A Logic Programming Framework for Modelling
Temporal Objects

F. Nihan Kesim* Marek Sergot!

July 1993; December 1994; July 1995

Abstract

We present a general approach for modelling temporal aspects of objects in a
logic programming framework. Change is formulated in the context of a database
which stores explicitly a record of all changes that have occurred to objects and thus
(implicitly) all states of objects in the database. A snapshot of the database at any
given time is an object-oriented database, in the sense that it supports an object—
based data model. An object is viewed as a collection of simple atomic formulas, with
support for an explicit notion of object identity, classes and inheritance.

The event calculus is a treatment of time and change in first-order classical logic
augmented with negation as failure. The paper develops a variant of the event calcu-
lus for representing changes to objects, including change in internal state of objects,
creation and deletion of objects, and mutation of objects over time. Implementation
strategies for practical application to temporal object-oriented databases are sketched.
The concluding sections present two natural and straightforward extensions, to deal
with versioning of objects and schema evolution.

Keywords: Object-oriented databases, object versioning, deductive databases, tem-
poral databases, temporal reasoning, event calculus, logic programming.

1 Introduction

The object-oriented and deductive approaches have generated considerable interest in the
database and programming language fields. In databases, one of the main driving forces
behind the recent interest in object-oriented languages is their support of a rich collection of
data modelling and manipulation concepts. Another feature of the approach is the promise
it shows in overcoming the so called impedance mismatch between programming languages
used to code applications and database languages used to retrieve data. In parallel, the
deductive approach has gained popularity as a candidate to solve this mismatch problem,
since logic can be used as a computational formalism as well as a database specification
and query language. A substantial amount of recent research has aimed at integrating

*Department of International Relations, Bilkent University, Bilkent, Ankara, Turkey.
nihan@bilkent.edu.tr

"Department of Computing, Tmperial College of Science, Technology and Medicine, 180 Queen’s Gate,
London SW7 2BZ, UK. mjs@doc.ic.ac.uk

these two paradigms to provide a single powerful framework for future database systems.
Although there is still no general agreement on how this integration should be carried out
— some authors even argue that one cannot have a system that is both truly deductive
and truly object-oriented because of the conceptual mismatch between value-oriented logic
programming and the notion of object as imported from object-oriented programming —
there have been some promising developments, especially in the emergence of logics for
objects with identity and complex internal structure. Existing proposals are summarised
in section 2.

Most of this work, however, has ignored dynamic aspects, that is to say, the complica-
tions that arise when objects evolve over time or mutate into objects with different internal
structure. Work on the representation of temporal phenomena, on the other hand, has
tended not to involve any explicit notion of ‘object’. In temporal databases, research is
dominated by approaches based on the relational model, although there are some excep-
tions. Some references are provided at the end of this section. Qutside the database field,
in Al in particular, there is extensive work on temporal reasoning, but here again ‘fluents’
— the propositions whose truth value varies over time — are typically represented as
ground terms of some first-order language.

In this paper, we address the representation of temporal information in object-oriented
databases. We do this by developing a variant of the event calculus [46], which we call
Object-based Fvent Calculus (or OEC in short), for describing and reasoning about changes
to objects in a logic programming framework.

The event calculus was introduced in [46] as a general logic programming treatment
of time and change. Events, which are taken as the primitive temporal notion, mark the
occurrence of change, and initiate and terminate periods of time for which facts hold.
Given a record of events that have happened or that may happen, the event calculus can
be used to determine what facts hold at any given time, or to compute the periods — the
maximal intervals of time — for which a fact holds continuously. In the standard versions
these time-varying facts are represented as (ground) first-order terms. From the database
perspective, they can be seen as tuples of relations: the event calculus is then a method
of deriving, for every such tuple, the periods of time for which it holds (the ‘lifespan’ of
the tuple in the terminology of [27]). A snapshot of what holds at any time has the form
of a relational database.

The timestamping of relational tuples with intervals is a common technique in many
temporal database systems. The main difference in the event calculus is that these in-
tervals are not inserted and modified explicitly but are derived from the record of event
occurrences as required: the events effectively give some semantic structure to the end-
points of intervals. A similar idea, expressed in terms of an extended relational algebra,
has recently been proposed in [71]. The record of event occurrences is there called a
‘journal’. Operators are proposed to derive what holds at intermediate times: a ‘history’
operator converts event data to intervals, and a ‘snapshot’ operator determines what holds
at a given point in time.

The event calculus is also intended to contribute to the treatment of database updates
(see in particular [44]). This is not an aspect that we shall discuss in this paper, however.
Similarly, the event calculus has been extended and applied to the construction of temporal
databases that support both ‘valid time’ and ‘transaction time’ [63, 64]; again this is a
further development we do not undertake.

In this paper we construct a version of the event calculus — the OEC — for dealing
with changes to objects. Asin the original (relational) event calculus, the changing world is
described in terms of a record of events (a ‘journal’), from which the OEC can reconstruct
and access the states of objects at any time. We get a database in which all states of
objects are stored (implicitly). A snapshot of this database at any given time is an object-
oriented database — ‘object-oriented’ in the sense that it supports an object-based data
model. For reasons explained later, we shall adopt the view of an object as a collection of
simple atomic formulas with a standard first-order semantics.

This paper is an expansion and further development of our previous presentation [34]
where we discussed the evolution of objects using the event calculus. We now develop the
basic idea and explore other temporal aspects of objects as well.

The paper has three main components:

(1) Since an object, however understood, is a more complicated structure than a collection
of relational tuples, several different kinds of change can be identified, each requiring its
own treatment. We examine the main kinds of change in detail — in sufficient detail
that the resulting formulation can be executed directly, as a Prolog program, say. The
same problems arise whatever representational formalism is employed. The formulations
proposed could be reconstructed, if preferred, in some other representational formalism,
such as the situation calculus.

(2) In common with much current usage, the term ‘database’ is used in this paper to refer
to a wide, loosely defined class of applications, not just to large-scale database systems,
narrowly understood. In the first instance, the OEC is intended to be used in the con-
struction of ‘database’ or ‘knowledge-base’ applications where the problems of scale and
performance associated with large-scale database systems are not a major factor. Some
examples are mentioned in the text. However, it is also our aim to develop the OEC as
a basis for practical, large-scale temporal database systems. In this last respect we shall
be concerned with explaining how previously proposed implementational strategies in the
temporal database literature may be adapted for use with the OEC.

(3) The OEC’s mechanism for maintaining the state history of objects leads to the ver-
sioning of objects as a natural and straightforward development. Event descriptions can
be used to keep parallel histories of objects, and these can be used to model multiple
versions of the same object at a time.

The paper is organized as follows. Section 2 presents a brief survey of the existing
work on reasoning with complex objects for the purpose of identifying, in section 3, the
basic data model that will be supported by our object-based variant of the event calculus.
The OEC itself is presented in three separate sections. In section 4 we present the basic
formulation and discuss how it can be applied to describe changes in objects. In section
5 we address the mutation of objects, where objects are allowed to change their classes
during their evolution. And in section 6 we extend the formulation to incorporate some
other object-oriented features, specifically multi-valued attributes and methods for derived
attributes. Practical considerations and implementation strategies for temporal databases
are discussed in section 7. Sections 8 and 9 show how the OEC can be adapted in a natural
way to deal with versioning of objects and schema evolution respectively.

The literature on temporal reasoning and temporal databases is very extensive and we
do not attempt a full survey here. For various extensions and applications of the event

calculus see, e.g., [11, 15, 20, 23, 24, 51, 54, 59, 62, 65]. Comparisons of the event calculus
with situation calculus are provided in [53] and [45]. For temporal databases, [43] provides
a recent bibliography of work in this area together with pointers to previous bibliographies.
The collection [69] gives an excellent overview of the main approaches and discusses many
of the issues that are studied in this field. As already mentioned, most work in temporal
databases has been undertaken in the context of the relational model. Exceptions include
[21, 32, 56, 57, 68, 73]. Comparisons with other proposals and references to specific points
are given as they arise in the text.

2 Complex Objects

The purpose of this section is to identify and motivate the choice of data model we have

adopted for the OEC.

Although there has been much confusion and controversy about the meaning of object-
orientation in general and object-oriented databases in particular, a number of concepts
have emerged as characteristic of this approach. Several papers [6, 5, 67] have now pro-
posed a set of base features for object-oriented databases, that is, databases which support
an object-oriented data model. There is no single standard model, but there is a set of
basic concepts common to all object-oriented programming and knowledge representation
languages.

A great number of attempts have been made to use logic in establishing a formal se-
mantics for object-oriented concepts. Some of the existing works take deductive databases
as the basis and extend the existing systems with the concept of a structured object. Most
of the work in this approach follows the research on non-1NF relations, in order to extend
the data structures of logic programming with sets and complex terms [1, 14, 47, 74].
Others attempt to formalize the basic object-oriented concepts by developing a new logic
to support various features of complex objects [8, 13, 37, 39, 49]. There is also another
stream of work which approaches the problem from a programming language perspective.
Here the aim is to extend the logic programming languages with some object-oriented
features such as methods and message passing [19, 25, 50, 75]. These proposals are of
less interest in the context of this paper since their primary concern is with programming
constructs.

When we compare the existing work, we see that the semantics of a complex object
differs widely. In the proposals which extend deductive databases with sets and complex
terms a complex object is viewed as a tuple in a higher-order relation. In object logics
a complex object is either an element in some partially ordered domain or a collection
of simple atomic formulas. Below we summarize these different semantics of objects and
assess them according to their ability to support the representation of changes to objects.

2.1 Higher-Order Relations

One way of incorporating complex objects is to extend predicate calculus to a higher-order
logic so that the value of an argument of a predicate can also be a relation built by using
tuple and set constructors. Several higher-order extensions of logic programming, such as
LDL [14] and COL [1] have been proposed. They view a complex object as a tuple in a
higher-order relation. For example the COL statement:

person(john, 38, “London”, {chess, tennis}, {tom, sue}).

describes information about a person and his hobbies and children. Sets can be represented
either explicitly as in this example or by data functions. In LDL, a grouping construct is
used to construct a set by using a rule. For example, the rule

children(X, <Y>) « parent_of(X, Y).

groups together all the children of each person. Here <> is the grouping operator.

These proposals can be characterized as attempts to incorporate some notions from the
object-oriented paradigm, without compromising the goal of having the relational model
as the basis of the extended model. Thus they are often said to be value based. Although
higher-order logic provides a formal framework for nested relations and complex objects, it
also has some disadvantages. The higher-order semantics of sets presents severe semantic
problems for logic programs in these languages, and it is difficult to develop an efficient
query evaluation in these approaches.

Another disadvantage is that representing a complex object by a nested tuple is prac-
tically not very convenient. Because of syntactical limitations (e.g. fixed arity) these
languages do not provide access to sub-structures of complex objects in a homogeneous
way. They are unsuitable for deductive retrieval at arbitrary levels. In the above example,
to find the age of the person john’s child tom, one must start from the top predicate per-
son and then continue down to the sub-structures where the required information can be
found. In the case of updates, semantic problems also arise. For example if john develops
a new hobby, adding the new information will yield a completely different tuple which
does not have any semantic relationship with the original one. Omitting the information
about address will produce a tuple of a completely different type.

2.2 Object Logics

The other main stream of work aims at developing a new logic to support various features of
complex objects. It is argued that just as for relational databases, a logical framework can
be established for object-oriented databases also. The underlying logic must be different
from first-order predicate logic because most features of object-orientation require higher
orderness. On the other hand it is desirable to have a logic with first-order properties:
following the terminology of [12] the language (syntax) of an object model must be higher
order to be able to manipulate such concepts while the semantics must be restricted enough
to satisfy first orderness. A number of such object logics have been proposed.

