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Abstract. There is growing interest in the idea that, in some cases, in-
teractions among multiple, independently acting agents in a multi-agent
system can be regulated and managed by norms (or ‘social laws’) which,
if respected, allow the agents to co-exist in a shared environment. We
present a formal (modal-logical) language for describing and analysing
such systems. We distinguish between system norms, which express a sys-
tem designer’s view of what system behaviours are deemed to be legal,
permitted, desirable, and so on, and agent-specific norms which constrain
and guide an individual agent’s behaviours and which are supposed to
be incorporated, in one way or another, in the agent’s implementation.
The language provides constructs for expressing properties of states and
transitions in a transition system, and modalities of the kind found in
logics of action/agency for expressing that an agent brings it about that,
or is responsible for, its being the case that A. The novel feature is that
an agent, or group of agents, brings it about that a transition has a
certain property rather than bringing it about that a certain state of af-
fairs obtains, as is usually the case. The aim of the paper is to motivate
the technical development and illustrate the use of the formal language
by means of a simple example in which there there are both physical
and normative constraints on agents’ behaviours. We discuss some rela-
tionships between system norms and agent-specific norms, and identify
several different categories of non-compliant behaviour that can be ex-
pressed and analysed using the formal language. The final part of the
paper presents some transcripts of output from a model-checker for the
language.

1 Introduction

There has been growing interest in recent years in norm-governed multi-agent
systems. References to normative concepts (obligation, permission, commitment,
social commitment, . . . ) feature prominently in the literature. One reason for this
interest is clear, for there are important classes of applications, in e-commerce,
contracting, trading, e-government, and so on, where the domain of application is
defined by and regulated by laws, regulations, codes of practice, and standards
of various kinds whose existence is an essential ingredient of any application.
Another, somewhat different, motivation is the idea that, in some cases, agent



interactions generally can best be regulated and managed by the use of norms.
The term ‘social laws’ has also been used in this connection, usually with refer-
ence to ‘artificial social systems’. A ‘social law’ has been described as a set of
obligations and prohibitions on agents’ actions, that, if respected, allow multiple,
independently acting agents to co-exist in a shared environment. The question of
what happens to system behaviour when norms or social laws are not respected,
however, has received little or no serious attention. It is also not entirely clear
from works in this area whether these norms are intended to express only the
system designer’s view of what behaviours are legal, permitted, desirable, and
so on, or whether they are supposed to be taken into account, explicitly or
implicitly, in the implementation of the agents themselves, or both.

In a recent paper [1] we presented a formal framework, called there a ‘coloured
agent-stranded transition system’, which adds two components to a labelled tran-
sition system. The first component partitions states and transitions according to
various ‘colourings’, used to represent norms (or ‘social laws’), of two different
kinds. System norms express a system designer’s point of view of what system
states and system transitions are legal, permitted, desirable, and so on. A sepa-
rate set of individual agent-specific norms are intended to guide or constrain an
individual agent’s behaviours. They are assumed to be taken into account in the
agent’s implementation, or in the case of deliberative agents with reasoning and
planning capabilities, in the processes an agent uses to determine its choice of
actions to be performed. The second component of a ‘coloured agent-stranded
transition system’ is a way of picking out, from a global system transition rep-
resenting many concurrent actions by multiple agents and possibly the environ-
ment, an individual agent’s actions, or ‘strand’, in that transition. This is to
enable us to say that in a particular transition it is specifically one agent’s ac-
tions that are in compliance or non-compliance with a system or agent-specific
norm rather than some other’s. This framework allowed us in turn to identify
and characterise several different categories of non-compliant behaviour, distin-
guishing between various forms of unavoidable or inadvertent non-compliance,
behaviour where an agent does ‘the best that it can’ to comply with its indi-
vidual norms but nevertheless fails to do so because of actions of other agents,
and behaviour where an agent could have complied with its individual norms
but did not. The aim, amongst other things, is to be able to investigate what
kind of system properties emerge if we assume, for instance, that all agents of
a certain class will do the best that they can to comply with their individual
norms, or never act in such a way that they make non-compliance unavoidable
for others. The other general aim, which is to consider how agent-specific norms
can be incorporated into an agent’s implementation, was not discussed. It is a
topic of current work.

This paper presents a further development and refinement of those ideas.
Specifically, we now prefer to separate the ‘colourings’ used to represent norms
from the more general structure of an agent-stranded transition system. We
present a formal (modal-logical) language for talking about properties of states
and transitions, including but not restricted to their ‘colourings’, and for talking



about agent strands of transitions. The language has operators for expressing
that a particular agent, or group of agents, brings it about that such-and-such
is the case, in the sense that it is responsible for, or its actions are the cause
of, such-and-such being the case. The resulting logic bears a strong resemblance
to Ingmar Pörn’s (1977) logic of ‘brings it about’ action/agency [2], except that
we switch from talking about an agent’s bringing about a certain state of affairs
to an agent’s bringing it about that a transition has a certain property. The
general aim of the paper is to motivate the technical development and illustrate
something of the expressiveness of the formal language. We use the same, rather
simple, example discussed in the earlier paper [1] but present it now in terms
of the new formal system. Technical details of the logic, comparisons with other
works in the logic of action/agency, and discussion of various forms of collective
or group agency are beyond the scope of this paper. These topics are covered
elsewhere [3].

It is important to stress that we make no assumptions about the reasoning
or perceptual capabilities of the agents. Agents could be deliberative (human
or computer) agents, purely reactive agents, or simple computational devices.
We make no distinction between them here. This is for both methodological
and practical reasons. From the methodological point of view, it is clear that
genuine collective or joint action involves a very wide range of issues, includ-
ing joint intention, communication between agents, awareness of another agent’s
capabilities and intentions, and many others. We want to factor out all such con-
siderations, and investigate only what can be said about individual or collective
agency when all such considerations are ignored. The result might be termed
‘a logic of unwitting (collective) agency’—‘unwitting’ means both inadvertent
and unaware. The logic of unwitting agency might be extended and strength-
ened in due course by bringing in other considerations such as (joint) intention;
we do not discuss any such possibilities here. From the practical point of view,
there is clearly a wide class of applications for multi-agent systems composed of
agents with reasoning and deliberative capabilities. There is an even wider class
of applications if we consider also simple ‘lightweight’ agents with no reasoning
capabilities, or systems composed of simple computational units in interaction.
We want to be able to consider this wider class of applications too.

The formal language presented here has been implemented, in the form of
a model-checker that can be used to evaluate formulas on a given transition
system. It is included as part of the iCCalc system1, which at its core is a
re-implementation of the ‘Causal Calculator’ CCalc2 developed at the Univer-
sity of Texas and made available as a means of performing computational tasks
using the action language C+. C+ [4] is a formalism for defining transition sys-
tems of a certain kind. It provides a treatment of default persistence (‘inertia’),
non-deterministic and concurrent actions, and indirect effects of actions (‘ram-
ifications’). CCalc can be used (among other things) to generate (a symbolic
representation of) a transition system defined by means of C+ laws. iCCalc re-

1 http://www.doc.ic.ac.uk/~rac101/iccalc/
2 http://www.cs.utexas.edu/users/tag/cc



tains the core functionality of CCalc, and the core implementation techniques,
and adds a number of other features, such as the ability to pass the transition
system to standard CTL model checking systems (specifically NuSMV). iCCalc
also supports a number of extended forms of C+, of which the language n C+ is
the most relevant here. n C+ [5, 6] is an extended form of C+ designed specifically
for representing simple normative and institutional concepts. An action descrip-
tion in n C+ defines a coloured (agent-stranded) transition system of a certain
kind. The examples discussed in this paper are constructed by formulating them
as n C+ action descriptions, using iCCalc to generate (a symbolic representa-
tion of) the transition system so defined, and then passing the transition system
to the model checker that evaluates formulas of the language presented in this
paper. However, the framework presented in this paper is more general, and is
not restricted to transition systems of the kind defined by C+ or n C+.

2 Labelled Transition Systems

2.1 Preliminaries

Transition systems A labelled transition system (LTS) is usually defined as a
structure 〈S, A,R〉 where

– S is a (non-empty) set of states;
– A is a set of transition labels, also called events;
– R is a (non-empty) set of labelled transitions, R ⊆ S ×A× S.

When (s, ε, s′) is a transition in R, s is the initial state and s′ is the resulting
state, or end state, of the transition. ε is executable in a state s when there is a
transition (s, ε, s′) in R, and non-deterministic in s when there are transitions
(s, ε, s′) and (s, ε, s′′) in R with s′ 6= s′′. A path or run of length m of the labelled
transition system 〈S, A,R〉 is a sequence s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)
such that (si−1, εi−1, si) ∈ R for i ∈ 1..m. Some authors prefer to deal with
structures 〈S, {Ra}a∈A〉 where each Ra is a binary relation on S.

It is helpful in what follows to take a slightly more general and abstract view
of transition systems. A transition system is a structure 〈S, R,prev,post〉 where

– S and R are disjoint, non-empty sets of states and transitions respectively;
– prev and post are functions from R to S: prev(τ) denotes the initial state of

a transition τ , and post(τ) its resulting state.

In this more abstract account, a path or run of length m of the transition system
〈S, R,prev,post〉 is a sequence τ1 · · · τm−1 τm (m ≥ 0) such that τi ∈ R for
every i ∈ 1..m, and post(τi) = prev(τi+1) for every i ∈ 1..m−1.

A labelled transition system (LTS) is a structure

〈S, A,R, prev,post, label〉

where S, R, prev, and post are as above, and where label is a function from R
to A. The special case of a LTS in which R ⊆ S×A×S then corresponds to the



case where prev(τ) = prev(τ ′) and post(τ) = post(τ ′) and label(τ) = label(τ ′)
implies τ = τ ′, and in which prev((s, ε, s′)) = s, post((s, ε, s′)) = s′, and
label((s, ε, s′)) = ε. The more abstract account is of little practical significance
but is helpful in that it allows a more concise statement of some things we want
to say about transition systems. It is also more general: transitions are not iden-
tified by (s, ε, s′) triples—there could be several transitions with the same initial
and resulting states and the same label. Nothing in what follows turns on this.
Henceforth, we will write 〈S, A,R〉 as shorthand for 〈S, A,R, prev,post, label〉
leaving the functions prev, post, and label implicit.

Interpreted transition systems Given a labelled transition system, it is usual to
define a language of propositional ‘fluents’ or ‘state variables’ in order to express
properties of states. Given an LTS 〈S, A,R〉 and a suitably chosen set of atomic
propositions, a model is a structure M = 〈S, A,R, hf〉 where hf is a valuation
function which specifies, for every atomic proposition p, the set of states in the
LTS at which p is true.

We employ a two-sorted language. We have a set σf of propositional atoms
for expressing properties of states, and a disjoint set σa of propositional atoms
for expressing properties of events and transitions. Models are structures M =
〈S, A,R, hf, ha〉 where hf is a valuation function for atomic propositions σf in
states S and ha is a valuation function for atomic propositions σa in transitions
R. We then extend this two-sorted propositional language with (modal) opera-
tors for converting state formulas to transition formulas, and transition formulas
to state formulas. Concretely, where ϕ is a transition formula, the state formula
[ϕ]F expresses that the state formula F is satisfied in every state following a
transition of type ϕ. The transition formulas 0:F and 1:G are satisfied by a
transition τ when the initial state of τ satisfies state formula F and the result-
ing state of τ satisfies state formula G, respectively. The details are summarised
presently.

It is not clear whether evaluating formulas on transitions in this fashion is
novel or not. Große and Khalil [7] evaluate formulas on state-event pairs (s, ε)
when the transition system is a set of triples (s, ε, s′) but that is not the same as
we have here. Venema [8] uses a two-sorted language for expressing properties
of points and lines in projective geometry, though naturally the choice of modal
operators is different there.

We also find it convenient to add a little more structure to the underlying
propositional language. This is not essential but makes the formulation of typical
examples clearer and more concise. It is also the propositional language that is
supported by C+ and n C+, and the CCalc and iCCalc implementations.

Multi-valued signatures The following is adapted from [4]. A multi-valued propo-
sitional signature σ is a set of symbols called constants. For each constant c in σ
there is a non-empty set dom(c) of values called the domain of c. For simplicity,
in this paper we will assume that each dom(c) is finite and has at least two
elements. An atom of a signature σ is an expression of the form c=v where c is a



constant in σ and v ∈ dom(c). A formula of signature σ is any truth-functional
compound of atoms of σ.

A Boolean constant is one whose domain is the set of truth values {t, f}. If
c is a Boolean constant, c is shorthand for the atom c=t and ¬c for the atom
c=f. More generally, if c is a constant whose domain is {v1, . . . , vn, f}, then by
convention we write ¬c as shorthand for the atom c=f.

An interpretation of a multi-valued signature σ is a function that maps every
constant c in σ to some value v in dom(c); an interpretation I satisfies an atom
c=v if I(c) = v. We write I(σ) for the set of interpretations of σ.

As observed in [4], a multi-valued signature of this type can always be trans-
lated to an equivalent Boolean signature. Use of a multi-valued signature makes
the formulation of examples more concise.

Syntax and semantics

The base propositional language is constructed from a set σf of state constants
(also known as ‘fluents’ or ‘state variables’) and a disjoint set σa of event con-
stants. In previous work we followed the terminology of [4] and called the con-
stants of σa ‘action constants’. This terminology is misleading however. Although
event constants are used to name actions and attributes of actions, they are also
used to express properties of an event or transition as a whole. An example of
an event constant might be x:move with domain {l, r, f} : the atom x:move=l
represents that agent x moves in direction l, x:move=r that x moves in direc-
tion r, and ¬x:move (which, recall, is shorthand for x:move=f) that x does not
move in a given transition. In iCCalc we employ an (informal) convention that
event constants with a prefix ‘x:’ are intended to represent actions by an agent
x. The (Boolean) event constant falls(vase) might be used to represent transi-
tions in which the object vase falls from a table to the ground (say). Here there
is no prefix ‘vase:’—‘falls’ is not an action that is meaningfully performed by
the object vase. Event constants are also used to express properties of a tran-
sition as whole, for instance, whether it is desirable or undesirable, timely or
untimely, permitted or not permitted, and so on. For this reason we prefer the
term ‘event constant’ for the elements of σa, and we reserve the term ‘action
constant’ for referring informally to those event constants that are intended to
represent actions by an agent. In general, an event (or transition label) will rep-
resent multiple concurrent actions by agents and the environment, concurrent
actions, such as the falling of an object, that cannot be ascribed to any agent,
and other properties of the event, such as whether it is desirable or undesirable,
desirable or undesirable from the point of view of an agent x, timely or untimely,
and so on.

