Performance Monitoring of Service-Level Agreementsfor Utility Computing
Using the Event Calculus

Andrew D H Farrell, Marek J Sergot,
Department of Computing,
Imperial College London,

United Kingdom.
{adf02, mjs} @doc.ic.ac.uk

Abstract

Utility Computing (UC) is concerned with the
provisioning of computational resources (compute-power,
storage, network bandwidth), on a per-need basis, to
corporate businesses. Service-level Agreements (SLAS) -
contracts between a provider and a customer - are a sine
gua non in the deployment of UC. A crucial stage in the
life-cycle of contracts (such as S_As) is their automated
performance monitoring while active; a significant aspect
of which concerns the tracking of contract state.

In this work, we define an ontology to capture aspects
of S As that are pertinent to the tracking of state for
performance monitoring, and generalise these aspects so
that the ontology may be applicable to other contract
domains. The ontology is formalised as an XML-based
language, called CTXML (contract tracking XML). The
semantics for CTXML are presented in terms of a
computational model based on the Event Calculus.

1. Introduction

Utility Computing (UC) [10] offers an opportunity to
corporate businesses to maximise the efficiency and
efficacy of their IT service provision (both in-house and to
customers). It will allow them to out-source large areas of
their IT service provision to UC-data centres, which will
agree to provide computational resources, packaged as
services to them.

The levels of service that are agreed between a UC
service-provider and customer are mandated by Quality-
of-Service (Qo0S) guarantees, written as service-level
objectives within Service-Level Agreements (SLAS).
SLAs are essential for formalising the objectives of a UC
service, and to manage expectations [12].

The work that has been realised here has been
concerned with one particular aspect of the life cycle of a

Mathias Salle, Claudio Bartolini,
HP Labs,
Palo Alto, California, USA.
{ mathias.salle, claudio.bartolini} @hp.com

contract (such as an SLA), namely, automated run-time
performance monitoring [6]. In our view, performance
monitoring is concerned with (at least) two functiona
aspects: (i) Tracking the effect of events (pertinent to a
contract) on contract state — the contractual (or,
normative) relations that hold between contract parties —
and informing interested parties of past, present and
(possible) future contract states; and, (ii) Assessing the
current state of the contract, in terms of its utility (that is,
worth), and other metrics related to business intelligence
[14]. The work presented in this paper is primarily
concerned with the first of these, which is known as
automated contract (state) tracking to distinguish it.

Notably, approaches to automated tracking of contract
dtate, thus far, can be largely characterised in one of two
ways [7]: (i) As general-purpose reasoning frameworks
that (mainly) have not been applied in actual, deployed
systems; or (ii) In the case of SLAS, as being fairly limited
in capability. The work presented here is considered to be
distinguished from such approaches in that: (i) It has
been developed in the context of a ‘real-world
deployment scenario (namely, SLAs for UC), while being
generalised so to be applicable to other domains; and (ii)
It represents an advance (over many approaches) in what
can be realised regarding performance monitoring for
contracts.

This paper is structured as follows. Firstly, (in section
2), the conceptualisation of contracts that has been used in
this work is presented; followed (in section 3) by an
example contract (namely, an SLA for a UC scenario),
used to ground our discussions. Then, (in sections 4 and
5), a description of the contract tracking ontology,
developed in this work, and its semantics are given. The
paper proceeds to describe implementation and related
work (in sections 6 and 7), and concludes (in section 8).

2. Contracts conceptualised

It is a useful abstraction to consider that contracts
(such as SLAS) are comprised of norms. A norm may be
defined as: “a principle of right action binding upon the
members of a group and serving to guide, control, or
regulate proper and acceptable behaviour” [1].

In our work, we consider norms to be templates, which
can be instantiated to yield (normative) relations that hold
between contract parties. An example might be the norm:
‘a service consumer is obliged to pay for service
provision’. When instantiated, it yields a relation that
now holds between a service consumer and provider —
that is, that the consumer is obliged to pay for service
provision. In time, the norm may be instantiated again,
creating a further relation. In fact, it may be that the first
relation persists (i.e., the consumer is yet to fulfil their
original obligation to pay), meaning that there is now
more than one relation pertaining to the same norm.