The first work, influenced by the -terms of LOGIN [4], was Maier’s O-logic [49]
which was later extended by a number of proposals, namely C-logic [13], extended O-logic
[39], and F-logic [37]. From the object-oriented world these logics acquire the notion of
object identities, complex objects, a mechanism for object classification and a structure
for property inheritance. From the logic programming world they absorb the concepts of
unification, answer substitution and a strategy for deductive query processing.

In these logics, an object is represented as a complex term in the language. For instance
in O-logic [39], the person object illustrated in the previous section can be represented by
a complex term as follows:

person : john[age — 28,
address — “London”,
hobbies — {chess, tennis},
children —{person : tom, person : sue}]

Here person is the class name, john is the object identity and the labels denote attributes.

The syntax of these complex terms is influenced by the language LOGIN but their
semantics is different. In LOGIN complex terms denote types and inheritance is incorpo-
rated into the unification algorithm. In the object logics, complex terms are formulas in
their own right: written as a formula, a complex term asserts that an individual object
with that structure exists. More complex formulas are built by combining object terms
using the usual truth-functional connectives and quantifiers.

Although the syntax and the informal reading of complex terms are quite similar in all
of these object logics, the precise semantics given to the complex terms varies. Extended O-
logic and F-logic view an object term as an element in a partially ordered domain. Partial
orderings on class names and object identities are defined and using these orderings a
partial ordering over complex object terms is obtained and used to capture sub-object or
sub-type relationships.

The major disadvantage of this approach is that the logic becomes more complicated
as more features, such as methods and inheritance, are introduced. A natural concern is
whether there might be an efficient evaluation procedure for queries. Another important
concern, directly related to the main topic of this paper, is the ability of this approach
to model the dynamic behaviour of objects. This question is not addressed in the current
literature, and many of the difficulties seem not to have been anticipated. For instance,
some common types of change would seem to require changes to the partial ordering on
class names and object identities, and hence effectively to the language itself. It is difficult
to see how such changes could be accommodated smoothly, and no suggestions on these
points have appeared, to our knowledge.

C-logic [13] takes a different approach. Here, complex object descriptions are consid-
ered as collections or conjunctions of atomic properties. Each attribute label is viewed as
a binary predicate and each class symbol as a unary predicate. An object with several
labels can then be described as a conjunction of several atomic formulas. For example the
term

john[name = “John Smith”, age = 28]
can be considered as

john[name = “John Smith”] A john[age=-28]
or as

name(john,“John Smith”) A age(john, 28)

in first-order logic.

This formula approach makes it possible to understand the semantics of complex ob-
jects within the predicate logic. Chen and Warren give a semantics to C-logic directly, and
also by transformation to an equivalent first-order formula which uses unary predicates for
types and binary predicates for attributes. This makes proof procedures and associated
computational developments in first-order logic readily available for complex objects.

One advantage of the formula approach taken by C-logic is that it allows information
about an entity to be specified and accumulated piecewise, which facilitates the update
of subparts of an object independently of others. The explicit notion of object identity
also makes sharing and updates easier. Adding new information about an object is just a
matter of adding one or more binary predicates. The subparts of an object can be retrieved
by using the identity of the object and the attribute name describing the subpart.

3 The Data Model

In this section we present the data model that the OEC will support.

The data model provides a basic set of features associated with structural object ori-
entation: object identity, complex objects with both single-valued and multi-valued at-
tributes, methods for derived attributes, classes, class hierarchies, and inheritance. This is
the set of features identified as the essential ingredients of object-oriented data models in
[5, 67], to which we have added derived attributes since they are useful in applications and
can be supported straightforwardly. The treatment we adopt follows the formula approach
exemplified by C-logic [13], as summarised in the previous section.

We view an object as a named collection of object-attribute-value triples. Every object
is abstracted by a unique identity which distinguishes it from other objects. Following
Kifer and Wu [39] we use individual terms to denote object identities. A term representing
the object identity is composed of function symbols, constants and variables in the usual
way. (We use the standard Prolog convention for constants and variables throughout
the paper: strings beginning with an upper-case letter are variables.) For example john,
X, children(john, mary), path(X,Y) can all be terms denoting identities. The set of all
ground identity terms plays a role analogous to that of the Herbrand Universe in classical
logic. Function symbols are used to construct new object identities out of existing ones.
The objects have attributes whose values can be other objects (or more precisely their
identities).

Objects are organized into class hierarchies, defined explicitly by asserting is_a rela-
tionships among classes. A class denotes a set of object identities. Each class has a unique
name to distinguish it from other classes. The class-subclass relation (is_a) is to be read
as the subset relation: the set of objects represented by a class includes all the objects
belonging to the subclass(es) of that class.

The relation between a class and its instances is represented by the instance_of relation.
The set of instances of a class changes as new objects are created and cease to exist. This
time-dependent behaviour of the instance_of relation will be discussed in section 4.5.

A class describes the internal structure of its instances by attribute names. This
structure is asserted by the predicate attribute. A subclass inherits the structure of its
superclass(es).

person
(attributes: name, address)

student employee
attributes: section, supervisor attributes: dept, rank
Y Y

Figure 1: A simple class hierarchy

As an example consider the class hierarchy shown in figure 1. Classes student and
employee are subclasses of person. The attributes common to all persons (i.e., name,
address) are defined in the class person and are inherited by the subclasses. The subclasses
also define additional (more specific) attributes. The class hierarchy is described as follows:

is_a(student, person).
is_a(employee, person).

attribute(person,name).
attribute(person,address).
attribute(student,section).

For the purposes of this example, we have assumed that all attributes are single-valued.
As will be shown in the next section, the functionality constraint of such attributes is
satisfied within the formulation of the OEC. The extension to allow multi-valued attributes
in addition is straightforward but for explanatory purposes we leave this aside, together
with methods for derived attributes, until section 6.

In order to formulate the inheritance of attribute names by the subclasses we define
the predicate attribute_of in the following way:

attribute_of(Class, X) < attribute(Class, X).
attribute_of(Sub, X) «— is_a(Sub, Class), attribute_of(Class, X).

This formulation for objects and classes allows a very simple form of inheritance. It
is limited to the subset relation between classes and monotonic inheritance of attribute
names. Multiple inheritance without overriding can also be expressed by the is_a predi-
cate. This simple type of multiple inheritance causes no additional difficulty and is not
mentioned again.

4 The Object-Based Event Calculus

In this and the following two sections we shall present the OEC, a version of the event
calculus that supports the data model described in the previous section. Given a descrip-
tion of event occurrences (changes in the world) the OEC can reconstruct the state of
any object in the database at any point in time. It can also be used to compute the
period(s) of time for which an object ‘exists’ (its ‘lifespan’ [27]) and the periods of time

for which given attributes of objects have given values. For simplicity we shall assume
for the time being that all attributes are single-valued and we shall ignore methods for
derived attributes. These features of the data model will be re-introduced in section 6.
The formulations presented in these sections can be executed as Prolog programs; however
we shall comment separately on practical implementation strategies in section 7.

The OEC is based on a simplified, asymmetric case of the event calculus, where facts
are assumed to persist forwards in time until they are terminated by some subsequent
event. Correspondingly, the assimilation of events into the database is assumed to keep
step with the occurrence of changes in the world. This is in contrast to the original
formulation of the event calculus [46] which treats past and future symmetrically and can
deal with the case where events are not necessarily recorded in the same order in which
they actually occur.

This simplified version of the event calculus corresponds closely to updates in conven-
tional databases [44]. It blurs the distinction between an event occurrence (a change in
the world) and the recording of that event in the database. Accordingly, the database
that is maintained by the OEC can be seen either as a historical or ‘valid time’ database
recording the evolution of some set of objects in the world, or as a system in which all past
states of an object-oriented database are accessible. (And if valid times and transaction
times are distinguished but are exactly correlated, then it can be seen as a ‘degenerate
bitemporal’ database [29, 30].)

It would be possible to construct a version of the OEC without these assumptions
following the symmetrical treatment of past and future of the original event calculus
[46]. Tt would also be possible to extend the treatment to support both ‘valid time’
and ‘transaction time’ as done by Sripada [63, 64] for the relational versions. We do not
attempt these further developments in this paper. Similarly, although it is only the relative
ordering of events that is significant in the event calculus we shall assume that the times
of all event occurrences are given since this is often useful in practice.

We present the OEC in stages. We begin with the simplest kind of change, which is
change to an existing object’s internal state.

4.1 Change of Internal State

The state of an object is determined by the values assigned to its attributes. Change in
internal state corresponds to changing the value of any of the attributes. The basic idea
in dealing with the evolution of an object over time is to parametrize its attributes with
times at which these attributes have various values. Formulation of this idea within the
spirit of the event calculus is straightforward. Events initiate and terminate periods of
time for which a given attribute of a given object takes a particular value. Figure 2 shows
the history of an employee object. Here john is the identity of the object and rank, dept,
age, address are the attributes that are initiated to different values at different times. The
object-based event calculus constructs such a state history of objects.

The effects of events are described by the predicates initiates and terminates by means
of assertions (or more generally rules) of the form:

initiates(EventType, Object, Attribute, Value).

john

rank I rl I r2 r3 L
dept I dl d2 o
28 29 30 32
age | | o
address | al o
etc.

Figure 2: State History

(and similarly for terminates). For example an event of type ‘promote employee X to
new rank R’ initiates a period of time for which employee X holds rank R and terminates
whatever rank X held at the time of the promotion:

initiates(promote(X, R), X, rank, R).

Here promote(X, R) is a term representing the type of the event. Since we are dealing
with single-valued attributes it is not necessary to specify explicitly that the old rank is
terminated. The details are shown in a moment.

Given a fragment of data :

happens(promote(jim,assistant), 1986).
happens(promote(jim,lecturer), 1988).
happens(promote(jim,professor), 1991).

the OEC can be used to compute values of attributes of objects at given times, as in the
following two queries:

?- holds_at(jim, rank, R, 1989).
?- holds_at(jim, Attr, Val, 1989).

The formulation of holds_at in terms of initiates, terminates and happens is shown presently.

The OEC can also compute the periods of time for which an object’s attributes have
particular values. In the example, for instance, the query

?- holds_for(jim, rank, R, Period).
would generate the answers

R = assistant, Period = 1986-1988;
R = lecturer, Period = 1988-1991;
R = professor, Period = since(1991).

10

A term of the form Ts—Te denotes a time interval (closed on the left and open on the
right) with start and end points Ts and Te respectively; since(Ts) denotes an open-ended
interval, the set of time points later than or equal to Ts. (Time points need not be years,
as in this example.) Notice that we do not include in the time line any distinguished time
point ‘now’ or ‘unchanged’ as seems to be common in many temporal database systems
(see for example the collection of papers [69]).

The following is the basic formulation of the OEC to derive the value of an attribute
of an object at a specific time:

holds_at(Obj, Attr, Val, T) < happens(Ev, Ts), Ts < T,
initiates(Ev, Obj, Attr, Val),
not broken(Obj, Attr, Val, Ts, T).

broken(Obj, Attr, Val, Ts, T) < happens(Ev*, T*),
Ts< T*< T,
terminates(Ev*, Obj, Attr, Val).

Informally, these clauses may be read procedurally as follows: in order to find the value
Val of an attribute Attr of an object Obj at time T, find an event Ev which happened
before time T and initiated the value of that attribute; and then check that no other event
which terminates that value has happened in the meantime. The interpretation of not as
negation by failure in the last condition for holds_at gives a form of default persistence:
the value of an attribute is assumed to hold at all times after its initiation by event Ev
unless there is information to the contrary.

