Formalization of a Voting Protocol for Virtual Organizations

Jeremy Pitt, Lloyd Kamara
Intelligent Systems & Networks Group
Dept. of Electrical & Electronic Engineering
Imperial College London, London, SW7 2BT, UK

{j-pitt,l.kamaray@imperial.ac.uk

ABSTRACT

A voting protocol for decision-making in virtual organiza-
tions is presented. In an agent-based virtual organization
the functions of formation, management and dissolution of
the organization are passed to software processes. Each
phase in this life-cycle requires decision making: an ostensi-
bly fair way for independent agents to make decisions is to
take a vote. Accordingly, this paper formalizes a protocol for
voting. The emphasis is on characterising the powers, per-
missions, obligations and even sanctions of the voters, using
a norm-governed approach to agent societies. The specifi-
cation language is the Event Calculus, and its animation is
informative with respect to a full implementation. It is well-
known that various types of ad hoc alliance of autonomous
entities require voting procedures, and a normative speci-
fication of the interactions is therefore beneficial for many
aspects of self-organization and self-management.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]

General Terms
Theory

Keywords

Multi-Agent Systems, Virtual Organizations, Voting

1. INTRODUCTION

A virtual organization is a temporary network of inde-
pendent companies linked together through information and
communication technologies (ICT), in order to share re-
sources and services, to access each other’s market, or to
form an opportunistic alliance to exploit some business op-
portunity. An agent-based virtual organization passes the
functions of detection (of the need for), discovery (of other
pre-existing), formation, run-time management and dissolu-
tion of the organization to software processes (i.e. agents).

Permission to make digital or hard copies of all or part of this work for

Marek Sergot, Alexander Artikis
Computational Logic Group
Department of Computing

Imperial College London, London, SW7 2AZ, UK

{mjs,aartikisy@doc.ic.ac.uk

However, each phase in the virtual organization life-cycle
requires decision making: an ostensibly fair way to reach a
consensus between independent peers on a potentially con-
tentious issue is to take a vote.

Accordingly, this paper formalizes a voting protocol for
multi-agent virtual organizations. In particular, the em-
phasis is on characterising the roles, (institutional) powers,
permissions, obligations and even sanctions of the voters
(agents). While voting is a well-known aspect of mechanism
design for multi-agent systems [7], we use a norm-governed
approach to agent societies, whereby appropriate behaviour
is stipulated using concepts stemming from the study of le-
gal and social systems: i.e. powers, permissions, and obliga-
tions; and possibly other more complex normative relations.
Furthermore, software tools can then be used to analyse
and execute formal specifications of such systems, provid-
ing a better understanding of the system’s properties and
finer-grained control over actual operation.

This paper is organized as follows. Section 2 considers
virtual organizations and the requirements for voting. Sec-
tion 3 informally introduces a voting protocol, based on
Robert’s Rules of Order [18], the standard handbook for
conducting business in deliberative assemblies. Section 4
presents a formal specification of this protocol via a logi-
cal axiomatisation. The specification language is the Event
Calculus [14], and so the specification itself is executable.
The executable specification is demonstrated in Section 5,
which raises a number of issues to be addressed by a full
implementation. We discuss related research in Section 6,
with respect to voting as an aspect of mechanism design in
multi-agent systems, voting in e-government applications,
and voting in the general context of agent communication
languages. We draw some conclusions in Section 7, in par-
ticular that a voting procedure is a generic requirement in
various types of ad hoc alliance of autonomous entities, and
so a formal specification is beneficial for many aspects of
self-organization and self-management.

2. VIRTUAL ORGANIZATIONS

From a legal perspective (cf. [5]) a virtual organization
can be defined as a transient, inter-organizational, cross-
border ICT-enabled collaboration between legally indepen-

personal or classroom use is granted without fee provided that copies aredent entities, usually with a specific economic goal. Where
not made or distributed for profit or commercial advantage and that copies the ‘ICT-enabled’ element of the definition involves agents,
bear this notice and the full citation on the first page. To copy otherwise, 10 4nd important aspects of the virtual organization’s function-
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007%5.00.

ality are realised through agent interactions, we refer to the
organization as a multi-agent virtual organization (MVO).
In this case, the economic motivations and characteristics

are orthogonal to the main direction of our investigation,
which is the requirements and mechanisms for formation,
run-time management, and dissolution of the virtual orga-
nization. Similarly, detecting the need or opportunity for an
MVO and search techniques for finding a useful pre-existing
MVO, which can be informed by ‘intelligent’ distributed al-
gorithms, i.e. agents, are also outside the scope of this paper.
However, from [5], we can identify several occasions in the
life-cycle of an MVO where some kind of decision has to be
made, and several features of an MVO which impact on how
it is to be made. This includes:

e The MVO does not aim at achieving a legal status
separate from its partners. No hierarchical structure
is set up and the partners participate on a peer-to-
peer basis (logically as well as physically in terms of
the actual network).

