
USING THE EVENT CALCULUS FOR TRACKING THE NORMATIVE 
STATE OF CONTRACTS 

ANDREW D. H. FARRELL, MAREK J. SERGOT 
Department of Computing, Imperial College, London. SW7 2AZ. United Kingdom. 

{andrew.farrell,m.sergot}@imperial.ac.uk 

MATHIAS SALLÉ, CLAUDIO BARTOLINI 
Hewlett-Packard Laboratories, Palo Alto, California, USA. 

 {mathias.salle, claudio.bartolini}@hp.com 

In this work, we have been principally concerned with the representation of contracts so that 
their normative state may be tracked in an automated fashion over their deployment lifetime.  
The normative state of a contract, at a particular time, is the aggregation of instances of 
normative relations that hold between contract parties at that time, plus the current values of 
contract variables. The effects of contract events on the normative state of a contract are 
specified using an XML formalisation of the Event Calculus, called ecXML. We use an 
example mail service agreement from the domain of web services to ground the discussion of 
our work.  We give a characterisation of the agreement according to the normative concepts 
of: obligation, power and permission, and show how the ecXML representation may be used 
to track the state of the agreement, according to a narrative of contract events.  We also give 
a description of a state tracking architecture, and a contract deployment tool, both of which 
have been implemented in the course of our work. 

1 INTRODUCTION 

An increasingly important aspect in the life-cycle of contracts is the automated 
monitoring of the normative state of contracts while they are active.  We define the 
normative state of a contract, at a particular time, to be the aggregation of instances 
of normative relations that hold between contract parties at that time, plus the values 
of contract variables at that time.   

The term normative relation is used here as a generic term to refer to concepts 
such as obligation (of a buyer of goods to pay the agreed price to the seller by a 
certain date, say), various notions of permission, power (of a contracting party to 
change the terms of the contract, say), as well as other more complex normative 
concepts, such as right, directed obligation or relative duty, entitlement, and so on, 
as discussed below. A contract variable is a piece of numerical state whose value 
can change over the deployment lifetime of its containing contract.  Its use will be 
normative in that it will have been agreed upon when the contract is formed.   

In this paper, we describe a general approach to the tracking of state based on a 
version of the Event Calculus (EC), originally presented in [1].  Simply put, EC 
allows the expression of domain axioms which characterise how propositional 
properties of a domain (fluents in the AI terminology) change according to the 



occurrence of domain events.  Various forms of reasoning can be undertaken using 
such a set of domain axioms, such as planning (a sequence of actions that will take 
the domain from an initial state to a goal state), prediction (where given an initial 
domain state, and a sequence of domain events, an event narrative, we seek a 
resulting domain state), and postdiction (where given a current domain state, and a 
set of a domain events, we seek an initial domain state) [2]. In this terminology, 
state tracking is a special case of prediction, except that we shall also want to have 
access to all intermediate states as well as the initial and final ones. The Event 
Calculus is presented in a logic programming framework, and is usually 
implemented using a logic programming language such as Prolog or using 
techniques from deductive databases. In this work, in order to facilitate integration 
with other components of a general contract state tracking architecture, we have 
constructed a Java implementation of the reasoning and used XML as a convenient 
file format.  We call this version of the Event Calculus ecXML. 

For the purpose of tracking the normative state of contracts, we use ecXML to 
express how arbitrary normative relations may change according to contract-related 
events. By arbitrary we mean that we are not restricted to any particular set of 
normative concepts.  It is worth noting, however, that we have found the following 
concepts in particular to be useful in our work:  

• Permission. Bentham (as presented in [3]) used the term liberty to 
mean: “You have a right to perform whatever you are not under 
obligation to abstain from the performance of”. Bentham further 
distinguished two types of liberty: naked liberty to do action α – 
where others have the freedom to (attempt to) prevent α, and vested 
liberty –  where others have an obligation not to prevent α.  This 
notion of vested liberty is the sort of definition that we would attribute 
to (our use of) permission.  Note also that, for convenience, we have 
assumed a closed policy [4]. That is, absence of a permission to 
perform an action is taken to be the same as presence of a prohibition 
to perform the action. This is not a necessary restriction, however. 

• Obligation.  Bentham (as presented in [3]) describes an obligation as 
being imposed by a legislator whenever a law of type command or 
prohibition is imposed: 

“…where the provision of the law is a command or a prohibition, 
[concerning the performance of an act], it creates an offence: if a 
command, it is the non-performance of the act that is the offence: 
if a prohibition, the performance…Moreover the law, in 
constituting an act an offence, is said to impose thereby an 
obligation on the persons in question not to perform it.” 

In our work, we have found the concept of obligation to adhere to a 
command to be directly useful. Obligation to adhere to a prohibition, 
which is a sort of refrain, may also be useful, as may be an obligation 
to realise a state-of-affairs. The concept of directed obligation or 



relative duty, where one party is the bearer of an obligation owed to 
another counterparty, is also an important concept though it will not 
feature in the example contract to be discussed in this paper. 

• Institutionalised Power. This concept, as proposed in [5], is a 
generalisation of the standard legal concept variously described in the 
literature as legal power, legal capacity or legal competence. It refers 
to the characteristic feature of all norm-governed 
organisations/institutions whereby designated agents are empowered, 
by the institution, to create or modify facts that have a conventional 
significance within that institution, usually by performing a special 
kind of act (such as when a priest performs a marriage or when a 
chair-person of a formal meeting declares the meeting closed).  We 
find it helpful to employ a terminology, originally due to Searle, which 
makes a distinction between brute and institutional facts.  Physical 
possession of an object is a brute fact, whereas ownership of the object 
is an institutional fact. Whether an agent owns something that it 
possesses depends on whether possession counts as ownership in the 
institution in question.  Jones and Sergot [5] present a formalisation of 
institutionalised power, where within a particular institution, certain 
actions or states-of-affairs count as other kinds of actions or states-of-
affairs. On this account, (institutionalised) power arises when an 
agent’s performance of some brute action counts, within a given 
institution, as an action that creates an institutional fact. 

 
In legal theory, the importance of the following distinction has long 
been recognised. There are three quite different notions [5,6]:  

1. The power to create an institutional fact 
2. The permission to exercise that power 
3. The practical ability (physical capability, opportunity, know-

how) to exercise that power. 
The following example, due to Makinson and quoted in [5], may help 
to clarify the distinction. Consider the case of a priest of a certain 
religion who does not have permission, according to instructions 
issued by the ecclesiastical authorities, to marry two people, only one 
of whom is of that religion, unless they both promise to bring up the 
children in that religion. He may nevertheless have the power to 
marry the couple even in the absence of such a promise, in the sense 
that if he goes ahead and performs the ceremony, it still counts as a 
valid act of marriage under the rules of the same church even though 
the priest may be subject to reprimand or more severe penalty for 
having performed it.  In this case the priest is empowered to marry a 
couple, but at the same time he may not be permitted to do so. It is 
commonplace, first to empower an agent to create a certain 



institutional fact, and then separately to impose restrictions on when 
that agent may exercise his power. In many practical examples, 
however, especially where a contract does not spell out in detail the 
precise means by which contracting parties exercise their powers (for 
example, to change the price or delivery time of purchased goods), it 
is often the case that power implies a (vested) permission to exercise 
it. We use the term vested power in these cases. (See [7,8] for 
examples of practical settings where power is separated from 
permission to exercise it.) 