The constraint that attributes are single-valued implies that the value of an attribute
is terminated if an event initiates it to another value. This is represented by adding the
following general rule:

terminates(Ev*, Obj, Attr,) < initiates(Ev*, Obj, Attr, _).

4

(The use of the anonymous Prolog variable ‘_’ in this clause is just to cover the unlikely

case that an event is specified to re-initialise an attribute to its existing value.)

The computation of periods of time is obtained by the following:

holds_for(Obj, Attr, Val, during(Ts, Te)) < happens(Ev, Ts),
initiates(Ev, Obj, Attr, Val),
terminated(Obj, Attr, Val, Ts, Te).

terminated(Obj, Attr, Val, Ts, Te) < happens(Ev, Te), Ts < Te,
terminates(Ev, Obj, Attr, Val),
not broken(Obj, Attr, Val, Ts, Te).

We require another clause to deal with periods that have no end-point (i.e., for the case
where the value of an attribute is initiated but there is no subsequent event which termi-
nated the value):

11

holds_for(Obj, Attr, Val, since(Ts)) < happens(Ev, Ts),
initiates(Ev, Obj, Attr, Val),
not terminated later(Obj, Attr, Val, Ts).

terminated Jater(Obj, Attr, Val, Ts) — happens(Ev, Te), Ts < Te,
terminates(Ev, Obj, Attr, Val).

Given a set of events, the object-based event calculus can be used to answer queries
such as finding out the value of an attribute of an object at a specific time, or the period
of time for which an attribute of an object has a given value. We can determine the state
of an object at any time by finding out the values of all its attributes.

Of course execution of this event calculus, in Prolog say, does not yield an object-
oriented style of computation. But conceptually, in object-oriented terminology, we could
consider events as messages to modify object states. The specification of how events affect
the state of objects would then correspond to methods, and the predicates initiates and
terminates would be the system primitives by which the methods are implemented.

So far we have discussed how event calculus can be used to describe changes to the
internal states of objects, i.e., to values of attributes of objects. Apart from the events
that cause changes of state of existing objects, there are other kinds of events which cause
the creation of new objects or deletion of objects. Before moving on to present other kinds
of changes, we wish to make a remark about the representation of events.

4.2 Digression: Representation of Events

For the formulation of the OEC we have adopted C-logic’s formula approach for the
treatment of objects in the data model. In this paper we also use C-logic syntax as
a convenient shorthand for describing events. The transformation of C-logic to Prolog
(see section 2) allows us to mix C-logic and standard Prolog syntax freely, and this is
particularly convenient when describing events. For example, an event which is described
in Prolog by the following assertions

event(el).

act(el, promote).
object(el, jim).
newrank(el, prof).
happens(el,1989).

can be written equivalently and more concisely using C-logic syntax as follows:

event:el[act=>promote, object=- jim, newrank=-prof].

happens(el,1989).
We could also write, for example,

happens(event : el[act = promote, object = jim, newrank = prof], 1989).

12

Generally we prefer to separate the structure of the event from the record of its occurrence
(happens), as in the first C-logic version above. Whichever formulation is chosen, the C-
logic to Prolog transformation makes all of them equivalent.

It is important to note that the C-logic representation of events is not essential to
the main theme of the paper. We are primarily concerned with the treatment of changes
to objects, and for this we have followed C-logic’s formula approach for the semantics of
complex objects. It is of minor importance that we have also chosen to use C-logic syntax
for the representation of events. To put it another way, the C-logic representation of events
could just as well be employed to re-formulate the original (relational) event calculus, but
that would not alter the nature of the data model supported by that version of the event
calculus.

4.3 Creation of Objects

Creation of a new object of a given class means adding new information about an entity
to the database. We can think of describing object creation by events — birth of a
person, manufacturing a vehicle, hiring a new employee — whose specifications provide
the necessary information about the initial state of the object.

In object-oriented databases, classes provide an instantiation mechanism for creating
their new instances. Instantiation is performed by calling on a class to create a new object
based on the information given in the class. This object is then initialized by giving each
of the attributes an appropriate initial value.

In the context of temporal databases, objects are not created and destroyed. What
changes is whether an object with a given identity exists or not. But since every object in
our framework belongs to a class, it is unnecessary to introduce a separate exists predicate:
instead we make class membership, instance_of, a time-varying relationship. (In other
words, to determine whether an object z of class (' ‘exists’ at time ¢, determine whether
z is an instance of class C' at time ¢.) The ‘creation’ of an object is then a matter of
assigning it to a chosen class and specifying its initial state.

We handle creation of objects by specifying which events assign objects to which classes,
employing for this purpose a new predicate assigns. We use the same event description to
initialize the state of the object. As an example consider registration of a student. The
description of a specific registration event might be as follows:

event : €23 [act = register, object = ali, section = Ip, supervisor = bob].
The rules that specify the effects of such registration events are:
assigns(event : Ev[act = register, object = Obj], Obj, student).
initiates(Ev, Obj, section, S) —
event : Ev[act = register, object = Obj, section = S].
initiates(Ev, Obj, supervisor, S) —

event : Ev[act = register, object = Obj, supervisor = S].

The assigns statement is used to assign the identity of the object Obj to the class student;
the initiates statements are used to initialize the object’s state. In initializing the state

13

of the object, not all attributes need to be assigned to values. Some attributes may not
have any values or they may have “undefined” as a value. The occurrence of the specific
registration event described above is recorded by :

happens(e23, 1991).

There is one further point of detail. Assimilation of new event descriptions into the
database will generally require introducing one or more new object identities (€23 and
presumably ali in the above example). In a practical implementation, generation of unique
new identities can be left to the system. But notice that generation of object identities is
not the same problem as ‘creation’ of new objects.

Recall from our presentation of the basic data model that instances of a class are also
instances of all the superclasses. It is therefore necessary to arrange that any new instance
of a class should automatically become a new instance of the superclasses. There are
several ways of arranging for this, of which the simplest is to include the following rule:

assigns(Ev, Obj, Class) <« is_a(Sub, Class), assigns(Ev, Obj, Sub).

For the time being we assume that once an object is assigned to a class, it remains an
instance of this class throughout its lifetime. That is, objects exist (i.e., they are in the
database) or cease to exist at various times. Their existence is described by assigning their
identities to their class. Once an object is assigned to a class it remains as an instance of
that class during its lifetime and never changes class.

4.4 Deletion of Objects

Deletion of objects can also be described by events. There are two kinds of deletions that
we are going to discuss in this paper. One is absolute deletion of an object where the
object is removed from the database: more precisely, since we are dealing with temporal
databases, the object ceases to exist, or rather, ceases to be an instance of any class. The
other form of deletion deletes an object from its class but keeps it as an instance of another
class, possibly one of the superclasses. The second case is related to mutation of objects
over time, which will be discussed in section 5.

For the purposes of this section, we assume that when an object is ‘deleted’ not only
does it cease to belong to the set of instances of its class and the superclasses, but also all
of its attribute values are terminated. The reason is that attributes represent the internal
structure of an object. If an object ceases to exist then it is no longer meaningful to speak
of its internal structure.

We use another new predicate destroys to specify events that ‘delete’ objects. The rule:
terminates(Ev, Obj, Attr, _) — destroys(Ev, Obj).

has the effect that all attributes defined in the class of the object and also those inherited
from superclasses are automatically terminated when the object ceases to exist.

There is one point to consider when deleting objects in object-oriented databases. If
we delete an object x, there might be other objects that have stored the identity of x as

14

a reference. The deletion therefore can lead to ‘dangling references’ [77]. We eliminate
dangling references by adding another general rule for the terminates predicate:

terminates(Ev, Obj, Attr, ValObj) < destroys(Ev, ValObj).

The effect is that the value ValObj of the attribute Attr is terminated by any event which
destroys the object ValObj.

4.5 Class Membership

As objects are created and deleted /destroyed, the instances of a class change in time. This
temporal behaviour of class membership can be handled by parametrizing the instance_of
relation with times. We now have events that initiate and terminate periods of time for
which an object O is an instance of a class C'. The instance_of relation is affected when a
new object is assigned to a class or when an object is destroyed. By analogy with holds_at,
the following finds the instances of a class at a specific time:

instance_of(Obj, Class, T) < happens(Ev, Ts), Ts < T,
assigns(Ev, Obj, Class),
not removed(Obj, Class, Ts, T).

removed(Obj, Class, Ts, T) < happens(Ev*, T*),
Ts< T*< T,
destroys(Ev*, Oby).

With this time-variant class membership we can ask queries to find the instances of a class
at a specific time. For example:

?- instance_of(Obj, employee, 1980).

We can also write the analogue of holds_for (i.e., instance_for) to compute the periods of time
for which an object belongs to a class (or ‘exists’). Note that an object can have several
distinct periods of membership (or ‘existence’). We omit the details of instance_for since
they can be reconstructed straightforwardly by comparison with the earlier formulation of

holds_for.

4.6 Discussion and Related Work

We have introduced two separate sets of predicates, one for dealing with change in in-
ternal state of objects and one for creation/deletion of objects. The internal states of
objects are derived by use of the predicates holds_at and holds_for. These are defined in
terms of predicates initiates and terminates which specify the effects of events on objects’
internal states. The temporal class membership is derived by the predicates instance_of
and instance_for; predicates assigns and destroys are used to specify how events affect class
membership. The formulation of these two sets of predicates are direct analogues of one
another. We could combine them into one set of predicates, with one general formulation,
and thereby dispense with one set of predicate names altogether. We have not done so

15

because we want to emphasize the conceptual difference between changes in an object’s
state on the one hand and changes to class membership on the other.

The treatment of change formulated in the OEC is appropriate under the assumption
that facts and properties of objects persist over time — that, once initiated, each fact
continues to hold without interruption until it is terminated by some subsequent event.
Such facts have been termed ‘stable’ or, perhaps more perspicuously, ‘stepwise constant’
[58] in the literature on temporal databases. The OEC can be extended to accommodate
other kinds of time-varying behaviour by incorporating various extensions that have been
developed for the original, relational event calculus. In particular continuous change can
be treated using the ‘trajectories’ of [59]. We do not present the details here. The treat-
ment can be imported from the relational versions without modification, and is actually
slightly more convenient to formulate within the OEC, since it is continuous change of
values of attributes that is of interest; it is difficult to imagine what continuous change
of membership of a class would correspond to. Other extensions, such as allowing for
different granularities of time within the same data model [24, 51], could also be adapted
straightforwardly.

In the database field, the modelling of temporal information has been dominated by
approaches based on the relational model. There are exceptions (see e.g. [21, 32, 56, 57,
68, 73] and [61] for a comparative survey). These proposals differ in the range of modelling
features they provide. More significantly, they differ also in their general approach to the
representation of temporal information, and to the notion of ‘object’ itself. We select
here two examples, each of which is intended to be representative of a general class of
approaches.