In this presentation, it will be assumed that a most
one relation pertaining to a norm may exist at any time.
Thisis for convenience; the general case is treated in [7].
For simplicity, the existence of a relation pertaining to a
norm will be described as the norm being active, and the
lack of an extant relation will be described as the norm
being inactive.

Crucially, it is considered here that: (i) a contract
expresses norms between contract parties, whereby the
actual state of the contract at any time is determined by
which norms are active; (ii) norms within a contract will
define the effects on the contract state of events that are
presented to the contract (contract events).

3. Example contract

In this paper, we use the following Mail Service UC

SLA in order to ground our discussions:

-+ The Service Provider (SP) will provide a mail service
to the Service Consumer (SC), which includes a
mailbox with a quota of s GBytes. SC will be charged
afixed monthly fee of sx ¢ for the service.

Whenever u>s, where u is the mailbox utilisation in
GBytes, SP will charge SC ¢, for each GByte over s,
calculated daily, until ufE s

Whenever u>ste, where e is a level of tolerance in
GBytes, SC will not be able to receive emails.

In the case that the mail service is unavailable, SPis
obliged to restore it within t minutes. SP will pay $p
for every t minutes that it is unavailable. SP is
obliged to pay any pendties to SC within a month of
their accruement.

All billing of SC occurs monthly, and SC is given a
month thereafter to pay. If SC fails to pay within the

given time, SP may terminate the mailbox service
without notice.

1 -contract
1...* -norms 0...* -patametars 0. * -variables
| cantract nmm| | contract parametar| | contract variable

' ':MU. * -affects

coniraciual statement

tirmer 1 -effact

1...7 -actions

contract action

Figure 1: Contract Tracking Ontology

4. Contract tracking ontology

Figure 1 presents the contract tracking ontology that
has been devised in this work. The ontology has aso been
formalised as an XML-based contract language, called
CTXML (contract tracking XML).

With reference to Figure 1, a contract is conceived as
consisting of one or more contract norms, as well as zero
or more contract parameters — which alow for the
customisation of a contract for a particular instantiation
context — and zero or more contract variables — which are
used to maintain live, numerical contract state (their use
is normative in that it is agreed by all parties when the
contract is signed).

A contract norm may be considered as corresponding
to one of many (Holfeldian-inspired) normative concepts,
including (non-exhaustively): obligation, privilege,
entittement or power (see [7]). A contract norm will
usually specify one or more of the following:

One or more contractual statements, which define the
effect of contract events (pertaining to the norm) on
the contract. It is considered that a norm is triggered
by a contract event that pertainsto it.

A timer for the norm, which is possibly recurrent.
One or more parameters. That is, a contract norm
may be parameterised. Whenever a parameterised
norm is triggered by a contract event, the event will
be used as the source of data for these parameters.
Contractual statements contained within the norm
may make use of such data.

In our work, we have considered the following
conceptualisations of contract norms to be useful for the
representation of contracts:

Contract management norms, of which we define two
types: Periodic and Event

Obligation norms

Privilege norms

In turn, contract management norms (CMNSs)
represent the principal means of defining the effects of
contract events on contract state. They contain a single
contractual statement, which is executed when the norm
is triggered. Note that a CMN will either be
conceptualised as an event CMN, or a periodic CMN. An
event CMN is triggered by an externa event.
Contrastingly, a periodic CMN describes a (possibly
recurring) timer, which triggers the norm.

An obligation norm is concerned with an obligation
that bears on a party to perform one or more (non-
contractual) actions. It will typicaly contain a
contractual statement that specifies the effects on the
contract in case of violation of the obligation norm, and a
contractual statement that specifies the effects on the
contract in case of fulfilment of the norm. It is considered
that such a norm is triggered by violation and fulfilment
events. An obligation norm will also specify a timer for
the actions associated with the obligation to be performed
by the pertinent party. Like a CMN, an obligation norm
may be parameterised.

