Animated Specifications of Computational Societies

Alexander Artikis!, Jeremy Pitt' and Marek Sergot?
Imperial College of Science, Technology and Medicine
!Department of Electrical and Electronic Engineering, London SW7 2BT, UK
2Department of Computing, London SW7 2BZ, UK

{a.artikis, j.pitty@ic.ac.uk, mjs@doc.ic.ac.uk

ABSTRACT

E-markets and negotiation protocols are two types of appli-
cation domains that can be viewed as open computational
societies. Key characteristics of such societies are agent het-
erogeneity, conflicting individual goals and limited trust.
The risk that members of such societies will not conform
to specifications imposes the need for a framework that will
facilitate the designers to determine to what extent it is
desirable to deploy their agents in such societies. We ad-
dress this need by presenting a formal framework for spec-
ifying, animating, and ultimately reasoning about and ver-
ifying the properties of open computational systems. We
view computational systems from an external perspective,
alming to account for the institutional and social aspects of
these systems. We identify the key concepts and illustrate
how they are used by formalising an example employing the
contract net protocol. The framework and associated logi-
cal inferences have been implemented as a software platform
that provides automated animation of the global states of an
open system (society) during its execution. Simulations have
demonstrated that the implementation of the framework es-
tablishes a foundation for a rich, formal representation of
open computational societies.

Categories and Subject Descriptors
1.2 [Computing Methodologies]: Artificial Intelligence

General Terms

Design, Experimentation

Keywords

Formal Specification, Norm-Governed Multi-Agent Systems

1. INTRODUCTION

E-markets and digital media rights management are exam-
ples of application domains where software agents form com-
putational societies in order to achieve their goals. Key

characteristics of such societies are agent heterogeneity, con-
flicting individual goals, limited trust and a high probability
of non-conformance to specifications. Consequently, it is of
eminent importance that the activity of such societies is gov-
erned by a framework with formal, verifiable and meaningful
semantics [16]. We address such a requirement by present-
ing a formal framework for specifying, animating, and ulti-
mately reasoning about and verifying the properties of open
computational societies/systems, i.e. systems where ‘the be-
haviour of the members and their interactions cannot be

predicted in advance’ [5].

Several approaches have been proposed in order to pro-
vide formal tools for the specification and modelling of open
agent systems. First, work that stems mainly from philos-
ophy and the study of legal systems uses metaphors from
human systems and behaviour in order to model computa-
tional systems and behaviour respectively. To our knowl-
edge, there exists no implementation of these concepts in a
computational level (in the context of agent societies). Sec-
ond, research originating from the distributed systems field
considers agents as computer processes and ascribes mental
attitudes to them from an external perspective. Most of the
frameworks in this category do not account for the legal or
social concepts of agent systems. Third, work originating
from computational organisational theory often views multi-
agent systems (MAS) as computational organisations. Con-
cepts like organisational rules and structures and institution-
alised patterns of interactions are studied. However, ‘too
little has been done in organisation theory to supply precise
qualitative models of norm-governed interaction’ [12].

We describe a framework for the specification of compu-
tational systems that draws resources from these categories.
We take a bird’s eye view of the computational systems (as
opposed to an agent’s own perspective whereby it reasons
about how it should act). We identify a number of key
concepts of computational systems, namely the social con-
straints, social roles and social states. We specify these using
a temporal formalism from AI (the Event Calculus, in the
version presented here), and concepts from the formal study
of legal and social systems (institutionalised power, norma-
tive positions), and distributed computing (state transition
systems). In particular, we define three levels of specifica-
tion for the social constraints:

e What kind of actions count as wvalid actions. Distinguish-
ing between valid (‘effective’) and invalid actions enables
the separation of meaningful from meaningless activities.

e What kind of actions are permitted. Determining the per-
mitted, prohibited, obligatory actions enables the classifi-

cation of the agent behaviour as ‘legal’ or ‘illegal’, ‘ethical’

or ‘unethical’, ‘social’ or ‘anti-social’, etc.
e What are the sanctions and enforcement policies that deal

with ‘illegal’, ‘unethical’, ‘anti-social’ behaviour.
This kind of specification is the basis of a software platform
that provides automated animation of the global states of
agent systems. The information produced from the auto-
mated animation is available both to the society designer
and the society members. This paper is divided in four
main parts. The first presents a theoretical framework for
the specification of open systems and the background work
on which this framework is based. The second describes
a specification and a logical animation of the execution of
a contract-net protocol (by an open society). The third
presents a computational framework that implements the
theoretical one; the fourth discusses related and future work.

2. BACKGROUND

We differentiate between valid (‘effective’) and invalid ac-
tions with the use of a theory of institutionalised power.
We follow Jones and Sergot [6] and view agent societies as
instances of normative systems in the sense that agent in-
teractions are described in terms of what these agents are
permitted or obliged to do and in terms of other more com-
plex normative relations between them. Our specification
of permitted actions is motivated by a theory of normative
positions. Finally, we reason about the agents’ actions with
the use of the Fvent Calculus.

2.1 |Institutionalised Power

The term nstitutionalised power! refers to the standard fea-
ture of all norm-governed organisations whereby designated
agents are empowered, by the institution, to create facts
that have a conventional significance within that institu-
tion. Searle [13] for example has distinguished between brute
facts and institutional facts. Being in physical possession of
an object is an example of a brute fact (it can be observed);
being the owner of that object is an institutional fact.