e Autonomous agents are able to decide what actions
each individually chooses to perform. They may also
have an opinion on or preference for the actions each
other should perform, or the MVO’s collective goal.

e The formation of the MVO and the subsequent map-
ping of tasks to the partial business processes of indi-
vidual partners is crucial. It is suggested in [5] that
this can be performed by auctions, but auctions are
just one ‘tool’ in the mechanism design ‘tool-box’.

e The protection of personal data may be implemented
by appropriate technical measures, and is the respon-
sibility of an appointed controller, who can be chosen
by agreement [5].

e The protection of Intellectual Property Rights (IPR)
also needs to be considered by the MVO partners,
and measures need to be developed in order to distin-
guish between freely utilisable and protected material.
Equally, measures are required to determine the dis-
posal of IPR, and in an MVO this may be the common
ownership of multiple partners.

e In an open, non-hierachical structure like an MVO, ac-
tions may have unexpected and undesirable outcomes,
and agents may take actions to further self-interest
rather than the common good. In such cases, disputes
may arise between partners, and a mechanism for dis-
pute resolution is required.

Therefore, we have a non-hierachical system composed of
independent and autonomous peers, who have to deal with
formation of the MVO (which may include applications to
join), action selection, appointment to ‘roles’, disposal of
IPR, dispute resolution, and dissolution of the MVO. All of
these cases require a decision to be made: and to reiterate,
an ostensibly fair way to reach a consensus between inde-
pendent peers on a potentially contentious issue is to take
a vote. On this basis, a voting protocol is a prerequisite for
coordination in an MVO.

3. AVOTING PROTOCOL

In this section, we give a brief, informal description of a
voting protocol, based on Robert’s Rules of Order (Newly
Revised) [18], henceforth RONR; and consider which agent
or agents can perform the steps in the protocol.

According to RONR, an appropriate procedure (protocol)
for conducting a vote in a deliberative assembly is as follows:

e the assembly sits and the chair opens a session;

e a member proposes (tables) a motion;

e another member seconds the motion;

e the members debate the motion;

e the chair calls for those in favour to cast their vote;

e the chair calls for those against the motion to cast their
vote;

e the motion is carried, or not, according to the standing
rules of the assembly.

In the context of an MVO, we will associate a ‘deliberative
assembly’ with the MVO itself, the assembly members with
the MVO partners (or rather, the software agents represent-
ing the interests of those partners), and a meeting of the
partners with a session (during its life cycle, an MVO may
have several sessions, at which decisions are to be made).
The term agent will be used for ‘member’ in the subsequent
analysis.

This informal description gives the basic steps in the vot-
ing procedure. To determine who is empowered (in a sense
that is made explicit later) to enact (or perform) each step,
we identify a number of subsets on the set of agents. De-
termining set membership is not addressed here, although
we note it can be done in a variety of ways. For example,
it could be done by default (being a representative in the
assembly automatically classifies an agent into one or other
set); by qualification (being in possession of some certificate
or capability ensures classification), or by assignment (i.e.
some other protocol is used to allocate members to a set).

The subsets of the set of agents is based on the roles that
the agents can occupy, and includes:

voter, i.e. those agents who are empowered to vote;

proposer, those agents who are empowered to propose mo-
tions;

seconder, those agents who are empowered to second mo-
tions;

chair, those agents who are qualified to conduct the proce-
dure; one of whom, at any time, will be designated to
be the actual chair, and thereby empowered to conduct
the procedure;

monitor, those members who are to be informed of the
actions of others, in particular the votes cast and the
decisions reached.

In the next section, we formalise the RONR protocol with
two minor variations. Firstly, we count votes concurrently
rather than sequentially, and secondly, we omit the ‘debate’
phase. The former may have consequences for strategic be-
haviour, while the latter can be expressed in the same terms
[4], and so integrated with the approach used here. In nei-
ther case does the omission impact on the conceptual un-
derstanding and formalization of the voting protocol.

4. EVENT CALCULUS SPECIFICATION

The Event Calculus is a formalism from Artificial Intelli-
gence intended to reason about action and change in non-
monotonic systems [14]. There are several variants of the
calculus: the version used here is that used in [2]. An Event
Calculus specification consists of a domain-independent part
and an application-specific part.

The domain independent part includes axioms for deter-
mining what holds at a given time (or in a given state).
What holds are fluents, which can be either true or false if
the fluent is boolean, or some value from a specific range

in the case of many-valued fluents. The application-specific
part specifies axioms for determining: what holds at the ini-
tial time, the values of particular fluents that are said to be
initiated by a specific action at any time, and the state con-
straints which determine what holds (or does not hold) at
any time. For the latter two, we write axioms of the form:

Action initiates Fluent=Value at Time «—
Conditiony, A ... A Conditionm,

Fluent =Value holdsat Time <«
Condition1 A ... A Condition,,

We now give an indicative formal specification (via a logi-
cal axiomatisation) of the informal description of the voting
protocol. This specification covers the fluents and actions,
the status of motions, (institutional) powers, roles, permis-
sions and obligations, and finally sanctions. The domain-
independent part of the EC is coded in Prolog, and so the
axiomatisation reflects that orientation.

