Representing Systems of Interacting Components in EUCLID
(Extended Abstract)

K J Dryllerakis and M J Sergot
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, UK
{kd,mjs}@doc.ic.ac.uk

Introduction

The general problem we want to address is the mod-
elling of systems made up of interacting components,
where existing mathematical models are available for
the individual components and where a model of the
system as a whole can be obtained by specifying how
these components interact.

The examples we use for illustration in the second
part of the paper are electrical circuits. Here, the el-
ementary components are the various devices in the
circuit, each of which has a simple mathematical for-
mulation of its characteristic behaviour; the interac-
tions between these components are determined by the
connections in the circuit and the Kirchoff laws.

In the case of electrical circuits the elementary com-
ponents correspond to actual physical devices. This
need not always be so. A train leaves station A. It
accelerates—at some fixed rate—until it reaches a pre-
determined cruising speed. It travels at this constant
speed, and then decelerates—again at some given con-
stant rate—to come to rest at station B, a known dis-
tance from A. The motion of the train over the com-
plete journey may be thought of as constructed from
three separate components: the acceleration, the cruis-
ing, and the deceleration. Given that one knows how
to formulate equations of motion for linear accelera-
tion and motion at constant velocity, modelling the be-
haviour of the train reduces to specifying how the com-
ponents of the motion fit together. The problem is con-
ceptually straightforward, but sufficiently complicated
that it gives many High School students (and some
University students) pause for thought. One might
want to go on to construct a more complicated model
describing how several trains move up and down a rail-
way track. A train may trigger signals that affect the
trains behind, cause another train to brake suddenly to
avoid a collision, and so on. The point is that the move-
ment of each individual train is still decomposed into
acceleration, cruising, deceleration components. The
difficulty in constructing the model lies not in devis-
ing mathematical models for the acceleration, cruising,
deceleration components, but in specifying how these
components interact.

We should like to retain standard mathemati-
cal models and their associated problem solvers
where they are available, and provide a symbolic Al
language—a logic programming dialect—to specify the
interactions. Within this general context we present
the language EUCLID, an instance of an extended form
of logic programming very much in the spirit of the
CLP(X) scheme of constraint logic programming lan-
guages (Jaffar & Lassez 1987).

We term this extension domain logic programming.
The basic idea is to introduce multiple mathematical
‘domains’ (real and complex numbers, functions, vec-
tors, and so on), each with some pre-defined operations
and its own specialised problem solver. EUCLID can be
seen as an attempt to integrate modern algebraic ma-
nipulation packages (such as Mathematica, Maple etc)
with logic programming languages. It may also be seen
as a kind of front-end to Mathematica, though this is
not a view we would particularly want to emphasise.

We first give a brief description of the language Eu-
cLID and then illustrate its use. As a source of exam-
ples we choose the representation of electrical circuits:
they are well understood, the required mathematics
is simple, and the role of a reasoning component can
readily be seen. Electrical circuits were also used in the
past to show the advantages of the constraint logic pro-
gramming language CLP(R) over Prolog —cf. (Heintze,
Michaylov, & Stuckey 1987) and (Heintze et al. 1991).

A Brief Description of EUCLID
Generalities

EucLiD is a programming language belonging to the
logic programming paradigm. Syntax, query mecha-
nisms, and operational semantics are very similar to
those of the CLP(X) family of languages (Jaffar &
Lassez 1987; Jaffar & Michaylov 1987). The main dif-
ference is that EUCLID contains built-in knowledge for
a number of domains (including real numbers, inter-
vals and real functions). Programs can be viewed as
logical theories with the meaning of certain terms (the
domain terms) fixed. Constraints are handled by spe-
cialised solvers associated with each domain.

The language of EUCLID contains a mixture of do-
main and classical terms, constraints and predicates.
The difference between the two categories is their
meaning. The truth or falsehood of constraints is es-
tablished by the solver; predicates are treated by logi-
cal deduction.

It can be shown that the language performs complete
and correct computations as long as the mathemati-
cal solvers perform complete and correct calculations.
However, given the range and generality of the domains
we wish to support, correcteness and especially com-
pleteness of all the underlying solvers is not a realistic
demand. This is not a limitation of the framework it-
self but rather a feature of the domains we want to
provide. EuUcCLID is currently under a prototype im-
plementation in Prolog and C utilizing Mathematica
(Wolfram 1991) and CLP(R) as its external solvers.

Syntax

FEucrip follows most of the conventions of standard
Prolog and CLP(X) systems: predicates/constraints
start with a lowercase letter while variables start with
an uppercase one.