A privilege norm is concerned with (non-contractual)
actions that a party is permitted to perform. It is
considered illegal behaviour for a party to carry out a
(non-contractual) action for which it does not have the
privilege. (As a conseguence, there does not exist a need
for explicit prohibition norms). Furthermore, a privilege
norm is considered to be a vested privilege in that other
parties undertake that they will not attempt to prevent the
bearer of the privilege from exercising it.

Note that, in CTXML, events —which are input to the

contract — take the form:
<event id="(normaqualification)”>

<para nane="..>.</para>...
<para nane="..">..</ para>
</ event >

where norm is the unique pertaining norm, and
qualification is a qualification for the event — which
names the contractual statement in the norm to be
executed. An event may also contain associated
parameters representing event data, which is passed to the
contractual statements contained within any norm that the
event triggers. In the sequel, the syntax for an event is
abbreviated to: (norm qualification, paraneters)
for simplicity, where par aneters is elaborated simply as
alist of parameter names.

Examples of these norms represented in CTXML for
the Mail Service SLA (introduced in section 3) are now
presented.

A periodic CMN, pcm3, defining its (recurrent) timer
as being specified by the pcnnsti mer timer clause; and
specifying its (single) contractual statement to be:
pcm3ti nmeout , Which is executed whenever (pcms3,
timeout, []) contract events occur. These events are
generated internally according to pcnn8ti rer .

<contractnorm i d="pcm3” timer="pcnnBti mer”>
<csref name="tinmeout” id="pcm3tinmeout”/>
</ contract nor nmp

This norm in part facilitates: “SP will pay $p for
every t minutes that it is unavailable” in the example
SLA.

An event CMN, ecrm1, specifying a single contractual
statement: ecrmitri gger which is executed whenever
(ecrml, trigger, [Charge]) contract events occur;
and denoting that it is parameterised with a single

parameter: Char ge.

<contractnormid="ecml” >
<csref name="trigger” id="ecmmltrigger”/>
<para nane="Charge”/>

</ contract nor np

This norm in part facilitates: “SP will charge SC
$c, for each GByte over s, calculated daily, until ue s’
in the example SLA.

An obligation norm, o2, defining its (one-off) timer as
being specified by the o2timer timer clause;
contractual statements for non-fulfilment (violation)
and fulfilment of the obligation within the time
specified by o2tinmer as being specified by the
o2violation and o2ful fil ment contractual
statements, respectively — executed in responseto (02,
viol ation, [Charge]) and (o2, fulfilnent,
[Charge]) contract events, and denoting that it is

parameterised with a single parameter: char ge.
<contractnormid="02" tinmer="02tinmer”>
<csref name=“viol ation” id="o02violation"/>
<csref name=“ful filnent”
id=*o2ful filment”/>
<para nane ="Charge”/>
</ contract nor n»

This norm in part facilitates: “SP is obliged to pay
any pendties to SC within a month of their
accruement” in the example SLA.

A privilege norm, p1.
<contractnormid="pl”/>

This norm in part facilitates: “If SC fails to pay
within the given time, SP may terminate the mailbox
service without notice” in the example SLA.

A timer clause is used to specify (a recurrent, or one-
off) timer for periodic CMNs and obligation norms. Such
a clause consists of one or more run clauses, which each
specify a certain number of iterations of a particular timer
duration. If the number of iterations is not explicitly
specified (as in the example below), the run is considered
to be indefinitely recurring according to the specified

timer duration. An example of such a clause is now given,
from the CTXML representation of the Mail Service SLA,
for the timer used for contract norm: pcrm2. Here, the
clause simply says that the timer will be indefinitely
recurring with a period of 1 month.

<timer id="pcm2timer”>
<run><dur val =*P1M'/></run>
</tinmer>

This clause in part facilitates: “All billing of SC
occurs monthly...” in the example SLA.

A contractual statement clause comprises a list of
contract actions, which are actions to be performed on the
contract, in response to contract events. A contract action
may be one of the following clauses (where the first three
are considered to be atomic contract actions):

<activate i d="nornf > activation parameters
</activate> — activates norm with given activation
parameters.

<deactivate id="nornf/> — deactivates contract
norm

<assign id=“cvar”> expr </assign> — assigns a
numerical value, given by expr, to contract variable
cvar.