 
We have based the development of our approach and the ecXML language on 

the representation of a representative sample of agreements, of the order of tens of 
agreements, from the domain of web services and other service-oriented domains, 
such as Utility Computing [9]. In this paper, we use one such agreement for a mail 
service as an example contract to illustrate our work. Some examples from the mail 
service agreement, presented in section 2, are as follows. 

• Obligation: Service Provider will pay $p for every whole t minutes that 
it (the service) is unavailable. We will say that when this norm is 
activated by the occurrence of a contract event it creates an instance of 
a normative relation of type obligation. It seems (to us) to be unnatural 
to conceive of this relation as a directed obligation owed by the service 
provider to the customer, though this is a possible reading. 

• Permission & (vested) power: SP may terminate the mailbox service 
without notice (in certain circumstances). The action of SP terminating 
the mailbox service is considered to be an institutional action.  To 
effect this action, SP may actually carry out some other action, such as 
removing SC’s service record from a database collection recording 
active mailboxes. This action would be a brute action in the sense 
described previously, which counts, in the institution created by the 
contract, as an institutional action which terminates the service.  One 
possibility for representation of this contract excerpt would be to refer 
explicitly to the brute action, and specify the conditions under which 
there is permission to carry it out.  However, as the agreement makes 
no mention of the actual brute action that effects termination, there is 
little point in drawing out permission as a concept to apply separately. 
In such circumstances we say simply that the provider has a vested 
power to terminate the mailbox service, and thus also a vested 
permission to carry out the associated implicit brute action that will 
effect termination. In circumstances where brute actions are spelled 
out in the contract, we represent explicitly the counts as relation 
between brute and institutional actions, and represent the conditions 
under which performance of the brute action is permitted. 



It is important to note that for the purposes of state tracking, terms of the 
ecXML language that represent normative concepts are treated as unanalyzed 
primitives whose intended reading is left implicit. We do not incorporate in the 
ecXML representation of a contract any explicit theory of normative concepts and 
their inter-relationships. In other work (see e.g. [5,10,11] we have considered the 
formal representation of various classes of normative relations, but this is not 
applied in the contract state tracking representation described in this paper. Thus for 
example, there is no explicit connection in the ecXML representation between terms 
representing an obligation to perform a certain action and terms representing 
permission to do so. This is in contrast to the use of a formalism such as (C+)++ 
[12,13] which we have under development which is specifically designed for the 
representation of norms and institutional concepts and which has an explicit formal 
semantics for permission and counts as relationships between actions. Experiments 
with the use of (C+)++ as an alternative formalism for contract state tracking is a 
subject of current work.  

For the purposes of contract state tracking, we introduce terms representing 
various classes of normative concepts as they are convenient for the needs of a 
specific example.  We find there is little added value, here, in making explicit the 
informal reading we ascribe to these terms. Of course this leaves the question of 
whether the ecXML representation of a contract is consistent in some appropriate 
sense. We see this as a separate question however. We are developing a separate 
tool which will test the consistency (suitably defined) of an ecXML representation of 
a contract (for instance, that the same action is not both obligatory and prohibited at 
the same time). For the purposes of state tracking, we assume that the contract 
representation has been tested for consistency, and we focus only on tracking the 
normative relations that are created as contract events occur.  

The remainder of this paper is structured as follows.  In section 2, we present 
the example contract and provide a brief analysis. In section 3, we give an informal 
overview of our use of ecXML in representing contracts for state tracking. In section 
4, we provide a presentation of the example contract represented in ecXML. In 
sections 5 and 6, we present the Event Calculus State Tracking Architecture − our 
implementation for state tracking − and the Contract Visualiser − a tool for 
visualising the deployment status of contracts. In section 7, we present related work, 
and in section 8 conclude the paper.  

2 EXAMPLE CONTRACT 

In this paper, we use the following mail service agreement in order to ground our 
discussions. (The mail service is provided as a web service [14]).  

 



• The Service Provider (SP) will provide a mail service to the Service 
Customer (SC), which includes a mailbox with a quota of s GBytes. 
SC will be charged a fixed monthly fee of s*c0 for the service. 

• In the case that the mail service is unavailable, SP will pay $p for 
every whole t minutes that it is unavailable. SP is obliged to pay any 
penalties to SC within a month of their accruement. 

• Whenever u>s, where u is the mailbox utilisation in GBytes, SP will 
charge SC c1 for each GByte over s, calculated daily. 

• Whenever u>s+e, where e is a level of tolerance in GBytes, SP may 
prevent SC from receiving emails. 

• All billing of SC occurs monthly, and SC is given a month thereafter to 
pay.  If SC fails to pay within the given time, SP may terminate the 
mailbox service without notice. 

In order to represent a contract for the purpose of state tracking, we are concerned 
with identifying events described in the contract that can have an effect on contract 
state.  Once identified, we need to express, in our representation, the effects on 
contract state of these events. 

For example, the contract excerpt: “All billing of SC occurs monthly” indicates 
a monthly billing event. One effect of such an event is that SC receives an invoice 
for service. But this is not an effect on contract state, per se. We shall say that 
another effect of this event – this time, on the contract state – is to instantiate an 
instance of a normative relation, namely an obligation bearing on SC to pay SP for 
service within a month.   

Another example is: “If SC fails to pay within the given time, SP may terminate 
the mailbox service without notice”. This statement talks about another event, 
which occurs when the specified time period expires before SC fulfils its obligation 
(to pay for service) on time.  We shall say that an effect of this event is to instantiate 
an instance of another normative relation, namely (vested) power of SP to terminate 
the mailbox service. 

3 ecXML -- AN XML FORMALISATION OF THE EVENT 
CALCULUS  

From the perspective of what needs to be represented for contract state tracking, we 
need some way of representing the effects of events on contract state.  For this, we 
use the XML based formalisation of the Event Calculus, ecXML. We have 
developed a Java implementation of a reasoner – the Event Calculus State Tracking 
Architecture (ECSTA) – for contracts written in ecXML.   

In the following, we assume that such a reasoner is informed of the occurrence 
of external events that are named in the contract, such as a user's mailbox utilisation 
going over its set quota. The reasoner will also generate its own internal timer 



events, such as the monthly billing event, previously described. In both cases, such 
events are termed simply: contract events.  

In the Event Calculus, and ecXML, a state is characterised by the values of 
fluents, which are properties whose values change according to the occurrence of 
(contract) events1. Fluents can be multi-valued, which means that in any given state 
they have a value from some designated set of possible values, or they can be 
boolean, which means that they have the possible values true or false. It is 
convenient to treat the special case of boolean fluents separately. In ecXML, the 
values of all multi-valued (non-boolean) fluents are real (floating point) numbers.  

The following shows a boolean fluent slg1_ok in the XML notation: 
 
<fluent id="slg1_ok"/> 
 

The significance of the slg1_ok fluent in the example contract is explained later. 
In ecXML, contract variables (as well as counting variables – see later) are 

represented as multi-valued fluents.  The following example specifies that the 
current value of a contract variable vDailyCharge is 0. 