For example, the formula

a:move=l ∧ ¬ b:move=l ∧ ¬c:move ∧ falls(vase) ∧ trans=red

might represent an event in which a moves to the left, b does not move to the
left, c does not move at all, and the object vase falls. The atom trans=red might
represent that the event is illegal (say), or undesirable, or not permitted.



Propositional formulas of σa are evaluated on transition labels/events. When
an event satisfies a propositional formula ϕ of σa we say that the event is an
event of type ϕ. So, all events of type a:move=l ∧ ¬ c:move are also events of
type a:move=l, and events of type ¬ c:move, and so on. By extension, we also
say that a transition is of type ϕ when its label (event) is of type ϕ. However,
there are things we want to say about transitions that are not properties of
their events (labels), in particular, whenever we want to refer to what holds
in the initial state or final state of the transition. Transition formulas subsume
event formulas but are more general. Although evaluating formulas on transitions
seems to be unusual, representing events by Boolean compounds of propositional
atoms is not so unusual. It is a feature of the action language C+ [4], for example,
and has also been used recently in [9] in discussions of agent ‘ability’.

Formulas Formulas are state formulas and transition formulas.

State formulas:

F ::= > | ⊥ | any atom f=v of σf | ¬F | F ∧ F | [ϕ]F

Transition formulas:

ϕ ::= > | ⊥ | any atom a=v of σa | ¬ϕ | ϕ ∧ ϕ | 0:F | 1:F

where F is any propositional state formula (i.e., a propositional formula of σf).
We refer to the propositional formulas of σa as event formulas.

> and ⊥ are 0-ary connectives with the usual interpretation. The other
truth-functional connectives (disjunction ∨, material implication →, and bi-
implication ↔) are introduced as abbreviations in the standard manner.

Models Models are structures

M = 〈S, A,R, hf, ha〉

where hf and ha are the valuation functions for state constants and event con-
stants, respectively:

hf : S → I(σf) and ha : A → I(σa)

hf(s) is an interpretation of σf, i.e., a function which assigns to every constant
f in σf a value v in dom(f), and ha(ε) is an interpretation of σa, i.e., a function
which assigns to every constant a in σa a value v in dom(a). Accordingly, for
every state s in S and event/label ε in A we have:

M, s |= f=v iff hf(s)(f) = v

M, ε |= a=v iff ha(ε)(a) = v

and for every transition τ in R:

M, τ |= a=v iff M, label(τ) |= a=v



It would be possible to introduce a third sort σR of propositional atoms for
expressing properties of transitions, different from σa though not necessarily
disjoint. A model would then include a third valuation function hR : R → I(σR)
with

M, t |= a=v iff hR(τ)(a) = v

We will not bother with that extension here. Event constants in σa are evaluated
on both event/transition labels and transitions in the present set up. The dif-
ference is that event formulas are only the propositional formulas of σa whereas
transition formulas are more general (as defined above). Transition formulas will
be extended with some additional constructs in Sect. 6.

When ϕ is a formula of σa and τ is a transition in R we say that τ is a
transition of type ϕ when τ satisfies ϕ, i.e., when M, τ |= ϕ, and sometimes that
ϕ is true at, or true in, the transition τ . A state s satisfies a formula F when
M, s |= F . We sometimes say a formula F ‘holds in’ state s or ‘is true in’ state
s as alternative ways of saying that s satisfies F .

Semantics Let M = 〈S, A,R, hf, ha〉 and let s and τ be a state and transition of
M respectively. The satisfaction definitions for atomic propositions are described
above. For negations, conjunctions, and all other truth functional connectives,
we take the usual definitions. The satisfaction definitions for the other operators
are as follows, for any state formula F and any transition formula ϕ.

State formulas:

M, s |= [ϕ]F iff M, τ |= ϕ for every τ ∈ R such that prev(τ) = s.

〈ϕ〉 is the dual of [ϕ]: 〈ϕ〉F =def ¬[ϕ]¬F .

Transition formulas:

M, τ |= 0:F iff M,prev(τ) |= F

M, τ |= 1:F iff M,post(τ) |= F

‖F‖M =def {s ∈ S | M, s |= F}; ‖ϕ‖M =def {τ ∈ R | M, τ |= ϕ}.

As usual, we say that F is valid in a model M, written M |= F , when M, s |= F
for every state s in M, and ϕ is valid in a model M, written M |= ϕ, when
M, τ |= ϕ for every transition τ in M. A formula is valid if it is valid in every
model M (written |= F and |= ϕ, respectively).

C+ [4] is a language for defining (a certain class of) transition systems of
this type. The iCCalc implementation can be used to evaluate state, event,
and transition formulas on transition systems defined by C+ though it is not
restricted to transition systems of that type.

Let us discuss the transition formulas first. A transition is of type 0:F when
its initial state satisfies the state formula F , and of type 1:G when its resulting



state satisfies G. The following transition formula represents a transition from a
state where (state atom) p holds to a state where it does not:

0:p ∧ 1:¬p

von Wright [10] uses the notation p T q to represent a transition from a state
where p holds to one where q holds. It would be expressed here as the transition
formula:

0:p ∧ 1:q

Our notation is more general. We will make some further comments in Sect. 6.4.
For example, let the state atom on-table(vase) represent that a certain vase

is standing on a table. A transition of type 0:on-table(vase)∧1:¬on-table(vase),
equivalently, of type 0:on-table(vase) ∧ ¬1:on-table(vase) is one from a state in
which the vase is on the table to one in which it is not on the table. Suppose
that the event atom falls(vase) represents the falling of the vase from the table.
A vase-falling transition is also a transition from a state in which the vase is on
the table to a state in which the vase is not on the table, and so any LTS model
M modelling this domain will have the validity

M |= falls(vase) → (0:on-table(vase) ∧ 1:¬on-table(vase))

There may be other ways that the vase can get from the table to the ground.
Some agent might move the vase from the table to the ground, for example. That
would also be a transition of type 0:on-table(vase) ∧ 1:¬on-table(vase) but not
a transition of type falls(vase).

The operators 0: and 1: are both normal3. Since prev and post are (total)
functions on R, we have

|= 0:F ↔ ¬0:¬F and |= 1:F ↔ ¬1:¬F

(which also means that 0: and 1: distribute over all truth-functional connec-
tives).

Now some brief comments about state formulas. When ϕ is a transition
formula, then [ϕ]F is true at a state s when every transition of type ϕ from
state s results in a state where F is true. 〈ϕ〉F is true at a state s when there
exists at least one transition of type ϕ from state s whose resulting state satisfies
F . [ϕ]⊥, equivalently ¬〈ϕ〉>, says that there is no transition of type ϕ from the
current state, and ¬[ϕ]⊥, equivalently 〈ϕ〉>, that there is a transition of type
ϕ from the current state. When α is an event formula, that is, a propositional
formula of σa, then 〈α〉>, equivalently, ¬[α]⊥ represents that an event of type
α is executable in the current state.

It is important not to confuse the state formula [ϕ]F with the notation
[ε]F used in Propositional Dynamic Logic (PDL). In PDL, the term ε in an

3 This is standard terminology. See e.g. [11, 12] or any introductory text on modal
logic.



expression [ε]F is a transition label/event ε of A, not a transition formula as
here. For example, [0:F ∧ ϕ]G and 〈0:F ∧ ϕ ∧ 1:G〉> are both state formulas.
The first is equivalent to F → [ϕ]G and the second to F ∧ 〈ϕ〉G.

The logic of each [ϕ] is normal. Moreover:

if M |= ϕ → ϕ′ then M |= 〈ϕ〉F → 〈ϕ′〉F

as is easily confirmed, and hence

if M |= ϕ → ϕ′ then M |= [ϕ′]F → [ϕ]F

We also have validity of:

([ϕ]F ∧ [ϕ′]F ) → [ϕ ∨ ϕ′]F

and of
[⊥]⊥

Sauro et al. [9] have recently employed a similar device in a logic of agent
‘ability’ though in a more restricted form than we allow. (Their notation is
slightly different.) They give a sound and complete axiomatisation for the logic
of expressions [α]F where (in our terms) F is a propositional formula of σf

and α is an event formula, that is, a propositional formula of σa. We will not
present a complete axiomatisation of our more general language here. It is not
essential for the purposes of this paper. We note only that an axiomatisation
is more complicated for the more general expressions [ϕ]F because there are
some further relationships between state formulas and transition formulas that
need to be taken into account. For example, all instances of the following state
formulas are obviously valid

[1:F ]F

as are all instances of

(F → [ϕ]G) ↔ [0:F ∧ ϕ]G

Generally speaking, we find that properties of labelled transition systems
are more easily and clearly expressed as transition formulas rather than state
formulas. For example, although we cannot say using a transition formula that in
a particular state of M, every transition of type ϕ leads to a state which satisfies
G, we can say (as we often want to) that whenever a state of M satisfies F , every
transition of type ϕ from that state leads to a state which satisfies G. That is:

M |= (0:F ∧ ϕ) → 1:G

Properties of models can often be expressed equivalently as validities of state
formulas or of transition formulas. This is because:

M |= F → [ϕ]G iff M |= (0:F ∧ ϕ) → 1:G



For example, suppose that the state atoms light=on and light=off represent
the status of a particular light, and loc(x)=p that agent x is at location p.
Suppose that the (Boolean) event constant toggle represents that the light switch
is toggled, and event constants x :move with domain {l, r, f} that agent x moves
in the direction l, r, or stays where it is. A model M modelling this domain
would have the properties:

– state formulas

M |= light=on → [toggle]light=off
M |= loc(x)=p → [¬x:move]loc(x)=p

– transition formulas

M |= (0:light=on ∧ toggle) → 1:light=off
M |= (0:loc(x)=p ∧ ¬x:move) → 1:loc(x)=p

We find transition formulas are generally more useful and clearer.

2.2 Norms and Coloured Transition Systems

A simple way of representing norms is to partition the states and transitions
of a transition system into two categories. A coloured transition system [5, 6] is
a structure of the form 〈S, A,R, Sg, Rg〉 where 〈S, A,R〉 is a labelled transition
system of the kind discussed above, and where the two new components are

– Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

– Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—we
call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S \ Sg and Rred = R \Rg as the ‘red states’
and ‘red transitions’, respectively. Semantical devices which partition states (and
here, transitions) into two categories are familiar in the field of deontic logic. For
example, Carmo and Jones [13] employ a structure which has both ideal/sub-
ideal states and ideal/sub-ideal transitions (unlabelled). van der Meyden’s ‘Dy-
namic logic of permission’ [14] employs a structure in which transitions, but not
states, are classified as ‘permitted/non-permitted’. van der Meyden’s version
was constructed as a response to problems of Meyer’s ‘Dynamic deontic logic’
[15] which classifies transitions as ‘permitted/non-permitted’ by reference to the
state resulting from a transition. ‘Deontic interpreted systems’ [16] classify states
as ‘green’/‘red’, where these states have further internal structure to model the
local states of agents in a multi-agent context. Recently, Ågotnes et al. [17] have
presented a language based on the temporal logic CTL. They partition transi-
tions into those that comply with a set of norms and those that do not (that is,
into ‘green’ and ‘red’ in our terminology). They then define a modified form of
CTL for expressing temporal properties of paths/runs in which every transition



is ‘green’, or what we refer to as ‘fully compliant behaviour’ in Sect. 4.1 below.
There are no constructs in the language for expressing properties of paths/runs
in which some transition is not ‘green’.

We require that a coloured transition system 〈S, A,R, Sg, Rg〉 must further
satisfy the constraint that, for all states s and s′ in S and all transitions τ in R:

if τ ∈ Rg and prev(τ) ∈ Sg then post(τ) ∈ Sg (1)

We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.)

The ggg constraint (1) expresses a kind of well-formedness principle: a green
(permitted, acceptable, legal) transition in a green (permitted, acceptable, legal)
state always leads to a green (acceptable, legal, permitted) state. It may be
written equivalently as:

if prev(τ) ∈ Sg and post(τ) ∈ Sred then τ ∈ Rred (2)

Any transition from a green (acceptable, permitted) state to a red (unacceptable,
non-permitted) state must itself be undesirable (unacceptable, non-permitted),
i.e., ‘red’, in a well-formed system specification.

One can consider a range of other properties that we might require of a
coloured transition system: for example, that the transition relation must be
serial (i.e., that there is at least one transition from every state), or that there
must be at least one green state, or that from every green state there must be at
least one green transition, or that from every green state reachable from some
specified initial state(s) there must be at least one green transition, and so on.
These are examples of properties that might be of interest when analyzing a
transition system. We can check for them but we do not assume they are always
satisfied. We do assume that every coloured transition systems satisfies the ggg
constraint.

Instead of introducing a special category of coloured transition systems, with
extra components Sg and Rg, we now prefer to speak of labelled transition sys-
tems generally and introduce colourings for states and transitions by means of
suitably chosen constants in σf and σa. This is more general and adds flexibil-
ity. In particular, we have a state constant status and an event constant trans
both with domain {green, red}. The intended reading is that ‖status=green‖M

denotes the ‘green states’ and ‖status=red‖M = S \ ‖status=green‖M the ‘red
states’; ‖trans=green‖M denotes the ‘green transitions’ and ‖trans=red‖M =
R \ ‖trans=green‖M the ‘red transitions’.

The ggg constraint (1) can then be expressed as validity in any model M of
the state formula

status=green → [trans=green]status=green

or, equivalently, of the transition formula

(0:status=green ∧ trans=green) → 1:status=green



As further illustrations of the use of the language, here are the other prop-
erties mentioned earlier, expressed now as validities in a model M.