<ifcond then="." else="."/> — gpecifies a

conditional contract action.

An example of a contractua statement, with
associated contract actions, represented in CTXML for the

Mail Service SLA isnow presented.
<contractual stnt id="pcmlti meout”>
<ifcond then="ifcondlt hen” ><gt >
<val ue id="vPenalty”/>
<num val =* 0"/ ></ gt ></i f cond>
</ contractual stnt>
<contractual stnt id="ifcondlthen”>
<activate id="02">
<apar a name="Char ge” >
<val ue id="vPenalty”/>
</ apar a></ acti vat e>
<assign id="vPenalty”>
<num val =" 0"/ ></ assi gn>
</ contractual stnt>

Here, the pcnntti neout contractual statement consists
of asingle contract action —an i f cond. Thei f cond action
specifies a contractual statement, i fcondlithen, t0o be
performed if the condition of the ifcond holds. (It is
possible for i f cond actions to aso specify a contractua
statement to be performed if the condition does not hold).
The condition of the i fcond, in the example, stipulates
contract variable vpPenalty be greater than 0. The
i f cond1t hen contractual statement consists of a couple of
contract actions — an activate action (for activating
parameterised obligation norm o2 with activation
parameter charge assigned to the current value of
contract variable vPenal ty), and an assign action (for
resetting the value of the contract variable).

Finally, a contract may specify a list of initialising
operations (itself a contractual statement — constrained to
contain just activate operations), which are carried out
on the contract when it is instantiated. Note that all
contract norms are inactive, by default. As such, any
norm that is required to be initially active should have a
corresponding act i vat e operation specified in this list.

4.1. Specialisation to SLA context

It useful to explicate an additional concept, which has
been utilised within this work, that is specific to the
context of representing SLAs. The concept is a service-
level norm (SLN), which is a variation of an event CMN.
An SLN encapsulates a ‘service-level objective (SLO),
which defines a level of service that must be upheld
throughout the lifetime of the SLA. An SLN aso defines
up to two contractual statements. One that specifies
contract actions that are to be performed in case of
violation of the (service level objective pertaining to the)
SLN, and another that specifies contract actions that are
to be performed in case of restoration of the SLN. An
example of an SLN represented in the Mail Service SLA
is now presented, where it is triggered by (slni,
violation,) and (slnl, restoration, _) contract

events.
<contractnormid="slnl”>
<csref name=“violation” id="slnlviol”/>
<csref name=“restoration” id="slnlrest”/>
</ contract nor n>

This clause in part facilitatess “The Service
Provider...a mail-storage facility of up to s GBytes’ and
“In the case of unavailability of the mail service...” in the
example SLA.

For the whole example SLA, written in CTXML, see
[16].

5. Semantics

The semantics attributed to the contract tracking
ontology are presented in terms of how the execution of
contractual statements, in response to contract events,
changes the state of the contract. This is achieved by
describing the computational model for determining the
state of norms, in the context of a narrative of contract
events, according to the contractual statements contained
within a contract. The computational model that is
described here is inspired by the Event Caculus (EC)
[11].

5.1. Event Calculus overview

There are many variations on the Event Calculus
(EC). In the sequel, we define an XML formalisation of a
simplified form of the version described in [15], called
ecXML.

A contract in ecXML is a conjunction of:

A finiteset of i nitial Iy clauses of the form:
<initially>

<fluent id="F">..</fluent>
</initially>

meaning that (boolean) fluent F holds initially. (A
fluent is a property of a domain which can be
attributed a value, where the value of the fluent is able
to change over time). Multi-valued fluents are
assigned an initial value using similar clauses.

A finite set of happens clauses of the form:
<happens time="T">

<event ..>.</event>
</ happens>

meaning that the given event happened at time T

A finite set of i ni ti at es clauses of the form:
<initiates>

<event ..>..</event>

<fluent id="F">..</fluent>

condition
</initiates>

meaning that the given event initiates fluent F

(makes true) if condition holds. Similar clauses can
be written giving how multi-valued fluents are
initiated.
A finite set of t er mi nat es clauses of the form:
<t er mi nat es>

<event ..>..</event>

<fluent id="F">..</fluent>

condition
</term nat es>

meaning that the given event terminates fluent F
(makes false) if condition holds. Similar clauses can
be written giving how multi-valued fluents are
terminated.