The first example is the extended entity-relationship model described in [21]. This has
many features in common with the data model supported by the OEC. It has entities, time-
invariant identities (there called ‘surrogates’ for entities), attributes, and time-varying
membership of classes and sub-classes. The temporal extension records a ‘lifespan’ with
each entity, with each attribute-value, and with each class membership instance. These
lifespans correspond exactly to the time periods computed by the instance-for and holds-
for predicates of the OEC. The model of [21] also supports relationships between entities,
a feature not provided by the OEC. A corresponding extension of the OEC, discussed
briefly in [34], could be obtained by combining the OEC with the relational version of the
event calculus, but this is something we have not undertaken yet. The crucial difference
between the OEC and the temporal entity-relationship model of [21] lies in their respective
treatments of lifespans/periods and their treatments of updates. In [21] updates are treated
as operations on the database, and the system provides a number of basic operations for
this purpose: to create new entities of a given type, to insert and delete entities from
classes, and to modify attribute values. In each case, the corresponding lifespan must be
manipulated explicitly. The main motivation for the OEC, in contrast, as in the original
event calculus, is to provide some semantic structure for updates and for the computation
of ‘lifespans’. Updates, corresponding to assimilation of information about changes in the
world, are treated by adding an appropriate event description to the ‘journal’ stored in the
database. The effects on the objects and their attributes are not modelled as operations
on the database but are derived from the event descriptions via the specifications given
by the initiates—terminates and assigns—destroys predicates. We should note, however, that
other kinds of change, such as corrections of mistakes, are not supported directly by the
OEC and must be treated as modifications of the ‘journal’. A more powerful and general

16

treatment would require the introduction of a separate transaction time dimension. As
already mentioned, this has been done for versions of the relational event calculus [63, 64]
but not yet for the OEC.

The second representative is the temporal object-oriented system described in [73].
That system, however, places considerable emphasis on encapsulation and abstract data
types. These are object-oriented programming features that are generally not mimicked
directly in logic-based treatments of objects. (See the discussion in section 2.) The
proposal in [73] also treats time points and intervals as abstract data types, which we do
not attempt.

To avoid any misunderstanding, we should perhaps state explicitly that we are not
claiming in this paper to have introduced or invented some new modelling concept —
temporal or object-oriented — that is not already found in the literature. Conversely:
our intention is to show how a base set of object-oriented features may be provided in a
natural fashion in an integrated temporal/deductive framework; to demonstrate that this
framework can be further extended to provide a wider range of features, some of which
we present in detail; and to indicate that the resulting system can be used as it stands for
the construction of practical small-medium applications and has the prospect of further
development to large-scale database applications. We want to emphasise that it is the
general framework that is the basis for meaningful comparisons with other work, and not
the list of features currently supported by the OEC.

5 Mutation of Objects: Changing the Class

We have so far assumed that objects exist, cease to exist in the database, but never change
class. However in the real world it is common that objects evolve over time. Consider
the representation of an employee instance again. We have represented the rank of an
employee object by including an attribute rank whose value can change over time:

employee : jim[... rank = lecturer, ... |
employee : mary|... rank = professor, ... |

But suppose that instead of using the attribute rank, we had chosen to divide the class of
employees into various distinct subclasses:

employee

BN

lecturer professor

Then employees of different ranks would be considered as different classes, represented
using is_a:

is_a(lecturer, employee).
is_a(professor, employee).

17

The choice between the two representations is a data modelling issue. If employees have
different additional attributes according to their ranks then it is appropriate to represent
different ranks as subclasses. However, even if the structure of all ranks is identical, the
choice between the two representations can become significant, if we consider the dynamics
of the ‘promotion’ event. In the first representation, values of the rank attribute can be
changed straightforwardly to model the effects of promotion. In the second representation,
modelling a promotion from lecturer to professor requires destroying the lecturer object
and creating a new professor object. But then how do we relate the new professor and the
old lecturer, and how should we preserve the values of unaffected attributes common to all
employees?

5.1 Classes and types

While researchers in knowledge representation systems have been aware of the problem
of mutating objects for some time [10, 66] it has only recently begun to receive attention
in the object-oriented database community [76, 72]. In most object-oriented database
systems the permanent binding of an object’s identity to a single class constrains the
tracking of real world entities over time. This is a critical problem, because one is forced
to model entities that evolve dynamically with objects that cannot.

The ability to change the class of an object provides support for object evolution. It
lets an object change its structure and behaviour, and still retain its identity. In [76] a
type system which allows this kind of evolution is presented. An object x can have a set
of types, and the change from one type to another is a process of selectively adding and
deleting types to the set of types of x. The notion of typing is retained whilst allowing
some flexibility in system evolution.

In our present framework there is no notion of type. We support the grouping of objects
according to common structure and properties by means of class, which is a dynamic
notion. This gives more flexibility for representing class changes. However there are
other advantages to be gained from having a type system in addition. A further typing
mechanism could be added as an extension to our basic data model. There is a tendency in
the literature to use the terms ‘type’ and ‘class’ interchangeably. For us they are distinct
notions: one (fype) is a static, syntactic feature of the representation language; the other
(class) is a dynamic grouping of objects according to their structure and properties.

5.2 Realization

We deal with the evolution of objects by allowing events that change an object’s class,
and some or all of its attributes. For example, graduation causes a student to change
class. The effects can be described by removing the student object from class student and
terminating those attributes he has by virtue of being a student; attributes he has by
virtue of belonging to class person should however be retained. The selective termination
of attributes is obtained by using schema information. In order to deal with this type
of class change we introduce another predicate removes in place of destroys. Again, new
predicate names are used in order to emphasise conceptual differences.

Consider figure 3. A graduation event causes ali to move up the class hierarchy. When
the student ali graduates, he is removed from student and becomes an instance of the

18

person person person

oD G G
‘graduate’ ‘hire’
Lo o O O O G

student employee student employee student employee

Figure 3: Class Changes

person class only. His attributes by virtue of being a student are also terminated. The
effects of the graduation event are described by the following rule:

removes(event: Ev[act = graduate, student = S |, S, student).

There is in addition a general rule, that removing an object from a class terminates
all attributes specific to instances of that class:

terminates(Ev, Obj, Attr, _) — removes(Ev, Obj, Class),
attribute(Class, Attr).

The overall effect of a graduation event for ali is that, for times after the graduation,
it is no longer possible to derive instance_of(ali, student), nor values for any of his student-
specific attributes since these are all terminated automatically by the graduation event.

Now consider hiring ali as an employee. This will cause his class to be changed from
person to employee. Since the class employee has some additional attributes (dept, rank), the
specification of this event will include values to initiate these attributes. Thus the effects
of the hiring event are described by assigning him to the class employee, and initiating his
employee-specific attributes. The description of such an event might be:

event : e21[act = hire,
object = ali,
dept = cs,
rank = lecturer]

The effects of hiring events in general can be specified as follows:
assigns(event: Ev[act = hire, person = P], P, employee).

initiates(event: Ev[act = hire, person = P, dept = D], P, dept, D).
initiates(event: Ev[act = hire, person = P, rank = R], P, rank, R).

Note that in changing ali’s class first from student to person then from person to em-
ployee, ali has not been removed from the class person and has retained all his person-
specific attributes. More importantly the identity of the changing ali object remains the
same throughout.

19

We have described moving an object up and down the class hierarchy by two separate
event occurrences. We can also imagine a single event which would cause an object to
change its class from student to employee directly (‘hire-student’ say). The effect of this
type of event could be specified as follows:

removes(event: Ev[act = hire-student, student = S], S, student).
assigns(event: Ev[act = hire-student, student = S], S, employee).

As in the case of two separate events, we do not lose the values of the person-specific
attributes, and we do not remove the object from class person.

The question naturally arises of what happens to attribute values as the object moves
across the hierarchy. In our framework, the relationships between old and new values in
the sibling classes, if any, can be specified explicitly using initiates statements, just as in
the specification of the initial state of a newly ‘created’ object (e.g. ‘hiring” above). There
is nothing special about class-changing events in this respect. We do not believe that any
useful general rules can be formulated, even for the case where the sibling classes contain
attributes with the same name. It might be supposed that in such a case the values of
the common attributes should remain unchanged. We believe this would be a mistake.
If the common attribute has a different intended meaning in the two classes, then there
is no reason why the two values should be the same, except by coincidence. In the case
where the common attribute does have the same intended meaning in both classes (e.g.
if an attribute age indicates the age of a student and also the age of an employee), then
this suggests an inadequacy in the modelling scheme itself. If we want such attributes to
retain their values during a class change, then they should belong to a common superclass
of the two classes involved. (In the example, age should be an attribute of person and not
of the more specialised sub-classes student and employee separately.) The whole point is
that common attributes should be defined as part of the structure of a general class, with
each sub-class further introducing the additional attributes specific to its instances.

We have illustrated three kinds of simple class change: changing from a class C to a
direct superclass of (', changing from C to a direct subclass of €' and changing from C
to a sibling class of €' in the hierarchy. In the general case, changing an object from class
C'1 to class €2 involves finding a path in the class hierarchy and using rules similar to the
preceding ones to move along this path.

5.3 Remarks

In general, class changing events affect both the internal state of objects and also the
class membership relation. The holds_at and holds_for clauses for deriving internal states
of objects require no modification, since the effect is accommodated by making terminates
dependent on removes as shown already. However we do need to modify the clauses for
instance_of (and instance_for) to take removes into account. The modified formulation of
instance_of is as follows:

instance_of(Obj, Class, T) «— happens(Ev, Ts), Ts < T,
assigns(Ev, Obj, Class),
not removed(Obj, Class, Ts, T).

20

removed(Obj, Class, Ts, T) < happens(Ev*, T*),
Ts< T*< T,
removes(Ev*, Obj, Class).

removes(Ev, Obj, _) < destroys(Ev, Obj).

The last clause states that if an event destroys an object, then that event also removes
the object from all its classes.

There are two details left, one comparatively trivial and one more substantial. We
take them in order.

In the formulation as we have presented it, the general recursive rule for assigns, which
describes the subset relation (see section 4.3), causes the assignment of an object to a class
redundantly when there are also other more specific assigns statements present. For in-
stance when hiring person x as an employee, a new period of time for the fact instance_of(x,
person) is initiated even though this fact is already current (x is already an instance of
person when the hiring takes place). This duplication of periods occurs with every class-
changing event for which an assigns statement assigns an object to a subclass of its current
class. The problem manifests itself when the database is queried about the instance_for
relation because then several different but overlapping periods of time can be generated as
answers. There are various solutions to this problem. The simplest is to take into account
the possibility of these different time periods in the formulation of instance_for so that
all these separate periods are amalgamated into one. (This requirement has been termed
coalescing in the temporal database literature [27, 31].)

The second point is more substantial. Allowing objects to change their class presents
a potential problem which is analogous to dangling references. The problem arises when
an object, which is the value of an attribute Attr of some other object, changes class in
such a way that it can no longer be regarded as a meaningful value for attribute Attr. For
example, assume that the staff instances have an attribute student which takes a student as
a value. Further assume that the student ali is a student of the staff member john. When
ali graduates and changes class to employee, the student attribute of john is not valid any
longer and should be terminated. The graduation, which is defined as a class-changing
event, takes care of terminating and initiating attributes of the student, but the other
objects referring to this object as a student are not changed. This problem, sometimes
called the dangling domain problem [76], would be a type violation in a typed system.
In our present framework the problem can be avoided by writing event specifications
appropriately, but this obviously requires that all ‘dangling domain’ problems are identified
and accounted for explicitly. This is clearly unsatisfactory. The natural solution is to refine
the schema so that the type (or perhaps class) of the value of an attribute is specified as
well. In principle, this additional schema information would allow for a re-formulation of
the OEC so that attributes affected by the ‘dangling domain’ are terminated automatically
in the same kind of way that ‘dangling references’ are eliminated. However the details
turn out to be quite complicated, and we have not yet explored all the possibilities.

21

6 Further Considerations

For the purpose of focussing attention on the different kinds of changes to objects and how
they can be formulated, we have presented a simplified form of the OEC so far. In this
section we sketch how the OEC is modified to provide other features which are required
for practical applications. The two main extensions to the basic data model are to allow
multi-valued as well as single-valued attributes, and to support a wider range of methods
than those introduced so far, specifically for deriving new information from the existing
states of objects.