– the transition relation must be serial

M |= 〈>〉>

– there must be at least one green state

M 6|= status=red , equivalently, M 6|= ¬(status=green)

– from every green state there must be at least one green transition

M |= status=green → 〈trans=green〉>

We cannot express, in this language, that from every green state reachable from
some specified initial state(s) there must be at least one green transition since
we have no way of expressing reachability (in the language). That could be fixed
by extending the language but we will not do it here. Reachability properties
in a model can be checked using the iCCalc system but are not expressible as
formulas of the language.

n C+ [5, 6] is a language for defining (a certain class of) transition systems of
this type. The iCCalc implementation builds in the special treatment of ‘red’
and ‘green’ required to ensure that the ggg constraint is satisfied.

In [6] we presented a refinement where instead of the binary classification of
states as red or green, states are ordered according to how well each complies
with the state permission laws of an n C+ action description. We also discussed
possible generalisations of the ggg constraint for that case. In the current paper,
we keep to the simple classification of states as green or red.

Notice that we would get much more precision by colouring paths/runs of
the transition system instead of just its states and transitions. One could then
extend the logics presented in this paper with features from a temporal logic
such as CTL. The details seem straightforward but we leave them for future
investigation.

3 Example (Rooms)

This example concerns the specification of norm-governed interactions between
independently acting agents. It was discussed in a previous paper [1]. We now
present it using the formalism introduced in previous sections.

In the example there are two categories of agents, male and female, who
move around in a world of interconnecting rooms. The rooms are connected by
doorways through which agents may pass. (The precise topography, and number
of rooms, can vary.) Each doorway connects two rooms. Rooms can contain any
number of male and female agents. The action atoms of σa will take the form
x:move=p, where x ranges over the agents in a particular example, and p ranges



over a number of values representing directions in which agents can move, in
addition to a value f: if a transition satisfies x:move=f, that is to be taken to
represent that agent x does not move during that transition. Recall that by
convention we write ¬x:move as a shorthand for x:move=f.

A normative element is introduced by insisting that a male agent and a female
agent may never be alone together in a room; such configurations are physically
possible, and the transition system will include states representing them, but all
such states will be coloured red.

Although this example is relatively simple, it shares essential features with
a number of real-world domains, in which there are large numbers of interact-
ing agents or components which may be in different states, and where some of
those combinations of states are prohibited. (These real-world examples are not
restricted to domains where agents perform physical actions. Exactly the same
points could be made for examples of institutions or virtual organisations, where
the possible actions by agents are defined and constrained by institutional rules
rather than physical constraints, and where actions by agents can be represented
as transitions from one institutional state to another.)

For the purposes of illustration, we shall consider a concrete instance of the
example in which there are just two rooms, on the left and right, with one
connecting door, and three agents, two males m1 and m2, and a female f1.
We have deliberately made the example simple in order to concentrate on its
essential features, and so that we can depict the transition system in its entirety.
With more agents and more rooms the transition system is too big to be shown
easily in diagrammatic form. We will also impose an additional constraint that
only one agent can move through the doorway at once (the doorways are too
narrow to let more than one agent pass through at the same time). This is a
more significant restriction since it imposes constraints on possible interactions
between the agents: if an agent moves from one room to another it thereby makes
it impossible for other agents to pass through the same doorway.

The propositional language for this instance of the ‘rooms’ example contains
state atoms loc(x)=l and loc(x)=r, where x ranges over m1,m2, f1; loc(m1)=l
is true when the male agent m1 is in the left-hand room, loc(m2)=r is true when
m2 is in the right-hand room, and so on. The action atoms are, in line with
previous remarks, x:move=p, where x ranges over the agents and p ranges over
l, r, f.

We do not show the n C+ formulation of the example here. (It can be found
in [1].) The transition system, whether defined using n C+ or by some other
means, is depicted in Fig. 1. We have not drawn the transitions from states to
themselves, where no agent moves, in order to keep the drawing clear; all such
transitions are coloured green. Also, we have not shown labels for transitions.
These can easily be deduced, for every arc in the diagram should have a label
which makes precisely one x:move=p atom true (for p one of l, r, f); for example,
the (red) transition from the top-most state (s1) to the one immediately below
and to the right (s6) has a label which makes m2:move=r, ¬m1:move, and
¬f1:move true.
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Fig. 1. A simple ‘rooms’ example.

One can see that the transition system satisfies the ggg constraint: since
nothing further was said about the colouring of transitions, the red transitions
are simply those where the system moves from a green state to a red state, i.e.,
to a state in which a male and a female are alone in a room together.

However, the example is also intended to demonstrate some important inad-
equacies. For consider, again, the transition from the top-most state (s1) where
all agents are in the left-hand room, to the state below and to the right of it (s6)
where m1 and f1 are left alone together after m2 has exited to the right. In some
sense, it is m2 who has acted wrongly: m2 has left the room, leaving m1 and f1

alone together, in a configuration which thus violates the norms governing the
system. On the other hand, if we remove the restriction that at most one agent
can pass through the doorway at one time, it is far from clear which of the three
agents, if any, acted wrongly when m2 exited: it might have been m2 who acted
badly, or it might have been m1, who should have followed m2 out, or it might
have been f1, who should have followed m2 out. Or it might be that all of them,
collectively, acted wrongly, or perhaps none of them. The transition systems as
they currently stand do not have the capacity to represent that it is specifically



one agent’s actions rather than another’s which must be marked as ‘red’. There
is no way to extract from, or represent in, the transition system that a partic-
ular agent’s actions in the transition are illegal, sub-ideal, undesirable, and so
on; indeed, there is no explicit concept of an individual agent in the semantics
at all.

4 Agent-specific Norms

The language of the previous sections provides a means of representing when
states and transitions satisfy, or fail to satisfy, a standard of legality, acceptabil-
ity, desirability, and so on. Much can be said using the resources of this language.
However, in representing systems in which there are multiple interacting agents
(as with the simple ‘rooms’ example depicted in the previous section), it is often
essential to be able to speak about an individual agent’s behaviour: in particu-
lar, about whether individual agents’ actions are in the right or wrong—whether
they are conforming to norms which govern specifically their behaviour. In [1]
we introduced a semantical structure which we called a coloured agent-stranded
transition system. That had two components: a way of picking out an individual
agent x’s actions from a transition—the agent x’s ‘strand’ in that transition,
and a colouring of each such strand as green(x) or red(x) to represent the agent-
specific norms for x. We will deal first with the agent-specific colourings green(x)
and red(x) and defer discussion of the ‘strand’ component until Sect. 5.

In the context of using norms or ‘social laws’ to regulate the interactions
of multiple, independently acting agents in a multi-agent computer system, the
colourings of states and transitions as ‘green’ or ‘red’ represent system norms.
They express a system designer’s point of view of what system states and tran-
sitions are legal, permitted, desirable, and so on. There is a separate category of
individual agent-specific norms that are intended to guide an individual agent’s
behaviours and are supposed to be taken into account in the agent’s implemen-
tation, or reasoning processes, in one way or another. These have a different
character. In order to be effective, or even meaningful, they must be formulated
in terms of what an agent can actually sense or perceive and the actions that it
can actually perform. So, in the ‘rooms’ example an agent-specific norm could
not meaningfully prohibit an agent from acting in such a way that a male and
female are alone in a room together. The agent cannot predict how other agents
will act: just because a room is currently vacant, for example, does not mean
that another agent will not enter it.

We now extend the ‘rooms’ example with some agent-specific norms. As a
concrete example (one of many that could be devised) let us attempt to specify
an (imperfect) protocol for recovery from red system states: whenever a male
agent and a female agent are alone in a room, anywhere, every male agent is
required to move to the room to its left (if there is one), and every female agent
is required to move to the room to its right (if there is one).

Let Ag be a finite set of agent names. In the present example Ag = {m1,m2, f1}.
For each agent x ∈ Ag , green(x) is a subset of R representing those transi-



tions where the actions of x have been in accordance with norms specific for x.
red(x) = R \ green(x) are those transitions in which the actions of x have failed
to conform to x’s norms.

So in the example: suppose s is a state of the system in which there is a male
agent and a female agent alone in a room. For every male agent x (anywhere), a
transition from s in which x moves to the room on its left is coloured green(x),
a transition from s in which x stays where it is when there is no room to its left
is green(x), and any other transition from s is red(x). And similarly for female
agents, but with ‘left’ replaced by ‘right’. Further (let us suppose) in a state s of
the system where there is not a male agent and a female agent alone in a room,
for any agent x, any transition from s is green(x). Thus, the agents are free to
move around from room to room, but if ever the system enters a red global state,
their individual norms require them to move to the left or right as the case may
be; once the system re-enters a green global state they are free to move around
again.

The precise mechanism by which agents detect that there is a male agent and
a female agent alone in a room somewhere is not modelled at this level of detail.
We will simply assume that there is some such mechanism—a klaxon sounds,
or a suitable message is broadcast to all agents—the details do not matter for
present purposes. Similarly, we are not modelling here how an agent determines
which way to move. In a more detailed representation, we could model an agent’s
internal state, its perceptions of the environment in which it operates, how it
determines where to move, and the mechanism by which it perceives that there
is a male agent and a female agent alone in a room. We will not do so here: the
simpler model is sufficient for present purposes.

In general, given a transition system modelling all the possible system be-
haviours, and some (finite) set Ag of agent names, we specify for every agent x in
Ag the norms specific to x that govern x’s individual actions: some subset of the
transitions in a given system state will be designated as green(x) and the others
as red(x). In the example as we have it, the agent-specific norms only constrain
the agents’ actions in a red system state. That is not essential. It is merely a fea-
ture of this particular example. A transition is designated as green(x) when x’s
actions in that transition comply with the agent-specific norms for x. We spec-
ify, separately, system norms which constrain various combinations of actions by
individual agents, or other interactions of interest, by classifying transitions and
states as globally red or green. So we have two separate layers of specification:
(i) norms specific to agents governing their individual actions, and (ii) norms
governing system behaviour as a whole. We are interested in examining the re-
lationships, if any, between these two separate layers. We might be interested in
verifying, for example, that all behaviour by agent x compliant with the norms
for x guarantees that the system avoids globally red states, or produces only
globally green runs, or always recovers from a global red state to a global green
state, and so on. This is the setting we have in mind for discussion in this paper.
We also want to identify several different categories of non-compliant behaviours,
and generally, the conditions under which we can say that it is a particular agent



x’s actions that are responsible for, or the cause of, a transition being coloured
(globally) red, or more generally, being of type ϕ.

As in the case of coloured transition systems discussed earlier, we prefer to
speak of transition systems in general, and use suitably chosen event constants to
represent the properties of interest. So, let σa contain (Boolean) event constants
green(x) for every agent x ∈ Ag , and let red(x) be an abbreviation for ¬green(x).
A transition τ in R is, or is coloured, green(x), respectively red(x), in a model M
when M, τ |= green(x), or M, τ |= red(x), respectively. The green(x) transitions
in a model M are ‖green(x)‖M; the red(x) transitions are ‖red(x)‖M = R \
‖green(x)‖M.

We retain the ggg constraint for the colouring of states and transitions as
(globally) green or red as determined by the system norms. There is no ana-
logue of the ggg constraint for the colourings representing agent-specific norms.
However, it is natural to consider an optional coherence constraint relating the
agent-specific colourings of a transition to its global (system norm) colouring.
The colouring of a transition as (globally) red represents that the system as a
whole fails to satisfy the required standard of acceptability, legality, desirability
represented by the global green/red colouring. In many settings it is then natural
to say that if any one of the system components (agents) fails to satisfy its stan-
dards of acceptability, legality, desirability, then so does the system as a whole:
if a transition is red(x) for some agent x then it is also (globally) red. Formally,
the model M = 〈S, A,R, hf, ha〉 satisfies the local-global coherence constraint
whenever, for all agents x ∈ Ag , red(x) ⊆ Rred, that is to say, when

M |= red(x) → trans=red (3)

The coherence constraint (3) is optional and not appropriate in all settings. We
will adopt it in the examples discussed below. Notice though, that even if the
coherence constraint is adopted, it is possible that a transition can be coloured
green(x) for every agent x and still itself be coloured globally red. We will give
some examples presently.

There are other, more fundamental constraints that we must place on agent-
specific colourings. We defer discussion of those until Sect. 5.

4.1 Fully Compliant Behaviour

As suggested above, we might now be interested in examining the relationship
between system norms and individual agent-specific norms—in the present ex-
ample, for instance, to determine whether the agent-specific norms expressed
by the green(x) specification do have the desired effect of guaranteeing recovery
from a red system state to a green system state. Given a coloured transition
system representing the system norms and the agent-specific norms, defined by
an n C+ action description or by some other means, we focus attention on those
paths of the transition system that start at a red system state, and along which
every agent always acts in accordance with its norms, i.e., those paths in which
every transition is green(x) for each of the agents x. A natural property to look



for is whether all such paths eventually pass through a green system state; if
this property holds, it indicates that the agent-specific norms are doing a good
job in ensuring that systems in violation of their global system norms eventually
recover to a green state, assuming that all agents follow their individual norms
correctly. (There is a further natural requirement: in the case where the system
is initially in a red system state s, there should be at least one transition from
that state. Otherwise, the requirement that all paths starting at s eventually
reach a green system state would be vacuously satisfied.)

In particular applications, it might not be a reasonable assumption to make
that agents always act in accordance with their individual norms. This might
be for several reasons. Sometimes physical constraints in the environment being
modelled prevent joint actions in which all agents act well; in other circum-
stances, and noteworthy especially because we have in mind application areas in
multi-agent systems, agents may not comply with the norms that govern them
because it is more in their interests not to comply. In the latter case, penalties
are often introduced to try and coerce agents into compliance. We leave that
discussion to one side, however, as it is tangential to the current line of enquiry.

Consider now the ‘rooms’ example in particular, and what happens if we
assume that all agents act in accordance with their individual norms. It is clear
that the effectiveness of the protocol (if in a red state, males move to the left
when possible, females move to the right when possible) in guaranteeing that the
system will eventually reach a green state, depends on the topography of rooms
and connecting doors. Let us assume that there is a finite number of rooms, each
room has at least one connecting room to its left or one to its right, and that
there are no cycles in the configuration, in the sense that if an agent continues
moving in the same direction it will never pass first out of, then back into, the
same room. Under these circumstances, and removing the restriction on how
many agents can pass through a door at the same time, it is intuitive that there
is always a recovery, in the sense defined, from every red system state. Since all
agents act in accordance with their norms, every male will move to the left (if it
can), and every female will move to the right (if it can). If the resulting system
state is not green, they will move again. Eventually, in the worst case, the males
and females will be segregated in separate rooms, which is a green system state.