 
<mvfluent id="vDailyCharge"> 
      <num val="0"/> 
</mvfluent> 

 
In general, a fluent (boolean or multi-valued) may have structure and additional 

parameters. For example, in the representation of the mail service agreement to be 
discussed in later sections, the (boolean) fluent 

 
<fluent id=”o1”> 
   <apara name=”Charge”><value id="vDailyCharge"/></apara> 
   <apara name=”Month”>October</apara> 
</fluent> 
 

represents an instance of a normative relation of type o1 in which the customer’s 
charge for the billing month of October is the current value of the contract variable 
(multi-valued fluent) vDailyCharge. (In the ECSTA architecture, all fluents are 
relative to a specific contract, and for this reason it is unnecessary to refer to 
contracting parties (service provider and customer) and other fixed features of the 
contract in parameters of fluents.) 

In the Event Calculus, the effects of events are expressed by specifying the 
fluents that they initiate and terminate.  We say that an event of type E initiates a 
period of time for which a fluent F has a particular value V (or just E initiates F=V 
for short) and/or terminates a period of time for which fluent F has value V (or E 
                                                        

1 In the following description, we talk about ecXML being used to represent contracts. It should be 
noted, however, that ecXML is a general-purpose language for describing and tracking how the state of 
an arbitrary domain changes (according to an event narrative). 



terminates F=V for short). The representation of a contract in ecXML is a 
conjunction of: 

• A finite set of <initiates> statements of the form: 
<initiates> 
  <event id="E" qual=”Q”/> 
  <fluent id=“F”> parameters </fluent> 
  condition  
</initiates> 

meaning that the occurrence of a contract event of type (E,Q) initiates 
a period of time for which the boolean fluent F is true if condition 
holds, and of the form: 

<initiates> 
  <event id="E" qual=”Q”/> 
  <mvfluent id=“F”> math expr  

parameters  
  </mvfluent> 
  condition  
</initiates> 

meaning that the occurrence of contract event of type (E,Q) initiates a 
period of time for which the multi-valued fluent F has the value 
given by math expr if  condition holds. 

• A finite set of <terminates> statements of the form: 
<terminates> 
  <event id="E" qual=”Q”/> 
  <fluent id=“F”/> 
  condition  
</terminates> 

meaning that the occurrence of a contract event of type (E,Q) initiates 
a period of time for which the boolean fluent F is false if  condition 
holds. 

 
Since multi-valued fluents can have only one value at any given time, it is not 

necessary to include <terminates> statements for multi-valued fluents. Or to put 
it another way, to say that E terminates a boolean fluent F is effectively to say that E 
initiates a period of time for which F is false. It is convenient to treat the special 
case of boolean fluents separately in this way. 

Conditions in ecXML <initiates> and <terminates> statements may refer 
to the values of other fluents and to the occurrence of other events recorded in the 
event narrative.  They are constructed using <not>, <and>, <or>, <beq> (boolean 
equals), <geq> (double greater or equals), <leq> (double less or equals), <gt> 
(greater), <lt> (less), <deq> (double equals), <bool> (boolean value), <bpara> 
(boolean event parameter), <btpara> (boolean contract parameter), <occurs> 
(event occurrence), and <holds> (for value of a fluent at a given time).   



The statements <geq>, <leq>, <gt>, <lt>, and <deq> take real-valued (or 
double) operands, which are provided as mathematical expressions. A mathematical 
expression in ecXML can be a simple numerical value, such as 

 
<num val=”0”/> 
 

or constructed using <mul>, <add>, <sub>, <div>, <num> (double value), 
<dpara> (double event parameter), <dtpara> (double contract parameter), and 
<value> (contract variable value). For example, the following expression adds the 
value of a contract variable vDailyCharge to the value of a contract parameter 
sc0. (Contract parameters and contract variables are discussed a little later.) 

 
<add> 

          <value id="vDailyCharge"/> 
          <dtpar name=”sc0“/> 
       </add> 

 
The representation an event narrative in ecXML is a conjunction of: 

• A finite set of <initially> statements of the form: 
<initially> 
  <fluent id=”F”> parameters </fluent> 
</initially> 

meaning that boolean fluent F holds in the initial state, and of the 
form: 

<initially> 
  <mvfluent id=”F”> math expr 
      parameters    
  </mvfluent> 
</initially> 

meaning that multi-valued fluent F has the value given by math expr 
in the initial state.  

• A finite set of <happens> statements of the form:  
<happens> 
  <event id="E" qual=”Q”  
     timestamp=“T” instance_id="…">  
 event parameters 
  </event> 
</happens> 

meaning that the contract event (E,Q) happened at time T. 
 

The XML representation of events themselves will be described presently. 
ecXML also provides a <timer> feature for generating timing events, where these 
may be one-off or recurrent. For example, we may wish to generate a timing event 
for an instance of an obligation, where the occurrence of the timing event would 
signify the deadline for fulfilment of the obligation instance. One can think of this 



as simply a mechanism for adding further <happens> statements into the event 
narrative. 

The EC predicates holds(F,T) and holds(F,V,T), representing, 
respectively, that boolean fluent F holds (is true) at time T and multi-valued fluent F 
has value V at time T, provide the means for querying the state of a contract at any 
time. The EC provides axioms that define the holds predicates in terms of the 
event narrative (<initially> and <happens> statements) and the <initiates> 
and <terminates> specifications. These definitions are as follows: 

• holds(F,T) if initiated(F,T1) and T≥T1 and 
               not terminated(F,T1,T) 
meaning that fluent F holds at time T if F is initiated at some time T1 
before or at time T and it is not terminated at any time between T1 and 
T.   

• initiated(F,0) if 
<initially> 
  <fluent id=”F”> parameters </fluent> 
</initially> 

meaning that fluent F is initiated at time 0 if F is asserted to hold in 
the initial state (as determined by ecXML  <initially> statements for 
F in the event narrative).   

• initiated(F,T1) if happens(E,T1) and T1>0 and 
  <initiates> 

 <event id="E" qual=”Q”/> 
    <fluent id=“F”> parameters </fluent> 
    condition 
  </initiates> 
meaning that fluent F is initiated at time T1 greater than 0, if an event 
(E,Q) happens at T1 and (E,Q) initiates F (as determined by ecXML  
<initiates> statements for F in the contract) and condition holds at 
time T1. 

• terminated(F,T1,T) if happens(E,T2) and  T≥T2>T1 and 
  <terminates> 

<event id="E" qual=”Q”/> 
   <fluent id=“F”/> 
   condition 
  </terminates> 
meaning that boolean fluent F is terminated at time T2 later than T1 
and before, or at, time T if an event (E,Q) happens at T2 and (E,Q) 
terminates F (as determined by ecXML <terminates> statements for F 
in the contract) and condition holds at time T2. 

The definitions for the multi-valued versions of predicates 
holds(F,V,T) and initiated(F,V,T1) are similar. Further, for 
multi-valued fluents, the value of the fluent is terminated whenever an 



<initiates> event happens, that is, the definition included also the 
following: 
terminated(F,V,T1,T) if happens(E,T1) and T≥T1>0 and 
  <initiates> 

 <event id="E" qual=”Q”/> 
 <mvfluent id=“F”> math expr 

      parameters  
    </mvfluent> 
    condition 
  </initiates> 

 
Consider the following example of the holds axiom being applied in the context 

of contract representation.  Let us say that we have the following ecXML statements: 
 
• The occurrence of a bill_timer timeout event initiates an instance 

of an obligation relation o1 
<initiates> 
   <event id="bill_timer”/> 
   <fluent id="o1"/> 
</initiates> 

 
• The occurrence of a fulfilment event for o1 terminates o1.  

