
trieve from the memory the computed intervals of any given
CE. We avoid this in RTEC by indexing the CE. Thereby,
the search for the intervals of a given CE becomes very effi-
cient, even in the presence of a very large number of CE.

Figure 6 also shows that RTEC performs better in the real

datasets than in the synthetic ones. As mentioned earlier,
this is due to absence of a few SDE types in the real datasets.
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Figure 7: Total RTEC time: CE recognition during
rush hour in Helsinki, step set to 1 sec = 350 SDE.

The last set of CTM experiments concerns CE recogni-
tion at rush hour in Helsinki. At most 1050 vehicles, that
is, 80% of the total number of available vehicles, operate at
the same time in Helsinki during rush hour. Due to the un-
availability of real datasets at that scale, we simulated rush
hour operations using synthetic datasets. It is estimated by
the experts that no more than 350 SDE can be detected per
second on the 1050 operating vehicles.®> We were thus able
to test RTEC under the maximum expected frequency of
SDE.

Figure 7 presents the results of three sets of experiments.
First, we used a single processor to perform CE recognition
for all 1050 vehicles. In this case, the intervals of 21000
CE (1050 vehicles x 20 CE per vehicle) are computed and
stored. Second, we used four processors in parallel. Each
instance of RTEC running on a processor performed CE
recognition for one quarter of all operating vehicles, that is,
263 vehicles, computing and storing the intervals of 5260
CE. Third, we used all eight processors of the computer in
parallel. Each instance of RTEC running on a processor
performed CE recognition for one eighth of all operating
vehicles, that is, 132 vehicles, and computed and stored the
intervals of 2640 CE.

In all sets of experiments the input was the same: SDE
coming from all 1050 vehicles. In other words, there was
no filtering of SDE data in these experiments to restrict the
input relevant for each processor.

The times shown in Figure 7 include the time required by
the ‘forget” mechanism. The step is set to 1 sec (350 SDE),
while WM ranges from 4 sec (1400 SDE) to 25 sec (8750
SDE). We found (in experiments not presented due to lack of
space) that reducing the step size reduces recognition times
very slightly. Given the current infrastructure in Helsinki,
a 10 sec WM is sufficient, that is, a delay in the arrival
of a SDE is expected to be less than 10 sec. Other CTM
infrastructures may require different WM sizes.

Figure 7 shows that we can achieve a significant perfor-

3Personal communication with Mattersoft Ltd (http://
www.mattersoft.fi/en/index.html).



mance gain by running RTEC in parallel on different proces-
sors. Such a gain is achieved without requiring SDE filtering.

In other application domains, SDE frequency may be
higher than that presented above. According to the results
of the use case survey of the Event Processing Technical
Society (EPTS) [4], in most applications there are at most
1000 SDE per second. Our experimental evaluation showed
that RTEC supports real-time reasoning in such applica-
tions. Consider, for example, Figure 5. Given a WM of
15000 SDE, which corresponds to a window of 15 sec in most
applications according to the EPTS survey, recognition for
a single vehicle is performed in less than 60 ms, when all
SDE affect the CE we want to recognise. In the last set of
experiments, we showed that in a WM of 8750 SDE, corre-
sponding to a window of around 9 sec in most applications
according to the EPTS survey, recognition for 1050 vehicles
(21000 CE) is performed in about 50 ms. These results were
achieved on a standard desktop computer.

6. RELATED WORK

One of the best-known recognition systems is the Chron-
icle Recognition System (CRS) [11]. CRS has proven effi-
cient and scalable enough for various application domains.
However, it is a purely temporal reasoning system and thus
cannot be directly used for CE recognition in applications
requiring any type of atemporal reasoning. In our approach
to CE recognition, the availability of the full power of logic
programming is one of the main attractions of employing
RTEC as the temporal formalism. It allows CE definitions
to include not only complex temporal constraints but also,
when necessary, complex atemporal constraints. Moreover,
it allows reasoning over CE definitions as well as reasoning
over background knowledge. This is in contrast to various
approaches, as pointed in [2, 3], such as [11, 16, 20, 7], that
perform pattern matching over event streams, but lack the
ability of (complex) reasoning over existing domain knowl-
edge. An account of the benefits of logic programming over
other approaches to CE recognition may be found in [21].

Logic programming approaches to CE recognition may be
found in [24, 2, 3], for example. A distinguishing feature of
our approach with respect to such lines of work concerns the
fact that we use an EC dialect for temporal representation
and reasoning. RTEC has built-in axioms for complex tem-
poral representation, including the formalisation of inertia,
which facilitate considerably the development of succinct CE
definitions, and, therefore, code maintenance.