Of course, we cannot guarantee that having reached a green system state,
the agents will not re-enter a red state: in this example, the individual agent-
specific norms only dictate how agents should behave when the system is globally
red. Once the system has recovered, the agents may mingle again. It is easy to
imagine how we might use a model-checker to verify this and similar properties
on coloured transition systems; we will not discuss the details in this paper.

4.2 Non-compliant Behaviours

One must be careful not to assume that if an agent x fails to comply with its
individual norms—if some transition τ is red(x)—then it must be that agent
x acted wilfully, perhaps to seek some competitive advantage, or carelessly; or
if it is a simple reactive device, that its constructors failed to implement it



correctly. This may be so, but an agent may also fail to comply with its norms
because of factors beyond its control, because it is prevented from complying
by the actions of other agents, or by extraneous factors in the environment. To
illustrate: suppose we return to the version of the ‘rooms’ example in which it
is impossible for more than one agent to pass through the same doorway at the
same time. All other features, including the specification of system norms and
agent-specific norms, remain as before. Clearly the situation can now arise where
several agents are required by their individual norms to pass through the same
doorway; at most one of them can comply, and if one does comply, the others
must fail to comply.

Again, in order to keep diagrams of the transition system small enough to
be shown in full, we will consider just the case of two interconnecting rooms,
and three agents, m1, m2, and f1, of whom the first two are male and the last
is female. Figure 2 shows the coloured agent-stranded transition system for this
version of the example. We have adopted here the local-global coherence con-
straint (3) which is why some transitions that were globally green in the version
of Sect. 3 are now globally red. Nothing essential in what follows depends on
this. Transition labels are omitted from the diagram: since at most one agent can
move at a time, they are obvious from looking at the states. Annotations on the
arcs indicate the three agent-specific colourings for each transition; where arcs
have no such annotation the transition is green(x) for each of the three agents
x. Omitted from the diagram are reflexive arcs from the green system states to
themselves, representing transitions in which no agent moves. These transitions
are all globally green, and therefore also (given local-global coherence) green(x)
for each agent x. The significance of the asterisks in some of the annotations
will be explained presently. For now they may be read as indicating that the
transition is red(x) for the agent x.

One can see from the diagram that the system exhibits the following kinds
of behaviour, among others.

(1) There are transitions coloured green(x) for all three agents x but which are
nevertheless globally red. This is because, in this example, the agent-specific
norms do not constrain agents’ actions in green system states. Indeed, one can
see from the diagram that in this example (though not in general) the globally
red transitions which are green(x) for all three agents x are exactly those from
a green system state to a red system state. The model M has the property:

M |= green(m1) ∧ green(m2) ∧ green(f1) ∧ trans=red ↔
0:status=green ∧ 1:status=red

(2) There are globally green transitions from red system states to green system
states (such as the one from state s8 to state s2 in which m2 moves to the left
and m1 and f1 stay where they are). These are transitions in which all three
agents are able to comply with their individual norms. In this example, though
not necessarily in other versions with more elaborate room configurations and
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Fig. 2. Transitions without annotations are green(x) for each of the three agents x.
Reflexive arcs on green nodes, where no agent moves, are omitted from the diagram:
they are all globally green, and green(x) for each agent x. (The concept of a sub-standard
strand is explained in Sect. 4.3.)

more agents, such transitions always recover from a red system state to a green
system state. The system exhibits the property:

M |= green(m1) ∧ green(m2) ∧ green(f1) ∧ 0:status=red → 1:status=green

(3) There are also globally red transitions in which at least one agent fails to
comply with its individual norms but which lead from a red system state to a
green system state (such as the one from state s8 to state s4 in which m1 moves
to the right and m2 and f1 stay where they are). These transitions recover from
a red system state to a green system state but in violation of the individual
agent-specific norms. These are transitions of type

trans=red ∧ (red(m1) ∨ red(m2) ∨ red(f1)) ∧ 0:status=red ∧ 1:status=green



In fact, in the rooms example, though not in general, the system has the property:

M |= trans=red ∧ 0:status=red ∧ 1:status=green →
(red(m1) ∨ red(m2) ∨ red(f1))

(4) There are globally red transitions, such as the one from state s6 to state s3

in which m1 moves to the right, and f1 and m2 stay where they are, in which
no agent complies with its individual norms. These are transitions of type

trans=red ∧ red(m1) ∧ red(m2) ∧ red(f1)

(5) And as the example is designed to demonstrate, there are globally red tran-
sitions where one agent complies with its individual norms but in doing so makes
it impossible for one or both of the others to comply with theirs. For example,
in the red system state s6 where m1 and f1 are in the room on the left and m2

is on the room on the right, there is no transition in which m2 and f1 can both
comply with their individual norms: the following state formula is true at s6

¬〈green(m2) ∧ green(f1)〉> equivalently [green(m2) ∧ green(f1)]⊥

green(m2) ∧ green(f1) is not ‘executable’ in state s6.

In this version of the example, what are the possible system behaviours in
the case where all agents do comply with their individual norms? Figure 3 shows
the transition system that results if all red(x) transitions are discarded, for all
three agents x. The diagram confirms that when there is a constraint preventing
more than one agent from moving through a doorway at a time, the system can
enter a state from which there is no transition unless at least one agent fails to
comply with its individual norms. In the diagram, these are the two red system
states s5 and s6 where the female agent f1 is in the left-hand room with a male.
The iCCalc system provides facilities for undertaking this kind of analysis.

Now: one may think that there is a flaw in the way that the individual agent-
specific norms in the example have been formulated, that their specification is
wrong in that there are situations which make norm compliance impossible. A
properly designed set of norms, it might be argued, must satisfy an ‘ought implies
can’ principle; if it does not, it is flawed. That is not so. We are thinking here of
a multi-agent system in which agents act independently, where there is no com-
munication between agents, and where no agent can predict how other agents
will act. If there were such communication it might be different, but suppose
there is not. In these circumstances, it is quite impractical to try to anticipate
every possible combination of behaviours by other agents, and in the environ-
ment, and to try to formulate agent-specific norms that make provision for each
eventuality. It is quite impractical, even in examples as simple as this. It is re-
alistic, however, to formulate agent-specific norms that will guide an individual
agent’s behaviour without reference to what other agents might do, and simply
accept that there might be circumstances in which the agent-specific norms for
x conflict with those for y, and generally, that an agent may be prevented from
complying with its individual agent-specific norms in some circumstances.
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Fig. 3. System behaviour if all three agents comply with their individual norms. Re-
flexive arcs on green nodes are omitted from the diagram.

4.3 Sub-standard Behaviours

The example is designed to demonstrate several different categories of non-
compliant agent behaviour. We pick out one for particular attention. Consider
the state in which m1 and f1 are in the room on the left and m2 is in the room
on the right. (This is the red system state s6 at the upper right of the diagram.)
Because of the constraint on moving through the doorway, it is not possible for
all three agents to comply with their individual norms. But suppose that each
agent behaves in such a way that it will comply with its individual norms in
as much as it can. A purely reactive agent, let us suppose, is programmed in
such a way that it will attempt to act in accordance with its individual norms
though it may not always succeed if something prevents it. A deliberative agent
(human or computer) incorporates its individual norms in its decision-making
procedures and takes them into account when planning its actions: it will al-
ways attempt to act in accordance with its individual norms though it may be
unsuccessful. If all agents in the system behave in this way, then there are two



possible transitions from the red system state s6: either f1 succeeds in moving
to the right in accordance with its individual norms, or m2 succeeds in moving
to the left in accordance with its. The third possible transition from this system
state, in which every agent stays where it is, can be ignored: it can only occur
if no agent attempts to act in accordance with its individual norms, and this,
we are supposing, is not how the agents behave. The exact mechanism which
determines which of the two agents m2 and f1 is successful in getting through
the doorway is not represented at the level of detail modelled here. At this level
of detail, all we can say is that one or other of the agents m2 and f1 will pass
through the doorway but we cannot say which.

Similarly, in the red system state s8 at the lower right of the diagram, in
which m1 is on the left and m2 and f1 are on the right, we can ignore the
transition in which m1 moves to the right, if m1’s behaviour is such that it
always attempts to comply with its individual norms. The transition in which f1

moves to the left can also be ignored, if f1’s behaviour is to attempt to comply
with its individual norms. And the transition in which m2 stays where it is can
be ignored, if m2’s behaviour is to attempt to comply with its individual norms.
This leaves just one possible transition, in which m2 attempts to move to the
left; this will succeed because the other two agents will not act in such a way as
to prevent it. (We are tempted to refer to this kind of behaviour as behaviour in
which every agent ‘does the best that it can’. The term has too many unintended
connotations, however, and so we avoid it.)

We are not suggesting, of course, that agents always behave in this way,
only that there are circumstances where they do, or where it can be reasonably
assumed that they do, or simply where we are interested in examining what
system behaviours result if we suppose that they do.

We now make these ideas a little more precise. We will say that x’s behaviour
in a particular transition τ from a state s is sub-standard(x) if the transition is
red(x) and, had x acted differently in state s while all other agents acted in the
same way as they did in τ , the transition from state s could have been green(x):
x could have acted differently in state s and complied with its individual norms.

Alternatively, as another way of looking at it, we could say that a red(x)
transition τ from a state s is unavoidably-red(x) if every transition from state
s in which every agent other than x acts in the same way as it does in τ is also
red(x): there is no green(x) transition from state s if every agent other than x
acts in the way it does in τ . This is closer to the informal discussion above. One
can see, informally for now, that every red(x) transition is sub-standard(x) if
and only if it is not unavoidably-red(x), and indeed, that every red(x) transition
is either sub-standard(x) or unavoidably-red(x), but not both.

Notice that these definitions allow for the possibility of actions in the environ-
ment. It is easy to imagine other versions of the example where an agent may be
unable to act in accordance with its individual norms not because of the actions
of other agents but because of extraneous factors in the environment. (Suppose,
for instance, that an agent is unable to move to the room on the left while it is
raining.) And here is a reason why we prefer not to treat ‘the environment’ as a



kind of agent: we do not want to be talking about sub-standard behaviours of the
environment, or of agents preventing the environment from acting in accordance
with its individual norms. In this respect at least, ‘the environment’ is a very
different kind of agent from the others.

It still remains to formalise these definitions. For this we need to be able
to refer to actions by individual agents in transitions, which is not part of the
LTS structure as we have it. Indeed, there is no explicit concept of an individual
agent in the semantics at all. We defer further discussion until the next section.
For now, we rely on the informal account just given.

The diagram of the transition system for this example was shown earlier
in Fig. 2. The figure shows the sub-standard transitions for each agent. They
are those in which the transition annotations are marked with an asterisk. For
example, in the red system state s6 at the upper right of the diagram, where m1

and f1 are on the left and m2 is on the right, the transition in which all three
agents stay where they are is sub-standard(m2), because there is a green(m2)
transition from this state in which m1 and f1 act in the same way and m2

acts differently, namely the transition in which m1 and f1 stay where they are
and m2 moves to the left in accordance with its individual norms. Similarly,
the transition from state s6 in which m1 moves to the right and m2 and f1

stay where they are is sub-standard(m1) because the transition where all three
agents stay where they are is green(m1). And likewise for the other transitions
marked as sub-standard in the diagram. The red(x) transitions not marked as
sub-standard(x) are unavoidably-red(x).

Suppose we wish to examine what system behaviours result if all three agents
comply, in as much as they can, with their individual norms. Suppose, in other
words, that we disregard those transitions which are sub-standard for any of the
three agents x. The iCCalc implementation supports this kind of analysis. The
result is shown in Fig. 4. There are still red transitions in the diagram. Some,
such as the one from s4 to s8, are green(x) for every x but are nevertheless
globally red. Those, such as the one from s6 to s8, which are red(x) for some
agent x are unavoidably-red(x).

Many other variations of the example could be examined in similar fashion.
If female agents are more reliable than male agents, for instance, we might be
interested in examining what system behaviours result when there is never sub-
standard behaviour by females though possible sub-standard behaviour by males.

Interestingly, when analysing the example using iCCalc, it turned out that if
we assume there is no sub-standard behaviour by either of the two male agents
m1 and m2, that is, if we assume that m1 and m2 always comply with their
individual norms if they can, then there is no sub-standard behaviour by the
female agent f1 either. This is really an artefact of the simplicity of the example
where there are just two rooms and very strong constraints on how the three
agents can move between them. Nevertheless, it does demonstrate the possibility,
in principle at least, that agents can sometimes be coerced into compliance by
the behaviours of others, without resort to sanctions and other enforcement
mechanisms.
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agent x. Reflexive arcs on green nodes are omitted from the diagram.

As a final remark, notice that what is sub-standard(x) or unavoidably-red(x)
for an agent x can depend on normative as well as physical constraints. Suppose
(just for the sake of an example) that there is another individual norm for m1

to the effect that it should never stay in a particular room (say, the room on
the left) but should move out immediately if it enters it: a transition in which
m1 stays in the room on the left is red(m1), in every system state, red or green.
With this additional constraint, some of the transitions that were globally green
are now globally red because of the local-global coherence constraint (assuming
we choose to adopt it). But further, the transition from the red system state s6

at the upper right of the diagram in Fig. 2, in which m1 moves to the right and
m2 and f1 stay in the room on the right, was previously sub-standard(m1). It
is no longer sub-standard(m1): there is now no green(m1) transition from this
state when m2 and f1 stay where they are.



Clearly, in this example, if m1 is in the room on the left in a red system
state, it has conflicting individual norms: one requiring it to move to the right,
and one requiring it to stay where it is. It cannot comply with both, so neither
action is sub-standard(m1); both are unavoidably-red(m1).