4.1 Fluents and Actions

Table 1 lists the fluents used in the voting protocol. A
session S can be open (sitting), or not. The status of a
motion is pending (initially), then proposed, seconded, vot-
ing (the chair has called for votes at time T'), voted (voting
has closed), or resolved (a decision has been reached). The
votes fluent is used to count the votes for/against a motion;
the voted fluent records how each agent Ag voted on mo-
tion M (has not voted, for, against, abstained). If a vote
is carried, then it is added to the list of resolutions from
this session. R ranges over the values proposer, seconder,
voter, monitor and chair: for each agent and each value, an
agent qualifies for or occupies the role_of that value (or does
not, since these are boolean-valued fluents). There are three
more boolean valued fluents for the normative positions of
an agent (its powers, permissions, and obligations), and the
sanctions are a list of integers which will be used as codes
for ‘inappropriate’ behaviour.

Table 1: Fluents in the Voting Protocol

Fluent Range
sitting(S) boolean
status(M) {pending, proposed, seconded

voting(T'), voted, resolved }
votes(M) N x N
voted(Ag, M) {nil, aye, nay, abs}
resolutions(S) list of motions
qualifies(Ag, R) boolean
role_of (Ag, R) boolean
pow(Ag, Act) boolean
per(Ag, Act) boolean
obl(Ayg, Act) boolean

sanction(Ag) list of integers

Table 2 lists the actions that agents can perform in the
voting protocol. The table is self-explanatory.

4.2 |Institutional Powers

The value of a fluent changes as a consequence of an em-
powered agent performing a designated act. It will be those
agents that occupy particular roles that are empowered to

Table 2: Actions in the Voting Protocol
open_session(Ag, S) close_session(Ag, S)
propose(Ag, M) second(Ag, M)
open_ballot(Ag, M) close_ballot(Ag, M)
vote(Ag, M, aye) vote(Ag, M, nay)
abstain(Ag, M) revoke(Ag, M)
declare(Ag, M, carried) declare(Ag, M, not_carried)

perform such acts (cf. [13]). Generally, agents only ‘possess’
these powers when particular fluents have a certain value,
that value being the status of a motion or a session. In other
words, status plus role determines power. The following ax-
ioms illustrate this general principle for the open_ballot and
vote actions, and there are similar axioms for the other eight
actions listed in Table 2.

pow (C, open_ballot(C, M)) = true holdsat T «—
status(M) = seconded holdsat T' A
role_of (C, chair) = true holdsat T

pow (V, vote(V, M, _)) = true holdsat T «
status(M) = voting(T') holdsat T A
role_of (V, voter) = true holdsat T' A
voted(V, M) = nil holdsat T

The only minor irregularity in these axioms is the check that
an agent V has not voted on motion M (voted(V,M) =
nil holdsat T'). This is because we want to prevent multiple
votes but also allow an agent to change its mind (see later).

4.3 The Status of Motions

The status of a motion follows an obvious sequence as
indicated by the values in Table 1. We have seen how when
a motion has a particular status and an agent occupies a
specific role, then the agent is empowered to perform an
action. Generally, the exercise of the power by performing
the action is sufficient to change the status of a motion: this
effectively ‘switches off’ the existing power and ‘switches on’
other powers. The following illustrative EC axioms specify
how the performance of an action by an empowered agent
changes the status of a motion (and so changes powers).

open_ballot(C, M) initiates status(M) = voting(T) atT «
pow (C, open_ballot(C, M)) = true holdsat T

close_ballot(C, M) initiates status(M) = voted at T «—
pow (C, close_ballot(C, M)) = true holdsat T

declare(C, M, carried) initiates status(M) = resolved atT «—
pow (C, declare(C, M, _)) = true holdsat T'

Again, there are similar axioms for each of the other actions
specified in Table 2. Note that declaring the result of a
motion also adds the motion to the list of resolutions if,
according to the standing rules of the MVO, the vote has
carried. Then, a new motion can be proposed: i.e., motions
are dealt with sequentially rather than concurrently.

Note also that the standing rules can be anything ‘reason-
able’ (majority of members, majority of those voting, etc.),
but the rules themselves will have been negotiated during
the formation of the MVO. However, they can also be the
subject of motions themselves (i.e. agents can propose to
change the standing rules).