The Cached Event Calculus (CEC) [6] is an EC dialect
that exhibits an absolute improvement of performance on
computing the effects of events with respect to the origi-
nal EC [15]. CEC does not operate on a working ‘window’
(WM), that is, it does not ‘forget’ any SDE. Although such
a design decision guarantees that no information will be lost,
it affects considerably the efficiency of CEC. As time pro-
gresses and SDE arrive at the system, the efficiency of CEC
decreases. Consequently, in its current form, CEC cannot
be used for run-time CE recognition as, at some point, the
CE recognition times will fail to meet the user requirements.

If RTEC operated on the complete SDE history, as CEC
and all other EC dialects do, in contrast to operating on
WM, then the complexity of computing fluent intervals
would increase substantially over time—replace my,, in for-
mulas (19) and (21) with m(0, Q;). The cost of the ‘forget’
mechanism—see formula (18)—is substantially smaller than

the cost of computing fluent intervals taking into considera-
tion the complete SDE history.

When an interval of a fluent is retracted, or asserted, as
a result of the occurrence of a SDE that arrived in a non-
chronological order, CEC propagates the update to the flu-
ents whose validity may rely on such an interval. The reason-
ing performed by the modules propagating fluent assertions
and retractions can be very costly, especially in real-world
applications such as CTM, where there are many fluents that
depend on many other fluents, and there are several rules
defining fluents. Also, unlike RTEC, CEC does not support
SDE revision. If CEC were to support this functionality,
then the number of invocations of the modules propagating
assertions and retractions would increase. Other approaches
that follow this type of reasoning are, for example, [2, 3].

RTEC does not perform costly checks every time a fluent
interval is asserted /retracted (due to the delayed arrival, or
revision, of SDE). Instead, RTEC discards, at each query
time @, all fluent intervals in (Q;— WM, Q;] and computes
from scratch all intervals given the SDE that are available
at @; and took place in (Q;— WM, Q.

Other EC dialects have been proposed in the literature.
The Reactive Event Calculus [5], for example, is based on
CEC but has not been evaluated yet, theoretically or ex-
perimentally. A well-known EC dialect is the Interval-based
Event Calculus (IEC) [21]. In IEC it is not possible to recog-
nise an ‘on-going’ CE, that is, a CE that started taking place
at an earlier time and still holds. Moreover, although there
seems to be in IEC some form of storing of sub-computations
(concerning only time-points as fluent intervals are not rep-
resented) and event intervals, the possibilities of SDE arriv-
ing in a non-chronological order, and SDE revision, are not
considered. Thus, in IEC it is not possible, for example, to
update, that is, (partly) retract, the intervals of recognised
CE due to SDE arriving with a delay or SDE revision.

Note that the assumptions of sorted input and no SDE
revision are not restricted to IEC. Several event processing
systems, such as [13, 10, 7, 9, 17], operate only under the
assumption that SDE are temporally sorted. Such systems
rely on components or network protocols that order SDE
prior to feeding them to the CE recognition system. RTEC
does not rely on such components/network protocols and
may dynamically update the intervals of recognised CE. The
applications mentioned in [18, 6, 2], as well as CTM in the
Helsinki infrastructure, are but a few examples in which the
SDE streams given to the CE recognition system cannot be
assumed to be ordered, and/or may be revised.

7. SUMMARY AND FURTHER WORK

We presented RTEC, an EC dialect with novel implemen-
tation and ‘windowing’ techniques that allow for efficient
CE recognition, scalable to large numbers of SDE and CE.
RTEC may operate in the absence of SDE filtering modules,
as it is only slightly affected by SDE that are irrelevant to
the CE we want to recognise. Furthermore, RTEC remains
efficient and scalable in applications where SDE arrive with
a (variable) delay from, and are revised by, the underlying
SDE detection system. RTEC may update the intervals of
already recognised CE, and recognise new CE, due to SDE
arriving with a delay or SDE revision.

RTEC has a formal semantics in terms of logic program-
ming, while the formalisation of CE definitions, including
the corresponding background knowledge (if any), is declar-



ative. Moreover, the interval manipulation constructs of
RTEC, usable along side the standard EC rules, simplify
CE definitions, and improve reasoning efficiency.

The complex CE definitions in the CTM application en-
abled us to perform a realistic experimental evaluation of
RTEC. The evaluation showed that RTEC supports real-
time reasoning in most of today’s applications.

The are several directions for further work. First, we aim
to extend RTEC by allowing for CE recognition under dif-
ferent sets of SDE. In some cases, for example, it may be
required that different CE have different working memory
sizes. For some CE it may be acceptable to sacrifice effi-
ciency by having a larger working memory in order to min-
imise the possibility of losing information by discarding late
SDE (revision). For other CE, efficiency may be more impor-
tant and therefore the recognition of these CE may be based
on a smaller working memory. Second, we aim to prove a
set of properties satisfied by RTEC (see [5], for example)
as well as demonstrate the verification of a CE definition
library formalised in RTEC. Third, we aim to develop cus-
tomisable consumption policies [7, 3] in order to use RTEC
in application domains requiring event consumption. Such
policies were not necessary in the case study presented here.
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