Jones and Sergot [7] present a formalisation of this concept
in terms of an even more fundamental notion, viz., that
within a given institution, certain kinds of acts or states
of affairs have conventional significance, in that they count
as other kinds of acts or states of affairs. For example, in
an auction house, the auctioneer’s performing the speech
act ‘the item z is sold’ counts as, in the auction house, a
way of establishing that item z is sold. One then says that
the auctioneer has the power, or is empowered, within the
auction house, to establish that item z is sold. The same
action performed by an agent without this power has no
effect. The owner of item x thereby acquires further powers:
e.g. to transfer ownership of the item to another agent.

2.2 Normative Positions

The term normative positions refers to the range of pos-
sible normative relations that may exist between pairs (or
larger collections) of agents with respect to performing a cer-
tain kind of action in any given circumstance. Examples of
such relations are right (of one agent versus another), duty
(of one agent to another), and so on. Sergot [14] presents a
formal account of such relationships with references to the

"We will interchangeably use the terms ‘institutionalised
power’ and ‘power’.

early work on social and legal theory on which it builds.
In general, these are the kinds of normative relationships we
want to be able to represent. For the purposes of this paper,
we restrict attention to the simplest types of normative po-
sitions only: obligations and permissions. In [14] obligation
is represented with the deontic operator O which expresses
the idea that ‘it is obligatory that’. Permission (represented
by the deontic operator P) can be taken to be the dual of
obligation, i.e. PA =4ef ~O—A. Further discussion of alter-
native treatments is beyond the scope of this paper.

2.3 Event Calculus

The Event Calculus (EC), introduced by Kowalski and
Sergot [8], is a formalism that enables reasoning about events.
It is based on a many-sorted first-order predicate calculus.
Events (actions) in EC initiate and terminate fluents, which
are properties that have different values at different points
in time. The value of fluents is affected by the occurrence
of events. A fluent starts to hold after the occurrence of an
event that can initiate it. Similarly, a fluent ceases to hold
after the occurrence of an event that can terminate it. The
Event Calculus used in this paper is a subset of the ‘full
version’ presented in [15].

3. SPECIFICATION OF OPEN SYSTEMS

We aim to provide a formal framework for executable speci-
fications of open computational societies. We regard a com-
putational society as open if the following properties hold:
1. The behaviour of the members and their interactions can-

not be predicted in advance [5].

2. The internal architecture of the agents is not publicly
known.

3. The members of the society do not necessarily have com-
mon goals, desires or intentions.

The first property implies that the execution of open soci-
eties is non-deterministic. Open societies are always subject
to unanticipated outcomes in their interactions [5]. Accord-
ing to this property, the two remaining properties can be
attributed to open agent societies. The second property im-
plies that an open society can have members with different
internal architectures. Therefore, we will treat open soci-
eties as heterogeneous ones. Moreover, we have no direct
access to an agent’s mental state and so we can only in-
fer things about it. The third property implies that the
members of an open society may fail to, or choose not to,
conform to the (society) specifications in order to achieve
their individual goals.

Often in the literature open agent societies are those where
agents can enter or leave the society at any time [5]. We do
not specify the way in which agents enter or leave societies.
Usually, agents enter a society after having successfully ex-
ecuted a role-assignment protocol. The specification of this
procedure/protocol is application-specific. Our definition of
an agent society as open is irrespective of the protocols that
specify the ways by which agents enter or leave societies.

We identify a number of concepts that characterise an
open agent society of this type, now further structured as
follows. What constitutes a society is a set of agents, a set
of constraints on the society (norms, and other constraints,
such as physical and logical constraints), a set of roles that
members can play, the state of the members and the envi-
ronment in which they act, a communication language, re-
lationships between the members, including ownership and

Table 1: Fluents of the specification of open societies

Fluent

Valid(ag, act)
Pow(ag, act)
Permitted(ag, act)
Obliged(ag, act)
Role_of (1, ag)
Preconditions(r, ag)
Assign(r, ag)

Meaning
ag performs valid action act
ag has the power to perform act
ag is permitted to perform act
ag is obliged to perform act
ag occupies role r
ag satisfies the preconditions of r
agent ag is assigned to role r

representation relations, and the structure of the society. In
this paper we focus on the specification of the social states,
social constraints and social roles. Due to the similarity of
the term open societies to that of institutions [1, 12] (the
only difference being that open societies are not necessarily
goal-directed), we will use the terms institutional constraints
and social constraints interchangeably (similarly we will in-
terchangeably use institutional roles and social roles, and
institutional states and social states).

3.1 Social Constraints

The semantics of an action is given by specifying in the
Event Calculus what states of affairs that action can initiate
and terminate. For example, the auctioneer’s announcement
of an item for sale initiates, among other things, the fact
that the auction has started (provided of course that a set of
further properties hold). Furthermore, this announcement
terminates the power of the auctioneer to start an auction
for the same goods (again provided that a set of further
properties are satisfied).

Social constraints are also expressed by means of the Event
Calculus. They are represented as a conjunction of Initiates
and Terminates formulas (i.e. the domain description [15])
and as a conjunction of HoldsAt formulas (i.e. the state
constraints [15]). With the use of the Initiates and the
Terminates formulas the social constraints define the se-
mantics of the agents’ actions. Therefore, in different so-
cieties, or in different institutions within the same soci-
ety, the same action might have different semantics (initi-
ate/terminate different states of affairs).

We follow Jones and Sergot [7] and maintain the standard,
in the study of social and legal systems, long established
distinction between permission, physical capability and in-
stitutionalised power. For example, a bidder in a certain
auction may be empowered to make a bid for an item, in
the sense that if he does communicate the bid in the pre-
scribed manner, it will count as a valid bid and must be
taken into consideration by the auctioneer. But it may be
that the bidder, though having the power to bid, is never-
theless not permitted to bid, in the sense that if he does bid
he violates some norm that may be (temporarily perhaps)
in place. And it could be that a bidder, though empowered
and permitted to bid, may nevertheless be unable to bid,
because he is (temporarily perhaps) unable to perform the
physical act by means of which the bid is communicated.