6.1 Multi-valued Attributes

Multi-valued attributes are supported very straightforwardly in our framework, since it
is actually single-valued attributes that are the special case and that impose additional
requirements. We do not attempt to support set-valued attributes.

A multi-valued attribute denotes a one-to-many relation which maps the identity of
an object to one or more objects. Such a relation can be thought of as a set of binary
predicates, as in C-logic [13], for example. Indeed in C-logic all attributes are multi-
valued, since an attribute in that language is semantically the same as a binary predicate.
Thus the C-logic term

person: john[children = {tom, sue, mary}].
is just a shorthand notation for the complex term
person: john[children = tom, children = sue, children = mary].
which is semantically equivalent to the following set of assertions in first-order logic:

children(john, tom).
children(john, sue).
children(john, mary).

This notion of multi-valued attribute should be contrasted with approaches where
(single-valued) attributes are allowed to take sefs of objects as values. Set-valued at-
tributes provide increased expressive power (they are no longer just first-order) but at
the cost of introducing the very severe semantical and computational problems associated
with sets and set unification [47]. As argued in [13], the simpler notion of multi-valued
attribute already satisfies most of the practical and expressive requirements of set-valued
attributes, at enormously reduced complexity.

The re-formulation of the object-based event calculus to allow for multi-valued at-
tributes requires just a slight generalisation of what has been presented in the previous
sections. The main adjustment is a refinement of the clause which is used to implement
the functionality constraint for single-valued attributes, viz:

terminates(Ev, Obj, Attr, _) — initiates(Ev, Obj, Attr, _).

22

If we wanted to support only multi-valued attributes then it would be sufficient to delete
the ‘functionality’ clause altogether and retain the rest without change. Since we want to
support both single and multi-valued attributes in one system, the obvious solution is to
make the clause above applicable to single-valued attributes only. For this it is necessary
to extend the schema information so that it also specifies whether an attribute (in a given
class) is single-valued or not. A third argument is therefore added to the predicate attribute
to specify the kind of the attribute: single or multi.

The clause implementing the functionality constraint now requires an extra condition
so that it does not apply to multi-valued attributes. Since the kind of an attribute (single
or multi) may depend on class as well as the attribute name, it is necessary to include
the class name as an additional argument in the initiates and terminates predicates. The
modified clause is:

terminates(Ev, Class, Obj, Attr, _) —
attribute_of(Class, Attr, single),
initiates(Ev, Class, Obj, Attr, _).

The definition of attribute_of must also be altered to take inherited single-valued attributes
into account, as follows:

attribute_of(Class, X, Type) < attribute(Class, X, Type).
attribute_of(Class, X, Type) < is_a(Class, Super),
attribute_of(Super, X, Type).

Including the class name as an argument in the initiates and terminates predicates
makes it necessary to specify the class of an object at query time. Moreover, the clauses
of the object-based event calculus presented earlier all need to be adjusted to take the
presence of this new class argument into account. This is a very simple modification that
raises no additional questions and so we do not show the whole modified version of the

OEC again.

6.2 Derived-attribute methods

In object-oriented systems, methods are operations to describe the behaviour of objects.
This includes both modification and manipulation of the state of objects. We have so
far considered only methods that modify the state of objects. Now we want to extend
the kind of methods that are supported to include also methods which can derive new
information from the existing state of objects. We call such methods derived-attribute
methods or sometimes just rules. For instance the age of a person can be derived from the
date of birth; the boss of an employee can be derived from the manager of his department,
and so on.

Derived-attribute methods are included in the schema definition according to the
classes. There have been numerous proposals for how to define and implement such meth-
ods in a logic programming framework (e.g. [19, 25]). Representing methods as deductive
rules is the most common approach in the existing languages and the one we follow here.

The definition of derived-attribute methods can be given in a syntax similar to C-logic
or other object-logic languages. For instance, in F-logic [37], the boss of an employee is
defined by the following rule:

23

E [boss = M]— E: employee[dept = D: deptmanager = M|]

stating that the boss is the manager of the department in which the employee works.
This kind of syntax can be translated straightforwardly into an internal form which is
manipulated by the object-based event calculus. The head of the rule contains the name
of the derived attribute and the body contains the object-attribute-value information.
Each rule is associated with a class. We employ the following representation in order to
index methods by the class names:

method(ClassName, Object, AttrName, Value, Body).

The first argument, ClassName, refers to the name of the class for which the method
is defined. Object is the identity of the object for which the method is invoked. The
third argument, AttrName, is the name of the derived attribute (in the object-oriented
terminology this corresponds to the message used to invoke the method). The fourth
argument, Value, denotes the value returned as the result of the method. And finally,
Body is the translated form of the body of the rule.

For the purposes of this paper we assume that the body of a derived-attribute method
is a conjunction of complex object terms (i.e., object-attribute-value information). Other
more general forms can be allowed but we present only the most basic form here. Again
following C-logic [13], the relational semantics for complex object terms allows every such
term to be decomposed into a conjunction of atomic object terms, and so the body of a
rule can always be expressed as a conjunction of conditions of the form o-term(Class, Obj,
Attr, Val). Hence the example above would be translated into the form:

method(employee, E, boss, M,
[o-term(employee, E, dept, D), o-term(dept, D, manager, M)]).

Note that conjunctions are here represented as lists. We employ the standard Prolog
notation, where [X|Y] is the list with head element X and tail Y, the term [a,b,- - -,c] stands
for the list of elements a, b, ---, ¢, and [] denotes the empty list, which in the present
context represents the empty conjunction (‘true’). This is the most convenient internal
representation; it is very easy to provide an interface to translate derived-attribute methods
in some chosen syntax into this internal form.

Given such a representation, we now require the ability to compute not only the conclu-
sions that are derivable from the rules, but also the time periods for which such conclusions
hold. There are two dimensions in dealing with time-varying aspects of derived informa-
tion. One is that the rules themselves are subject to change with time. That is, the
rules defined in a class may be applicable during different periods of time. For instance
in a database dealing with legislative matters, the rules for computing taxes of employees
may need to be changed as the government changes its tax policies. (See [63, 64] for a
detailed treatment.) The other dimension is the actual computation of the value of the
derived attribute at a particular time or for a given period of time. The first aspect of the
problem is related to schema evolution. As rules are defined in the schema, any change
to the definition of the rules requires modification of the schema. This problem will be
discussed in section 9. The second aspect is related to query evaluation and is discussed
here.

24

In its full generality, temporal reasoning with derived information raises a number of
unresolved questions which are the subject of much current research. The usual solution,
and the simplest, is to distinguish between base and derived information and treat these
separately. The effects of changes (here, events) are then described by specifying only how
they affect base information. The effects on derived information are obtained indirectly,
because derived information is computed from the base information when it is required.

This is the approach that we follow also. We do not specify how events affect derived
attributes directly. Values of derived attributes at any given time are determined by finding
the corresponding method in the schema definition and then solving each condition of the
rule body at the specified time instant. This is accomplished by adding another clause to
the definition of holds_at:

holds_at(Class, Obj, Attr, Val, T) —
method(Class, Obj, Attr, Val, Body),
solve_at(Body, T).

Here solve_at(Body, T) can be seen as a ‘meta-interpreter’ which executes the Body at the
specified time T :

solve_at([], -).
solve_at([A|Rest], T) < solve_condition_at(A, T), solve_at(Rest, T).

solve_condition_at(o-term(Class, Obj, Attr, Val), T) —
holds_at(Class, Obj, Attr, Val, T).

More general forms of rules for derived attributes are accommodated by allowing other
kinds of conditions and adding further clauses for solve_condition at.

The period of time for which a derived attribute takes a particular value can also
be determined. Intuitively, the time period for which the conclusion of a rule holds is
computed from the time period for which the rule itself holds and the time periods for
which each of its conditions hold: if we think of time periods as sets, then the result is
the intersection of these time periods. In order to determine the time periods for which
a derived-attribute holds a particular value, we add another clause to the definition of

holds_for:

holds_for(Class, Obj, Attr, Val, P) —
method(Class, Obj, Attr, Val, Body),
solve_for(Body, P).

The predicate solve_for determines the intersection of time periods for the conditions in the
body of a derived-attribute method. In database terms, it can be thought of as computing
a ‘temporal intersection join’ [18, 48]. solve_for can be defined as follows:

solve_for(][], always).

solve_for([A|Rest], P) —
solve_condition_for(A, P1), solve_for(B, P2),
intersect(P1, P2, P).

25

solve_condition for(o-term(Class, Obj, Attr, Val), P) «—
holds_for(Class, Obj, Attr, Val, P).

Here always denotes the universal time period (the intersection of any time period P with
always is P). There is a more efficient, tail-recursive formulation of holds_for which we
omit. As in the case of solve_condition_at, more general forms of rule for defining derived-
attributes are treated by adding further clauses for solve_condition for.

7 Implementation Issues

The OEC presented in the preceding sections can be implemented in different ways. It can
be executed as a Prolog program, by transcribing the clauses given into Prolog syntax,
although for reasons identified below the performance of the resulting program is likely to
be poor, even in small examples. For practical applications we make use of a Prolog imple-
mentation that incorporates an additional ‘tabulation’ or ‘lemma generation’ mechanism,
described presently. The OEC could also be implemented in one of the object-oriented
logic programming languages now available (see section 2) in order to provide the kind of
‘clustering’ normally associated with object-oriented implementations; we have conducted
some preliminary experiments using L&O [50] as an implementation language. Or the
OEC as presented could be seen as an (executable) specification and suitable algorithms
constructed to perform the same tasks in a procedural language.

We have employed the OEC in a number of small-medium applications, of which the
most developed is a database dealing with the activities of a University department (from
which the examples in this paper have been taken). To give some indication of size,
object instances in these applications are numbered in hundreds and event occurrences in
thousands. We have recently embarked on the reconstruction of an application in cardio-
vascular medicine originally constructed using the standard (relational) event calculus

[62].

The purpose of this section is to summarise the implementation techniques used in
these applications. As indicated in the introduction to the paper, our aim is also to
employ the OEC as the basis of large-scale temporal database systems; in this regard, we
wish to explain why implementation techniques under development for temporal databases
can be adapted for use with the OEC.

7.1 Current implementations

The problems encountered in the efficient execution of the OEC can be illustrated by
reference to the execution of holds_at queries. Exactly similar points can be made for
more general holds_at queries, for holds_for (the computation of time periods), and for the
class membership analogues instance_of and instance for.

Obviously, there is the problem of searching efficiently for relevant candidate events
that could initiate or terminate the value of the attribute in question, for which some form
of indexing is required. But the main factor affecting performance of the OEC (and of the
standard relational versions of the event calculus) is the need to determine what the effects
of each such candidate event are (what it initiates and terminates). In general, this is not

26

just a matter of looking up the happens assertions (the ‘journal” of event occurrences),
since to determine whether an event actually does initiate or terminate a value for a
given attribute may require some further computation; and in a naive implementation
this in turn may generate re-computation of the same facts over and over again, whenever
initiates or terminates statements are context-dependent, that is, in the case where the
value initiated or terminated by an event at time t depends on what other values are
current at time t. In these circumstances naive execution of the event calculus clauses can
lead to very severe redundancies in the computation, significantly affecting performance
even in small applications.