<terminates> 
  <event id="o1” qual=”fulfilment"/> 
  <fluent id="o1"/> 
</terminates> 

(For use of ecXML in the representation of contracts, there is a built-in 
feature which treats fulfilment events without the need to write 
<terminates> statements of this form directly.) 

 
• A billing event happens 1 month into the contract 

<happens> 
 <event id="bill_timer” timestamp=M1/> 
</happens> 

where M1 is a string with a value of the UTC time corresponding to the 
start of the contract plus 1 month. 

 
• A fulfilment event for o1 happens 1.5 months into the contract 

<happens> 
  <event id="o1” qual=”fulfilment" 
                          timestamp=M15/> 
</happens> 

where M15 is a string with a value of the UTC time corresponding to 
the start of the contract plus 1.5 months. 

 



According to the holds axioms given previously, o1 does not hold at 0.5 month 
because it does not hold initially and it has not been initiated before or at 0.5 month. 
o1 holds at time 1.25 months because the billing event that occurred at 1 month 
initiates o1 and o1 has not been terminated between 1 month and 1.25 months.  
Finally, o1 holds at time 2 months because notwithstanding its initiation at 1 month, 
it is terminated by the occurrence of the fulfilment event for o1 at 1.5 months. 

Note that contract variables are used to maintain live, numerical state – their 
use is normative in that it is agreed by all parties when a contract is signed.  A 
contract parameter is assigned a value at the instantiation of a contract, and 
facilitate the notion of contract templates, which are customised for particular 
scenarios. Also, counting variables, similarly to contract variables, are used to 
maintain live numerical state. However, statements using them are added to a 
contract representation for housekeeping purposes:  in contrast to contract variables, 
their use is not normative and their use is not agreed between contract parties.  

It is also convenient to set up state definitions for a contract which allow us to 
monitor states of interest. For example, the following defines a state, for the mail 
service SLA, pertaining to the mail service being unavailable whenever the boolean 
fluent slg1_ok does not hold: 

 
<statedefn id="sUnavailable"> 
   <statenorm id="slg1_ok" active="false"/> 
</statedefn> 

 
<statenorm> in turn is evaluated in terms of the holds predicates. 
 
We conceptualise events in ecXML as pairs.  The first argument of the pair is 

the identifier of a pertaining normative relation, an (internal) timer, or some external 
event.  The second argument is an (optional) qualification of the event.  In the case 
of a pertaining normative relation, for example, it may be that an instance of the 
normative relation has been fulfilled. Here, the event would be: (norm-
identifier, fulfilment). Whenever an event occurrence pertaining to a 
normative relation is asserted within ecXML, that is, within a <happens> statement, 
there is also associated with the event an instance identifier, which specifies the 
instance of the pertaining norm with which the event is concerned.  Events in 
ecXML have the following XML schema: 

 
<xsd:element name="event"> 
  <xsd:complexType> 
   <xsd:sequence>  
    <xsd:element name="para"  
      minOccurs="0" maxOccurs="unbounded"> 
      <xsd:complexType>  
        <xsd:choice> 
          <xsd:element ref="bool" minOccurs="0"/> 



          <xsd:element ref="num" minOccurs="0"/> 
        </xsd:choice> 
        <xsd:attribute name="name"  
           type="xsd:string" use="required"/> 
      </xsd:complexType> 
    </xsd:element> 
  </xsd:sequence> 
  <xsd:attribute name="id"  
     type="xsd:string" use="required"/> 
  <xsd:attribute name="qual" type="xsd:string"/> 
  <xsd:attribute name="timestamp" type="xsd:dateTime"/> 
  <xsd:attribute name=”instance_id" 
     type="xsd:nonNegativeInteger"/> 
 </xsd:complexType> 
</xsd:element> 
 

As can be seen from the schema, an ecXML event has an id attribute which is 
required, along with an optional qualification attribute. Together these constitute the 
conceptual pair that characterises an ecXML event: (id, qualification).  An 
ecXML <event> statement may also contain an optional timestamp attribute 
(pertaining to the UTC time of the event), and optional instance_id attribute (which 
if present in an event gives the unique instance identifier of the instance of the norm 
pertaining to the event).  If an <event> statement is used within a <happens> 
statement, it may specify event parameters, which are elaborated as <para> 
statements within ecXML. An example of an <event> statement pertaining to the 
fulfilment of o1 is: 

 
<event id=”o1” qual=”fulfilment”  
    timestamp=”UTC time” instance_id="…"> 
   <para name=”Charge”><num val="25.00"/></para> 
   <para name=”Month”>October</para> 
</event> 
 
For ecXML statements pertaining to the initiation and termination of normative 

relations, the following should be noted.  Every time the conditions of an 
<initiates> statement are satisfied, a new instance of the given normative 
relation is created.  Whereas, every time a <terminates> statement holds, all 
instances of the given normative relation are considered to be destroyed.  In 
practice, <terminates> statements are used with normative relations for which it 
only makes sense to have at most one instance outstanding at any one time.   

As already noted, we have not sought in this work to give a fixed name and 
definition to particular types of normative relation, such as obligation, or 
permission. Instead, we allow complete freedom over the naming of normative 
relations. Consequently, a normative relation is only characterised by how it is 



initiated and terminated, and has no explicit definition of its informal semantics in 
our representation of contracts.  

In ecXML, instances of normative relations and values of contract variables are 
represented as fluents. It is worth emphasising that, by using the presented holds 
axioms, we can ask queries such as: return all of the extant instances of a given 
normative relation (while optionally limiting the query to a particular 
parameterisation of the relation), indexed according to instance identifier. 

 

4 ecXML REPRESENTATION OF EXAMPLE CONTRACT    

In the sequel, we provide an explanation of how the example mail service 
contract is represented in ecXML.  The following ecXML statements cater for the 
contract excerpt: Whenever u>s, where u is the mailbox utilisation in GBytes, SP 
will charge SC c1 for each GByte over s, calculated daily. It is assumed, in 
accommodating this excerpt, that an external event daily_charge_event is 
entered into the event narrative daily providing the contract reasoner with the daily 
charge that the customer has accrued, where this charge will be zero if the value of 
u has not gone above s for that day.  The daily charge is accumulated in the contract 
variable vDailyCharge. 

The first statement simply initialises the contract variable vDailyCharge to 
zero at contract initiation: 

 
<initially> 
   <mvfluent id="vDailyCharge"> 
      <num val="0"/> 
   </mvfluent> 
</initially> 
 

The next statement says that when a daily_charge_event occurs, add the 
value of the event’s Charge parameter, corresponding to the charge for the day, to 
the contract variable vDailyCharge. 

 
<initiates> 
   <event id="daily_charge_event”/>       
   <mvfluent id="vDailyCharge"> 
      <add> 
         <value id="vDailyCharge"/> 
         <dpara name="Charge"/> 
      </add> 
   </mvfluent> 
</initiates> 

 



Here <dpara> accesses the value of the Charge parameter in the event’s 
XML description. 

