April 9, 2003 14:57 WSPC/Trim Size: 9in x 6in for Proceedings greece2003-final

DISTRIBUTED SUFFIX TREES AND THEIR
APPLICATION TO LARGE-SCALE GENOMIC ANALYSIS

RAPHAEL CLIFFORD and MAREK SERGOT

Department of Computing, Imperial College, London.
E-mail: raphael@clifford.net and m.sergot@ic.ac.uk

We have recently presented a variant of the suffix tree which allows much larger
genome sequence databases to be analysed efficiently. The new data structure,
termed the distributed suffiz tree (DST), is designed for distributed memory paral-
lel computing environments (e.g. Beowulf clusters). It tackles the memory bottle-
neck by constructing subtrees of the full suffix tree independently. The standard
operations on suffix trees of biological importance are easily translatable to this new
data structure. While none of these operations on the DST require inter-process
communication, many have optimal expected parallel running times.

1. Introduction

The suffix tree is the key data structure of computational pattern matching
allowing a multitude of sophisticated operations to be performed efficiently
(seee.g. [1, 5]). In the field of bioinformatics these operations include whole
genome alignment [3], analysis of repetitive elements [8], and fast protein
classification [4], amongst many others. However, the main obstacle to
more widespread acceptance of these methods remains that of memory use.
Suffix trees have high memory overheads, and the poor memory locality,
both of their construction and of querying algorithms, make disk-based
implementations highly problematic [7].

We have presented in [2] two new data structures for problems of in-
termediate size—that is, problems larger than can be handled by existing
suffix tree/array methods but small enough that the input can be stored
entirely in real memory—a range of at least an order of magnitude. To give
some indication, the new methods allow us to store and analyse the whole
human genome, perform cross species pattern matching on all available
bacterial genomes at once, or search a large EST database, using a small
cluster of standard PC’s. The data structures are termed the distributed
suffiz tree (DST) and the paged suffix tree (PST). Both are based on a new



April 9, 2003

14:57 WSPC/Trim Size: 9in x 6in for Proceedings greece2003-final

extension of Ukkonen’s suffix tree construction algorithm [9] which allows
subtrees of a suffix tree to be constructed efficiently in space proportional to
the size of the resultant data structure and not the whole suffix tree. This
enables a suffix tree to be distributed over a number of computing nodes
and queried in parallel (the DST) or for a single node to compute inde-
pendent subtrees successively (the PST). By effectively splitting the input
string lexicographically (not into contiguous substrings), it can readily be
shown that all the most popular biologically inspired operations on suffix
trees exhibit optimal or near optimal parallel speedups. Furthermore prob-
lems which would previously have been impossible to solve due to their size
can now be tackled efficiently, either in parallel or serial and with modest
hardware requirements. Here we will focus on the distributed version, the
DST.

The DST construction algorithm has been implemented in C on an 8
processor distributed memory parallel computer, increasing by a factor of
7.65 the size of the largest database that could be indexed. Exact set
matching and repeat finding procedures for random data have also been
implemented and performed on the DST. The results showed substantial
speedups (with average efficiencies in excess of 90% and 99%, respectively)
and exhibited good scalability, confirming the theoretical analysis. For
systematically biased genetic data, preliminary results show that simple
load balancing schemes can successfully increase the parallel efficiency of
biological operations to close to 90%.

The method is simple to apply. Almost any current bioinformatic tech-
nique that relies on suffix trees can be modified to take advantage of DSTs,
greatly extending the range of problem sizes that can be tackled. Also, com-
plex or time consuming queries, such as the preliminary stages of matching
all ESTs against the human genome, can be performed with optimal or
near optimal efficiency in parallel. In the next section we first describe the
new data structure. We then present the expected time efficiencies of a
representative sample of operations on the DST.

2. Distributed Suffix Trees

A suffix tree of input string ¢ is a compacted trie of the suffixes of t. We
define a sparse suffiz tree (SST) of input string ¢ to be a compacted trie
of a subset of the suffixes of t. Here, we are interested in the special case
where all the suffixes in this subset start with the same prefix z and assume
from now on that all SSTs are of this type. Distributed suffiz trees (DST)



April 9, 2003 14:57 WSPC/Trim Size: 9in x 6in for Proceedings greece2003-final

are simply collections of SSTs defined in this way.

Usually, a single SST will be held at each computing node and the union
of the path labels of the leaves of these SSTs will be the full set of suffixes
of t. In other words, every suffix of ¢ will be represented by exactly one
SST at exactly one of the computing nodes. An example DST and the
corresponding standard suffix tree are given in Figures 1 and 2.

In this case the prefixes for the 6 different SSTs are aa, ac, ca, cc, a$
and $§. Each SST has been connected to a central root node. The main
difference of the sparse suffix links is that in the standard suffix tree the
suffix links can point the full width of the tree. In the DST the new links
point only to nodes that are within the same SST. This allows the SSTs to
be constructed independently without any inter-process communication.