Additionally the following axioms (for which a full
XML formalisation is neither necessary nor appropriate)
are defined for ecXML:

holds(F, T) if initiated(F, T1, T) and not
term nated(F, T1, T)

meaning that fluent F holds at time T if fluent F is
initiated at time T1 before, or at, time T and it is not
terminated at a time later than T1 but before, or at,
time 7. A similar axiom exists for multi-valued
fluents. Note that it is the holds axiom, which provides
the means for querying the state of a contract at any
time, and thus which realises the primary purpose of
applying an EC-based semantics.
initiated(F,0,_) if
<initially>
<fluent id="F'>.</fluent>
</initially>
meaning that fluent F is initiated at time 0 if
fluent F holds initially (as determined by any extant

ecXML <initially> clause for F in the contract). A
similar axiom exists for multi-valued fluents.

initiated(F, T1, T) if happens(E T1l) and T3T1>0
and
<initiates>
<event ..>..</event>
<fluent id="F">..</fluent>

</ |n| tiates>
meaning that fluent F isinitiated at time T1 before,
or at, time T, and greater than o, if an event E happens
at 71 and E initiates F (as determined by any extant
ecXML <initiates> clausesfor Fin the contract). A
similar axiom exists for multi-valued fluents.
term nated(F, T1, T) if happens(E, T2) and
T3T2>T1 and
<term nat es>

<event ..>..</event>
<fluent id="F">..</fluent>

</t“ér m nat es>
meaning that fluent F is terminated at time T2 later
than T1 and before, or at, time T if an event E happens
at T2 and E terminates F (as determined by any extant
ecXML <t er ni nat es> clauses for F in the contract). A
similar axiom exists for multi-valued fluents.

5.2. Event Calculusbased semantics

As stated, the Event Calculus (EC) is used to provide a
computational model for CTXML contractual statements.
This is achieved by defining a mapping between
contractual statements and expressions in EC. Note that,
a contractual statement will have a distinct mapping for
each contract norm to which it pertains.

Recall from section 4 that a contractual statement
consists of the following types of contract actions:
activate, deactivate, assign and ifcond. The
mapping for the first three contract actions — the atomic
actions—is now presented.

<activate id="nornf> activation parameters

</ acti vat e> iS mapped to:
<initiates>
<event id="(pnormaqualification)”>
parameters </ event >
<fluent id="nornt> activation parameters
</fluent>
</[initiates>
where(pnor m qual i fication) isthe event id that
triggers the contractual statement with name:
qual i fi cati on within contract norm: pnor mj and nor m
is the norm activated with the given activation
parameters.
<deacti vate i d="norni/> ismapped to:
<term nat es>
<event id="(pnormaqualification)”>
parameters </ event >
<fluent id="nornf/>
</term nates>

where nor mis the norm deactivated.

<assign id="cvar”>expr</ assi gn> iSmapped to:
<initiates>
<event id="(pnormaqualification)”>
parameters </ event >
<mvfluent id="cvar”> expr </ nmvfl uent>
</[initiates>

where cvar is the contract variable assigned to
expr.

I f cond actions conceptually take the form:D® guen; Gase-
D is a boolean condition on the state of norms (inactive or
active) in the contract and contract events. gue IS a
contractual statement that is executed should the
condition hold when the ifcond is executed. que IS @
contractual statement that is executed if the condition fails
to hold. In mapping i f cond actions to EC, b becomes an
additional condition placed on each contract action in gue;
and not D becomes an additional condition placed on each
contract action in gee. Generally speaking, there may be
an arbitrary nesting to an i f cond action meaning that any
atomic acti vat e, deact i vat e, Of assi gn actions specified
within may be subject to a number of boolean conditions:
Pi,..., Pn, Where for any boolean condition D within an
i f cond, P; represents either D or not D.