4.4 Roles & Role Assignment

We assume a predicate qualifies which holds of an agent
belonging to the sets identified previously. A role assign-
ment protocol (not addressed here) then determines, for
those agents that qualify, who occupies the roles of voter,
chair and monitor. It is, however, the acts of opening a ses-
sion and proposing that (respectively) determine the set of
proposers and seconders (i.e., of those agents qualified to act
as proposer and/or seconder, which of them occupy the role;
whereby they are empowered to propose or second motions).
Occupying these roles is given by the following axioms:

open_session(C, M) initiates
role_of (A, proposer) = true at T «—
pow (C, open_session(C, M)) = true holdsat T A
qualifies(A, proposer) = true holdsat T
propose(A, M) initiates
role_of (B, seconder) = true at T «—
pow (A, propose(A, M)) = true holdsat T" A
qualifies(B, seconder) = true holdsat T' A
A#B

Note that a minor clause of RONR stipulates that if an agent
proposes a motion, then the same agent cannot also be the
seconder for that motion. The check A # B allows agents
to occupy the role but also prevents the same agent both
proposing and seconding the same motion.

Note that axioms are also needed to take agents ‘out
of role’; for example, the action second by an empowered
agent initiates role_of (B, seconder) = false for all agents
that qualified as seconders.

4.5 Voting and Counting Votes

Once a motion has been proposed, seconded, and the bal-
lot opened by the session chair, votes have to be cast and
counted. The following axioms specify two aspects of vot-
ing. The first is how an open_ballot action on motion M
initialises the vote count to zero and sets voted(V, M) to nil
for each agent V occupying the role of voter. The second is
how a wvote action performed by an empowered agent incre-
ments the count of votes ‘for’ and records the way its vote
was cast (similar axioms are required for a vote ‘against’):

open_ballot(C, M) initiates votes(M) = (0,0) at T «—
pow (C, open_ballot(C, M)) = true holdsat T

open_ballot(C, M) initiates voted(V, M) = nil at T «—
pow(C, open_ballot(C, M)) = true holdsat T A
role_of (V, voter) = true holdsat T’

vote(V, M, aye) initiates votes(M) = (F1,A) at T «—
pow(V, vote(V, M)) = true holdsat T" A
votes(M) = (F, A) holdsat T A
Fl=F+1

vote(V, M, aye) initiates voted(V, M) = aye at T «—
pow (V, vote(V, M, _)) = true holdsat T

RONR also states that an agent is empowered to change

its vote before the result is announced. The revoke action
resets the values changed by the vote action, as given by the

following axioms (axioms for a nay vote are similar):

revoke(V, M) initiates votes(M) = (F,A) at T «
voted(V, M) = aye holdsat T A
status(M) = voting holdsat T' A
votes(M) = (F1, A) holdsat T' A
F=F1-1

revoke(V, M) initiates voted(V, M) = nil at T «
voted(V, M) = aye holdsat T A
status(M) = voting holdsat T

4.6 Permission and Obligation

We note, en passant, that there is no fixed relationship be-
tween powers and permissions. In some cases, an agent may
be permitted to perform an action simply if it is empowered.
This is the case for the ordinary member’s propose, second
and indeed vote actions. However, it is not the case for the
chair’s open_ballot and close_ballot actions. For example,
with closing a ballot, we need to trade off ‘correctness’ (en-
suring that every agent gets to vote, for example) against
flexibility (we do not want the protocol to block, waiting for
some agent to vote).

As an example, then, we could specify that the chair has
the power to close a ballot at any time after the ballot has
opened. However, we might also specify that the chair does
not have permission to exercise this power until a certain
condition has been met. We might also specify that under
other conditions the chair might even be obliged to close
the ballot. As an illustrative example, the following axioms
give permission when more than half the agents have voted
(assuming, say, there are 3 agents to vote), and an obligation
to close the ballot when all the agents have voted:

per(C, close_ballot(C, M)) = true holdsat T «—
pow (C, close_ballot(C, M)) = true holdsat T' A
votes(M) = (F,A) holdsat T A
(F+A)>2
obl(C, close_ballot(C, M)) = true holdsat T «
pow (C, close_ballot(C, M)) = true holdsat T A
votes(M) = (F,A) holdsat T A
(F+A)=3
Another obligation on the chair is to declare the result of
the vote; furthermore the declaration must be correct with
respect to the votes cast and the standing rules. For a simple
majority vote, the following axiom (amongst others) would
be used:
obl(C, declare(C, M, carried)) = true holdsat T «—
pow(C, declare(C, M, _)) = true holdsat T A
votes(M) = (F, A) holdsat T A
F>A
This obligation is crucial because it makes the power of vot-
ing truly meaningful: one can question the extent to which
an agent is truly empowered to vote if the chair is under
no obligation to declare the result according to the way the
votes are cast. A detailed investigation of this issue is be-

yond the scope of this paper and is addressed elsewhere [15]
blah blah blah.