Accordingly, we have three levels of specification of the
social constraints of open systems. First, we specify what
constitutes an action as being valid® (‘well-formed’, ‘effec-

2We use the term walid in this paper acknowledging the fact
that this term may not be appropriate in all domains.

tive’). Second, we specify what actions (valid, invalid) are
permitted. Based on permissions, prohibitions and obliga-
tions we can classify the behaviour of the agents into var-
ious categories such as ‘social’, ‘anti-social’ [9] etc. Third,
we specify what are the sanctions that deal with anti-social
behaviour and any other mechanisms designed to reduce it.

3.1.1 Valid Actions

On the first level of specification, we say that an action
counts as a valid (‘well-formed’, ‘effective’) action at a point
in time if and only if the agent that performed that action
had the institutionalised power to perform it at that point
in time. This constraint is formulated in EC as follows®:

HoldsAt(Valid(agent, action), time) <
HoldsAt(Pow(agent, action), time)A (1)

Happens(Action(agent, action), time)

Differentiating between valid and invalid actions is of great
importance in the analysis of agent systems. For example,
in an auction, the auctioneer has to determine which bids
are valid and therefore, which bids are eligible for winning
the auction.

3.1.2 Permitted Actions

The second level of specification defines which actions (valid,
invalid or future ones) are permitted, prohibited or obligatory.
This definition is application-specific. It might be that in a
system an action is permitted at time ¢ if and only if the
agent that performed it had the power to do so at ¢:

HoldsAt(Permitted(agent, action), time) <
HoldsAt(Pow(agent, action), time)

In that case, invalid actions are not permitted and their per-
formance may be considered ‘anti-social’. In another setting,
we might want to forbid an agent to perform an action even
if he has the power to perform that action. For example, in
an auction house the bidders have the power to bid when the
auctioneer announces an item. However, we might want to
forbid agents from bidding if they do not have the resources
to pay for the bid. In other words, even if they are em-
powered to bid they might not be permitted to do so. The
details are application-dependent. Similarly, the specifica-
tion of obligations is application-specific. Determining what
actions are permitted, prohibited or obligatory enables the
classification of the behaviour of the agents and the system
as social/anti-social, acceptable/unacceptable [9] etc.

3.1.3 Enforcement Policies

Finally, on the third level of specification, the definition of
the sanctions and the enforcement policies is also application-
specific. For example, in a contract-net protocol, the man-
ager’s failure to pay the agreed price to the awarded con-
tractor by a particular time may create a sanction to the
effect that the manager is no longer empowered to initi-
ate a new contract-net protocol. In a different setting, the
same type of misbehaviour might create a different sanc-
tion expressed in terms of some social concept such as bad
reputation. Sanctions are one means by which an agent sys-
tem can discourage unacceptable or anti-social behaviour.
Another mechanism is to try to devise additional controls

#Variables (denoted by lowercase first letter) are assumed
to be universally quantified unless otherwise indicated.

(physical or institutional) that will force agents to comply
with their obligations (for example, certain bids are physi-
cally blocked).

Institutional powers, normative positions and sanctions
are ascribed to the agents from an external perspective.
Agents are usually aware of their institutional powers (other-
wise they cannot make plans for creating institutional facts,
such as ownership relations) but they are not necessarily
aware of the permissions associated with them. Further-
more, it might be the case that agents have to comply with
a different set of internal norms, imposed on them by their
designers (say). These are part of the internal architecture
of the agents. In this paper, we deal only with external
normative positions and sanctions, i.e. those ascribed to the
agents from an external perspective.

3.2 Social Roles

A social role r is defined as the set of preconditions that
an agent must satisfy in order to occupy r, and the set of
constraints that describe the behaviour of the agent while
occupying 7.

The preconditions of a role are properties that an agent
must have in order to occupy that role. Such properties
may include a set of competences. We illustrate the concept
of role preconditions by describing a role-assignment pro-
tocol (as mentioned earlier, agents usually execute a role-
assignment protocol before entering a society). A simple
role-assignment protocol can be briefly described as follows?:
A role-assigning authority (e.g. a trusted third party) an-
nounces a role to a set of agents and specifies the precon-
ditions that the agents should satisfy in order to be eligible
to get the role. The agents that are interested in occupying
that role apply for it specifying whether or not they satisfy
the role preconditions. Finally, the role-assigning authority
decides which agents will be assigned the role and which
agents will not. The decision of the role-assigning authority
will be mainly based on two factors: (i) whether an agent
satisfies the role preconditions or not, and (ii) whether the
role-assignment constraints are violated or not. The role-
assignment constraints constrain the assignment of roles and
are defined in an application-specific manner. For exam-
ple, in an auction protocol, the role-assignment constraints
would specify that only one agent should occupy the role
of the auctioneer. Therefore, the power of the role-assigning
authority during the execution of a role-assignment protocol
(that takes place before the commencement of an auction)
is formalised as:

HoldsAt(Pow (authority, Assign(Auctioneer, agA)), time) «—
HoldsAt(Role_of (TTP, authority), time)A
HoldsAt(Preconditions(Auctioneer, agA), time) A 3)
—HoldsAt(Role_of (Auctioneer, agB), time)

Constraint (3) states that a role-assigning authority (e.g. a
trusted third party (TTP)) has the power to assign the role
of the auctioneer to an agent (say agA) if (i) agA satisfies
the preconditions of the role (see Table 1) of the auctioneer
(we assume that agA has applied for that role), and (ii)
no other agent has already been assigned the role of the
auctioneer. As far as the role preconditions are concerned,

4This is just an example of a role-assignment protocol.
The specification of such kinds of protocols is application-
specific.

it is sometimes desirable to impose the following constraint:

HoldsAt(Preconditions(rolename, agent), time) «—
HoldsAt(Role_of (rolename, agent)), time)

(4) states that it is a constraint of the system that an
agent satisfies the preconditions of a role as long as he oc-
cupies that role. This simplifies the construction of some
computational societies, though it must be noted that it
does not apply in general.