An <activate id=“nornf> activation parameters
</ acti vat e> contract action specified within ani f cond is
mapped to:

<initiates>
<event id="(pnormaqualification)”>
parameters </ event >
<fluent id="nornt> activation parameters
</fluent>
condi tion
</initiates>

Here an additional condition clause specifies that the
contract action will only be applied if P,,..., P, al hold.

Other atomic actions similarly have an additional
condition clause when mapped.

Examples of such mappings for the Mail Service SLA
are now presented.
- A violation event for sin1 initiates (or activates)

pcrm3, and terminates (or deactivates) sl n1_ok.
<initiates>
<event id="(slnl,violation)”/>
<fluent id="pcm3”/>
</[initiates>
<term nates>
<event id="(slnl,violation)”/>
<fluent id="slnl_ok”/>
</term nates>

A timeout event for pcnmt initiates the assignment of
(contract variable) vPenalty to o if the condition

vPenal ty greater than o holds.
<initiates>
<event id="(pcnnil,timeout)”/>
<nvfluent id="vPenalty”>
<num val =* 0"/ >
</ mvfluent >
<gt ><val ue id="vPenalty”/>

<num val =* 0"/ ></ gt >
</initiates>

The mapping of the (possibly extant) contractual
statement containing initialising operations for the
contract (which is constrained to contain only
activate actions) is now given (where normis the
norm activated). <activate id=“nornt> activation

parameters </ acti vat e> IS mapped to:
<initially>
<fluent id="nornt> activation parameters
</fluent>
</initially>

Also, there is a mapping associated with the
initialisation of contract variables in CTXML (where cvar
is the contract variable assigned). <contractvar

i d="cvar”> expr </contractvar> iSmapped to:
<initially>
<nmvfl uent id="cvar”>expr</ nvfl uent >
</linitially>

For the full mapping to ecXML of the example SLA,
see[16].

6. Implementation

The Event Calculus-based computationa model has
been comprehensively implemented in Java. The
implementation provides a query-interpreter for
determining, at run-time, the state of contracts, written in
either ecXML or the higher-level CTXML. Externa
components are able to post contract events via the query-
interpreter, and be informed of (and be able to query the
contract for) information relating to contract state. Part of
the APl supported by this implementation is now
presented.

- void get_output_events(Es, T)— gets, Es, the
output events that the contract generates at time T
void get_states(S) — gets, S, the possible states of
the contract
voi d get_state_history(H T) —Qets, H, a history of
states that the contract has been in, up to and
including time T
bool ean active_at (N, T) —giveswhether anorm, N,
holdsat atime T
doubl e val ue_at (V, T)— gives the value of a contract
variable, v, at time T
void add_events(Es) — used to add an event
narrative, Es, specified in ecXML, to the contract
void add_future_ events(Es, T) — used to add a
future event narrative, Es, to the contract
void delete future_asserted_events() — used to
remove al future events

Additionally, there is a means, provided for by the
contract tracking ontology of defining equivalence classes

for collections of contract states. It is the names of these
equivalence classes that procedures such as
get _state_history/2 return for names of states. An
example of an equivalence class for the Mail Service UC
SLA is: Customer Payment Outstanding, which describes
all states for which there is an active obligation on the
customer to pay.

ﬂJSLA Yisualiser
Zaarm || estribe
All SLAS - Overall View

Friday 23 April 2004 13-47-33 Help

A GUI cdled SLA Visudliser has aso been
implemented which manages the deployment lifecycle of
UC SLAs. A snapshot of SLA Visudiser is shown
in Figure 2. Here, SLA 4 is an instantiation of the Mail
Service UC SLA presented in section 3. Figure 3
shows the history of SLA 4 in terms of the states it has
been in, input and output events to and from the SLA and
in other terms.
=10l =]

D | Start Time \ Stop Time |SLATEmpIate|

MName | Customer \ Service Level | Status |

For Fred Bloggs Fred Consulting Silver Active

1} Wednesday 24 M: Friday 23 April 201 hail Service

2 SaturdaySApnl 2 Sunday 23 May 20 Renderlng Servic Mission Mars

Crrearmword Platinurm Pending

v} I 1ol Lol Exsrires

4 M Fabb

W EHERTREHE H =l

Fehbiea ot H-Hbibee S S S hece T

Mew SLAInstance.
Reconfigure SLA instance..