4.7 Sanctions

Permissions and obligations are the mechanism for identi-
fying ‘undesirable’ behaviour. Sanctions are the mechanism
for addressing such behaviour. Relevant examples here in-
clude declaring a motion carried when it should not be, clos-
ing a ballot without permission, trying to vote twice, an
agent seconding its own proposal, and so on.

Sanctions are heavily domain-dependent, and the actual
form of representation is as complex as that of representing
motions. In this formulation of the voting protocol, we will
associate a 3-figure ‘sanction code’ (in the same way that 3-
figure error codes are used in Internet protocols) with each
type of undesirable behaviour. We then record, for each
agent, a list of such codes (initially empty). A code is added
to the list as a consequence of actions performed by the agent
that are considered transgressions of acceptable behaviour.

For example, the axiom below associates ‘sanction code
102’ with the act of declaring a motion not_carried contrary
to an obligation (to declare it carried:

declare(C, M, not_carried) initiates
sanction(C) = [(102, M)|S] at T
obl(C, declare(C, M, carried)) = true holdsat T' A
sanction(C) = S holdsat T

4.8 Additional Issues

We conclude this section with some brief remarks on three
other issues: casting votes, proxy votes, and objections.

According to RONR, in some situations, the chair gets
a vote (the casting vote) only when its vote would change
the result. In a majority vote with a tie, if F* = A, the
motion fails; however, the chair can (is empowered to) cast
a vote for the motion which would then carry. Similarly, if
F = A+ 1, the chair can cast a vote against the motion
which then does not carry. Alternatively, the chair can ab-
stain. (The motivation for this is to ensure that the chair
remains impartial.) Therefore the specification must ensure
that whichever agent occupies the role of chair is not neces-
sarily empowered to vote if it also occupies the role of voter,
and also, an additional axiom is required to empower the
chair to vote under the conditions indicated above.

It is also possible to allow proxy votes if there is a pro-
cedure (which we do not specify here) for establishing the
power to represent. A specification of representation rela-
tions can however be given in terms of institutional power.
Representation then enables one agent (the representative)
to act in the name of another (the principal). In this case,
we can then empower one agent to vote on behalf of another.

Finally, when all actions are performed ‘in order’ and the
result declared correctly, there is no problem. However, for
the sake of flexibility, an MVO may tolerate deviation from
the required behaviour. Examples are putting a motion to
a vote without waiting for a seconder; or closing a ballot
before everyone has voted if there is overwhelming support
for the motion. We can then distinguish different levels of
‘seriousness’ for behaviour which deviates from the ideal.
We can still use the sanction code to identify the ‘inappro-
priate’ behaviour but the penalties can reflect the perceived
seriousness of the violation. Penalties associated with sanc-
tions can come in many forms (cf. [4, 2]).

However, what is also required is an objection action,
which retracts the effect of an action that was ‘not accord-
ing to the rules’. A treatment of such an action has been

specified in [4], as part of an argumentation protocol, and
could also be used here.

5. ANIMATION & IMPLEMENTATION

In this section, we briefly consider the executable speci-
fication (animation) of the voting protocol as formalised in
the previous section, and issues this raises for use in a ‘fully-
fledged’ implementation.

5.1 Animation

A simple pre-processor converts axioms written in the
style of the previous section (with some minor syntactic vari-
ant) into Prolog code. It can then be queried in the same
way that other protocols specified in this way have been (e.g.
[3]). Testing of the voting protocol has mainly focused on
systematic runs of exemplary narratives and manual inspec-
tion that the agents’ powers, permissions, obligations and
sanctions accords with the specification. However, formally
proving specific properties has been discussed and demon-
strated in [4, 2].

For example, consider a ‘meeting’ of the MVO containing
four agents, cAgent, pAgent, sAgent, and vAgent. cAgent is
assigned to the role of chair; pAgent and sAgent qualify to
propose and second; and all four are assigned to the role
of voter. An exemplary narrative is illustrated in Table 3
(this is BTEX generated by a Tcl post-processor, from the
logfile output by the Prolog coding of the voting protocol).
The changes in the roles, powers, permissions, obligations
and sanctions have all been described by the axioms in the
previous section.

We make three observations about the animation. Firstly,
the results of the animation can be inspected to determine
that the specification works as intended. Furthermore, it
can also be used as a basis for verifying certain properties of
the system, see e.g. [3], although we do not develop this issue
here. Secondly, while voting has some distinctive features of
its own, there are simlarities with specifications of other pro-
tocols. This in itself is corroboration that the norm-governed
specification of protocols provides both patterns that can
be re-used and descriptive adequacy when new issues arise.
We contrast this to experience with the FIPA ACL specifi-
cations [8]. Thirdly, the animation raises a number of issues
when this specification is encoded in a system implementa-
tion which correctly implements the protocol. These issues
are discussed in the next section.