Dramatic improvements can be obtained by adding a bottom-up component to the
evaluation mechanism, by incorporating some form of ‘lemma generation’. This is a stan-
dard technique in logic programming, and in deductive databases where it is often referred
to as ‘tabulation’. (See e.g. [70] for a survey and general account of tabulation techniques
in deductive databases.) For the OEC implementation, all facts regarding the states of
objects and the time periods initiated and terminated by the recorded events are stored
as they are deduced: a very simple tabulation mechanism is sufficient. We shall refer to
these tabulated facts as the Object DataBase (ODB) for convenience. The ODB can be
generated bottom-up when a new event is assimilated into the database, or — as we pre-
fer — by tabulation during top-down query evaluation. However it is produced, the ODB
contains all the information about objects: their states, their classes and the necessary
information to derive the time periods for which these hold. When a query is posed to the
system only the contents of the ODB are accessed without searching all the events again.

The obvious set of ‘lemmas’ or ‘tabulated results’ to store in the ODB are all the time
periods, analogously to the scheme proposed in [64] for (relational) temporal databases
based on the event calculus. We prefer an alternative which is much more flexible and
easier to maintain: for each tuple of the form (Obj, Attr, Val) we record the starting time(s)
at which that tuple is initiated, and, separately, a record of the time(s) at which the tuple
is terminated by another event. The time periods for which the tuple holds are easily
derived from these start and end points as required. Similarly the class(es) to which an
object belongs in time are stored as tuples of the form (Obj, Class) together with the start
and end times for each. A Prolog implementation with this mechanism and a simple form
of indexing gives quite acceptable performance for the applications mentioned above. The
table in figure 4 gives some sample timings. The queries were executed on a database of
the kind used as the source of examples in this paper, containing approximately 10,000
events (1000 objects). These timings are just intended to be indicative of performance.
Further details regarding implementation techniques are provided elsewhere [36].

7.2 Future work

One of our longer term aims is to develop the OEC so that it can support database
applications proper. More sophisticated indexing techniques will then be required. We
do not want to give the impression that we underestimate the difficulty of the task, but
we do want to indicate why we believe this is not an unrealistic ambition. The point is
that implementation techniques being developed for temporal (relational) databases are
not incompatible with use of the OEC; many can be adapted, or even applied directly.

For example, the techniques described in [28] for implementing ‘backlogs’in transaction-

27

Query Net time (millisec)

(all solutions) (plain OEC) | (with ODB)
holds_at(managerl,name,N,100) 219.66 1.434
holds_at(manager1,A,V,100) 1679.20 13.165
instance_of(manager1,C,100) 207.33 0.783
instance_of(O,person,100) 5755.85 46.085
holds_for(student5,address,A,P) 26415.00 8.333
holds_for(student5,A,V,P) 1.797e+05 64.500
holds_at(assistant15,A,V,100) 152.34 13.432

The database contains approx. 10,000 events (1000 objects).
(Quintus Prolog Release 3.1.1 on a SUN Sparc workstation)

Figure 4: Some sample timings

time databases can be applied directly. The backlog of a relation is a system-generated
relation that contains the complete history of updates to that relation. Each tuple is
time-stamped with the times at which it was inserted, modified or deleted. A time-slice
operator is provided to reconstruct the state of the relation at any given time; further
techniques employing ‘differential files’ have also been developed so that query evaluation
can make use of previously computed results. Although these techniques are designed for
the implementation of transaction-time databases, the feature on which they rely is the
‘stepwise-constant’ nature of the time-varying data. Since this is also the kind of change
supported by the OEC, the same techniques are applicable for implementation of the ODB:
indeed, the structures we store in the ODB have (almost exactly) the form of backlogs.
Indexing methods, such as the B*-tree techniques described in [22], can also be applied,
with some modification, to the ODB, or more directly, to provide indexing on the record
of event occurrences (the ‘journal’). Indeed, a very rudimentary form of this idea is the
basis of an event calculus implementation described in [26]. Development of these ideas,
and of associated query optimisation techniques, remain topics for future work, however.

In addition to temporal indexing, some form of structural indexing — some method of
storing the objects and events so that search is restricted to the potentially relevant can-
didates — is also required. At present all information in the ‘journal’ of event occurrences
and in the ODB takes the form of relational tuples. (In the Prolog-based implementation
simple forms of indexing these tuples have proved adequate.) Beyond some preliminary
experiments with the L&O language [50], as mentioned above, we have not addressed the
question of how to provide indexing methods that reflect the object-oriented structuring
at the implementational level.

8 Versioning of Objects

Although version control is not considered to be a mandatory feature of object-oriented
databases, it has often been associated with such databases because of the importance of
versioning of objects in design applications. There have been many proposals to incor-
porate versioning in object-oriented databases. Up to now this problem has not received

28

a complete and satisfactory solution mainly because several distinct models have been
proposed for complex objects, but also because it is not clear what are the main con-
cepts which concern object evolution. Usually the proposed version models are specific to
the application domain and show different characterizations according to the needs of the
application.

The simplest kind of versioning is to keep object state histories [2, 9, 17]. It is based
on retaining information about all past states of objects. Any update to an object will
generate a new version. Checkpointing is another kind of versioning which adds facilities
for managing a sequence of identifiable points in time of the state history [3, 9]. At every
checkpoint the state of the object is marked as being a version. Some other applications
support parallel versions [7, 16]. After the initial creation of a design object, new versions
of the object can be derived from it and new versions can in turn be derived from them.
Therefore at any one time several valid representations of an object can coexist. This
scenario necessitates the creation of a hierarchy or a graph, rather than a linear succession,
to capture the evolution history of versions from the initial design.

In this section we describe how versioning models can be formulated within the OEC
in a straightforward way. A feature of this treatment is that the version states are not
copies of parent objects: only the differences between their state and the parent’s state
are recorded. Versions share the history of their parent objects for unchanged attributes.
As a natural by-produce we can also update and keep the history of versions, which is not
possible in other proposals.

The formulation of the OEC presented so far provides us with the state history of
objects, and already supports the simplest kind of versioning. At the application level
we can query the state of an object at a specific time point using the holds_at predicate.
This state can be viewed as a version of the object and by querying the object at different
times we can keep track of its evolution. Checkpointing and parallel versioning can also be
accommodated in the object-based event calculus with some modifications to the original.
These various modifications are presented and discussed in more detail elsewhere [35]; here
we summarize the modifications for parallel versioning only.

Versions are objects which are derived from existing objects as a result of some re-
quirements and modifications. Versions are closely related to their parent versions, but
they are still different objects and they must be uniquely identifiable. Also, as versions
share some of their properties with the object from which they are derived, there must
exist an easy way of finding the previous version.

As defined earlier, an object identity is a first-order term which is composed of con-
stants, variables and function symbols. We now use a naming convention that uniquely
identifies the versions. Suppose we have an object with the identity o and we create ver-
sions of this object. One way of distinguishing these versions is to number them. The
first version of o will be v(o,1), the second v(0,2), the nth v(o,n) and so on. This naming
provides a total ordering on the names of versions if we satisfy the condition that the
number of a new version will always be greater than its parent version. When versions of
versions are created, the same naming convention can be used to identify the new versions.

The first version of the object v(o,1) for example, will be named as v(v(o,1),1), the second
will be v(v(0,1),2) and so on.

The basic idea to represent an object having several versions at a time is to keep
parallel histories for the object. Each history is identified by a version identity. Each

29

version has its own history starting from its creation time. Once a version is created it is
treated in the same way as other objects in the database. It can be updated, deleted or
versioned. Meanwhile its parent object can be directly updated, even after one or more
versions have been derived from it: the derived versions will not be able to see the updates
in the parent object.

Creation of a version is described by events. In keeping the state history of objects,
every event which causes a change in the value of the object’s attribute creates a new
state of the object, which can be viewed as a new version. In parallel versioning not every
event is considered as a version-creating event. Only certain events can cause the creation
of identifiable versions. Some attributes can be classified as version-significant attributes,
whose update would force the creation of a new version bearing the modified value of that
attribute. Events that are specified as having effects on these attributes can be defined to
be version-creating events.

The effects of version creating events are specified by the predicate creates_version
which is used to mark the occurences of such events in the object’s history and also to
generate a unique identity for the version.

For example consider the design of a VLSI chip. Different versions of the chip may be
derived, say to reduce the chip size or reduce the power consumption, etc. Every time a
user performs a “reconfigure” operation, a new version is assumed to be created. This can
be achieved by the following statement

creates_version(Ev, v(C,N)) —
event : Ev[act =-reconfigure, chip =C, number =-N].

The functional term v(C, N) is the identity of the new version where C denotes the parent
object, and N is an integer denoting the version number.

Versions are also instances of the class to which their parent version belongs. Contin-
uing with our example, the event of reconfiguring a chip assigns the new version to the
class VLSI-chip, say:

assigns(Ev, v(C,N), VLSI-chip) <
event:Ev[act =-reconfigure, chip =C, number =-N].

The version objects can be changed like any other object. Reasoning with the changing
state of versions is done by similar axioms, but now the time of creation of the version
is taken into account as well. The values of the attributes which are not changed at the
creation time or later are derived using the parent version.

Consider figure 5 which shows a section of an object’s version derivation history. Here
Vid is a version identifier and Oid is the object from which it is derived. Oid can be another
version or the initial object. Tc denotes the creation time of the version Vid, T denotes
the time at which we query its state. The history of Vid starts at Tc and at that time
Vid as its initial state has the same state as Oid has as of time Tc. At any time after
its creation, say at T*, the version’s state can be changed by an event. If no such event
happens between Tc and T, then the state of the version at time T is the same as the state
of the object Qid at time Tc. However if there are some events that have happened after
Tc and have changed the values of one or more attributes of the version, then we have to
consider the effects of these events as well.

30

————————————————————————— (creation time)

—————————— ¥ ---------f-----------—-—- (querying time)

Figure 5: A section of an object derivation hierarchy

Here is our formulation of holds_at to reason with the state of objects and versions:

holds_at(Vid, Attr, Val, T) —
happens(Ev, Tc), Te < T,
creates_version(Ev, Vid),
(happens(Ev*, T*),
Te<T*<LT,
initiates(Ev*, Vid, Attr, Val),
not broken(Vid, Attr, Val, T*, T))
or
(prev_version(Vid, Oid),
holds_at(Oid, Attr, Val, Tc)).

This formulation can be used to navigate through the versions easily, terminating when
the recursion reaches the root object. This modified holds_at can also be used to reason
with the state of objects without any versions, provided that the event creating the object
is defined to be a version-creating event as well (i.e., a creates_version statement defines it
also as an event which creates the object as the first (maybe the only) version of itself).

9 Schema Evolution

In this section we look at the problem of changes in class definitions (i.e., the database
schema). As well as the objects in the database, class definitions may also be modified.
We address the problem of maintaining consistency between a set of objects and a set of
class definitions that can change.

9.1 Problem Definition

Schema evolution is not inherent to the object-oriented paradigm. However it is natural
to assume that in the course of time, views of the world (i.e., class definitions) will change.

31

Relational database systems provide limited facilities to accommodate changes at the
schema level. Because of the independence of relations, only a few types of schema change
are provided, including adding a new relation to the database, dropping a relation from
the database, adding a new column to an existing relation, and dropping a column from
a relation. Further, a change to a relation does not impact on other relations or their
tuples. The situation is more complex in object-oriented databases. The spectrum of
possible modifications is wider due to the increased complexity of the model. Moreover,
because of inheritance along the class hierarchy, a change to one class can affect other
classes and their instances as well as its own instances.

The schema of an object-oriented database is the class hierarchy (or lattice). Accord-
ingly, two kinds of changes to the schema are meaningful [42]: changes can be made to the
class definitions, and changes can be made to the structure of the class hierarchy. Changes
to the class definitions include adding and deleting attributes and methods. Changes to
the class structure include creation and deletion of a class and alteration of the is_a rela-
tionship between classes (adding and deleting the superclass-subclass relationship between
a pair of classes).