The constraints that describe the behaviour of an agent
occupying role r specify the powers and normative positions
that are associated with r. These constraints are expressed
as a conjunction of Initiates, Terminates and HoldsAt for-
mulas. The first two types of formulas state what states of
affairs an agent occupying role r can initiate and terminate
due to the fact that he occupies r. The third type of formu-
las states what are the powers and permissions that an agent
occupying the role r has due to the fact that he occupies r.
The set of social constraints is a super-set of each set of role
constraints. In particular, the set of social constraints is
the union of the sets of constraints characterising each role
combined with the set of role-assignment constraints and
the set of role-independent constraints i.e. constraints that
apply to all members of a society, irrespective of the roles
they occupy.

3.3 Social States

Time is taken to be finite, discrete, linear, with time
points ranging over the natural numbers. Temporal inter-
vals are defined as pairs of points. The next time point
of t is t+ 1. The global state of a multi-agent system
is represented in a similar way to Fagin et al. [3]. The
set of global states of a multi-agent system is defined as
S CLex Ly X...x Ly X Lin, X ... X Lin, . Aglobal state s =
(lesliy ooy bny ling -, Lin,) Tepresents a snapshot of the multi-
agent system in which agent m is in state l,, € L, the insti-
tution in; is in local state i, € Lin;, and the environment
in state l. € L.. Within each society there are other group-
ings which (following standard usage [1, 12]) we call ‘insti-
tutions’. Such institutions have their own constraints, roles,
communication language etc. We model the local states of
the institutions that are part of the greater society. The local
states of the institutions contain information like the insti-
tutional powers and the normative positions of their agents.
Therefore, the focus is on the local states of the institutions
(that are part of the society) rather than the local states of
the agents. However, the example treated in this paper con-
tains (or can be viewed as containing) only one institution.
Consequently, for the purposes of this paper we will only
deal with the agents’ local states. The term global state is
interchangeably used with the term global social state.

4. SPECIFICATION OF A CNP

In order to illustrate the way we specify and animate
agent societies, we describe, specify and animate in this sec-
tion a society that executes a variation of the contract-net
protocol (CNP) [17]. In [10] we describe an abstract pro-
ducer/consumer (APC) scenario where producers sell infor-
mation to consumers. The producers are explorer agents
that map out the distribution of oil in their environment and
consumers are cartographer agents that initiate contract-net
protocols to acquire the maps from the explorers. The main

speech act syntax= B ’
cfp(sender,receiver,content,round)
bid(sender,receiver,content,round) [n]:cfp
award(sender,receiver,content,round)
reject(sender,receiver,content,round)
inform(sender,receiver,content,result,round)
pay(sender,receiver,result,round)
transition syntax=
[no. of recipients]:speech act
protocol constraints=

1 manager,n bidders, [nkefp [higs submitted
m<=n,k<=n-1
timeout
o
out

cfps submitted

timeout

bids considered lime>©
out

[1]:award and/or
[K]:reject
timeout
[1]:inform im
inform submitted contractor awarded Ome—‘ award submitted

timeout
timeom@

timeout

[1]:pay

pay submitted

Figure 1: The State Transition Diagram of the CNP.

roles of the society that executes the contract-net protocol
are that of the Cartographer and that of the Ezplorer (we
will intermittently call cartographers managers and explor-
ers bidders or potential contractors). A brief description
of the CNP (Figure 1) is the following: a manager issues
a call for proposals (Cfp) for a particular task to a set of
bidders. Bidders submit their bids (if they are interested)
to the manager. The manager then has three choices: (i)
award a particular bid, (ii) reject the received bids, or (iii)
issue a new Cfp incrementing the protocol round®. In the
first two cases the protocol ends. In the third case the pro-
tocol starts again. Actions must be performed according to
specified deadlines/timeouts.

It is important to outline a number of assumptions that we
make in order to facilitate our analysis. Our main assump-
tion is that when an agent sends a message to another agent,
the recipient will always receive the message (i.e. no mes-
sages are lost). In addition, all messages are received at the
same time-point that they were sent. Furthermore, in the
analysis followed below we assume that a role-assignment
procedure has already been completed. These assumptions
are made in order to abstract from low-level details such as
the reliability of the message-passing system and focus on
our main objective which is the specification and the repre-
sentation of the CNP.

4.1 Social Constraints

In this variation of the CNP we do not define any role-
independent constraints. The set of all social constraints in
this example is the union of the cartographer-related con-
straints and the explorer-related constraints. We describe

5The protocol round is a parameter of the description of
the actions that agents perform. It is represented by an
integer that, initially, is equal to 1 and is incremented by 1
each time a cartographer performs a valid Cfp. Alternative
formalisations may omit the protocol round.

the social constraints, and thereby implicitly describe all
role constraints.