The following ecXML statements accommodate the representation of the 
contract excerpt: All billing of SC occurs monthly.  They set up the timer 
bill_timer to generate monthly timeout events to initiate instances of an 
obligation o1, which bears on SC to pay for service provision.   

The first ecXML statement simply says that the timer is initially active. That is, 
fluent bill_timer, is initially set.  

 
<initially> 
   <fluent id="bill_timer"/>  

 </initially> 
 
The second statement says that bill_timer is recurrent with a period of one 

month.  
 
<timer id="bill_timer"> 
   <run>  
      <dur val="P1M"/> 
   </run> 
</timer> 
 

As explained earlier, <timer> statements may be seen as a mechanism for 
adding extra <happens> assertions to the event narrative.  

The following ecXML statements represent the contract excerpt: SC will be 
charged a fixed monthly fee of s*c0 for the service. The first statement specifies that 
a timeout event pertaining to bill_timer initiates an instance of an obligation 
relation of type o1.  The relation o1 has a single parameter Charge which, in the 
given ecXML, is assigned the value obtained by summing the current (accumulated) 
daily charge, given by the contract variable vDailyCharge, with the value 
(currently) assigned to the contract parameter sc0.  

 
<initiates> 
   <event id="bill_timer”/> 
   <fluent id="o1"> 
      <apara name="Charge"> 
         <add> 
            <value id="vDailyCharge"/> 
            <dtpar name=”sc0“/> 
         </add> 
      </apara> 
   </fluent> 
</initiates> 

 



The next statement specifies that the same bill_timer event also has the 
effect of setting the contract variable vDailyCharge to zero: 

 
<initiates> 
   <event id="bill_timer” /> 
   <mvfluent id="vDailyCharge"> 
      <num val="0"/> 
   </mvfluent> 
</initiates> 
 

The following timer for obligation relation o1 accommodates the contract 
clause:  SC is given a month thereafter to pay.  Note the single iteration of the 
<run> statement. 

 
<timer id="o1"> 
   <run iters="1"> 
      <dur="P1M"/> 
   </run> 
</timer> 

 
The next ecXML statement pertains to the contract excerpt: If SC fails to pay 

within the given time, SP may terminate the mailbox service without notice.  It says 
that a timeout event for an instance of an obligation relation o1 has the effect of 
initiating an instance of the (vested) power relation r1, which corresponds to: SP 
may terminate the mailbox service without notice. 

 
<initiates> 
   <event id="o1” qual=”timeout"/> 
   <fluent id="r1"/> 
</initiates> 
 

The following ecXML statements accommodate the contract excerpt: In the case 
that the mail service is unavailable, SP will pay $p for every whole t minutes that it 
is unavailable. This excerpt is part of a Service-Level Guarantee (SLG) pertaining 
to the provision of the mail service. An SLG captures a level of service that must be 
maintained by a service provider, according to a service-level predicate, such as: 
95% availability, Mondays-Fridays, 9a.m.-5p.m., and 99% availability at all other 
times. An SLG will also capture what actions may, or should be, taken by one or 
more contract parties whenever the service level captured by the SLG is violated or 
restored. The contract excerpt, in this case, states that the service provider will be 
liable to pay the service customer money whenever the SLG is violated.  We 
assume that some external agent tells us when the SLG has been violated, that is 
that the mail service is unavailable, and when it has been restored.    



Following is an ecXML statement that simply stipulates that a fluent that tracks 
the status of slg1, called slg1_ok, is initially true.  This fluent is useful for the 
purposes of the state tracking definitions that are given later in this section. 

 
<initially> 
   <fluent id="slg1_ok"/> 
</initially> 

 
Next, a violation event for slg1 terminates slg1_ok signifying that the SLG is 

now being violated: 
 

<terminates> 
   <event id="slg1” qual=”violation"/> 
   <fluent id="slg1_ok"/> 
</terminates> 
 

The same violation event also triggers a timer service_unavail_timer. The 
purpose of this timer is to trigger the collection of $p every t minutes, where t is the 
value of the contract parameter t_unavailable.  It also initiates an instance of 
the obligation relation o3, which has no specified timeout, and which bears on the 
service provider to restore service as soon as possible.  

 
<initiates> 
   <event id="slg1” qual=”violation"/> 
   <fluent id="service_unavail_timer"/> 
</initiates> 
 
<timer id="service_unavail_timer"> 
   <run> 
      <durtpar name="t_unavailable"/> 
   </run> 
</timer> 
 
<initiates> 
   <event id="slg1” qual=”violation"/> 
   <fluent id="o3"/> 
</initiates> 

 
The next ecXML statement accumulates the $p penalty that the provider is 

charged every t minutes for unavailability of the mail service. It does so according 
to service_unavail_timer events, which occur according to the timer set up 
previously.  It uses the contract variable vPenalty to store the accumulated charge.  

 
<initiates> 
   <event id="service_unavail_timer”/> 
   <mvfluent id="vPenalty"> 



      <add> 
         <value id="vPenalty"/> 
         <dtpar name="p_penalty"/> 
      </add> 
   </mvfluent> 
</initiates> 

 
On restoration of slg1, the SLG status fluent slg1_ok is initiated: 

 
<initiates> 
   <event id="slg1” qual=”restoration"/> 
   <fluent id="slg1_ok"/> 
</initiates> 
 

Also, the timer that causes the provider to be penalised $p every t minutes is 
terminated: 

 
<terminates> 
   <event id="slg1” qual=”restoration"/> 
   <fluent id="service_unavail_timer"/> 
</terminates> 
 

Normative relation o3 pertaining to the obligation bearing on the service 
provider to restore service is also terminated: 

 
<terminates> 
   <event id="slg1” qual=”restoration"/> 
   <fluent id="o3"/> 
</terminates> 
 

The next two ecXML statements initiate and terminate instances of the (vested) 
power fluent r2, corresponding to whether the service provider is empowered to 
refuse to allow the customer to receive emails. These accommodate the contract 
clause:  Whenever u>s+e, where e is a level of tolerance in GBytes, SC will not be 
able to receive emails. Whenever a service customer’s utilisation goes above the 
limit specified in this clause, a quota_violation_event contract event will be 
received.  Its parameter Over will be set to true. The first statement says that when 
this happens r2 should be initiated.  Whenever a service customer’s utilisation 
ceases to be above the limit specified in this clause, a quota_violation_event 
contract event will again be received.  This time, however, its parameter Over will 
be set to false. The second statement says that when this happens the relevant 
instances of relation r2 should be terminated. 

  
<initiates> 
   <event id="quota_violation_event”/> 



   <fluent id="r2"/> 
   <beq> 
      <bpara name="Over"/> 
      <bool val="true"/> 
   </beq> 
</initiates>  
 
<terminates> 
   <event id="quota_violation_event”/> 
   <fluent id="r2"/> 
   <not> 
      <beq> 
         <bpara name="Over"/> 
         <bool val="true"/> 
      </beq> 
   </not> 
</terminates>  

 
There are a number of ecXML statements that are concerned with the payment 

of penalties to the service customer by the service provider on a monthly basis.  
They are very similar to the ecXML statements concerned with the billing of the 
service customer for service provision shown above.  There are also a number of 
ecXML statements concerned with maintaining housekeeping information required 
by the service provider.  These statements manipulate the values of counting 
variables that pertain to monies earned, and penalties paid out, as well as penalties 
that the service customer has failed to pay in time for the contract instance.  These 
ecXML statements are all dealt with straightforwardly in similar fashion to those 
shown above and are not presented here for reasons of brevity.   