How m1 should resolve this conflict is an interesting question but not one
that we intend to consider here. It is also a question that only has relevance
when m1 is a deliberative agent which must reason about what to do. If m1 is a
purely reactive device, then its behaviour in this case could perhaps be predicted
by examining its program code. Both of these possibilities are beyond the level
of detail of agent and system behaviours modelled in this paper. In the simplest
case we could eliminate the conflict by simply specifying that one norm takes
precedence over the other and adjusting the definition of red(x) and green(x)
accordingly. Discussion of other possible mechanisms is beyond the scope of this
paper.

Notice that, unlike the situation referred to earlier, where there was a conflict
between agent-specific norms for two different agents, here we have a conflict
between agent-specific norms for the same agent. It would be reasonable to say
that there should be no conflicts of this type in any well-defined set of agent-
specific norms.

There is thus a special category of unavoidably-red(x) transitions in which
every action performed by x is red(x).

– A red(x) transition τ in R is degenerately-red(x) iff for every transition
τ ′ ∈ R such that prev(τ) = prev(τ ′) we have M, τ ′ |= red(x).

Clearly
degenerately-red(x) ⊆ unavoidably-red(x)

When a transition τ is degenerately-red(x) then its initial state s = prev(τ)
is such that there is no action that can be performed by x in compliance with
its individual norms. We call such a state a red(x)-sink:

– state s is a red(x)-sink iff for every transition τ ∈ R such that prev(τ) = s
we have M, τ |= red(x).

In formulas, a state s in a model M is a red(x)-sink when:

M, s |= ¬〈green(x)〉> equivalently M, s |= [green(x)]⊥

green(x) is not ‘executable’ in a red(x)-sink. Intuitively, s is a red(x)-sink iff every
transition τ from s is degenerately-red(x). A well-designed set of agent-specific
norms should contain no red(x)-sinks. We can test for the presence of such states
but we will not assume that they cannot occur. (Notice that a red(x)-sink is not
necessarily a red(y)-sink for all other agents y.) There are no red(x)-sinks and no
degenerately-red(x) transitions in the ‘rooms’ example we have been discussing.
(Though there are, as we have observed, states in which there are no transitions
of type green(m1) ∧ green(m2) ∧ green(f1).)



Similarly, we can say that a system state s is a (global) red-sink if there is
no transition from s that is globally green. A state s is thus a red-sink when

M, s |= ¬〈trans=green〉> equivalently M, s |= [trans=green]⊥

trans=green is not ‘executable’ in a red-sink state.
One might think that any well designed set of system norms will have no

red-sinks. That is not so. The local-global coherence constraint (if it is adopted)
means that every red(x)-sink is also a red-sink. But even if there are no red(x)-
sinks there can still be global red-sinks—that is one of the points we are making
with the rooms example. Red-sink states may be undesirable/unwanted but we
do not want to insist that they cannot occur. They can occur even in a well-
designed set of agent-specific and system norms.

As an aside, note that a red-sink state can be (globally) green: a green state
from which all transitions are red (or from which there are no transitions at
all) is a red-sink state. We have considered extending the ‘green-green-green’
constraint: we could say that any transition to a (global) red-sink is undesir-
able/unwanted and should therefore be (globally) red. That seems natural and
straightforward but its implications remain for future investigation and are not
built-in to the framework as we have it now.

5 Agent-stranded Transition Systems

Although the transition systems as they currently stand allow us to colour tran-
sitions green(x) and red(x), we are only able to give informal definitions of
concepts such as sub-standard(x) and unavoidably-red(x). This is because there
is no way of referring to an individual agent’s actions in a transition. There is no
explicit concept of an individual agent in the semantics at all. We would like to
be able to extract from, or represent in, a transition system that it is specifically
one agent’s actions that are responsible for, or the cause of, a transition’s having
a certain property ϕ.

Let Ag be a (finite) set of agent names. An agent-stranded LTS is a structure

〈S, A,R,Ag , strand〉

where 〈S, A,R〉 is an LTS. Models are structuresM = 〈S, A,R,Ag , strand, hf, ha〉
where hf and ha are the valuation functions for the propositional atoms of σf

and σa, as before.
The new component is strand, which is a function on Ag × A. strand(x, ε)

picks out from a transition label/event ε the component or ‘strand’ that corre-
sponds to agent x’s contribution to the event ε. We will write εx for strand(x, ε).
For example, where Ag = {1, . . . , n}, the transition labels A may, but need not,
be tuples

A ⊆ A1 × · · ·Ai × · · · ×An ×Aenv

where each Ai represents the possible actions of the agent i and Aenv represents
possible actions in the environment. Transition labels (events) with this structure



are often used in the literature on multi-agent systems and distributed computer
systems. In that case, strand would be defined so that

(a1, . . . , ai, . . . , an, aenv)i = ai

However, it is not necessary to restrict attention to transition labels/events of
that particular form. All we require is that there is a function strand defined
on Ag × A which picks out unambiguously an agent x’s contribution to an
event/transition label ε of A. As usual, εx may represent several concurrent
actions by x, or actions with non-deterministic effects (by which we mean that
there could be transitions τ and τ ′ with prev(τ) = prev(τ ′), εx = ε′x where ε
and ε′ are the labels of τ and τ ′ respectively, and post(τ) 6= post(τ ′)).

Similarly, given a transition τ in R and an agent x in Ag, we can speak of
x’s strand, τx, of the transition τ . Agent x’s strand of a transition τ is that of
the transition label/event of τ :

τx =def strand(x, label(τ) )

τx may be thought of as the actions of agent x in the transition τ , where this
does not imply that τx necessarily represents deliberate action, or action which
has been freely chosen by x.

We do not, at this stage, introduce more granularity into the structure of
states or consider norms which regulate the (local) state of an individual agent.
These are possible developments for further work. Our interest here is to study
the norm-governed behaviour of agents, and how this may be related to the
norms pertaining to the system as a whole. To that end, we will concentrate on
the transitions which are used to represent agents’ actions.

We are now able to formalise the sub-standard and unavoidably-red cate-
gories of non-compliant behaviours, amongst other things. But first we turn to
a fundamental feature of agent-specific norms that we were unable to discuss
previously.

We assume as before that there is a constant status in σf for colouring states
(globally) red or green, an event constant trans in σa for colouring transitions
(globally) red or green, and (Boolean) event constants green(x) and red(x) in
σa for each agent x in Ag , with red(x) as an abbreviation for ¬green(x).

We impose the ggg constraint for the global colourings representing system
norms, but not for the colourings representing agent-specific norms. The local-
global coherence constraint M |= red(x) → red is optional. However, we do
impose the following constraint on agent-specific colourings: if τ is a green(x)
(resp., red(x)) transition from a state s in model M, then every transition τ ′

from state s in which agent x behaves in the same way as it does in τ must
also be green(x) (resp., red(x)). In other words, for all transitions τ and τ ′ in a
model M, and all agents x ∈ Ag :

if prev(τ) = prev(τ ′) and τx = τ ′x then M, τ |= green(x) iff M, τ ′ |= green(x)
(4)

(And hence also M, τ |= red(x) iff M, τ ′ |= red(x) whenever prev(τ) = prev(τ ′)
and τx = τ ′x.) This reflects the idea that whether actions of agent x are in



accordance with the agent-specific norms for x depends only on x’s actions,
not on the actions of other agents, nor actions in the environment, nor other
extraneous factors: we might, with appropriate philosophical caution, think of
this constraint as an insistence on the absence of ‘moral luck’.

Notice that the constraint (4) covers the case where label(τ) = label(τ ′), that
is to say, the case where there are transitions τ and τ ′ with prev(τ) = prev(τ ′)
and label(τ) = label(τ ′) but different resulting states post(τ) 6= post(τ ′): the
event ε = label(τ) is non-deterministic in the state s = prev(τ). Constraint (4)
requires that, for every agent x, both of these transitions are coloured the same
way by agent-specific norms for x.

To take a simple example: suppose that when x fires a loaded gun at y, the
action may result in the killing of y, or the shot may miss, or the gun may
misfire, and y survives: the shooting action is non-deterministic. We may take
the view, as system designers, that a shooting transition is red if it results in
the killing of y, and green if it does not. However, since x’s action is the same
whether the shooting is fatal or not, an agent-specific norm for x must either
make both transitions green(x) or both red(x).

We are not putting this forward as a general principle of morality or ethics.
It is a practical matter. The intention is that, in the setting of a multi-agent
system of independently acting agents, the agent-specific norms for x are effective
in guiding x’s actions only if they are formulated in terms of what agent x
can actually perceive/sense and the actions it can itself perform. At the level
of detail treated here we are not modelling perceptual/sensing capabilities or
actions performable by an agent explicitly. These features can be added but
raise more questions than we have space for here. We leave that refinement for
another occasion. For now, we insist on the ‘absence of moral luck’ constraint (4)
as a minimal requirement for agent-specific norms.

Sub-standard behaviours

We are now able to formalise the notion of sub-standard and unavoidably-red
behaviours of agent x.

Definition Let M = 〈S, A,R,Ag , strand, hf, ha〉 be an agent-stranded model,
with event constants green(x) and red(x) representing the agent-specific norms
for every x in Ag .

Let unavoidably-red and sub-standard be functions from the set of agents Ag
to ℘(R). For every agent x ∈ Ag and every transition τ ∈ R:

– τ ∈ unavoidably-red(x) iff M, τ |= red(x) and, for every transition τ ′ ∈ R
such that prev(τ) = prev(τ ′) and τy = τ ′y for every agent y ∈ Ag \ {x}, we
have M, τ ′ |= red(x).

– τ ∈ sub-standard(x) iff M, τ |= red(x) and there exists τ ′ ∈ R such that
prev(τ) = prev(τ ′) and τx 6= τ ′x and τy = τ ′y for every agent y ∈ Ag \ {x}
and M, τ ′ |= green(x).



Notice that the definition of sub-standard(x) makes reference to agent x
acting differently in the transitions τ and τ ′. If we assume the ‘absence of moral
luck’ property (4)—as we do—then the definition can be simplified. If M, τ |=
red(x) and M, τ ′ |= green(x) for a transition τ ′ from the same initial state as
τ (prev(τ) = prev(τ ′)) then the condition τx 6= τ ′x is implied: if τx = τ ′x then
the ‘absence of moral luck’ constraint would be violated. The following simpler
definition is equivalent to the original:

– τ ∈ sub-standard(x) iff M, τ |= red(x) and there exists τ ′ ∈ R such that
prev(τ) = prev(τ ′) and τy = τ ′y for every agent y ∈ Ag \ {x} and M, τ ′ |=
green(x).

We will use this simpler definition of sub-standard(x) from now on. Agent-
specific colourings must satisfy the ‘absence of moral luck’ property; without
it the notion of sub-standard(x) is not meaningful.

One can see from the definitions that, as indicated informally earlier, every
red(x) transition is sub-standard(x) if and only if it is not unavoidably-red(x),
and that every red(x) transition is either sub-standard(x) or unavoidably-red(x),
but not both. In other words

sub-standard(x) = red(x) \ unavoidably-red(x)

Recall that there is a special sub-category of degenerately-red(x) transitions
in which every action performed by x is red(x). Since degenerately-red(x) ⊆
unavoidably-red(x), the red(x) transitions can be partitioned into three disjoint
sub-types:

– sub-standard(x)
– degenerately-red(x)
– unavoidably-red(x) \ degenerately-red(x)

We do not give a name to this third category: a well-formed set of agent-specific
norms will have no degenerately-red(x) transitions, and then it is only the dis-
tinction between sub-standard(x) and unavoidably-red(x) that matters.

There are a number of other questions that we might now consider. For
instance:

– Are there any other categories of non-compliant behaviour that could use-
fully be identified?

– Is it meaningful to talk about sub-standard(x) behaviour of an agent y other
than x? What could this mean?

– If a transition is (globally) red, can we determine which of the agents, if
any, is responsible for that transition’s being (globally) red? In the ‘rooms’
example, if agent m2 exits a room and leaves m1 and f1 alone together, can
we determine which of the agents, if any, violated the system norms?

– If a transition is unavoidably-red(x) (but not degenerately-red(x)) is it pos-
sible to identify the subset of agents Ag whose actions prevent x from com-
plying with its agent-specific norms?



The last question concerns forms of collective action/agency that will not be
addressed in this paper. They are investigated elsewhere [3]. The first three
questions are answered below. However the present notation is too cumbersome.
We now extend the language so these and other properties can be expressed as
formulas.

6 A Modal Language for Agency in Transitions

In this section we introduce a modal language for talking about the agent-specific
components of transitions (their ‘strands’). We extend the transition formulas of
Sect. 2 with a (unary) operator [alt], and (unary) operators [x] and [\x] for every
agent x ∈ Ag . This will allow us to express concepts such as sub-standard(x)
and unavoidably-red(x), and others, as formulas. In Sect. 6.2 we will introduce
two ‘brings it about’ modalities.

6.1 A Logic of Agent Strands

Let M = 〈S, A,R,Ag , strand, hf, ha〉 be an agent-stranded LTS model.

M, τ |= [alt]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that
prev(τ) = prev(τ ′).

〈alt〉 is the dual of [alt].
[alt]ϕ is satisfied by, or ‘true at’, a transition τ when all alternative transitions

from the same initial state as τ satisfy ϕ. 〈alt〉ϕ is true at a transition τ if there
exists an alternative transition from the same initial state as τ of type ϕ.

[alt] is a normal modality of type S5. In particular, we have validity (in every
agent-stranded LTS) of the schemas:

[alt]ϕ → ϕ

[alt]ϕ → [alt][alt]ϕ

¬[alt]ϕ → [alt]¬[alt]ϕ

Clearly the following is valid

0:F → [alt]0:F

Now we add the (unary) operators [x] and [\x] for every agent x ∈ Ag .

M, τ |= [x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)
and τx = τ ′x;

M, τ |= [\x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)
and τy = τ ′y for every y ∈ Ag \ {x}.

〈x〉 and 〈\x〉 are the respective duals.