(A1)
a0
/,»—%)'\C “‘_,.
e Grede----7 ot
s S e PEE] e
N
o
(20} $ -CD—CrooD)—Cas>- o8
fsl, - By 1
~ - (O
oo, > i }1“ LA
. " ‘ _
g X e (e DLTO o 0,

Figure 1. The SSTs for aacacccacacaccacaaa$ with their respective root nodes labelled
Taa,TacsTeas Tee,Tqg and rg. The sparse suffix links for the valid sets Vaa, Vac, Vea, Vee,
V,¢ and Vg are marked with dashed arrows. Note that the final suffixes, a$ and $, are
included but typically will not be used.

2.1. Operations on the DST

Gusfield [5] provides what can be regarded as a canonical list of major
bioinformatic techniques on suffix trees. All are readily translated to a
DST wihtout incurring any communication overheads. We summarise the
analysis of five representative problems from this list. They are Longest
Common Substring, Exact Local Matching (LCS, ELM), Maximal Repeat
Finding (MRF), All Pairs Suffix-Prefix (APSP) [6] and Exact Set Matching



April 9, 2003

14:57 WSPC/Trim Size: 9in x 6in for Proceedings greece2003-final

4
2 m
c -
T~ L \ ‘ v
a N © nl ~
) AR EEI AN
~ \ ! “‘\ ! N
’ AN L oy ! I\
’ - | i
iﬁ AN ‘\// /" \\’ N
4 \ 1
e /I\/ \ ‘\’ ! \
S VoA \\ { ! 1
1 _ - a \ s / 1
o1, B SN )
. \ 1
u“’Q\\ftmjcj/f /Q//\&LKL%\//\ c /w‘
RS _’,/’ o Sy /I .
\\\ \til/‘\ I,
————_ - \&m«
o
Figure 2. The standard suffix tree of aacacccacacaccacaaa$ with standard suffix links.

This is for comparison with the merged tree in Figure 1. See the text for further expla-
nation.

(ESM). Full descriptions along with their serial solutions using suffix trees
can be found in Gusfield [5] and elsewhere.

Because we are interested in average case and not worst case analy-
sis we make the commonly used assumption that the input characters are
independent and uniformly distributed (i.u.d.). In practice, this assump-
tion may not hold, of course, requiring some form of load balancing for
systematically biased data.

We suppose that there are k computing nodes and assume for simplicity
that k = o!#!, where o is the alphabet size and z is the fixed prefix. Table 1
compares the expected running times for the solution of these five problems
using the fastest serial method (based on a standard suffix tree) and a
parallel method (based on distributed suffix trees).

Table 1. Post-construction average time complexities for five different
problems using standard and distributed suffix trees with & computing
nodes. r is the number of strings for the All Pairs Suffix-Prefix problem
and the number of patterns for Exact Set Matching.

Problem Expected Running Time
Standard ST (Serial) | Distributed ST (Parallel)
LCS and ELM O(n) O(n/k)
MRF O(n) O(n/k)
APSP O(n +r?) O((n +12)/k)
ESM O(rlogn) O((rlogn)/k)




April 9, 2003 14:57 WSPC/Trim Size: 9in x 6in for Proceedings greece2003-final

REFERENCES 5

Experimental results on random data showed substantial speedups con-
sistent with the theoretical analysis. For systematically biased biological
data, we were able to devise simple load balancing schemes that increased
the parallel efficiency of the operations to close to 90%. For example, we
were able to increase the parallel efficiency of maximal repeat finding on
human chromosome X using 16 computing nodes from 61% to 89%. Simple
load balancing schemes for the other problems listed above gave similar
improvements in efficiency for real biological data.

Acknowledgements

This work was undertaken while the first author was a PhD student at
Imperial College London supported by an EPSRC studentship. We should
like to thank Costas Iliopoulos and Wojtek Rytter for a number of valuable
suggestions.

References

1. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico
and Z. Galil, editors, Combinatorial Algorithms on Words, volume F12
of NATO ASI Series, pages 85-96. Springer-Verlag, 1985.

2. R. Clifford and M. Sergot Distributed and Paged Suffix Trees for Large
Genetic Databases. Proc. 14th Annual Symposium on Combinatorial
Pattern Matching. 2003.

3. A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White, and
S. Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27(11):2369-2376, 1999.

4. B. Dorohonceanu and C. Nevill-Manning. Accelerating protein clas-
sification using suffix trees. In Proc. 8th International Conference on
Intelligent Systems for Molecular Biology (ISMB), pages 126—133, 2000.

5. D. Gusfield. Algorithms on strings, trees and sequences. Computer
Science and Computational Biology. Cambridge University Press, 1997.

6. D. Gusfield, G. M. Landau, and D. Schieber. An efficient algorithm
for the all pairs suffix-prefix problem. Information Processing Letters,
41:181-185, 1992.

7. J. Karkkéinen and E. Ukkonen. Sparse suffix trees. In COCOON ’96,
Hong Kong, LNCS 1090, pages 219-230. Springer-Verlag, 1996.

8. S. Kurtz and C. Schleiermacher. Reputer: Fast computation of maximal
repeats in complete genomes. Bioinformatics, 15(5):426-427, 1999.

9. E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249—
260, 1995.