Finally, some state definitions may be specified.  These allow a contract party 
to track states of interest. 

A state is considered to be ‘normal’ whenever no instances of relations r1 and 
r2 hold, but where slg1_ok does. 

 
<statedefn id="sNormal"> 
   <statenorm id="r1" active="false"/> 
   <statenorm id="r2" active="false"/> 
   <statenorm id="slg1_ok" active="true"/> 
</statedefn> 
 

An ‘unavailable’ state is considered to be one where slg1_ok does not hold. 
 
<statedefn id="sUnavailable"> 
   <statenorm id="slg1_ok" active="false"/> 
</statedefn> 
 



A state in which the service customer cannot receive mail is defined as one 
where an instance of r2 holds. 

 
<statedefn id="sRefuseReceiveMail"> 
   <statenorm id="r2" active="true"/> 
</statedefn> 

 
State definitions for other states of interest are given in similar fashion. The 

interested reader may find a complete ecXML representation of the example at [15]. 

5 EVENT CALCULUS STATE TRACKING ARCHITECTURE 
(ECSTA)  

A reasoner for contracts written in ecXML, called the Event Calculus State Tracking 
Architecture (ECSTA) has been implemented in Java, supporting: instantiation of 
contracts written in ecXML, assertion of event narratives including speculative 
narratives which can be unrolled, and querying of contract state.  

A full list of use-cases for ECSTA is as follows: 
• Discover Registered Contract Templates, Register Contract Template, 

Deactivate/Reactivate/Destroy Contract Template 
• Discover Instantiated Contracts, Instantiate/Reactivate/ 

Deactivate/Destroy Contract, Retrieve Contract 
• Add Contract Clauses and User Rules, Overwrite Timestamps in 

Clauses and User Rules  
• Request/Change Contract Parameters 
• Assert Input Contract Events 
• Query Contract. That is, query global state of contract, query particular 

fluent or contract variable (multi-valued fluent), query global state 
history of contract, query history of particular fluent or contract 
variable 

• Register for/Deactivate/Reactivate Notification of Output Contract 
Events 

• Register for/Deactivate/Reactivate Clause and User Rule Triggering 
Notification Events  

• Allocate/Destroy Shared Variable. Shared variables are used for 
maintaining inter-contract state, such as the number of times an SLG 
has been violated across all mail service agreements 

• Register/Deactivate/Reactivate Shared Variable Association. This use-
case simply pertains to the association of individual contracts to shared 
variables  

• Create/Destroy Simulation Context. 
 



One particularly useful functionality is for a user to register an interest in being 
notified of particular contract-related occurrences. This is supported through user 
rules.  Say in the context of web service provision, an incident manager, responsible 
for handling the effects of fabric incidents on the fulfilment of service agreements,    
would like to be notified when the number of violated obligations across a number 
of agreements goes above x.  

As this requires reasoning across multiple agreements, we need to use the 
Allocate Shared Variable use-case to get the reasoner to allocate a shared variable. 
Say, the reasoner calls the shared variable v1.  Then, we add the following user rule 
to each pertinent service agreement using the Register Shared Variable Association 
and Add Contract Clauses and User Rules use-cases (written here in English, but 
would normally be ecXML):  Whenever a violation event for an obligation is 
received and is pertinent, increment v1. Then, we add the following user rule, u1, to 
a single contract:  For changes in the value of v1, where v1 goes above x, do 
nothing.  Importantly, rule u1 is considered to be triggered whenever v1 goes above 
x.  Finally, we ask to be notified whenever rule u1 is triggered, by using the Register 
for Clause and Rule Triggering Notification Events use-case. 

6 CONTRACT VISUALISER 

As well as the ECSTA reasoner, a tool called Contract Visualiser has been 
implemented which allows for the deployment management of contracts. It provides 
a user-interface to contract deployment tasks, and supports all of the use-cases given 
in section 5.  The relationship between ECSTA and Contract Visualiser is captured 
in figure 1.  

In figures 2 through to 9 a scenario is shown unfolding, as captured by Contract 
Visualiser.  The scenario pertains to the mail service agreement used in this paper.  
(Note that the example shots of Contract Visualiser pertain to its use in the context 
of web service deployment. As such, the term SLA is used in place of contract, 
where SLA stands for Service-Level Agreement).  

         Figure 1: Relationship between ECSTA and Contract Visualiser 

 



 
Figure 2: Top-Level View in Contract Visualiser 
 
In figure 2, we select SLA 4 to look at its history. We see that it has been 

terminated, which would happen through the customer failing to pay for service. 
 

 
Figure 3: Scenario Unfolds 1 
 
In figure 3, we see that the state of SLA 4 is “Ok” to begin with. 
 

 
Figure 4: Scenario Unfolds 2 
 
In figure 4, we see that a “Service Violation” event occurs causing:  the state of 

the SLA to change to “Service Violation” and an obligation to be initiated bearing 
on the provider to restore the service. 

 

 
Figure 5: Scenario Unfolds 3 
In figure 5, we see that a “Service Restoration” event occurs causing:  the state 

of SLA to return to “Ok”.  Also the obligation bearing on the provider to restore the 
service is fulfilled. 

 

 
Figure 6: Scenario Unfolds 4 



 
In figure 6, we see that two obligations are initiated (by timers that are specified 

in the SLA representation and maintained by the reasoner) stipulating that: the 
Service Provider must refund $25 to the Service Customer for poor service (before 
end of business day) and the Service Customer must pay $50 for service to the 
Service Provider (within 1 month). This causes the SLA to move into state: 
“Provider Payment Outstanding” + “Customer Payment Outstanding”. 

 

 
Figure 7: Scenario Unfolds 5 
 
In figure 7, we see that an input event saying that the Service Provider has 

fulfilled its obligation to refund $25 to the service customer occurs causing: the 
state of the SLA moves from “Provider Payment Outstanding” + “Customer 
Payment Outstanding” to just “Customer Payment Outstanding”.  The fulfilment of 
the obligation bearing on the Service Provider occurs just 10 minutes after it was 
initiated and within the business day as stipulated – the manifestation of the 
fulfilment may be that the billing system sent the customer a cheque, or organised a 
fund transfer. 

 

 
Figure 8: Scenario Unfolds 6 
 
In figure 8, we see that the 1 month timer for the obligation bearing on the 

service customer to pay for service has expired:  this moves the SLA into a 
“Terminable” state – the Service Provider is empowered to terminate the SLA. 

 



 
Figure 9: Scenario Unfolds 7 
 
In figure 9, we see that, in keeping with the Service Provider being empowered 

to terminate the service, they do so: the SLA moves into a “Terminated” state. 
 