As in the case of [alt], [x] and [\x] are used to talk about properties of alter-
native transitions from the same initial state: those, respectively, in which x and
Ag \ {x} behave in the same way. We thus have validity of:

[alt]ϕ → [x]ϕ [alt]ϕ → [\x]ϕ

We will say, for short, that when [x]ϕ is true at a transition τ , ϕ is necessary
for how x acts in τ ; and when [\x]ϕ is true at τ , that ϕ is necessary for how the
agents Ag \ {x} collectively act in τ . (Which is not the same as saying that they
act together, i.e., as a kind of coalition or collective agent. We are not discussing
genuine collective agency in this paper.) 〈x〉ϕ is true at a transition τ if there
is a transition τ ′ of type ϕ from the same initial state as τ in which x acts in
the same way as it does in τ . Clearly ϕ → 〈x〉ϕ is valid. ϕ ∧ 〈x〉¬ϕ is true at
a transition τ if τ is of type ϕ but there is an alternative transition of type ¬ϕ
from the same initial state as τ in which x acts in the same way as it does in
τ . ϕ ∧ 〈x〉¬ϕ is equivalent to ϕ ∧ ¬[x]ϕ. And similarly, ϕ ∧ 〈\x〉¬ϕ is true at
a transition τ if τ is of type ϕ and there is an alternative transition of type ¬ϕ
from the same initial state as τ in which every other agent besides x acts in the
same way as it does in τ .

[x] and [\x] are also normal modalities of type S5, so we have validity (in
every agent-stranded LTS) of the schemas:

[x]ϕ → ϕ

[x]ϕ → [x][x]ϕ
¬[x]ϕ → [x]¬[x]ϕ

[\x]ϕ → ϕ

[\x]ϕ → [\x][\x]ϕ
¬[\x]ϕ → [\x]¬[\x]ϕ

It also follows immediately from the satisfaction definitions that the following
schema is valid for all pairs of distinct agents x 6= y in Ag :

[y]ϕ → [\x]ϕ (x 6= y)

equivalently, as long as Ag is not a singleton, Ag 6= {x}:∨
y∈Ag\{x}[y]ϕ → [\x]ϕ (Ag 6= {x})

The other direction is not valid:

6|= [\x]ϕ →
∨

y∈Ag\{x}[y]ϕ

This is important. Here is a simple example. Consider the (green) state in the
‘rooms’ example in which all three agents are on the left (this is the state s1 in
the diagrams), and the transition τ from that state in which the female f1 moves
to the right. The resulting state is also green, and so the transition τ is (globally)
green too (trans=green is true at τ). Clearly in all transitions from s1 in which
f1 moves (there is only one), trans=green is true, and so [f1]trans=green is true
at τ . [\f1]trans=green is also true at τ . There are two transitions from s1 in
which m1 and m2 both act as they do in τ : τ itself, and the transition in which



m1 and m2 stay where they are and so does f1. Both of these transitions have
trans=green true.

But consider [m1]trans=green. There are three transitions from state s1 in
which m1 acts as it does in τ : τ itself, the transition in which f1 moves to the
right and m1 and m2 stay where they are, and the transition in which m2 moves
to the right and m1 and f1 stay where they are. The last of these is a transition
from a green system state to a red system state and so is of type trans=red . So
[m1]trans=green is false at τ . By exactly the same argument [m2]trans=green is
false at τ as well. So here we have an example where [\f1]trans=green is true but
neither [m1]trans=green nor [m2]trans=green is true. In general [\x]ϕ is true at
a transition τ because ϕ is necessary for how the agents Ag \{x} collectively act
in τ , but that is not the same as saying that [y]ϕ is true at τ for some individual
agent y ∈ Ag \ {x}.

For the special case where there are exactly two agents in Ag , Ag = {x, y},
the following is valid

[\x]ϕ ↔ [y]ϕ (Ag = {x, y})
But that is merely a special case. For the special case of a singleton set of agents
Ag = {x} we have validity of

[\x]ϕ ↔ [alt]ϕ (Ag = {x})

and hence also of [\x]ϕ → [x]ϕ.

The language can be generalised to allow expressions [G]ϕ for any G ⊆
Ag . [x]ϕ is then shorthand for [{x}]ϕ, [\x]ϕ is shorthand for [Ag\{x}]ϕ, and
[alt]ϕ is shorthand for [∅]ϕ. The generalisation actually simplifies the technical
development but since we are not discussing technical details in this paper we
will not use the generalised form [G]ϕ in what follows. We will note only that
the logic of these operators is very familiar: the logic of [G]ϕ is exactly that
of ‘distributed knowledge’ (of type S5) of a group of agents G. (See e.g. [18].)
Soundness, completeness, and complexity results are immediately available. We
leave further discussion of technical properties to one side. See [3] for details.
Our aim in this paper is to illustrate the expressiveness and uses of the language.

Examples The ‘absence of moral luck’ constraint (4) for an agent x with respect
to its agent-specific colouring red(x) in a model M can be expressed as the
validities:

M |= red(x) → [x]red(x)
M |= green(x) → [x]green(x)

A transition τ in a model M is unavoidably-red(x) when

M, τ |= [\x]red(x)

It is degenerately-red(x) when

M, τ |= [alt]red(x)



and hence unavoidably-red(x) but not degenerately-red(x) when

M, τ |= [\x]red(x) ∧ ¬[alt]red(x)

What about that category of non-compliance where an agent x could have
complied with its agent-specific norms but did not, or what we called sub-standard(x)
behaviour earlier? Expressing the definition given earlier as a formula, transition
τ in a model M is sub-standard(x) when

M, τ |= red(x) ∧ 〈\x〉green(x)

that is, equivalently, when:

M, τ |= red(x) ∧ ¬[\x]red(x)

Consider now the ‘absence of moral luck’ constraint in a model M, that is,
the validity M |= red(x) → [x]red(x). Agent-specific colourings must have this
property as the minimal requirement for agent-specific norms of the type we are
discussing. With this constraint we have M |= red(x) ↔ [x]red(x), and this in
turn means that a transition τ in a model M is sub-standard(x) when

M, τ |= [x]red(x) ∧ ¬[\x]red(x)

Implicit in the definition of sub-standard(x) is the idea that it is x, rather
than some other agent y, who is responsible (perhaps unintentionally or even
unwittingly) for the transition’s being red(x): it is x’s actions in the transition
that are the cause, unintentional or not, of the transition’s being red(x). We now
make this aspect of sub-standard(x) explicit. We do this by introducing two new
defined operators for expressing agency of an agent x in bringing it about that
a transition is of a particular type.

Ex and E+
x are defined operators:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ
E+

xϕ =def [x]ϕ ∧ ¬[\x]ϕ

Both may be read as expressing a sense in which x brings it about that (a
transition is of type) ϕ. We will explain the difference between them below.
Essentially, E+

x takes into account possible actions by other agents whereas Ex
does not but treats them merely as part of the environment in which x acts.

With the ‘absence of moral luck’ constraint, a transition τ in a model M is
sub-standard(x) when

M, τ |= E+
xred(x)

So, a transition is sub-standard(x) when x brings it about that, or is responsible
for, the transition’s being red(x).

The notation Exϕ is chosen because its definition bears a very strong resem-
blance to Ingmar Pörn’s [2] logic of ‘brings it about’—except that in Pörn’s logic
Exp is used to express that agent x brings about the state of affairs represented



by p. We are using Exϕ to express that x ‘brings it about’ that a transition has
the property represented by ϕ. Pörn’s logic does not have the analogue of E+

xϕ.
There are nevertheless some striking similarities, but also some very significant
technical differences. See [3] for further discussion.

What about Exred(x)? What kind of non-compliant behaviour does that
express? Exred(x) is [x]red(x) ∧ ¬[alt]red(x). Assuming the ‘absence of moral
luck’ property for red(x), which we do, this is equivalent to red(x)∧¬[alt]red(x),
which is just red(x) but not degenerately-red(x) behaviour.

Other categories of non-compliant behaviours can similarly be expressed and
investigated. To take just one example, we might look at E+

x(trans=red) and
Ex(trans=red) which express that an agent x brings it about, or is responsible
for, a transition’s being (globally) red. These are not representations of agent-
specific norms. Although E+

x(trans=red) and Ex(trans=red) both satisfy the
required ‘absence of moral luck’ property—both of the following are valid in any
model M:

E+
x(trans=red) → [x]E+

x(trans=red)
Ex(trans=red) → [x]Ex(trans=red)

we are regarding this property as the minimal requirement for agent-specific
norms; the other requirements, concerned with what an agent can actually
sense/perceive and what actions it can actually perform, are not modelled at the
level of detail we have in the present framework. The point is that E+

x(trans=red)
and Ex(trans=red) are unlikely to satisfy these other requirements, since both
are expressed in terms of a global transition property (trans=red) and this is
not something that an individual agent is likely to be able to sense/perceive.
On the other hand, E+

x(trans=red) and Ex(trans=red) both express properties
that might be of interest from the system designer’s point of view. We will see
other examples of similar properties when we look at some examples later.

Finally, as one last illustration, we might ask whether it is ever meaningful
to talk about sub-standard(x) behaviour of an agent y other than x, that is,
whether there can be transitions of type EyE+

xred(x) or E+
yE+

xred(x) for agents
x 6= y. Certainly the simpler expressions E+

y red(x) and Ey red(x) are meaningful
for pairs of agents x 6= y and may also represent properties of agent-specific
colourings/norms that are of interest from the system designer’s point of view.
But sub-standard(x) behaviour of an agent y 6= x is different: it is easy to check
(as we will see later) that EyE+

xred(x) and E+
yE+

xred(x) are not satisfiable in
any model M; both of the following are valid

¬EyE+
xred(x) and ¬E+

yE+
xred(x) (x 6= y)

No agent y can bring about, or be responsible for, a transition’s being sub-standard(x)
other than x itself.



6.2 A Logic of ‘Brings it about’

For every agent x ∈ Ag , we have two defined ‘brings it about’ operators:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ
E+

xϕ =def [x]ϕ ∧ ¬[\x]ϕ

The study of logics of this type has a very long tradition. In computer science
the best known examples are perhaps the ‘stit’ (‘seeing to it that’) family (see
e.g. [19–21]). Segerberg [22] provides a summary of early work in this area, and
Hilpinen [23] an overview of the main semantical devices that have been used,
in ‘stit’ and other approaches. As Hilpinen observes: “The expression ‘seeing
to it that A’ usually characterises deliberate, intentional action. ‘Bringing it
about that A’ does not have such a connotation, and can be applied equally
well to the unintentional as well as intentional (intended) consequences of one’s
actions, including highly improbable and accidental consequences.” Our agency
modalities are of this latter ‘brings it about’ kind. They are intended to express
unintentional, perhaps even unwitting, consequences of an agent’s actions, as
well as possibly intentional (intended) ones.

We will not present a full account of the logical properties of the agency
operators Ex and E+

x here. They are those one would intuitively expect of ‘brings
it about’ modalities, and are broadly in line with what is found in the literature
on the logic of agency.

We will simply remark that the definitions of Ex and E+
x have two ingredients

typical of logics of agency. The first conjunct is a ‘necessity condition’: M, τ |=
[x]ϕ says that all transitions from prev(τ) in which x acts in the same way as
it does in τ are of type ϕ, or as we also say, that ϕ is necessary for how x acts
in τ . The other component is used to capture the concept of agency itself—
the fundamental idea that ϕ is, in some sense, caused by or is the result of
actions by x. Most accounts of agency introduce a negative ‘counteraction’ or
counterfactual condition for this purpose, to express that had x not acted in the
way that it did then the world would, or might, have been different. The second
conjunct in the definition of Ex adds the ‘counteraction’ requirement: had x
acted differently, then the transition might have been different. The conjunct
¬[alt]ϕ says only that the transition might have been of type ¬ϕ: it is equivalent
to 〈alt〉¬ϕ. But in conjunction with the necessity condition [x]ϕ it can be true at
τ only if x acts differently than in τ . Thus, Exϕ is true at a transition τ if and
only if ϕ is necessary for how x acts in τ , and had x acted differently than in
τ then the transition from prev(τ) might have been different (i.e., of type ¬ϕ).
For E+

x , the counteraction condition is stronger: had x acted differently than in
τ then the transition from prev(τ) might have been different, even if all other
agents, besides x, had acted in the same way as they did in τ .

Both Exϕ and E+
xϕ express a sense in which agent x is ‘responsible for’ or

‘brings it about that’ (a transition is) ϕ. Clearly the following is valid:

E+
xϕ → Exϕ



What is the difference? It is easy to check that, because [y]ϕ → [\x]ϕ is valid
for any x 6= y, the following is valid

E+
xϕ → ¬Eyϕ (x 6= y)

and hence also:

E+
xϕ → ¬E+

yϕ (x 6= y)

So E+
xϕ expresses that it is x, and x alone, who brings it about that ϕ. In

contrast, Exϕ leaves open the possibility that some other agent y 6= x also
brings it about that ϕ: the conjunction Exϕ ∧ Eyϕ can be true even when
x 6= y.

One might feel uncomfortable with the idea that two distinct agents, acting
independently, can both be responsible for ‘bringing about’ the same thing. But
it is easy to find examples. The ‘rooms’ example has several instances, as will be
demonstrated in Sect. 7. Notice that the conjunction Exϕ ∧ Eyϕ is equivalent
to

[x]ϕ ∧ [y]ϕ ∧ ¬[alt]ϕ

Suppose that two agents are both pushing against a spring-loaded door and
thereby keeping it shut. Suppose either one of them is strong enough by itself
to keep the door shut. Both are then ‘bringing it about’ that the door is shut,
or rather, that the transition is a ‘keeping the door shut’ transition. If x pushes,
the door remains shut; if y pushes, the door remains shut. But ‘keeping the door
shut’ is not unavoidable; there is a transition, viz., the one in which neither x
nor y push, in which the door springs open. It is sufficient that it merely might
spring open.

The conjunction Exϕ ∧ Eyϕ (x 6= y) does not represent that x and y are
acting in concert, or even that they are aware of each other’s existence. We might
as well be talking about two blind robots who have got themselves in a position
where both are pushing against the same spring-loaded door. Neither can detect
the other is there. This is not, and is not intended to be, a representation of
genuine collective agency. The logic of (unwitting) collective action/agency is
investigated in [3]. We do not have space to summarise that here.

In the same vein, there has been some discussion in the literature on whether
the expression ‘x brings it about that some other agent y brings it about that’
is well formed. In the present framework, ExEyϕ when x 6= y is well formed.
We can see that it is, and examples can readily be found to demonstrate that it
is meaningful. The ‘keeping the door shut’ example is easily modified.