A domain is a collection of terms and constraints
(the domain terms and domain constraints) which are
created from a first-order language alphabet. The
terms are built up from domain variables, constants
and a set of pre-defined “functions” for each domain;
to avoid confusion we will use the term “operation”
for these since “functions” is the name of one of the
EucLiD domains. The domains currently supported in
Eucrip will be introduced shortly. In EucLiD vari-
ables are tagged; they belong to a specific domain: if
X is a real variable it can only be substituted by a real
constant (e.g. 5), or a more complex domain term (e.g.
5+cos(Y) where Y is a real variable).

A EucLID program is a set of constraint clauses, rep-
resenting a logical theory of the problem in hand. Each
constraint clause takes the form

Head : —[Typing], [Constraints], [Body]

where Head is an atomic formula (not a constraint),
Typing is a possibly empty set of typing statements,
Constraints is a (possibly empty) conjunction of con-
straints from the domains supported by the logic and
Body is a (possibly empty) conjunction of atomic for-
mulae.

EvcLip Domains

Reals The most commonly used domain and the ba-
sis for the others is the domain Reals of real num-
bers. Its usefulness and importance has been proven
by languages like CLP(R) and the applications devel-
oped in them. The domain supports real constants
(numbers with or without a decimal part), the oper-
ations +, -, *, / , = , sin, cos, tan, arcsin,
arccos, arctan, log, sqrt and binary constraints
between real terms =, <,>,<=,>=,\=. In contrast

with CLP(R) non-linear constraints are not delayed
but are simplified directly on each step.

Real formulae The domain of real formula is used
to deal with the syntactic form of real functions of
one real argument. The term function itself is re-
served in EUCLID to denote a more complex object
(described below). Tt should be stressed that real for-
mulee are ezpressions: the formula f(t) = 3 * coswt
where w is a real variable can be represented in Eu-
CLID as F=(3*cos(W*T))//T. The domain of real for-
mulee comes equipped with the operations +, =~ ,-,
*, /, limit, o, integral, derivative. The op-
erations limit and ~ (“power of”) are cross—-domain
functions of type F' xR — F'. The symbol “0” denotes
composition of functions. integral and derivative
give the standard integral and total derivative respec-
tively of the formula at hand. The value of a formula
for a given argument value is obtained by means of an
operation @ of type F'x R — R: for the example above
f(2) would be represented by the expression F@2.

Intervals Open and closed intervals over the real
numbers are supported as a separate domain. Inter-
vals are represented as cc(X,Y) for [z,y], oc(X,Y) for
(z,y], and likewise for the other two cases. Supported
relations between intervals include < (before), > (after),
meets, in and so forth.

Functions Intervals are mostly used for building up
functions. A function is an ordered collection of (inter-
val, formula) pairs such that the interval of each pair
is before the interval of the next pair. If such a pair
of intervals meets at a point both formulee must have
the same value for that point. This type of function is
sometimes referred to as a multi-branch function. The
representation of the function

1+3+22 ifz<0
z—2*xw ifzxz>0
e’ fz=0

flz) =

for example would be
F={{[
cc(-infinity,0): (1+3%L"2)//L,
cc(0,0): (e"L)//L,
oc(0,infinity): (L-2#W)//L 1}}

where W is a real variable. The operations available for
the domain of functions are * (of type R x F — F),
@ (as for real formule, of type FF x R — R, used
for getting values out of functions), integral and
derivative (the standard integral and total deriva-
tives). # (of type F' x F' — F') is a function construc-
tion operator used for the building of multi-branch
functions. The domain also supports the constraint
continuous which is true for real continuous functions.
The domain of functions in EUCLID provides a num-
ber of other powerful features. We do not list these
since functions are not used in the examples presented
in this paper.

Operational Semantics

Queries The mechanism for obtaining information
from a EUCLID program is the query. A query has the
form of a clause without a head. If the query cannot
be proven using the program (theory) the answer is
simply No. Should the query be proven, the answer is
Yes qualified by bindings to non-domain variables and
a set of simplified domain constraints over the domain
variables of the query.

Computations A EUCLID computation is an exten-
sion of the resolution-based Prolog mechanism, essen-
tially as in CLP(X) languages. The key step in resolu-
tion is unification, which is a form of syntactic equal-
ity of terms. Since in EUCLID domain terms have a
fixed interpretation, for them unification must be ex-
tended to include semantic information. The general-
isation is straightforward: if the two terms compared
are non-domain terms standard unification applies; if
the terms are domain terms equality is handled by the
appropriate solver. In that sense unifying the terms
5+3 and 8 succeeds, as does X+3 and 8 by generating
the simplified constraint X=5. A EUCLID computation
is a derivation from the original query, each step of
which is either a resolution of the current goal with
a clause in the program, as in Prolog, or a constraint
satisfaction/simplification step performed by the ap-
propriate external solver. A stack of bindings for the
non-domain variables and a stack of constraints for
each solver is maintained throughout the computation.
Goal selection and search strategies follow Prolog and
CLP(R). (There are some detailed points of difference
with CLP(R) to be summarised in the full paper.)