4.1.1 Valid Actions

First, we specify the powers of the agents that execute the
CNP and therefore their ability to perform valid (‘effective’)
actions. Figure 1 illustrates all possible valid actions® that
the agents of the CNP can perform and the state transitions
that these actions create. At the initial state (before the
commencement of the CNP) the agent that occupies the role
of the Cartographer (represented by the variable ¢) has the
power to issue a call for proposals (Cfp) to all the agents
that occupy the role of the Explorer (represented by the
variable e). This is formulated as follows:

InitiallyP (Pow(c, Cfp(c, e, content, 1))) <
HoldsAt(Role_of (Cartographer, c), 0)A (5)
HoldsAt(Role_of (Explorer, e), 0)

Issuing a valid Cfp to a set of bidders empowers these bidders
to issue a valid Bid. In other words:

Initiates(Cfp(c, e, content, round),
Pow(e, Bid(e, c, relatedContent, round)), time) <
HoldsAt(Valid(Cfp(c, e, content, round)), time) A
Matches(content, relatedContent)

The Matches predicate specifies whether two task descrip-
tions are related or not and is defined in an application-
specific manner. A valid Cfp terminates, among other things,
the power of the cartographer to issue another valid Cfp:

Terminates(Cfp(c, e, content, round),
Pow(c, Cfp(c, e, content, round)), time) «— (7)
HoldsAt(Valid(Cfp(c, e, content, round)), time)

When the CNP commences (this happens when the cartog-
rapher issues a valid Cfp) a global clock starts ticking. The
cartographer will have the power to Award or Reject any of
the incoming valid bids only when the first timeout elapses.
Therefore, a valid Bid does not immediately empower the
cartographer to issue a valid Award or Reject. The timeout
initiates that power. Timeouts are viewed as events (with
semantics in the context of the states of affairs they initi-
ate and terminate) even though they are not performed by
a member of the society. All the powers are propagated in
the manner outlined above. If an agent performs an invalid
action then this action is recorded but it has no effect (in
this example) on the state transition mechanism.

4.1.2 Permitted Actions

We now specify what actions are permitted, prohibited
and obligatory during the execution of the CNP. For this
variation of the CNP permissions are specified by (2), i.e.
an agent is permitted to perform an action if and only if
he has the power to perform that action. This would not
hold in general, as explained earlier. Obligations arise in
three situations. First, issuing a valid Award obliges the

SFrom this point onwards we will represent valid actions as a
fluent with only one parameter, the action description. Con-
straint (1) is trivially modified to incorporate this change.

Table 2: Animation of a run of the CNP.

Time Events agent & agent & agent C
0 O O Pow(C,Cfp(C,{E,E},content, round))
1 Cfp(C{E.E3},Map(x),1) | Pow(E,Bid(E,;C, Pow(E,Bid(E,C,]
relatedContent,1)) relatedContent, 1))
2 Bid(E;,C,Map(w),1), O O O
Bid(E;,C,Map(z),1)

3 Timeout O O Pow(C, Award(C,EMap(w),1)),
Pow(C, Award(C,EMap(z),1)),
Pow(C, Reject(C,EMap(w),1)),
Pow(C, Reject(CMap(z),1)),
Pow(C,Cfp(C,{k,E},newContent,2))

4 Reject(C,EMap(z),2) O O Pow(C, Award(C,EMap(w),1)),
Pow(C, Reject(C,EMap(w),1))

5 Award(C,E,Map(w),2) O O O

6 Timeout Pow(E,Inform(E,C, | O O

Map(y),result,2))
7 Inform(E,,C,Map(y), O O O
Map_of(y),2)

8 Timeout O O Pow(C, Pay(C, E Map_of(y), 2))

9 Pay(C, & Map_of(y), 2) | O O O

10 Timeout O 0 O

cartographer to reject all remaining valid bids:

Initiates(Award(c, e, content, round),
Obliged(c, Reject(c, €2, content2, round)), time) <
HoldsAt(Valid(Award(c, e, content, round)), time) A
HoldsAt(Valid(Bid(e2, ¢, content2, round)), time2)A
—(e =e2)

(8)

Second, at the contractor awarded state (see Figure 1), the
awarded contractor is obliged to inform about the outcome
of the awarded task. Third, at the manager informed state
the cartographer is obliged to pay the awarded contrac-
tor. Here we have chosen to take the view that these con-
straints are to be regarded as norms. An alternative would
be to view them instead as part of the specification of what
counts as a valid action. In that case, any failure to comply
with these requirements would invalidate the whole proto-
col (both interpretations are possible; we have picked one
for the sake of the example).

4.1.3 Sanctions

In this specification of the CNP sanctions arise when agents
do not comply with their obligations. For example, since we
are viewing the obligation as a norm, the awarded contrac-
tor’s failure to issue a valid Inform by the specified time,
creates a sanction to the effect that the awarded contractor
is no longer empowered to enter another CNP. Similarly, the
end-state that is reached when a timeout occurs at the man-
ager informed state includes a sanction that defines that the
manager is no longer empowered to enter a new CNP.

4.2 Social States

Consider a CNP with two agents, a cartographer C' and
an explorer E. Moreover, the following fluents characterise
C at a particular point in time in a run of the CNP:

o lc D {Pow(C,(Cfp(C, E, content, round)))}.

At this time point C issues a Cfp (no other action takes

place). The effects of this action can be described as follows:

e It D {=Pow(C,(Cfp(C, E, content, round)))}. This is due
to constraints (1) and (7).

e Iz D {Pow(E, Bid(E, C, relatedContent, round))}. This is
due to constraints (1) and (6).

In this scenario we choose to represent in the state of the
environment the conversation state [16]. In this specification
of the CNP we represent the protocol round, the content
(of the awarded task, if any), the contracts (a valid Award
creates a contract) and the result of the awarded task in
state of the environment.