There have been several proposals for supporting schema evolution in object-oriented
database systems. (See e.g. [55] for a bibliography.) The existing approaches can be
classified according to the strategy they take to bring existing objects in line with a
modified class. There are mainly two approaches [42]: screening and conversion.

Screening is to defer (possibly indefinitely) modifying instances. The values are either
filtered or corrected before they are used. Several systems adopt this approach [41, 60].
Conversion is to require with each schema change that all instances be converted to the
new class definition immediately after the change. Converting an instance means new
attributes may be added into the object with default values and other attributes may
be deleted from the object according to the new class definitions. Class change must be
propagated to the subclasses. GemStone [52] is an example of an object-oriented database
system using this approach as its class modification methodology.

Most of the existing works support single schema modification. That is, at every time
instant, there exists only one logical schema that can be used to view the objects. Past
states of the schema are not retained. There is another dimension to the schema evolution
problem: schema versioning, where all states of the schema are accessible. Just as an
object may be versioned, the schema itself may be versioned as well. In this case the
system will manage more than one logical schema for one common database and present
different views of the database through different versions of the schema. Although there is
a considerable amount of work in single schema modification, there are only a few works
on the semantics and implementation of schema versioning (e.g. [40, 60]).

There are two shortcomings to single schema modification. One is that it does not
allow the history of modification of objects to be preserved. For example if an attribute of
a class is dropped, the values of the attribute in existing instances are irretrievably lost;
even if the attribute is added later, it will be treated as a different attribute and the old
values of the attribute cannot be seen. Another shortcoming is that it does not prevent
a schema change by one user from impacting all other users’ views of the database. For
example, once any user deletes an attribute or changes the superclass/subclass relationship
between a pair of classes, all other users will see the changes.

Schema versioning removes the shortcomings of single schema modification. For ex-

32

ample, if a user wishes to drop an attribute from a class in one version of the schema, he
may create a new version of the schema. The user will not see the values of an attribute in
existing instances of the class. However if the user later chooses to access the class through
the previous version of the schema, he will be able to see the values of the attribute in all
instances of the class that existed before he created the new version of the schema.

We have extended the OEC to describe changes to the schema so that we can keep all
states of the schema as well as the object states. This leads us to model schema versioning
in a deductive framework. Our approach is different from the existing approaches since
we develop the idea of having time-dependent views of the database.

9.2 Realization in the Event Calculus

The schema information in our framework consists of class definitions, which are asserted
via attribute and method predicates, and the class hierarchy, which is defined by is_a
relationships. If we allow schema modifications, we have to consider a time-dependent is_a
relationship and time-dependent class definitions. When evaluating queries related to the
states of instances, the state of the schema should also be considered. In querying the
state of an object, its current class and the definition of the class will determine the valid
attributes for that instance. Apart from querying instances at different times, querying
the state of the database schema at different times will be possible.

We now have two levels of data that change: schema and objects. We use the object-
based event calculus to describe changes at both levels. The object state history is de-
scribed by a set of real world events and the schema state history is described by a set of
system events. Once we are able to access all states of the schema, it is possible to derive
the state of objects according to different schemas at different times. This provides us
with schema versioning.

Schema changing events initiate and terminate periods of time for which a class is a
subclass (isa_at) of another class or a class has a certain attribute or method. We introduce
time arguments to the is_a and attribute relations to model this time-varying behaviour.
The following predicates are used in reasoning with the schema states:

attribute_at(Class, Attr, Type, T) : Attr is an attribute (single or multi) of Class at time T.
method_at(Class, Obj, Mesg, Val, Body, T) : Mesg is a method valid for Class at time T.

isa_at(Class, Super, T) : Super is a superclass of Class at time T.

With these predicates it is possible to keep the history of the class hierarchy and class
definitions. In the following, the clauses for is_a are presented. We have omitted the
clauses for the other two predicates which are similar.

isa_at(Class, Super, T) —
shappens(Ev, Ts), Ts < T,
adds(Ev, Class, Super),
not dropped(Class, Super, Ts, T).

33

dropped(Class, Super, Ts, T) —
shappens(Ev, T*), Ts < T* < T,
drops(Ev, Class, Super).

The occurrence of a schema event is recorded by the predicate shappens; a new predicate
is introduced in order to avoid unnecessary search of real world events (recorded with
happens) when the schema information is derived. The role of the predicates adds and
drops is analogous to that of the predicates initiates and terminates respectively. They
initiate and terminate periods of time for which a class is defined to be a subclass of
another class. It is also possible to write the analogue of holds_for to compute periods for
these relations (e.g. attribute_for, isa_for) [33]. Note also that we could again reduce the
number of different predicates, but our present aim is to emphasize the different conceptual
aspects of a changing schema.

With the introduction of the time argument to the is_a, attribute and method relations,
inheritance becomes time dependent as well. For each state of the schema the structure
of the instances may be viewed differently according to the definitions of their classes and
superclasses. Thus we write:

attribute_at(Class, Attr, Type, T) —
isa_at(Class, Super, T),
attribute_at(Super, Attr, Type, T).

method_at(Class, Obj, Mesg, Val, Body, T) —
isa_at(Class, Super, T),
method_at(Super, Obj, Mesg, Val, Body, T).

Having two time dimensions gives the user the ability of querying the state of an object
at time T according to the schema at time Ts. Thus a query:

?- holds_at(Class, Obj, Attr, Val, T, Ts).

asks for the state of an object Obj at time T according to the schema at time Ts. The
period of time for which an object holds a particular state can be queried in a similar
fashion:

?- holds_for(Class, Obj, Attr, Val, P, Ts).

In these queries the schema time Ts can be seen as a filtering mechanism for viewing the
state of objects. In a model of the real world, each object has one history: by changing the
schema we change our view of the real world, not the facts about objects. The facts about
an object are visible only if the definition of the class of the object exists in the schema
version at the specified time. For instance, in the above query the required information
can be acquired only if the attribute Attr is valid for the class Class and also the object is
an instance of that class according to the schema at time Ts.

The formulation of holds_at and holds_for are changed slightly to take the schema time
into account:

34

holds_at(Class, Obj, Attr, Val, T, Ts) —
attribute_at(Class, Attr, Ts),
instance_of(Obj, Class, T, Ts),
happens(Ev, T¢), T; < T,
initiates(Ev, Obj, Attr, Val),
not broken(Obj, Attr, Val, Ty, T).

holds_for(Class, Obj, Attr, Val, during(T4, T3), Ts) —
attribute_at(Class, Attr, Ts),
initiated(Obj, Attr, Val, Ty),
terminated(Obj, Attr, Val, Ty, Ts).

The introduction of a separate schema time requires some changes to the formulation
of the instance_of relation:

instance_of(Obj, Class, T, Ts) —
happens(Ev, Ty), T; < T,
assigns(Ev, Obj, Class, Ts),
not removed(Obj, Class, Ty, T, Ts).

The schema time is passed as an argument of the assigns predicate. This accomplishes the
establishment of the subset relation according to the schema version at that time.

Existing proposals in the literature provide different approaches to schema versioning.
For example, in [60] each class, rather than the entire schema, is treated as a versionable
object. Since the schema itself is not versioned, a ‘virtual’ version of the schema is con-
structed as a lattice of versioned class objects, having only one version of a class object
included in any ‘virtual’ version of the schema. In [40], the entire schema is viewed as a
versioned object. Any number of new versions of schema may be derived at any time from
any existing schema version. The access scope of a schema version is the set of objects
created under that version and those objects in the inherited access scopes of the ancestor
schema versions. Thus it is possible to view and manipulate different sets of objects under
different versions of schema.

In this section we have presented a different approach for dealing with versions of
schema. We keep the history of the database schema by recording every event that causes
a change in the schema. Thus it is possible to access different states of the schema at
different times. The access scope of each schema version is the subset of all objects in the
database whose classes are defined by the schema version. All updates to objects under
one schema version will become visible to all schema versions which include the definition
of the classes of the objects.

10 Conclusions

The integration of deductive and object-oriented approaches presents many open questions
and issues to be overcome. The main problem is caused by the opposition between a value
based approach and an identity based approach. After an analysis of existing proposals,
we were attracted by the virtues of the simplest approaches where a framework for complex
objects is built within first-order logic. The formula approach, exemplified by C-logic, gives

35

a semantics to an object by viewing it as a named collection of atomic formulas. Based on
this approach we presented an object-based data model with support for object identities,
single-valued and multi-valued attributes, class hierarchies, and derived-attribute methods.

The main contribution of this paper is the detailed development of the Object-based
Event Calculus (OEC), which is intended as a general approach for representing and
manipulating temporal objects in a logic programming framework. We have shown how
the OEC may be used to represent and manipulate complex objects in a natural and
descriptive way. We are not aware of any other work which deals with the different kinds
of changes to objects in a single logical framework. We are also not aware of any other work
which incorporates temporal information to the object states in a deductive framework.

From the representational point of view, there are some benefits offered by the OEC
over the standard relational versions of the event calculus. Organising the specification of
events by the class of object affected gives more structure to the representation, which can
be of signficant value in practical applications. Other benefits arise because the structure
of objects, attributes, values and classes is richer than that of the relational data model,
and this structure can be exploited. For example, the use of single-valued attributes and
their treatment within the OEC reduces the need for general forms of integrity constraint,
which otherwise are required for use with the event calculus. Similarly, much of the detail
in the formulation of the OEC is concerned with the indirect effects of creating and deleting
objects which themselves may be the values of attributes of other objects. As a result,
the grouping of objects into classes and sub-classes gives a comparatively simple device
for dealing with some of the more common types of indirect change, or ‘ramification’, a
problem which in its general form is a topic of much current research in temporal reasoning.

From the point of view of temporal databases, we have presented an approach to
the construction of historical (‘valid time’) databases in which all states of objects are
stored (implicitly) and are accessible (by deduction). We addressed several different kinds
of change that can be identified in the context of an object-based data model, and we
proposed a general approach for modelling these changes in a declarative way. For prac-
tical application, we were particularly concerned to explain how the first-order semantics
of objects allows implementations of the OEC to take advantage of indexing and other
implementational techniques that are being developed for (relational) temporal databases.

Acknowledgements

The bulk of this work was completed while Nihan Kesim was supported by the Scientific
and Technical Research Council of Turkey (TUBITAK). The authors would like to thank
an anonymous referee for suggesting a number of useful references to recent work in tem-
poral databases and for many helpful suggestions which have improved the presentation
of the paper.

36

References

[1]

[2]

[9]

[10]

[11]

[12]

S. Abiteboul and S. Grumbach. COL : A logic-based language for complex objects.
In International Conference on Fxtending Database Technology — FDBT’88, pages
271-293, Venice, [taly, March 1988.

M. Adiba and N.B. Quang. Historical multi-media databases. In Proceedings of the
12th International Conference on VLDB, pages 63-70, Kyoto, Japan, August 1986.

M.E. Adiba. Histories and versions for multimedia complex objects. IEEF Database
Fngineering, 7(4):181-188, 1988.

H. Ait-Kaci and R. Nasr. Login: A logic programming language with built-in inheri-
tance. The Journal of Logic Programming, 1986.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik. The Ob ject-
Oriented Database System Manifesto. In Proceedings of the First International Con-
ference on Deductive and Object-Oriented Databases, pages 40-57, 1989.

F. Bancilhon. Object-oriented database systems. In Proceedings of the 7th ACM-
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
152-162, Austin, Texas, March 1988.