Wiew History
Wiew Profitability

Figure 2: SLA Visualiser snapshot

B]sLa visualiser =[]
BT Friday 23 April 2004 13-48-25 Help
State History. SLA #4, Customerhike Consulting, Template:hail Service, Name:For Mike M|

[Occurrence [DatalTirme |
STATE: Ok Monday 23 February 2004 13-47-20

STATE: Ok

INPUT EVENT: SERVICE RESTORATION with {slo: 1)
INPUT EYENT: OBLIGATION with ¢id: 0, status: fulfiled)
STATE: Provider Payment Outstanding, Customer Payment Outstanding

STATE: Customer Payment Outstanding
INFUT EYENT: OBLIGATION with ¢id: 1, status: fulfiled)

QOUTPUT EVERT: OBLIGATION with (id: 1, bearer. provider, actions: refund money with (amount: 25.00), deadline: before end of business day Friday 5 March 2004 13-47-20
QUTRUT EYENT. OBLIGATION with (id: 2, bearer. Fred Consulting, actions: pay for service with (amaunt: 50.000, deadling: 1 month)

Thursday 4 March 2004 14-17-20
Thursday 4 March 2004 14-17-20
Thursday 4 March 2004 14-17-20
Friday 5 March 2004 13-47-20

Friday 5 March 2004 13-47-20
Friday 5 March 2004 13-57-20
Friday 5 March 2004 13-57-20

Figure 3: History of SLA

7. Reated work

There have been many diverse research contributions
that have utilised the Event Calculus (EC) for the purpose
of reasoning over the effects of events on a logic theory.
Those closest to the topics of this paper include [3,4,8].

There has been a good deal of research concerning the
representation of contracts for performance monitoring.
In [6] Daskalopulu discusses the use of Petri-nets for
contract monitoring, and assessing contract performance.
Her approach is best suited for contracts which can
naturally be expressed as protocols. One particular
desirability of using Petri-nets is that they naturally
facilitate analysis. In the context of contract
representation, an example would be to show that a
contract will always terminate in a favourable state for
one, or more, contract parties. It is possible, however, to

carry out anaysis of this nature using the formalism
described here. Moreover, our representation has many
advantages over Petri-nets (some of which are as a result
of arule-based approach).

In [13] Milosevic and colleagues attempt to identify
the scope for automated management of e-contracts;
including: contract drafting, negotiation and monitoring.
In [2], Abrahams defines the EDEE architecture (E-
commerce application Development and Execution
Environment). Abrahams proposes Event-Condition
Obligation rules for handling occurrences. Prima facie
obligations are derived from the rules, where subsequent
obligation choice decides which of these apply, and action
choice decides which of those that apply will be fulfilled.
In [9], Grosof and colleagues have sought to address the
representation of business rules for e-commerce contracts.
For this purpose, they have developed the SWEET

(Semantic WEb Enabling Technology) toolkit, which
enables communication of, and inference for, e-business
rules written in RuleML. These approaches demonstrate
many common themes with our approach.

8. Conclusions

In this work, we have proposed an ontology,
formalised as an XML-based language, CTXML, to
facilitate the automated tracking of contract state for
performance monitoring. We have used the Event
Cadlculus, defining aformalisation in XML called ecXML,
to provide a computational model for CTXML. Through
using EC, we are able to extract information regarding
the state of contract norms — whether they are active or
not — and variables — what value they have — for arbitrary
times (in the past, or present), according to a supplied
event narrative. It is aso possible to simulate — using
add_f ut ure_event s/ 2 — the effects on contract state of a
hypothetical event narrative, which we have found useful
for carrying out prediction.

An inherent desirability of using EC is that the
computation of tracking contract state — in the context of
an event narrative — is externalised as a separate
component, rather than buried within an implementation
for contract monitoring. This promotes better
modularisation and makes for simplified code
maintenance. Also, as a consequence, it means that the
state tracking component may be re-used for a range of
automated reasoning tasks for which it is appropriate to
track state.