5.2 Implementation Issues

In this section, we briefly consider some of the implemen-
tation issues raised by the animation. These are:

e Message transport: the message transport needs to
support both multi-cast messages (e.g. for proposals,
seconds, and comments) and point-to-point messages
(for votes) within the same protocol. Similarly, there
are different levels of security required: proposals, com-
ments etc. are meant to be open and read by all, votes
may be private.

e Agent types: it must be determined if the target system
consists of purely software components, only human
‘agents’ (and the software is a decision-support system
[17]), or mixed. In each case, the extent to which the
system should be regimented [12] (the agents can only
do what they are permitted to do) has to be balanced
against the flexibility to perform actions ‘out of order’.

Table 3: Sample Run of the Voting Protocol

agent roles powers permissions obligations sanctions

cAgent chair voter open_session open_session
pAgent, sAgent, vAgent: role of voter only [manual edit to fit page size]
happens(open_session(cAgent, sesh))

cAgent chair voter close_session close_session
pAgent voter proposer propose propose
sAgent voter proposer propose propose
vAgent voter
happens(propose(pAgent, m1))
cAgent chair voter close_session
pAgent voter proposer
sAgent wvoter proposer seconder second second
vAgent voter
happens(second(sAgent, m1))
cAgent chair voter open_ballot close_session open _ballot open_ballot
pAgent voter proposer
sAgent voter proposer
vAgent voter
happens(open_ballot(cAgent, m1))
cAgent chair voter close_ballot close_session
pAgent voter proposer vote vote
sAgent voter proposer vote vote
vAgent voter vote vote
happens(vote(pAgent, m1, aye))
cAgent chair voter close_ballot close_session
pAgent voter proposer
sAgent voter proposer vote vote
vAgent voter vote vote
happens(vote(sAgent, m1, nay))
cAgent chair voter close_ballot close_session close_ballot
pAgent voter proposer
sAgent voter proposer
vAgent voter vote vote
happens(vote(vAgent, m1, nay))
cAgent chair voter close_ballot close_session close_ballot close_ballot
pAgent voter proposer
sAgent voter proposer
vAgent voter
happens(revoke(sAgent, m1))
cAgent chair voter close_ballot close_session close_ballot
pAgent voter proposer
sAgent voter proposer vote vote
vAgent voter
happens(vote(sAgent, m1, aye))
cAgent chair voter close_ballot close_session close_ballot close_ballot
pAgent voter proposer
sAgent voter proposer
vAgent voter
happens(close_ballot(cAgent, m1))
cAgent chair voter declare close_session declare(carried) declare(carried)
pAgent voter proposer
sAgent voter proposer
vAgent voter
happens(declare(cAgent, m1, not_carried))
cAgent chair voter close_session close_session 102
pAgent voter proposer propose propose
sAgent voter proposer propose propose
vAgent voter
happens(close_session(cAgent, sesh))
cAgent chair voter open_session open_session 102

pAgent, sAgent, vAgent: role of voter only [manual edit to fit page size]

e Self-modification: the scope of motions is potentially
very broad, and so not only can motions be about de-
cisions to be made concerning the MVO, there may
also be motions about the process by which those de-
cisions are reached. For example, there may be a mo-
tion to change the simple majority to 2/3 majority
of those that voted. To achieve this in the anima-
tion requires replacing the line F' > A with the line
(F/(F 4+ A)) > .667. To effect this in a real imple-
mentation requires interpretable code or some form of
dynamic compilation.

e Sanctions: the animation shows that it is possible to
detect sanctions, and the code is helpful in indicating
the nature of the violation. Applying and enforcing a
penalty for the sanction is an entirely different matter,
and this needs to be implemented relative to a legal
contract agreed between the partners in the MVO.

e Monitors: the role of monitors in the voting protocol
is to be informed of agents’ votes and to verify that
declared results do actually concur with the way that
votes were cast.

It is this final issue — the correct declaration of the result
according to the standing rules — which is of utmost impor-
tance in any ‘real’ system implementation which enacts the
protocol. Recall the specification included a fluent votes for
each motion, whose range was a 2-tuple. One element was
incremented each time a vote was cast for, or against, the
motion. However, the animation effectively takes an ‘exter-
nal’ view of a ‘perfect’ system: in reality, the data structure
for counting votes has to be stored somewhere, furthermore,
it has to be accessed correctly, and it must support the cor-
rect decision being made (i.e. a guarantee that the chair has
declared the result correctly according to the rules).

This is important in light of the 2004 ACM Statement on
E-Voting [1], which includes the stipulation that:

[computer-based electronic] voting systems should
enable each voter . .. to verify that his or her vote

has been accurately cast and to serve as an inde-

pendent check on the result produced and stored

by the system.