D. Beech and B. Mahbod. Generalized version control in an object-oriented database.
In Proceedings of the 4th International Conference on Data Engineering, pages 14—22,
Los Angeles, CA, February 1988.

C. Beeri. Formal models for object oriented databases. In Proceedings of the First
International Conference on Deductive and Object-Oriented Databases, Kyoto, Japan,
December 4-6 1989.

A. Bjornerstedt and C. Hulten. Version control in an object-oriented architecture.
In Won Kim and F.H. Lochovsky, editors, Object-Oriented Concepts, Databases and
Applications, pages 451-485. ACM Press, 1989.

D. Bobrow and T. Winograd. An overview of KRL, a knowledge representation
language. Cognitive Science, 1(1), 1977.

I. Cervesato, A. Montanari and A. Provetti. On the Non-monotonic Behaviour of
Event Calculus for Deriving Maximal Time Intervals. The International Journal of
Interval Computation, 2:83-119 (1994).

W. Chen, M. Kifer and D.S. Warren. Hilog: A first-order semantics for higher-order
logic programming constructs. In North American Conference on Logic Programming,

October 1989.

W. Chen and D. Warren. C-logic of complex objects. In Proceedings of the 8th
ACM SIGACT-SIGMOD-SIGART Symposium on the Principles of Database Sys-
tems, 1989.

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, C. Zaniolo. The
LDL system prototype. IEFEFE Transactions on Knowledge and Data Fngineering,
2(1):76-90, March 1990.

37

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L. Chittaro, A. Montanari and A. Provetti. Skeptical and Credulous Event Calculi for
Supporting Modal Queries. In Proceedings of the Furopean Conference on Artificial
Intelligence FCAI’94, Amsterdam, 1994.

Hong-Tai Chou and Won Kim. A unifying framework for version control in a CAD
environment. In Proceedings of the 12th International Conference on VLDB, pages
336-344, Kyoto, Japan, August 1986.

J. Clifford and A. Croker. Objects in time. IEEFE Database Engineering, 7(4):189-196,
1988.

J. Clifford and A. Croker. The Historical Relational Data Model (HRDM) Revisited.
Ch.1 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass (eds.).
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings,

1993.

M. Dalal and D. Gangopadhyay. OOLP: A translation approach to object-oriented
logic programming. In Proceedings of the First International Conference on Deductive
and Object-Oriented Databases, pages 555-568, Kyoto, Japan, December 4-6 1989.

M. Denecker, L. Missiaen and M. Bruynooghe. Temporal reasoning with abductive

event calculus. In Proceedings of the Furopean Conference on Artificial Intelligence
FECAI’92, Vienna, 1992.

R. Elmasri, G.T.J. Wuu and V. Kouramajian. A Temporal Model and Query Lan-
guage for EER Databases. Ch.9 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implemen-
tation. Benjamin/Cummings, 1993.

R. Elmasri, G.T.J. Wuu and V. Kouramajian. The Time Index and the Mono-
tonic BT-tree. Ch.18 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

K. Eshghi. Abductive planning with event calculus. In Proceedings of the International
Conference on Logic Programming 1988, MIT Press, 1988.

C. Evans. The Macro-Event Calculus: Representing Temporal Granularity. In Pro-
ceedings Pacific Rim International Conference on Al, Nagoya, Japan, 1990, pp363—
368.

K. Fukunaga and S. Hirose. An experience with a Prolog-based object-oriented lan-
guage. In OOPSLA’86 Proceedings, pages 224-231, 1986.

R.V. Indiketiya. Fvent Calculus Based Temporal Database Management System. MSc
Thesis. Department of Computing, Imperial College, London, 1992.

C.5. Jensen, J. Clifford, R. Elmasri, S.K. Gadia, P. Hayes, S. Jajodia. A glossary of
temporal database concepts. SIGMOD Record, 23(1), March 1994.

C.S. Jensen and L. Mark. Differential Query Processing in Transaction-Time Data-
bases. Ch.19 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snod-
grass (eds.). Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

38

[29]

[30]

[41]

[42]

C.5. Jensen and R.T. Snodgrass. Unifying temporal data models via a conceptual
model. IEEE Information Systems 19(7):513-547, 1994.

C.5. Jensen and R.T. Snodgrass. Temporal specialization. In Proceedings of the
International Conference on Data Engineering, Tempe, AZ, Feb.1992, IEEE, pp 594—
603.

C.5. Jensen, M.D. Soo and R.T. Snodgrass. Temporal specialization. In Proceedings
of the International Conference on Data Fngineering, Tempe, AZ, Feb.1992, IEEE,
pp 594-603.

W. Kaefer, N. Ritter and H. Schoening. Support for temporal data by complex
objects. In Proceedings 16th International Conference on Very Large Data Bases,
Brisbane, 1990.

F.N. Kesim. Temporal Objects in Deductive Databases. PhD thesis, Department of
Computing, Imperial College, London, 1993.

F.N. Kesim and M.J. Sergot. On the evolution of objects in a logic programming
framework. In Proceedings of the International Conference on Fifth Generation Com-
puter Systems, volume 2, June 1992.

F.N. Kesim and M.J. Sergot. Versioning of objects in deductive databases. In Proceed-
ings of the Third International Conference on Deductive and Object-Oriented Data-
bases, December 1993.

F.N. Kesim and M.J. Sergot. Implementing an object-oriented deductive database
using temporal reasoning. Department of Computing, Imperial College, London, July
1994. Submitted for publication.

M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about objects,
inheritance, and scheme. In Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 134-146, 1989.

M. Kifer, G. Lausen and J. Wu. Logical foundations of object-oriented and frame-
based languages. Technical report, Department of Computer Science, SUNY at Stony
Brook, June 1990.

M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier’s O-logic
revisited). In Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, 1989.

W. Kim and H.T. Chou. Versions of schema for object-oriented databases. In Pro-
ceedings of the 14th International Conference on VLDB, pages 148-159, Los Angeles,
CA, 1988.

W. Kim, J.F. Garza, N. Ballou, D. Woelk. Architecture of the ORION next-generation
system. IEEFE Transactions on Knowledge and Data Engineering, 2(1):109-124, 1990.

Won Kim and F.H. Lochovsky, editors. Object-Oriented Concepts, Databases, and
Applications. ACM Press, 1989.

39

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[54]

[55]

[56]

[57]

N. Kline. An update of the temporal database bibliography. SIGMOD Record, 22(4),
December 1993.

R.A. Kowalski. Database updates in the event calculus. Journal of Logic Program-
ming, 12:121-146, 1992.

R.A. Kowalski and F. Sadri. The Situation Calculus and Event Calculus Com-
pared. In Proceedings of the International Symposium on Logic Programming 1994,
M. Bruynooghe (ed.), MIT Press 1994, pp539-553.

R.A. Kowalski and M.J. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67-95, 1986.

G.M. Kuper. Logic programming with sets. In Proceedings of the 6th ACM-SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, CA,
1987.

T.Y.C Leung and R.R. Muntz. Stream Processing: Temporal Query Processing
and Optimization. Ch.14 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

D. Maier. A logic for objects. In Proceedings of the Workshop on Foundations of
Deductive Databases and Logic Programming, pages 6-26, Washington D.C., August
1986.

F.G. McCabe. Logic and Objects. Prentice Hall, 1992.

A. Montanari, E. Maim, E. Ciapessoni, E. Ratto. Dealing with Time Granularity
in the Event Calculus. In Proceedings of the Fifth Generation Computer Systems
Conference FGCS’92, Tokyo, 1992, pp702-712.

D.J. Penney and J. Stein. Class modification in the GemStone object-oriented DBMS.
In OOPSLA’87 Proceedings, pages 111-117, 1987.

J. Pinto and R. Reiter. Temporal reasoning in logic programming: a case for the situ-
ation calculus. In Proceedings of the International Conference on Logic Programming
1993, MIT Press, 1993, pp203—-221.

A. Provetti. Hypothetical reasoning about actions: From situation calculus to event
calculus. Computational Intelligence, 12:2:1-24.

J. Roddick. Schema evolution in database systems - an annotated bibliography. In
SIGMOD Record, volume 21, pages 3540, December 1992.

E. Rose and A. Segev. TOODM—A temporal object-oriented data model with tem-
poral constraints. In Proceedings of the 10th International Conference on the Entity-
Relationship Approach, October 1991, pp205-229.

E. Rose and A. Segev. TO-Algebra—A temporal object-oriented algebra. Technical
Report LBL-32013, University of California, Berkeley, January 1992.

40

[58] A. Segev and A. Shoshani. A Temporal Data Model Based on Time Sequences. Ch.11
in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass (eds.). Temporal

Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.

[59] M.P. Shanahan. Representing continuous change in the event calculus. In Proceedings

of FCAI-90, Stockholm, Sweden, 1990.

[60] A.H. Skarra and S.B. Zdonik. Type evolution in an object-oriented database. In
B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Program-
ming, pages 393-413, MIT Press, 1987.

[61] R.T. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison. Ch.
9in W. Kim (ed.), Modern Database Systems: The Object Model, Interoperability and
Beyond, Addison-Wesley/ACM Press, 1994.

[62] P.J. Soper, G. Abeysinghe and C. Ranaboldo. A temporal model for clinical and
resource management in vascular surgery. In Proceedings of the International Con-
ference on Database and Fzpert Systems Applications, pages 549-552, Berlin, 1991.

[63] S.M. Sripada. A logical framework for temporal deductive databases. In Proceedings
of the International Conference on Very Large Databases, pages 171-182, 1988.

[64] S.M. Sripada. Temporal Reasoning in Deductive Databases. PhD thesis, Department
of Computing, Imperial College, London, 1991.

[65] S.M. Sripada. A Metalogic Programming Approach to Reasoning about Time in
Knowledge Bases. In Proceedings of IJCAI’93, Chambery, 1993, pp860-865.

[66] M. Stefik and D.G. Bobrow. Object-oriented programming: Themes and variations.
Al Magazine, January 1986.

[67] M. Stonebraker, L.A. Rowe., B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bern-
stein, D. Beech. Third-Generation Database System Manifesto. In SIGMOD
Record:19(3):31-44, September 1990.

[68] J. Su. Dynamic constraints and object migration. In Proceedings of the Conference
on Very Large Data Bases, Barcelona, 1991.

[69] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass (eds.). Temporal

Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.

[70] D.S. Warren. Memoing for Logic Programs. Communications of the ACM 35:3:94—
111, 1992.

[71] G. Wiederhold, S. Jajodia and W. Litwin. Integrating Temporal Data in a Heteroge-
neous Environment. Ch. 22 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

[72] K. Wilkinson, P. Lyngbaek and W Hasan. The Iris Architecture and Implementation.
IFEFE Transactions on Knowledge and Data Engineering 2(1): 63-75, March 1990.

41

[73]

G.T.J. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-
oriented Databases. Ch.10 in A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
R. Snodgrass (eds.). Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

C. Zaniolo. The representation and deductive retrieval of complex objects. In Pro-
ceedings of Very Large Databases, page 458, Stockholm, 1985.

C. Zaniolo. Object-oriented programming in Prolog. In Proceedings of the 1984
International Symposium on Logic Programming, Atlantic City, New Jersey, February
1984.

S5.B. Zdonik. Object-oriented type evolution. In F. Bancilhon and P. Buneman,
editors, Advances in Database Programming Languages, pages 277-288. ACM Press,
1990.

S.B. Zdonik and D. Maier, editors. Readings in Object-Oriented Database Systems,
chapter 4, page 239. Morgan Kaufmann, 1990.

42