7 RELATED WORK 
 
There have been many diverse research contributions that have utilised the Event 
Calculus (EC) for the purpose of reasoning over the effects of events on a logic 
theory.  Those closest to the topics of this paper are now presented.  In [7,8], Artikis 
describes the representation in EC of ‘open’ multi-agent systems viewed as societies 
of computational agents, including variations on the Contract-Net and NetBill 
protocols [16,17], an argumentation protocol based on Brewka's reconstruction of 
Rescher's Theory of Formal Disputation (RTFD) [18], and resource allocation 
protocols among others. This work also explicitly employs the concepts of 
obligation, permission, and institutional power, and includes the specification of 
sanctions and penalties in the case of violations. The representation of these 
concepts as EC fluents is different from the methods employed in this paper, 
however. It is also worth noting that Artikis and colleagues have also employed 
other action languages from AI as an alternative to the use of EC, and specifically 
the action language C+ [19]. C+ provides a high-level notation for defining axioms 
specifying the effects of actions on domain fluents, and ways of characterising 
domain phenomena, such as the common sense law of inertia. It also has an explicit 
semantics in terms of labelled transition systems.  Being able to describe contracts 
as transition systems is extremely useful for proving properties (using model 
checking) about the contracts. Also of note is an extended form of C+, called (C+)++ 

[12,13], which is specifically defined for the representation of norms and 
institutional concepts. These extensions provide a treatment and formal semantics 
for institutionalised power, that is, counts as, relations between actions, and for the 
specification of permitted (or acceptable, or legal) states of a transition system and 
its permitted (or acceptable or legal) transitions and histories.  
 In [20], Bandara and colleagues develop methods for performing analysis 
and refinement of policy specifications. To this end, they formalise an EC-based 
notation for representing both policy and system behaviour specifications.  The 



resulting formalism is used in conjunction with abductive reasoning techniques to 
perform a priori analysis of policy specifications. In [21], Firozabadi and colleagues 
develop an EC-based framework for issuing privileges to agents in a community, 
through declaration and revocation authority certificates. It makes a distinction 
between the time a certificate is issued, or revoked, and the time for which the 
associated privilege is created, or discharged, enabling certificates to have 
prospective and retrospective effects.   

There has been a good deal of research concerning the representation of 
contracts for monitoring their performance.  In [22] Daskalopulu discusses the use 
of Petri-nets for contract state tracking, and assessing contract performance. Her 
approach is best suited for contracts which can naturally be expressed as protocols, 
or workflows. One particular desirability of using Petri-nets is that they naturally 
facilitate analysis. In the context of contract representation, an example would be to 
show that a contract will always terminate in a favourable state for one, or more, 
contract parties. It is possible, however, to carry out analysis of this nature using the 
formalism described here. Moreover, our representation has many advantages over 
Petri-nets (some of which are as a result of a rule-based approach).  

In [23] Milosevic and colleagues attempt to identify the scope for automated 
management of e-contracts; including: contract drafting, negotiation and 
monitoring.  In [24], Abrahams and colleagues define the EDEE architecture (E-
commerce application Development and Execution Environment). EDEE provides a 
mechanism for business process automation based on assessment and reasoning of 
interactions between intra-, inter-, and extra-organisational policy, and execution of 
business procedures informed by the combined legal effect of policy rules.  
Abrahams proposes Event-Condition Obligation rules for the writing of effect 
axioms for occurrences. Prima facie obligations are derived from the rules, where 
subsequent obligation choice decides which of these apply, and action choice 
decides which of those that apply will be fulfilled.  In [25] Grosof and colleagues 
have sought to address the representation of business rules for e-commerce 
contracts. For this purpose, they have developed the SWEET (Semantic WEb 
Enabling Technology) toolkit, which enables communication of, and inference for, 
e-business rules written in RuleML. In contrast to our approach, Grosof and 
colleagues are not concerned with maintaining live representations of contracts for 
state tracking purposes. A facility for tracking contract state is (ostensibly) lacking 
in their work.  Rather, they seek to represent contracts for the purpose of 
communicating contract rules.  In fact, Grosof’s work would dovetail nicely with 
that of Leite and colleagues [26] who have suggested update semantics for 
generalised logic programs, where the meaning of a contract at any state would be 
given by the (stable model or well-founded) semantics of an individual logic 
program, which is derived from a combination of the logic programs pertaining to 
previous states and previously-occurring contract-related events, expressed by 
update rules.  



8 CONCLUSIONS 
 

In this paper we have proposed a formalisation of the Event Calculus in XML, 
called ecXML, and have shown informally its application to the representation of 
contracts to facilitate automated tracking of contract state. We have grounded our 
discussion using an agreement for a mail service (provided as a web service), one of 
a number of similar contracts and agreements we have represented in this approach. 

Through using EC, we are able to represent a contract in terms of how its state 
evolves according to a narrative of (contract-related) events.  Then, we are able to 
extract information pertaining to contract state, such as which norms are initiated, 
and what values contract variables have, for arbitrary times (in the past, or present).  
It is also possible to simulate the effects on contract state of a hypothetical event 
narrative, which we have found useful for carrying out prediction.  

An inherent desirability of using EC is that state tracking is externalised as a 
separate component. This promotes better modularisation and makes for simplified 
code maintenance. Also, as a consequence, it means that the state tracking 
component may be re-used for a range of automated reasoning tasks for which it is 
appropriate to monitor state.  That is to say, ecXML is a generic language for 
characterising how (both boolean − true or false − and numeric) properties of a 
domain change according to an event narrative, where the representation of 
contracts is just one application. Commensurately, the presented Event Calculus 
State Tracking Architecture may be used in many application domains.   

A comprehensive Java-based implementation of a generic EC reasoning 
component, called the Event Calculus State Tracking (ECSTA) architecture, has 
been developed. In this context, we think of ecXML as the language of the machine: 
although it may appear to be somewhat verbose, this is not a critical issue because 
ecXML representations are meant to be automatically generated by some suitable 
authoring tool.  For example, elsewhere  [27] we have discussed a higher-level 
syntax that we have defined, called Contract Tracking XML (CTXML), for 
representing contracts for the purpose of state tracking. It provides a considerably 
more concise syntax than ecXML, together with a mapping to ecXML.  The ecXML 
implementation, however, is capable of supporting any contract language that might 
be defined, so long as it has a tractable mapping to ecXML.  All that is required to 
support a different language is the writing of a translator plug-in which outputs 
ecXML.  The ability to support multiple languages is an example of the re-use of the 
ecXML state tracking component.  The implementation, moreover, is designed to be 
capable of supporting a large number of contracts simultaneously and to support 
event narratives with a very large number of events. We have optimised the 
implementation for querying, and have found it to work extremely efficiently.    

In the course of our work, we have empirically evaluated the adequacy of 
ecXML in expressing how the normative state of a contract evolves according to a 
narrative of contract events. We have done so by considering the representation of 
tens of service agreements from the domain of web services and other service-



oriented domains, such as Utility Computing [9].  We have found it to be sufficient 
in representing such agreements. We plan to further evaluate ecXML by  
considering other sorts of agreements from these domains, as well as considering 
contracts from other domains. 