As it turns out, the ‘transfer of agency’ property:

ExEyϕ → Exϕ (5)

is valid for Ex . Informally, it says that if x acts in such a way that it unwittingly
brings it about that y unwittingly brings it about that ϕ, then x also unwittingly
brings it about that ϕ. What of E+

x and E+
y for different x and y? E+

xE+
yϕ is



syntactically well formed, but it is not meaningful, in the sense that the following
is valid (for x 6= y):

¬E+
xE+

yϕ (x 6= y)

No agent x can by itself bring it about that some other agent y by itself brings
something about. Moreover both of the following are also valid (for x 6= y):

¬E+
xEyϕ ¬ExE+

yϕ (x 6= y)

As for ‘transfer of (sole) agency’, E+
xE+

yϕ → E+
xϕ is valid, but only trivially so:

for any x 6= y, E+
xE+

yϕ → ⊥ is valid, and so therefore, trivially, is E+
xE+

yϕ →
E+

xϕ.
Clearly Ex and E+

x express a notion of successful action: if agent x brings it
about that (a transition is of type) ϕ then it is indeed the case that ϕ. Or to put
it another way (paraphrasing Hilpinen [23] quoting Chellas [24]): x can be held
responsible for its being the case that ϕ only if it is the case that ϕ. Ex and E+

x
are both ‘success’ operators: both of the following schemes are valid:

Exϕ → ϕ E+
xϕ → ϕ

Sergot [3] examines other properties of these ‘brings it about’ operators and
provides a sound and complete axiomatisation of the logic. Further details can
be found there. They are not essential for the purposes of this paper.

6.3 Example: ‘The others made me do it’

Claims that ‘the others made me do it’ are common in disputes about the ascrip-
tion of responsibility. Merely as an illustration of the language, here are three
different senses in which it can be said that ‘the others made me do it’.

One possibility:
[x]ϕ ∧ [\x]ϕ ∧ ¬[alt]ϕ (6)

This might be read as ‘x did ϕ, but the others Ag \ {x} between them acted in
such a way as to make ϕ unavoidable’. It can be checked that (6) is equivalent
to

Exϕ ∧ ¬E+
xϕ (7)

This might be read as saying ‘x did ϕ, but was not solely responsible’.

‘The others made me do it’: another possibility:

[\x][x]ϕ ∧ ¬[alt]ϕ (8)

We mean by this that between them the others Ag \ {x} acted in such a way as
to make it necessary for what x does that the transition is ϕ. Again this does
not imply any joint action, or even that the agents Ag \ {x} are aware of each
other’s existence, or of x’s. The second conjunct is because the others did not
‘do’ ϕ if there was no alternative for them, or for anyone else. In the case of a



singleton set Ag = {x} there are no ‘others’ and the expression (8) is false. (8)
can be expressed equivalently as

[\x]Exϕ (9)

Moreover, the following is valid:

(Exϕ ∧ ¬E+
xϕ) → [\x]Exϕ

In other words, ‘the others made me do it’ (8)–(9) implies ‘the others made me
do it’ (6)–(7), but not the other way round.

A third possibility would be to say that ‘the others made me do it’ means
that there is some individual agent y ∈ Ag \{x} who brought it about that Exϕ,
in other words that the following is true:∨

y∈Ag\{x} EyExϕ (10)

Now, |= EyExϕ → [y]Exϕ and |= [y]Exϕ → [\x]Exϕ (y 6= x). So (10) implies,
but is not implied by, (9).

In summary: we can distinguish at least three different senses in which it can
be said that ‘the others made me do it’: the third (10) implies the second (8)–(9)
which implies the first (6)–(7).

6.4 Bringing about and Sustaining

Exϕ and E+
xϕ represent that x brings it about that a transition is of type ϕ. This

is unusual. Usually, logics of agency do not talk about properties of transitions
in this way. What falls in the scope of a ‘brings it about’ or ‘sees to it that’
operator is a formula representing a state of affairs: an agent ‘brings it about’
or ‘sees to it that’ such-and-such a state of affairs exists. How might this sense
of ‘brings it about’ be expressed using the resources of the language presented
here?

Ex(0:F ∧ 1:G) expresses that x brings about a transition from a state where
F holds to one where G holds, and E+

x(0:F ∧ 1:G) that x is solely responsible
for such a transition. Ex1:F and E+

x1:F express that x brings about (resp.,
solely) that a transition results in a state where F holds. These formulas express
one sense in which it might be said that x ‘brings about’ such-and-such a state
of affairs F . It is not the only sense, because it says that F holds in the state
immediately following the transition, whereas we might want to say merely that
F holds at some (unspecified) state in the future. Logics of agency usually do
not insist that what is brought about is immediate; indeed, since transitions
are not elements of the semantics, references to ‘immediate’ or the ‘next state’
are not meaningful. There is one other essential difference: Ex1:F and E+

x1:F
are transition formulas; they cannot be used to say that in a particular state
s, x brings it about that such-and-such a state of affairs F holds. This sense of



‘brings it about’ can be expressed as a state formula. We omit the details. It is
transitions that are of primary interest in this paper.

What about Ex 0:F and E+
x 0:F? These are not meaningful: neither is satisfi-

able in any model M. Clearly, |= 0:F → [alt]0:F , and we have |= [alt]ϕ → ¬Exϕ.
However, [alt]ϕ ∧ Exϕ′ → Ex(ϕ ∧ ϕ′) is also valid (and similarly for E+

x), so the
following pair are valid:

0:F ∧ Ex1:G ↔ Ex(0:F ∧ 1:G)
0:F ∧ E+

x1:G ↔ E+
x(0:F ∧ 1:G)

This seems very satisfactory: if in a transition where F holds in the initial state,
x brings it about that G holds in the resulting state, then x brings it about that
the transition is a transition from a state where F to a state where G, and vice
versa.

Now, this observation makes it possible to formalise, in a rather natural way,
some suggestions by Segerberg [22] and Hilpinen [23] following an idea of von
Wright [25, 26]. We will follow the terminology of Hilpinen’s version; the others
are essentially the same. Hilpinen sketches an account with two components:
first, that actions are associated with transitions between states; and second,
to provide the counterfactual ‘counteraction’ condition required to capture the
notion of agency, a distinction between transitions corresponding to the agent’s
activity from transitions corresponding to the agent’s inactivity. The latter are
transitions where the agent lets ‘nature take its own course’. There are then
eight possible modes of agency, and because of the symmetry between F and
¬F , four basic forms to consider:

– x brings it about that F (¬F to F , x active);
– x lets it become the case that F (¬F to F , x inactive);
– x sustains the case that F (F to F , x active);
– x lets it remain the case that F (F to F , x inactive).

The first two correspond to a transition from a state where ¬F to a state where
F . The first is a type of bringing about that F by agent x; the second corresponds
to inactivity by x (with respect to F )—here the agent x lets nature take its own
course. The last two correspond to a transition from a state where F to a state
where F . Again, the first of them is a type of bringing about that F by agent x;
the second corresponds to inactivity by x (with respect to F ).

As discussed by Segerberg and Hilpinen there remain a number of funda-
mental problems to resolve in this account. Moreover, not discussed by those
authors, the picture is considerably more complicated when there are the ac-
tions of other agents to take into account and not just the effect of nature’s
taking its course. However, these distinctions are easily, and rather naturally,
expressed in the language we have presented here.

The first (‘brings it about that’) and third (‘sustains the case that’) are
straightforward: they are

Ex(0:¬F ∧ 1:F ) or E+
x(0:¬F ∧ 1:F )

Ex(0:F ∧ 1:F ) or E+
x(0:F ∧ 1:F )



respectively, depending on whether it is x’s sole agency that we want to express
or not.

The second and fourth cases, where x is inactive, can be expressed as:

(0:¬F ∧ 1:F ) ∧ ¬Ex(0:¬F ∧ 1:F )
(0:F ∧ 1:F ) ∧ ¬Ex(0:F ∧ 1:F )

(Or as above, but with E+
x in place of Ex .)

It remains to check that these latter expressions do indeed correspond to
what Hilpinen was referring to by his term ‘inactive’. Whether or not that is the
case, other, finer distinctions can be expressed. For example (we do not give an
exhaustive exploration of all the possibilities here), supposing that 0:¬F is true
and that the transition to 1:F is not unavoidable or inevitable (in other words,
that ¬[alt]1:F is true), then we can distinguish:

E+
x(0:¬F ∧ 1:F )

Ex(0:¬F ∧ 1:F ) ∧ ¬E+
x(0:¬F ∧ 1:F )

0:¬F ∧ ¬[x]1:F ∧ [\x]1:F
0:¬F ∧ 1:F ∧ ¬[x]1:F ∧ ¬[\x]1:F

The reading of the first two is clear. The third and fourth both say that x lets
it become the case that F ; the first of them says that the other agents between
them act in such a way that it becomes the case that F , and the last one that
‘nature takes its own course’. And similarly for the ‘sustains’ and ‘lets it remain’
transitions, i.e., those of type 0:F ∧ 1:F .

Note that intuitively x brings it about that F simpliciter, Ex1:F , should be
equivalent to the disjunction of ‘x brings it about that F ’ in Hilpinen’s termi-
nology and ‘x sustains the case that F ’. This is easily confirmed:

|= Ex1:F ↔ (0:F ∨ ¬0:F ) ∧ Ex1:F
↔ (0:F ∧ Ex1:F ) ∨ (¬0:F ∧ Ex1:F )
↔ Ex(0:F ∧ 1:F ) ∨ Ex(0:¬F ∧ 1:F )

(and likewise for E+
x).

As an example of some of the things we might want to express using for-
mulas of this kind consider transitions of type 0:status=red ∧ 1:status=green.
These correspond to a recovery from a red system state to a green system state.
Ex(0:status=red ∧ 1:status=green) expresses that agent x brings it about that
the system recovers to a green system state, Ex(0:status=red ∧ 1:status=red)
that agent x sustains the case that the system is in a red state, Ex(0:status=green∧
1:status=green) that agent x sustains the case that the system is in a green state,
Ex(0:status=green ∧ 1:status=red) that agent x brings it about, not necessarily
by itself, that the system moves from a green state to a red state, and so on
for the other categories where x is inactive (x lets it become the case that the
system is in a red state, x lets it remain the case that the system is in a red
state, and so on). We write E+

x in place of Ex if we wish to express that x is the
sole agent responsible in each case.



7 Example (Rooms, contd)

This section illustrates how the formal language presented in the paper may be
applied to the analysis of the ‘rooms’ example. It presents a transcript of the
outputs from the iCCalc system. These transcripts are produced by specifying
a list of formulas expressing properties of interest. iCCalc evaluates these for-
mulas on all transitions in the example. It is also possible to specify formulas to
be evaluated on states. We show only a small extract of state annotations here
to keep the transcripts manageable.

We have also modified the example slightly. In the version discussed here,
the agent-specific norms apply only to those male agents and female agents
who are in a room alone together, and not, as in the previous version, to male
agents and female agents in other rooms as well. So concretely: in this version,
whenever a male agent x and a female agent y are alone in a room together,
a transition from that state is green(x) if the male agent x moves to the left,
if there is a room to the left, green(x) if it does not move when there is no
room to the left, and red(x) otherwise; it is green(y) for the female agent y with
‘left’ replaced by ‘right’. There could be several such rooms in a system state
(though not in the simple example where there are just two rooms and three
agents); the agent-specific norms apply to all such male-female pairs. All other
transitions are green(x) for all agents x. All other features of the example are
exactly as before. The system norms colour any state where there is a male agent
and female agent alone in a room (globally) red (status=red); all other system
states are (globally) green (status=green). Transitions are coloured (globally) red
(trans=red) by the ggg constraint and by the local-global coherence constraint
that every red(x) transition is also globally red; all other transitions are globally
green (trans=green). We also have the physical constraint that no more than
one agent can pass through the same doorway in any one transition. If there are
many interconnecting rooms, agents could pass through different doorways in
the same transition, but no more than one through any single doorway at the
same time. In the simple example to be considered here, where there are just
two rooms as before, this cannot happen.

There is nothing particularly significant about the change in the example.
The version discussed here is arguably more realistic, since it requires only that
agents are able to detect when they are alone in a room with a member of the
opposite sex; there is no need to assume that klaxons or other devices exist to
inform agents that the situation has arisen in other rooms. The main reason for
choosing the modified version, however, is simply that features of the original
example, including in particular what is sub-standard(x) and unavoidably-red(x)
there, have already been discussed. The modified version provides a slightly
different example.

The states and transitions for the modified version are exactly the same as
those for the original. The global colouring of states is the same; the global
colouring of transitions is slightly different because that is partly determined
by the local-global coherence constraint and in this version of the example the
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Fig. 5. The modified ‘rooms’ example. Transitions without annotations are coloured
green(x) for each agent x. Reflexive arcs on green nodes are omitted from the diagram.

agent-specific norms are different. We include a diagram of the transition system
in Fig. 5 for ease of reference.

Notice that there are symmetries in the transition system because of sym-
metry in the example, between the two male agents m1 and m2, and between
left and right. For that reason it is sufficient to look at transitions from just four
states of the system and not all of them. We will show the transcripts for the
transitions from the states in the top right quadrant of diagrams, that is, the
two green states labelled s1 and s2 in the diagram, and the two red states s6

and s8. Properties of the other states and transitions in the system are easily
reconstructed by interchanging m1 and m2, or left and right, as the case may
be.



We might begin by checking whether there are degenerately-red(x) transi-
tions in the system, or (globally) red sink states. Here are the relevant queries
and the output produced by iCCalc for the example:

?- satisfiable [-]:red(X) where agent(X).

** not satisfiable

?- satisfiable -executable(trans=green).

** not satisfiable

We trust that the iCCalc syntax is sufficiently close to the syntax of formulas
used in the paper that it requires no explanation. ([-] is the syntax for [alt].)
executable(ϕ) is shorthand for 〈ϕ〉>. The first of the queries above is a transi-
tion formula asking whether there are any degenerately-red(x) transitions. The
second is a state formula asking whether there are any (globally) red sink states.
(The query for red(x)-sinks would be satisfiable -executable(green(X)). There
are no red(x)-sinks in the example.)