4.3 Animation of the CNP

Given a set of events and a temporal ordering of them,
we can find out with the use of the specification of the CNP
the set of powers, permissions, obligations, sanctions of each
agent at each point in time. We show here the animation of
one run of the CNP by a group of 3 agents; two explorers
E;, Eo and a cartographer C. A sketch of this run is the
following: C' performs a Cfp and then the two explorers
submit their bids. Then the cartographer rejects the bid of
Es and awards the bid of E;. E; informs about the result
of the awarded task and C' pays him the specified price.

Table 2 illustrates the way the local states change over
time (due to space limitations Table 2 only shows the pow-
ers of the agents). The state transitions are based on the
events of each time point. For example, initially, at time
t = 0, because of constraint (5), the cartographer is em-
powered to issue a Cfp and the explorers have no powers.
At time ¢t = 1 the cartographer performs a Cfp and the val-
ues of the fluents that characterise the participants change
as described in section 4.2. That is, as a result of the cartog-
rapher’s action, the explorers are empowered to issue valid
bids (these new powers are shown for each of the explorers).
Furthermore, at the same point the display for the cartogra-
pher does not include the fact that he is empowered to issue
another Cfp. Since constraint (2) defines the permissions
in this example, the agents have the same permissions as
powers. The full display of the participants includes fluents
that describe their obligations, sanctions and roles.

SOCIETY
VISUALISER

A—‘ control module

O
reply
simulated

society
store/retrieve

states

activate/

rgel next state
social state
compilation
module

displa visual
 display representation [«——»
states
module
social states
database

get
msgs

&
2
2

handle
queries

J101€ANOR

=
&
5y
Q
®

Figure 2: The Society Visualiser.

5. THE SOCIETY VISUALISER

In this section we describe a computational framework
called Society Visualiser (SV), that builds upon the theo-
retical framework for the specification of open systems and
that compiles (produces) and updates the global state of an
agent society. First we describe the architecture of the SV
and then we demonstrate the way the SV produces auto-
mated animation of the runs of the CNP.

The basic architecture of the SV is illustrated at the right-
hand side of Figure 2. The SV includes three main com-
ponents: the control module, the social state compilation
module and the visual representation (of the social states)
module. A brief description of the functionality of the SV
is the following: the control module mainly receives report
messages from the members of the agent society. When
a member of the society sends a message to a peer, he also
sends that message to the control module of the SV for mon-
itoring purposes. These messages are called report messages
and are necessary for the compilation of the social states.
Given the report messages (and all other monitored events),
the control module activates the social state compilation
module in order to produce the local states of the institu-
tions and the environment at each point in time. It is worth
noting that not all report messages will modify the global
state, e.g. an event might not necessarily initiate/terminate
a power, a normative position or a sanction. In any case,
the local states of the institutions (here only one), as well
as that of the environment are stored in a database and are
displayed in a graphical interface for the benefit of the soci-
ety designer. It is convenient to display social/institutional
facts relating to each agent separately.

Agents can also send query messages to the SV in order
to find out the social state of the group or of their peers.
The control module of the SV handles such messages as
soon as they arrive and an appropriate reply is sent to the
originating agent.

5.1 Control Module

The control module contains two main sub-components,
the agent interface component and the activator component
(Figure 2). The agent interface receives the messages sent by
the members of the society and either stores them attaching
a timestamp (in the case of report messages) or forwards
them to the activator (in the case of query messages). The
control loop of the activator module operates as follows: the
activator retrieves the current local state of each institution
from the social state compilation module. The compilation
of the social state is demonstrated in Figure 3 and described
in the next section. The current local state is stored in a

social state
compilation module

events in the form of
- L happens/3 prolog
narrative h predicates

.

1: store events

2: initialise —

load

social constraints in

J1oreAnOR

3: execute the form of the
5:current | society F<_| |holdsAt/2, initiallyP/1,
state specification S~ initiates/3 and
terminates/3
predicates

4: current state

Figure 3: Social State Compilation.

database and displayed in a graphical interface. Finally, the
activator stops its execution for a specified period of time
and then retrieves the new report messages that the agent
interface module has received.

5.2 Social State Compilation Module

The main sub-component of the social compilation module is
the society specification database (Figure 3). This database
holds the social constraints based on which the society can
change states. These constraints are represented in the form
of the Event Calculus [15] in the Prolog programming lan-
guage. In particular, the society specification database con-
tains, among other things, the domain description, the ini-
tial state and the domain/state constraints. The domain de-
scription specifies the initiates/3 and terminates/3 pred-
icates. The initial state specifies the initiallyP/1 pred-
icates describing what holds before the commencement of
the execution of the society. The domain constraints spec-
ify the holdsAt/2 predicates. Another component of the so-
cial state compilation module is the narrative module. This
module describes what has happened in the society with
happens/3 predicates.

Figure 3 demonstrates what happens when the activator
attempts to retrieve the current social state. The activator
stores in the narrative the set of incoming messages of the
last interval (along with other events like timeouts), and
then initialises the Prolog engine. The Prolog engine loads
(i) the predicates that represent the social constraints (that
are stored on the society specification database) and (ii) the
predicates that represent the externally observable events
(that are stored in the narrative module). Then, it calls the
following predicate (for each institution):

holdsAt (local_state(institution_name,State),time).

The result of that call is a set of fluents (represented by the
State variable) that is returned to the Prolog engine and
consequently to the activator. This set of fluents represents
the local state of institution_name at time.

The society specification database is the only component
of the SV that is application-specific. Therefore, when ani-
mating the global states of different societies only the soci-
ety specification component will change and the remaining
components of the SV will remain exactly the same.