The work described herein represents a small part of a larger effort related to  
the representation of workflow (where we consider contracts to be a type of 
workflow) from multiple perspectives:  control, data, organisational and normative.  
We are seeking to realise a unified modelling approach across these perspectives so 
that we might facilitate the proving of workflow properties across them. One aspect 
of the organisational perspective concerns organisational policies which may be 
considered to constrain the enactment of workflows.  It is an interesting research 
problem to consider how we might build flexibility into the specification of 
workflows (across these perspectives) so that the enactment of a workflow may be 
dynamically composed so to best satisfy organisational policies. Furthermore, if 
some policies have to be overridden in the enactment of a workflow, how do we 
choose the appropriate policies to override?  

We are interested in evaluating the advantages and shortcomings of a number 
of formalisms for the modelling of workflows not only for proving workflow 
properties but also as enactment metaphors.  Some of the formalisms considered in 
our work are: Petri-nets [28,29], value-passing CCS [30],  π-calculus [31] and 
various logic-based formalisms such as C+ [19]. 

9 REFERENCES 

 [1]  R.Kowalski, M.Sergot. "A Logic-Based Calculus of Events". In New 
Generation Computing, 4: pp.67-95. 1986. 

 [2]  Murray Shanahan. "The Event Calculus Explained". In M.J.Wooldridge, 
M.Veloso, editors, Springer Lecture Notes in Artificial Intelligence, 1660: 
pp. 409-30, 1999. Springer. 

 [3]  Lars Lindahl. "Position And Change, A Study in Law and Logic", D. Reidel 
Publishing Company, 1977. 

 [4]  Sushil Jajodia, Pierangela Samarati, V.S.Subrahmanian, Eliza Bertino. "A 
unified framework for enforcing multiple access control policies". In 
Proceedings of the 1997 ACM SIGMOD international conference on 
Management of data: pp. 474-85, 1997. ACM Press New York, NY, USA. 

 [5]  Andrew J.I.Jones, Marek Sergot. "A Formal Characterisation of 
Institutionalised Power". In Journal of the IGPL, 4(3): pp.429-45. June, 
1996. 



 [6]  Babak Sadighi Firozabadi, Marek J.Sergot. "Power and Permission in 
Security Systems". In Proceedings of the 7th International Workshop on 
Security Protocols, Lecture Notes In Computer Science: pp. 48-59, 1999. 

 [7]  A.Artikis. "Executable Specification of Open Norm-Governed 
Computational Systems". Ph.D. thesis, Department of Electrical & 
Electronic Engineering, Imperial College, London, 2003. 

 [8]  A.Artikis, J.Pitt, M.J.Sergot. "Animated Specifications of Computational 
Societies". In Proceedings of Autonomous Agents and Multi-Agent Systems 
(AAMAS), Bologna: pp. 1053-62, 2002. 

 [9]  Hewlett-Packard (www.hp.com). "HP Utility Data Center - Technical 
White Paper". October, 2001. 

 [10]  M.J.Sergot. "Normative Positions". In P.McNamara, H.Prakken, editors, 
Norms, Logics and Information Systems: pp. 289-308, 1998. IOS Press, 
Amsterdam. 

 [11]  M.J.Sergot. "A Computational Theory of Normative Positions". In ACM 
Transactions on Computational Logic, 2(4): pp.581-622. October 2001. 

 [12]  M.Sergot, R.Craven. "(C/C+)++: An action language for representing 
norms and institutions". In Proceedings of Workshop on Automated 
Reasoning, Liverpool, UK, 15-16 April 2003. 

 [13]  M.Sergot. "The language (C/C+)++". In J.Pitt, editor, Deliverable D6(2) 
of ALFEBIITE EU-Project (IST-1999-10298): pp. 55-84, 2002. 

 [14]  G.Alonso, F.Casati, H.Kuno, V.Machiraju. "Web Services. Concepts, 
Architectures and Applications.", Springer, 2004, ISBN: 3-540-44008-9. 

 [15]  http://www.doc.ic.ac.uk/~adf02/phd. 

 [16]  M.Sirbu. "Credits and Debits on the Internet". In IEEE Spectrum, 34(2): 
pp.23-9. 1997. 

 [17]  R.Smith, R.Davis. "Distributed Problem Solving: the Contract-net 
Approach". In Proceedings of Conference of Canadian Society for 
Computational Studies of Intelligence: pp. 217-36, 1978. 



 [18]  G.Brewka. "Dynamic Argument Systems: A Formal Model of 
Argumentation Processes Based on Situation Calculus". In Journal of 
Logic and Computation, 11(2): pp.257-82. 2001. 

 [19]  Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, 
Hudson Turner. "Nonmonotonic causal theories". In Artificial Intelligence, 
153(1-2): pp.49-104. 2004. 

 [20]  A.K.Bandara, E.C.Lupu, A.Russo. "Using Event Calculus to Formalise 
Policy Specification and Analysis". In 4th IEEE Workshop on Policies for 
Distributed Systems and Networks (Policy 2003), Lake Como, Italy, 2003. 

 [21]  B.S.Firozabadi, M.Sergot, O.Bandmann. "Using Authority Certificates to 
Create Management Structures". In Proceedings of Security Protocols, 9th 
International Workshop, London, UK, April 2001. 

 [22]  A.Daskalopulu. "Modelling Legal Contracts as Processes". In 11th 
International Conference and Workshop on Database and Expert Systems 
Applications: pp. 1074-9. IEEE C. S. Press. 

 [23]  O.Marjanovic, Z.Milosevic. "Towards Formal Modelling of e-Contracts". 
In Fifth IEEE International Enterprise Distributed Object Computing 
Conference, Seattle, USA, September, 2001. 

 [24]  A.S.Abrahams. "Developing And Executing Electronic Commerce 
Applications with Occurrences". PhD thesis, Cambridge University, 2002. 

 [25]  B.N.Grosof, Y.Labrou, H.Y.Chan. "A Declarative Approach to Business 
Rules in Contracts: Courteous Logic Programs in XML". In M.P.Wellman, 
editor, 1st ACM Conf. on Electronic Commerce (EC-99), Denver, CO, 
USA, November 1999. ACM Press, New York, NY, USA. 

 [26]  J.A.Leite, J.J.Alferes, L.M.Pereira. "Multi-dimensional Dynamic Logic 
Programming". In F.Sadri, K.Satoh, editors, Proceedings of the CL-2000 
Workshop on Computational Logic in Multi-Agent Systems (CLIMA'00), 
London, England, July 2000. 

 [27]  Andrew D.H.Farrell, Marek J.Sergot, Claudio Bartolini, Mathias Salle, 
Athena Christodoulou, David Trastour. "Using the Event Calculus for the 
Performance Monitoring of Service-Level Agreements for Utility 
Computing". In Proceedings of First IEEE International Workshop on 
Electronic Contracting (WEC 04),  San Diego, CA, USA, 6 July 2004. 



 [28]  Wolfgang Reisig, Grzegorz Rozenberg. "Lectures on Petri Nets I: Basic 
Models", Springer, 1998, ISBN: 3-540-65306-6. 

 [29]  Wolfgang Reisig, Grzegorz Rozenberg. "Lectures on Petri Nets II: 
Applications", Springer, 1998, ISBN: 3-540-65307-4. 

 [30]  Robin Milner. "Communication and Concurrency", Prentice Hall, 1989, 
ISBN: 0-13-115007-3. 

 [31]  Robin Milner. "Communicating and Mobile Systems: The Pi-Calculus", 
Cambridge University Press, 1999, ISBN: 0-521-65869-1. 

 
 