A comprehensive Java-based implementation of a
generic EC reasoning component, along with query-
interpreters for CTXML and ecXML, has been developed.
ecXML can be seen as the ‘language of the machine’, and
the implementation is capable of supporting any contract
ontology that might be defined, so long as it has a
tractable mapping to ecXML. All that is required to
support a new ontology is the writing of a trandator
component for the ontology, which outputs ecXML. The
ability to support multiple ontologies is an example of the
re-use of the ecXML state tracking component.

The implementation and CTXML ontology have been
evaluated against tens of SLAS, which are considered to
be representative for UC. We have found the ontology to
be sufficient for facilitating contract tracking (as defined
in this paper) for these SLAs. We have also designed our
implementation to be capable of supporting a high
number of contracts simultaneously and to support event
narratives with a very large number of events. We have
optimised the implementation for querying, and have
found it to work extremely efficiently. In the future, it is
our intention to evaluate the sufficiency of CTXML at

facilitating contract tracking for other sorts of SLAs, and
for contracts from other domains.

The work described herein represents a small part of a
larger effort considering a unifying approach to the
management and utilisation of contracts, policies and
business rules at all levels of a business enterprise,
including: management of IT infrastructure and
hardware, management of business processes using
business rules authored by business managers and
analysts, and management of agreements between trading
partners. For more information concerning this work, see
[16].

9. References

[1] Merriam-Webster On-line Dictionary
w.com/cai-bin/dictionary).

(www.m-

[2] A. S. Abrahams. Developing And Executing Electronic
Commerce Applications with Occurrences. PhD thesis,
Cambridge University, 2002.

[3] A. Artikis. Executable Specification of Open Norm+
Governed Computational Systems. PhD thesis, Imperial
College, London, U.K., 2003.

[4] A. K. Bandara, E. C. Lupu, and A. Russo. Using Event
Calculus to Formalise Policy Specification and Analyss. In
Proceedings of 4th IEEE Workshop on Palicies for Distributed
Systems and Networks (Policy 2003), Lake Como, Italy, June
2003.

[5] R. Boreham and M. Morciniec. Contract Monitoring. HP
Labs Technical Report: HPL-2002-265.

[6] A. Daskaopulu. Modeling Legal Contracts as
Processes. 11th International Conference and Workshop on
Database and Expert Systems Applications, |[EEE C. S. Press,
pages 1074-1079, 2000.

[71 A. D. H. Farrell. Logic-based formaisms for the
representation of Service Level Agreements for Utility
Computing. Master’s thesis, Imperial College, London, U.K.,
2003.

[8] B. S. Firozabadi, M. Sergot, and O. Bandmann. Using
Authority Certificates to Create Management Structures. In
Proceedings of Security Protocols, 9th International Workshop,
UK, April 2001.

[9] B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative
Approach to Business Rules in Contracts: Courteous Logic
Programsin XML. In M. P. Wellman, editor, Proceedings of 1st
ACM Conf. on Electronic Commerce (EC-99), Denver, CO,
USA, November 1999. ACM Press, New York, NY, USA.

[10] Hewlett-Packard (www.hp.com). HP Utility Data
Centre - Technical White Paper. October 2001.

[11] R. Kowalski and M. Sergot. A Logic-Based Calculus of
Events. New Generation Computing, 4:67-95, 1986.

[12] J. J. Lee and R. Ben-Natan. Integrating Service Level
Agreements. Optimising Your OSS for SLA Delivery. Wiley,
New Y ork, 2002.

[13] O. Marjanovic and Z. Milosevic. Towards Formal
Modelling of eContracts. In Fifth |IEEE International
Enterprise Distributed Object Computing Conference, Seattle,
USA, September 2001.

[14] M. Sdle and C. Bartolini. Management by Contract.
HP Labs Technical Report: HPL-2003-186.

[15] M. Shanahan. Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law of
Inertia, ISBN: 0262193841. MIT Press, 1997.

[16] http://www.doc.ic.ac.uk/~adf02/phd