5.3 Visual Representation Module

As soon as the control module retrieves the social state of
a particular time-point, it displays it in a graphical interface
for the benefit of the user/society designer. In this graphical
display (Figure 4) the social state of each agent and institu-

tion is divided in five categories: (i) powers, (ii) permissions,
(iii) obligations, (iv) sanctions and (v) valid actions. For ex-
ample, when the user selects the powers of the members of
institution in1 at time, then the following query is executed
in the social state compilation module:

holdsAt (pow(inl, Powers), time).

Furthermore, the local state of the environment is divided
into a number of categories that each represent the variables
of the conversation state.

5.4 Automated Animation of the CNP

The specification of the CNP has been implemented in
the Society Visualiser. As mentioned earlier, the only com-
ponent of the SV that is application-specific is the society
specification database. Therefore, we will briefly describe the
society specification database. This database consists of the
social constraints of the CNP. For example, constraint (7)
is represented in the society specification database as:

terminates(cfp(C,E,Content,Round),
pow(C,cfp(C,E,Content ,Round)),Time) : -
holdsAt(valid(cfp(C,E,Content,Round)),Time) .

As far as the domain constraints are concerned, the only
constraint that is CNP-specific is the one that specifies the
local state of the environment. We have animated a num-
ber of different runs of the execution of a CNP with the use
of the SV. These included 4 agents; cartographerl occupy-
ing the role of the cartographer and explorerl, explorer2
and explorer3 occupying the role of the explorer. Figure
4 demonstrates the GUI of the SV at a particular point
in time of a particular run of the CNP. The display of
cartographerl includes the fact that he is empowered to
issue a cfp, thus starting a new protocol round. In addi-
tion, he is empowered to either award or reject the bids of
explorerl and explorer2. The display of this agent is sim-
ilar to the display of the cartographer agent C' at time point
3 as described in Table 2. In other words, the display of
cartographerl includes these powers because the previous
execution of the CNP (time points 0-6) is similar to the one
described by Table 2. That is, explorerl and explorer2
have performed valid bids and a timeout has taken place
(see Figure 1). The display of cartographerl (see Figure
4) demonstrates that he is permitted to perform the same
actions that he is empowered to perform. This is true be-
cause, as we mentioned in section 4.1.2 permitted actions
are specified in this CNP by constraint (2).

The SV has been tested with the use of different narra-
tives describing different runs of the CNP. These narratives
describe several types of agent (mis-)behaviour like issuing
invalid acts, non-compliance to obligations etc. Further-
more, we have modified some of the assumptions that were
presented in this paper. We have forbidden the performance
of valid actions, modified the definition of sanctions etc.

6. RELATED WORK

We review related work from both the theoretical and the
computational perspective of the specification and anima-
tion of open systems. Considering the theoretical perspec-
tive, the following frameworks are closely related to the aims
of our work: Interpreted Systems [3], Artificial Social Sys-
tems [9], e-institutions [2], commitment protocols [16], the

AALAADIN model [4] and the Gaia methodology [20]. The
work on Interpreted Systems and Artificial Social Systems
mainly focus on ascribing mental attitudes to the agents
from an external perspective. We follow these approaches
on the representation of the global state of MAS. The notion
of commitment in [16] has some similarities to the notion of
obligation in our framework. Esteva et al. [2] devise a for-
mal specification language to design open agent systems as
electronic institutions. In this approach, roles are defined as
patterns of behaviour, normative rules are specified to limit
or enlarge the space of agent actions and scenes are defined
in order to represent the different contexts within an organi-
sation in which agents can interact. Scenes can be viewed as
sub-societies in [9]. The society executing the CNP that was
described in this paper can be viewed as one scene. Related
scenes would be the role-assignment procedure and possibly
auctions that could occur in parallel with the CNP. Esteva
et al. provide an informal account of notions such as duties,
obligations and commitments. In a similar manner, the Gaia
methodology provides an informal account of concepts such
as responsibilities, permissions and rights.

As far as the computational perspective is concerned, Fiish-
Market [11] and MyWorld [19] bear some similarities to the
SV. Fishmarket, although primarily concerned with trad-
ing strategies and market conditions, also addresses issues
that are associated with the social structure of the simu-
lated societies. However, there is a lack of formalisation
of concepts such as rights, obligations and social relations
as well as an explicit representation of them during simu-
lations. MyWorld represents an operationalisation of the
Agent0 framework; to this end, it facilitates the modelling
of several aspects of social agent behaviour (e.g. intentions
and commitments), but it does so by considering the internal
architecture of the agents.

7. DISCUSSION

A formal theory of multi-agent systems (MAS) and, there-
fore, of open systems should provide the following [18]:

e A tool that enables the specification and verification of
MAS.

e A tool that enables reasoning about MAS.

e A basis upon which richer theories and concepts, like
socio-cognitive phenomena, can be formally described and
tested.

Our framework describes a formal specification of some
of the key concepts of open systems with the use of well-
established theories. A complete specification of open sys-
tems requires the specification of the remaining concepts,
like social structure [2, 9], explicit representation of the ACL
(e.g. as in [2, 4, 16, 20]), representation relationships etc.
The animation of a run of the CNP showed that our frame-
work provides a rich representation of the execution of agent
systems and, consequently, can be used for reasoning about
the properties of these systems. Finally, this representa-
tion of agent systems can be (and is currently) used for the
analysis of rich theories (e.g. socio-cognitive phenomena).
In particular, the SV is being currently used for a series
of trust experiments in the context of the ALFEBIITE EU
project. The aim of these experiments is to explore compu-
tational analogues of socio-cognitive theories including for-
malisations of trust and reputation. In these experiments
the SV provides the experiment designer with a global rep-
resentation of the system. Furthermore, the members of the