6. RELATED RESEARCH

The formalization of protocols and rules of procedure in
terms of powers, permissions, and so on has been applied
to the contract-net protocol [3], an argumentation protocol
[4] and a resource control protocol [2]. Prakken [16] gives
a comprehensive specification of Robert’s Rules of Order in
first-order logic, but is not as detailed or as specific with
respect to the normative aspects. In particular, the power
to vote and the inextricably linked obligation on the chair
to declare the result correctly is missing.

Related work on voting in multi-agent systems sees voting
as an element of mechanism design in co-ordination, simi-
lar to auctions, team formation and negotiation. Therefore
the emphasis of the study is the voting strategy to prevent
manipulation, rather than the voting procedure to ensure
correct results, which is the emphasis here. So, for exam-
ple, Conitzer and Sandholm [7] develop a voting system for
choosing candidate based on preference, whose computa-
tional complexity encourages voters to express their true
preferences candidly, rather than engage in tactical vot-
ing. Our work focuses on the external specification of the

decision-making process between all agents, not the inter-
nal deliberations of each agent. This is concerned with the
dynamic system of normative positions that is modified by
agents’ interactions, and the dynamic system of norms that
governs their behaviour, rather than specifying and proving
properties of algorithms that optimise the outcome.

Electronic voting (e-voting) has been the subject of con-
siderable interest from the e-government perspective. There
are commercial systems available which offer to manage on-
line elections (e.g. Votenet [11]), but these are not based on
a representation of the norms governing the system. In addi-
tion, there has been significant work in designing a decision-
support system (called ZENO) for online deliberative assem-
blies [17, 16] based on RONR. However, the principal con-
cern here is maintaining public confidence in the electoral
process, in particular that the winning candidate did actu-
ally receive a mandate from the popular vote. The fact that
this requirement is integrally captured by the specification
should be a factor in engineering ‘correct’ software. There-
fore the approach developed here can be seen as complemen-
tary to conventional security techniques, but for electronic
voting in public elections even this may not be enough, given
the current limitations of security in host machines, in the
Internet itself, or in the face of systematic malfeasance.

This work also has some bearing on the issue of communi-
cation in multi-agent systems, where no voting protocol has
received the same attention as, for example, the contract-net
protocol. FIPA specified the Borda Count Protocol [8] for
voting, but only defined a structured exchange of messages
in AUML, and not the meaning of the message themselves
in terms of ‘feasibility preconditions’ and ‘rational effects’.
Therefore a thorough analysis and specification of a voting
protocol seems to be required: the question then is how best
to deliver it. There are at least four main approaches (with
some overlap) to Agent Communication Languages, primar-
ily based on the concepts they deal with: for example social
commitments [20], joint intentions [6, 8], conversation poli-
cies [10], and normative systems (as here and in [3, 4, 2]).
Considering the latter works, it is the case that negotiation,
argumentation and resource control protocols can be speci-
fied in other ways. However, it is a challenge to see how vot-
ing can be characterised in terms of joint intentions, social
commitments, or policies: at the very least, the additional
concept of institutional power is also required.

7. SUMMARY & CONCLUSIONS

The development of virtual organizations has benefited
considerably from agent technology, from implementation
(e.g. [19]) to legal perspectives [5], and voting is a well-
known aspect of mechanism design for multi-agent systems
[7]. Here, we have considered a virtual organization based
on agent technology as a kind of open agent society. One ap-
proach to specifying such a society is to use the concepts of
norm-governed systems [3]. This work was concerned, then,
with taking a norm-governed systems approach to multi-
agent virtual organizations (MVO). As a potentially tran-
sient system, an MVO has a life cycle: we observed that
there were many occasions in this life cycle were a decision
was required. As a non-hierarchical system of independent,
autonomous and self-interested peers, an ostensibly fair way
to reach these decisions is to take a vote. We therefore
developed a voting protocol for norm-governed virtual orga-
nizations. This protocol was specified in the Event Calculus

and has been animated in Prolog, which has been useful in
highlighting key issues in implementation. We are currently
developing a run-time implementation of this formalization
taking these considerations into account.

There also remains, however, substantial further work to
complete both the specification and implementation. This
work ranges from the incremental, such as studying varia-
tions of the protocol to handle, for example, concurrent mo-
tions, secret ballots, and candidate elections; to the radical,
whereby different actions languages such as C* [9] or en-
hanced versions of the Event Calculus are used for the spec-
ification. The radical approach is required to understand
better the alternative conceptual formalizations of rights (of
voters) and duties (of vote counters) in voting protocols,
and also to provide a computational platform more suited
to representing and reasoning about these alternatives.

The voting protocol itself may turn out to be a valuable
generic resource, as it appears to be central to many types
of transient, ad hoc alliance in dynamic systems. It appears
to be common across applications, but also across ‘layers’
within applications. For example, we have seen how voting
occurred in formation, role assignment, and general man-
agement of a virtual organization. It has been used as a
decision-support system in CSCW tools [17], and can also
be used for admission, session and resource control in ad
hoc networks. It is generally applicable to for open sys-
tem which requires run-time modification or completion of
a policy (partially) specified at design time. A formal, well-
understood protocol for voting therefore offers a viable and
in some cases more suitable alternative to alternative mech-
anisms for self-management and self-organization.