Implementation The current implementation of EU-
cLID has been undertaken primarily as a feasibility
study: the aim is to construct a tool that can produce
the correct answers in a reasonable time. The imple-
mentation use a combination of Prolog and C code.
Constraint solving is based on a Prolog guided interface
to Mathematica (Wolfram 1991) and CLP(R) (Heintze
et al. 1991), the former being used for algebraic and
differential equation solving and the latter as a simplex
equality—inequality solver. The interface with Math-
ematica consists of a module for transforming inter-
nal constraints to Mathematica comprehensible terms
(and vice-versa) and a communication module through
mathlink (the standard interface to the Mathematica
kernel). The higher-level interface is based on a num-
ber of predicates close to the Mathematica functional-
ity (solve_system_of _equations etc).

The EUcCLID interpreter runs on a Sun Sparc work-
station, and does produce results in reasonable time.
The domains described in the previous sections repre-
sent the working part of EUCLID. Future implementa-
tions are intended to extend the existing domains with
a more comprehensive range of standard operations, as
well as providing other mathematical domains used in
problem modeling (vectors, complex, tensors etc).

Examples: Electrical Circuits

We now illustrate the uses of the EucLID language by
showing how it may be applied to the representation
of electrical circuits. Each component in a circuit is
a self contained unit with a well known mathematical
statement of its characteristic behaviour. Interactions
between components are determined by the way they
are connected in the circuit, and further constrained
by both local and global laws (the two Kirchoff Laws)
governing electrical circuits. The choice of electrical
circuits as illustrative examples has some additional
interest in that they have been used to demonstrate
the application of the CLP(R) language —see (Heintze,
Michaylov, & Stuckey 1987) and (Heintze ef al. 1991,
pp. 27-28). Our presentation is intended to show that
FEucLip has the ability to deal with time changing
quantities (represented by one-variable real formule)
as well as time independent quantities (represented by
real numbers). Examples with capacitors (R-C cir-
cuits) are used to demonstrate EucLID’s handling of
differential equations. Background material on elec-
trical circuits can be found in most physics textbooks
—e.g. (Halliday, Resnick, & Krane 1992, Chapt. 33,39).
Electrical Components Electrical circuits are con-
structed from a number of basic components. For
present purposes we can take it that every compo-
nent has exactly two connecting nodes and its be-
haviour is completely defined by the chararacteristic
relation between the potential drop and the current
flowing through it. Since both of these quantities can
change with time, the time dependence 1s represented
by means of real formule. The relevant properties of
some component types are summarized as follows:

v —

n MWW n2

i component(resistor,[R],Vt,It):-
Resistance R real(R),formulae([Vt,It]),
V(t) = Ri(t) Vi=R*Tt

v —
nl" |7 n2

i component(capacitor,[C],Vt,It):-

Capacitance C real(C),formulae([Vt,1t]),

% = %Z(t) It=C*derivative(Vt).

component(volt_meter,[V],Vt It):-
formulae([V, V¢t It]),
V=Vt It=0//T

Governing Laws The laws governing electrical cir-
cuits are few and simple. A local law postulates that
the sum of all currents reaching a node must be zero
(Kirchoff’s first law) while a global one postulates that
the algebraic sum of the changes in potential encoun-
tered in a complete traversal of any closed cycle within
the circuit is zero (Kirchoff’s second law).

The following program applies Kirchoff’s first law by
recursively adding a constraint (TotalCurrent=0//X)

for each of a given list of nodes:

kirchoff_lawl1([]).
kirchoff_lawl([n(Node,Currents) |Nodes]):-
add_currents(Currents,TotalCurrent),
TotalCurrent=0//X,
kirchoff_lawl (Nodes).