Control button for =10 x|
starting/stopping the g Help
compilation of the
social states fgents: cartographer1's local state:
Ston Compilation 3 Social State |~ Roles | Powers |F‘erm\35iuns Obligations | Sanctions [Valid Actions
. ¢ n P @ [cartographer cartographer |cfp{cartogra...|cfpicartagra...
Radlolbutton' or [y Roles cip(cartogra...|cfpicartogra...
cf_loosmg to VIQW) Narrative D P cfplcatogra... cfpicartogra... Agent local state
either the social OWErS award(caro... award(zarto... description divided
states or the ® Social State [Pemnissions avard{carto. awardicar... in five categories:
narrative of the D Obligations rejecticarto... |reject{carto... powers
current time- [sanctions reject{cario... |rejecticaro... permissiohs
point Time Point: D walid Actions cfpicantographert, explorers, _,), award(cartographert, explorer!, map(ab), 1), || obligations,’
= - S explorert award{cartographer?, explorer2, map(ah), 1), reject{cartagraphert, explorert, sanctions
o 3 explorer? mapiaky, 1), rejecticartographert, explarer2, map(ahy, 1)] valid actions. If the
@ [explorera FERMISSIONS = [cfp{cartographert, explorer, _ 2}, cfpicartographert, explorer2 environment were
® O environment L.), cip(eartographert, explarerd, _, 2), awardicartographer!, explorert, selected at the list
Current time-point D Protocol Round mapiak), 1), awardicartographert, explorer?, mapiab), 1), reject{cartographert, of agents then this
of the simulation. explorer!, mapiab, 1), reject{cartographert, explorer?, map(ak), 13 table would show
The user [content OBLIGATIONS =
[Contract ANCTIONS = the local state of the
can scroll back to N i i
(A [Resul | MALID ACTIONS = [environment in the
any time-point of context of the

the simulation.

List of the members of the society
and the environment.

Local state description in the form of prolog lists. If the
environment were selected at the list of agents then this

following : protocol
round, content,
contract, result.

text area would show the local state of the environment

Figure 4: The main GUI of the SV.

society can query the SV about the social state of their peers
and therefore, have an additional parameter in their trust
update mechanism.

We aim to facilitate agent designers in deciding whether it
is desirable or not to deploy their software agents in societies
where the heterogeneous members may not conform to the
specifications in order to achieve their individual and possi-
bly competitive goals. To achieve that, first we need to have
a formal specification of the computational systems that is
based only on externally observable information. Second,
based on the formal specification we need to able to reason
about and ultimately verify properties (like safety, fairness,
liveness) of the computational systems. In this paper we
presented a way of providing a formal specification of agent
systems. The next step is to investigate methods for the ver-
ification of the properties of these systems. We are currently
working on a new version of this framework which replaces
the use of the Event Calculus by a formalism with a more
explicit transition system semantics.

8. ACKNOWLEDGEMENTS

This work has been undertaken in the context of EU-funded
ALFEBIITE Project (IST-1999-10298). We would like to
thank Lloyd Kamara for his help in the development of the
Society Visualiser and for his invaluable comments during
the writing of the paper. We have also benefitted from the
contributions of Andrew Jones to the concept of roles.

9. REFERENCES

[1] K. Carley and L. Gasser. Computational organisational
theory. In Multi-Agent Systems: A Modern Approach to
DAI page 300. MIT Press, 1999.

M. Esteva, J. Rodriguez, C. Sierra, P. Garcia, and

J. Arcos. On the formal specifications of electronic
institutions. LNATI 1991, pages 126-147. 2001.

R. Fagin, J. Halpern, Y. Moses, and M. Yardi. Reasoning
About Knowledge. The MIT Press, 1995.

J. Ferber and O. Gutknecht. Operational semantics of
multi-agent organisations. In Intelligent Agents I'V. 2000.

2]

(3]

(4]

[5]

[6]

[7]

B

(9]

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

C. Hewitt. Open information systems semantics for
distributed artificial intelligence. Artificial Intelligence,
47:76-106, 1991.

A. Jones and M. Sergot. On the characterisation of law and
computer systems: The normative systems perspective. In
Deontic Logic in Computer Science: Normative System
Specification. Wiley, 1993.

A. Jones and M. Sergot. A formal characterisation of
institutionalised power. IGPL, 4(3), 1996.

R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67-96, 1986.

Y. Moses and M. Tennenholtz. Artificial social systems.
Computers and Al, 14(6):533-562, 1995.

J. Pitt, L. Kamara, and A. Artikis. Interaction patterns
and observable commitments in a multi-agent trading
scenario. In Autonomous Agents 2001, 2001.

J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia,
and C. Sierra. Towards a test-bed for trading agents in
electronic auction markets. In AT Communications, pages
5-19, 1998.

F. Santos, A. Jones, and J. Carmo. Action concepts for
describing organised interaction. In HICSS, 1997.

J. Searle. What is a speech act? In Philosophy of
Language, pages 130-141. 1965.

M. Sergot. A computational theory of normative positions.
ACM Transactions on Computational Logic, 2(4):522-581,
2001.

M. Shanahan. The event calculus explained. Artificial
Intelligence Today, pages 409—430, 1999.

M. Singh. A social semantics for agent communication
languages. In Issues in Agent Communication, volume
1916 of LNCS, pages 31-45. 2000.

R. Smith and R. Davis. Distributed problem solving: The
contract-net approach. In 2nd Conference of Canadian
Society for CSI, pages 217-236, 1978.

M. Wooldridge. The Logical Modelling of Computational
Multi- Agent Systems. PhD thesis, UMIST, 1992.

M. Wooldridge. This is MyWorld: The logic of an
agent-oriented DAT testbed. In Intelligent Agents.
Springer-Verlag, 1995.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design.
AAMAS Journal, 3(3):285-312, 2000.