Finally, the analysis presented here has demonstrated the
importance of normative concepts like powers, permissions,
and obligations in socially-organized interaction. It has high-
lighted that the process by which a decision is reached must
also preserve the validity of the outcome, i.e. the decision
is correctly reached (this is a different matter to reaching
the correct decision). In one sense, having a vote should
be like having access to an abstract voting machine, which
verifies the voter and correctly records the vote. This has
effectively been encapsulated in the formalization presented
here. It would be interesting to see how similar properties
are given using social commitments or joint intentions.

8. ACKNOWLEDGMENTS

This research is being carried out with the support of the
NoGoSoN project and is funded by the UK EPSRC Grant
No. (GR/S69252/01). We gratefully acknowledge the useful
comments of the anonymous reviewers.

9. REFERENCES

[1] ACM. ACM Statement on E-voting.
http://www.acm.org/usacm/weblog/index.php?p=73,
2004.

[2] A. Artikis, L. Kamara, J. Pitt, and M. Sergot. A
protocol for resource sharing in norm-governed ad hoc
networks. In Proc. DALT’04 Workshop. Springer
Verlag, 2004 (to appear).

[3] A. Artikis, J. Pitt, and M. Sergot. Animated
specifications of computational societies. In
C. Castelfranchi and L. Johnson, editors, Proceedings
AAMAS’02, pages 1053-1062. ACM Press, 2002.

[4] A. Artikis, M. Sergot, and J. Pitt. An executable
specification of an argumentation protocol. In
Proceedings of Artificial Intelligence and Law
(ICAIL), pages 1-11. 2003.

[5] C. Cevenini. Legal considerations on the use of
software agents in virtual enterprises. In J. Bing and
G. Sartor, editors, The Law of Electronic Agents,
volume CompLex 4/03, pages 133-146. Oslo:
Unipubskriftserier, 2003.

[6] P. Cohen and H. Levesque. Communicative actions for
artificial agents. In V. Lesser, editor, Proceedings
ICMAS95. AAAT Press, 1995.

[7] V. Conitzer and T. Sandholm. Universal voting
protocol tweaks to make manipulation hard. In Proc.
18th IJCAI’03, Acapulco, Mexico, 2003., pages
781-788. 2003.

[8] FIPA. FIPA’97 specification part 2: Agent
communication language. Foundation for Intelligent
Physical Agents, http://www .fipa.org, 1997.

[9] E. Giunchiglia, J. Lee, N. McCain, V. Lifschitz, and
H. Turner. Nonmonotonic causal theories. Artificial
Intelligence, 153(1-2):49-104, 2003.

[10] M. Greaves, H. Holmback, and J. Bradshaw. What is
a conversation policy. In F. Dignum and M. Greaves,
editors, Issues in Agent Communication, volume
LNAT1916, pages 118-131. Springer-Verlag, 2001.

[11] Voting Systems Inc. Votenet.
http://www.votenet.com.

[12] A. Jones and M. Sergot. On the characterization of
law and computer systems In J.-J. Meyer and
R. Wieringa, editors, Deontic Logic in Computer
Science. John Wiley and Sons, 1993.

[13] A. Jones and M. Sergot. A formal characterisation of
institutionalized power. Journal of the Interest Group
in Pure and Applied Logics, 4(3):429-455, 1996.

[14] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67-96, 1986.

[15] J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting
in online deliberative assemblies. In A. Gardner and
G. Sartor, eds., Proc. ICAIL’05. 2005 (to appear).

[16] H. Prakken. Formalizing Robert’s Rules of Order: An
experiment in automating mediation of group decision
making. GMD report 12 (www.bi.fraunhofer.de/
publications/report/0012/), 1998.

[17] H. Prakken and T. Gordon. Rules of order for
electronic group decision making. a formalization
methodology. In J. Padget, editor, Collaboration
between Human and Artificial Societies, volume 1924
of LNAI pages 246-263. Springer-Verlag, 1999.

[18] H. Robert and Others. Robert’s Rules of Order Newly
Revised 10th edition. Cambridge, Mass.: Perseus
Publishing, 2000.

[19] W. Vasconcelos, D. Robertson, C. Sierra, M. Esteva,
J. Sabater, and M. Wooldridge. Rapid prototyping of
large multi-agent systems through logic programming.
Annals of Mathematics and Artificial Intelligence,
41:135-169, 2004.

[20] M. Venkatraman and M. Singh. Verifying compliance
with commitment protocols: Enabling open web-based
multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 2(3):217-236, 1999.