The following piece of code adds the appropriate
constraints for each of a list of closed cycles:
kirchoff_law2(Voltages,[]).
kirchoff_law2(Voltages, [Loop|Loops]):-
add_voltages(Loop,Voltages,0//X),
kirchoff_law2(Voltages,Loops).
Solution Mechanism Electrical circuit problems can
now be solved by means of a EUCLID program whose
top level clause 1s as follows:

solve_circuit(CircuitDescr) :-
prepare_circuit(CircuitDescr,Circuit),
calculate_loops(Circuit,Loops),
Circuit=[Currents,Voltages],
kirchoff_lawl(Currents),

kirchoff_law2(Voltages,Loops).
The first condition prepare_circuit transforms the
input circuit description to an internal representation
which makes use of the component information, and
also determines which currents flow into and out of
each node in the circuit. This is the list of nodes re-
quired as input for kirchoff lawl. The second condi-
tion calculate loops determines which closed cycles
are present in the circuit. This is done by a Prolog
encoding of a standard algorithm. prepare_circuit
and calculate loops use only the Prolog subset of
EucLip and do not call any of the mathematical prob-

lem solvers.) o

euclid ?- solve_circuit([

[ac_source,sourcel,[10,20],[n1,n2]],
[ampere_meter,am1,[I],[n2,n3]],
[resistor,res1,[10],[n3,n1]],
[volt_meter,vol,[V],[n3,n1]]]).

[B1,A1]:reals
I= -sin(20*B1)//B1
V= -10%sin(20%A1)//A1

Figure 1: A simple E-R Circuit

A simple resistor circuit with AC source Con-
sider the circuit of figure 1, a simple circuit with one
resistor. To give the problem a slightly unusual twist
we consider an AC source instead of a DC source and
calculate the current flowing through the resistor as a
function of time.

An R-C circuit with DC source The circuit shown
in figure 2 contains a capacitor, and shows EUCLID’s
ability to deal with derivatives of real functions.

Wheatstone Bridge The circuit shown in figure 3 is
taken from an exercise in a well known (Greek) text in
Physics (Kougioumtzopoulos 1984) (p.155, Ex. 171).
The problem is to calculate the value of resistor R4
when the voltometer connected to nq, n4 shows no drop
in voltage (no current flowing).

Conclusions

We have provided a sketch of the Eucrip language and
shown how it may be used to represent some standard

euclid ?- V@0=0,solve_circuit([
[resistor, rel, [R], [n1,n2]],
[ampere_meter,am1,[I],[n2,n3]],
[capacitor,capl,[C],[n3,n4]],
[volt_meter,vol,[V],[n3,n4]],
[dc_source,sourcel [E],[n4,n1]]]).

T W T [A1,R,C,E]:reals
| I= 'BJ (R¥e (A1/ (RFQ))//AL
9 V= -E+E/e" (A1/ (R*C))//Al

Figure 2: A sample DC R-C Circuit

euclid ?- solve_circuit([
[volt_meter,v1,[0//X],[n1,n4]]

[dc_source,s1,[2],[n3,n2]],

[resistor,r1,[10], [n3 nl]],
[resistor, r2,[0],[n2,n1]],
[resistor,r3,[60],[n4,n2]],
[resistor,r4,[R],[n3,n4]]

D

s w XD reals
R4 R=

Figure 3: Wheatstone Bridge

problems from Physics in a fairly natural way. Com-
puted answers can be numeric or abstract-symbolic de-
pending on the nature of the constraints imposed by
the problem description. This flexibility is important
because it allows EUCLID to be used for different kinds
of applications: as mathematical calculator, as pro-
gramming language, or as a tuition aid for mathemat-
ics.

The electrical circuits used as examples in this pa-
per do not illustrate the full capabilities of EucLID.
A number of different and more complex examples
have been constructed (most though not all taken from
Physics). References to these examples will be given; if
space permits, one of them will be presented, perhaps
in summary form, in the full paper.

References

Halliday, D.; Resnick, R.; and Krane, K. 1992.
Physics. John Wiley and Sons.

Heintze, N.; Jaffar, J.; Michaylov, S.; and an d R Yap,
P.S. 1991. The CLP(R) Programmer’s Manual, 1.1
edition.

Heintze, N. C.; Michaylov, S.; and Stuckey, P. J. 1987.
CLP(R) and some electrical engineering problems. In
Lassez, J.-L., ed., Logic Programming, Fourth Inter-
national Conference, volume 2, 675-703. MIT Press.
Jaffar, J., and Lassez, J.-L. 1987. Constraint logic
programing. In Proc 14th ACM POPL Conf, Munich.
Jaffar, J., and Michaylov, S. 1987. Methodology and
implementation of a CLP system. In Lassez, J.-L.,
ed., Logic Programming, Proc. of the Fourth Interna-
tional Conference, volume 1, 196-218. MIT Press.
Kougioumtzopoulos, H. 1984. Physics: Electricity.

Wolfram, S. 1991. Mathematica : a system for doing
mathematics by computer. Addison-Wesley.