Here we see a difference between this version of the example and the original.
As discussed earlier, the original version does have (globally) red sinks. There
are two of them: one where m1 and f1 are on the left and m2 is on the right
(state s6), and another (by symmetry) where m2 and f1 are on the left and
m1 is on the right (state s5). These are not global red sinks in the modified
example because, unlike in the original, when m1 and f1 are on the left and m2

is on the right the agent-specific norms for m2 do not require it to move left.
In the original version of the example there are no globally green (trans=green)
transitions from these states because of the local-global coherence constraint.

Further: in the original there are states from which there is no transition un-
less at least one agent fails to comply with its agent-specific norms. The following
iCCalc query on the original version of the example

?- satisfiable -executable(green(m1) & green(m2) & green(f1)).

finds two states where the formula is satisfied: they are also the two global red
sinks. One can check the equivalence as follows:

?- valid -executable(green(m1) & green(m2) & green(f1))

<-> -executable(trans=green).

** valid

Note that this is not the same as:

?- valid (green(m1) & green(m2) & green(f1)) <-> (trans=green).

** not valid

In the modified version of the example, in contrast, we get

?- satisfiable -executable(green(m1) & green(m2) & green(f1)).

** not satisfiable



**transition t17:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[m1:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=l,loc(f1)=l,alone(m2,f1),status=red]

E+(m1):(trans=red)

E+(m1):(0:(status=green) & 1:(status=red))

**transition t18:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[m2:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

E+(m2):(trans=red)

E+(m2):(0:(status=green) & 1:(status=red))

**transition t19:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[f1:move=r,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

E(f1):(0:(status=green) & 1:(status=green))

**transition t20:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

Fig. 6. Transitions from the green state s1 (all three agents on the left)

Now let us look at the transcripts from iCCalc when we ask for annotations
of the transitions (for the modified version of the example). We will consider
first transitions from the two green states s1 and s2.

Figure 6 shows the transitions from the state s1, where all three agents are
on the left. The numbering of the transitions in the transcript is not significant.
These identifiers are generated by iCCalc when the transition system is calcu-
lated from the n C+ formulation of the example. They are included merely for
ease of reference.

There are no unavoidably-red(x) or sub-standard(x) transitions from this
state. The state is green and so the agent-specific norms in the example do not
impose any constraints on how the agents may move. However, one can see that
in transitions t17 and t18, where one of the male agents moves to the right and
leaves the other alone with the female, the one who moves is (solely) responsible
for bringing it about that the transition is globally red (trans=red). In both
cases the male who moves is also (solely) responsible for bringing it about that
the system state becomes red (status=red) in Hilpinen’s sense.



**transition t13:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[m1:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=l,loc(f1)=r,alone(m1,f1),status=red]

E+(m1):(trans=red)

E+(m1):(0:(status=green) & 1:(status=red))

**transition t14:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[m2:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

E+(m2):(trans=red)

E+(m2):(0:(status=green) & 1:(status=red))

**transition t16:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[f1:move=l,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

E(f1):(0:(status=green) & 1:(status=green))

**transition t15:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

Fig. 7. Transitions from the green state s2 (m1 and m2 on the left, f1 on the right)

In contrast, when the female agent f1 moves to the right (transition t19) she is
responsible for sustaining the case that the system state is green (status=green).
She is not solely responsible for sustaining it, however, since it also depends on
how the male agents act: if the male agents both act as they do in t19 (neither
moves) then the system state remains green whether the female agent f1 moves
or not. The transition t20 is the one where no agent moves in this state. There
is nothing that we particularly want to say about it.

Now let us look at the other green state, s2. Figure 7 shows the transitions
from this state. Although this state is not symmetrical to s1 (the male agents and
the female agent are in separate rooms here) the annotation of the transitions
turns out to be the same as for s1. (There could of course be a difference if we
specified a more extensive set of formulas to appear in annotations of transitions.)

Now let us look at the state s6 where m1 and f1 are on the left and m2 is on
the right. Here the system is in a red state and the agent-specific norms impose
some constraints on the behaviours of m1 and f1. Unlike the original version of
the example, there are no agent-specific norms constraining m2’s behaviours in
this state since m2 is in a different room from the other two.



The annotation produced by iCCalc for this state is as follows:

**state s6: [loc(m1)=l, loc(m2)=r, loc(f1)=l, alone(m1,f1), status=red]

oblig(m1,-m1:move) = executable(-m1:move) & -permitted(m1,-(-m1:move))

prohib(m1,m1:move=r) = executable(m1:move=r) & -permitted(m1,m1:move=r)

oblig(f1,f1:move=r) = executable(f1:move=r) & -permitted(f1,-f1:move=r)

prohib(f1,-f1:move) = executable(-f1:move) & -permitted(f1,-f1:move)

The (Boolean) state constant alone(m1, f1) has the obvious interpretation. It
is convenient to include alone(x, y) constants in n C+ formulations of larger
versions of the example, where there are many rooms and more agents.

The state annotation also shows some further notational abbreviations that
we find convenient. Let α be a formula of σa, that is, a propositional formula of
event atoms. It is natural to say that α is permitted for x in a state s according
to the agent-specific norms for x when there is a transition of type α from s
which is green(x). Accordingly, we define:

permitted(x, α) =def executable(α ∧ green(x))

Here, as usual, ϕ is ‘executable’ means only that there exists a transition of type
ϕ from the current state: executable(ϕ) is shorthand for the state formula 〈ϕ〉>.
In practice, α in an expression permitted(x, α) will always be a propositional
formula of atoms of the form x:a=v.

We can define a sense of ‘obligatory’ and ‘prohibited’ action in similar fashion.
As a first stab, an event of type α is prohibited for x in a state s according to
the agent-specific norms for x if every transition of type α from state s is red(x).
However, that would mean that if there is no transition of type α in state s at
all then α is prohibited for x. It is more informative if we add that there must
be at least one transition of type α from s:

prohib(x, α) =def executable(α) ∧ ¬executable(α ∧ green(x))

(where ‘executable’ has its usual meaning). The above is equivalently expressed
as

prohib(x, α) =def executable(α) ∧ ¬permitted(x, α)

which is the form that appears in the state annotation shown.
Similarly, it is natural to say that α is obligatory for x in a state s according

to the agent-specific norms for x when there is at least one transition of type
α from state s, and every green(x) transition from s is of type α (equivalently,
there are no green(x) transitions from state s of type ¬α). This can be expressed
as:

oblig(x, α) =def executable(α) ∧ ¬executable(¬α ∧ green(x))

which is also equivalent to:

oblig(x, α) =def executable(α) ∧ ¬permitted(x,¬α)

This is the definition that is shown in the state annotation above.



The state annotation shown may give the impression that it is not necessary
to have both oblig and prohib: one seems to repeat what the other says. But that
is just a feature of the simplicity of this particular example. In this particular
example, an agent in the left hand room can only move to the right or stay where
it is: it must do one or the other. In more complicated examples, it may have
many other options, and then the difference between oblig and prohib becomes
marked.

It should be noted that these defined forms express only one sense in which α
could be said to be permitted/obligatory/prohibited for x according to the agent-
specific norms for x. We do not have space to discuss any other possibilities in
this paper.

The transitions from state s6 are shown in Fig. 8. In transition t21 the male
agent m1 moves right in contravention of the agent-specific norms that require it
to stay where it is in this state. The transition is sub-standard(m1) because m1

could have complied with its agent-specific norms but does not in this transition.
(It is also the case that E+

xE+
xred(m1) is true at t21; the iCCalc annotation

would show if it were false. Compare transition t24 below.) Transition t21 is
also unavoidably-red(f1): f1 is prevented from complying with her agent-specific
norms by the actions of others in this transition. In this particular case, the tran-
script shows that it is m1’s actions that prevent f1 from moving right as required
by her agent-specific norms. Transition t21 also provides an example where two
different agents (m1 and f1 here) both bring about, are both responsible for,
the transition’s being globally red (trans=red) and thus in contravention of the
system norms. We also see that m1 is solely responsible in this transition for
bringing it about that the system state becomes green, that is, moves from a red
state to a green state. So here we have an example where the system recovers
from a red system state to a green system state, but where the transition itself
is (globally) red, and therefore in contravention of the system norms, and where
the agent m1 who is solely responsible for the recovery from a red system state to
a green system state does so by acting in contravention of its own agent-specific
norms.

Transition t22, in which m2 moves left, is similar but not symmetric with t21.
Here, the agent-specific norms for m2 do not require it to stay where it is because
m2 is not in the same room as m1 and f1. m2 is thus free to move according to
its agent-specific norms, but if it does move, then it makes it impossible for the
female agent f1 to comply with hers: the transition is unavoidably-red(f1), and as
the transcript shows, it is m2 who is responsible (though not solely responsible)
for making it so. Transition t22 is also another example of two different agents
(m2 and f1) both bringing it about that a transition is of a particular type
(globally red). m2 is also solely responsible for bringing it about that the system
recovers (becomes green), though unlike in t21, not in contravention of its own
agent-specific norms.

Transition t23 is straightforward. Here all three agents comply with their
agent-specific norms. f1 however, although acting in compliance with her agent-
specific norms by moving to the right, nevertheless is thereby responsible (though



**transition t21:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[m1:move=r,red(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=r,loc(m2)=r,loc(f1)=l,status=green]

substandard(m1) = E+(m1):red(m1)

unavoidably_red(f1) = [-f1]:red(f1)

E(m1):red(f1)

E(m1):(trans=red)

E(f1):(trans=red)

E+(m1):(0:(status=red) & 1:(status=green))

**transition t22:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[m2:move=l,green(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

unavoidably_red(f1) = [-f1]:red(f1)

E(m2):red(f1)

E(m2):(trans=red)

E(f1):(trans=red)

E+(m2):(0:(status=red) & 1:(status=green))

**transition t23:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[f1:move=r,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

E(f1):(0:(status=red) & 1:(status=red))

**transition t24:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[green(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

substandard(f1) = E+(f1):red(f1)

-E+(f1):E+(f1):red(f1)

E+(f1):(trans=red)

-E+(f1):E+(f1):(trans=red)

Fig. 8. Transitions from the red state s6 (m1 and f1 on the left, m2 on the right)

not solely responsible) for sustaining the case that the system remains in a red
system state. As with other similar examples, one should be very careful not say
that an agent behaves badly if it is responsible for sustaining, or bringing about,
that a system state remains, or becomes, a red system state. It may also act
well in the same transition, in the sense that it complies with its agent-specific
norms. System norms and agent-specific norms are related, for instance by local-
global coherence, but they express different standards of legality, acceptability,



desirability, and therefore different standards of what it means to say that an
agent acts well or acts badly.

Finally, transition t24, in which no agent moves, is sub-standard(f1) because
here f1 could have complied with her agent-specific norms but did not. She is
also solely responsible for bringing about that the transition is globally red. Note
though, that although E+

f1
red(f1) is true at t24 (this is what sub-standard(f1)

means), E+
f1

E+
f1

red(f1) is not true. In general E+
xϕ → E+

xE+
xϕ is not valid. Here

we have an example. We can see that [f1]E+
f1

red(f1) is not true at t24. If it
were, that would mean E+

f1
red(f1) is true at every transition from state s6 in

which f1 acts as she does in t24, i.e., does not move. Transitions t21 and t22

are both like this, but E+
f1

red(f1) is not true at either of them: neither of them
is sub-standard(f1). And if [f1]E+

f1
red(f1) is not true at t24 then neither is

E+
f1

E+
f1

red(f1). Similarly for E+
f1

(trans=red); [f1]E+
f1

(trans=red) is not true at
t24, as is easily confirmed.

To complete the picture, here is the iCCalc output for the other red state,
s8.

**state s8: [loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

oblig(m2,m2:move=l) = executable(m2:move=l) & -permitted(m2,-m2:move=l)

prohib(m2,-m2:move) = executable(-m2:move) & -permitted(m2,-m2:move)

oblig(f1,-f1:move) = executable(-f1:move) & -permitted(f1,-(-f1:move))

prohib(f1,f1:move=l) = executable(f1:move=l) & -permitted(f1,f1:move=l)

The transitions from this state are shown in Fig. 9. We do not provide a
commentary. Although the details are different, the general points we wish to
make have already been discussed. (When a formula E+

xϕ is true, E+
xE+

xϕ is also
true unless shown otherwise.)

8 Conclusion

We have presented a modal-logical language for talking about properties of states
and transitions of a labelled transition system and, by introducing agent ‘strands’
as a component of transitions, for talking about what transition properties are
necessary for how a particular agent, or group of agents, acts in a particular
transition. This allows us in turn to introduce two defined ‘brings it about’
modalities. The novel feature is that we switch attention from talking about an
agent’s bringing it about that a certain state of affairs exists to talking about an
agent’s bringing it about that a transition has a certain property. We are thereby
able to make explicit the notions of agency that underpin various forms of norm
compliant or non-compliant behaviour, and to be able to discuss relationships
between system norms and agent-specific norms using the formal language. The
aim, amongst other things, is to be able to investigate what kind of system
properties emerge if we assume, for instance, that all agents of a certain class
will do the best that they can to comply with their individual norms, or never
act in such a way that they make non-compliance unavoidable for others. We
are also able to express when an agent, or group of agents, is responsible, solely



**transition t9:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[m1:move=r,green(m1),red(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=r,loc(f1)=r,status=green]

unavoidably_red(m2) = [-m2]:red(m2)

E(m1):red(m2)

E(m1):(trans=red)

E(m2):(trans=red)

E+(m1):(0:(status=red) & 1:(status=green))

**transition t10:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[m2:move=l,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

E+(m2):(0:(status=red) & 1:(status=green))

**transition t12:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[f1:move=l,green(m1),red(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

unavoidably_red(m2) = [-m2]:red(m2)

E(f1):red(m2)

substandard(f1) = E+(f1):red(f1)

E(m2):(trans=red)

E(f1):(trans=red)

E(f1):(0:(status=red) & 1:(status=red))

**transition t11:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[green(m1),red(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

substandard(m2) = E+(m2):red(m2)

-E+(m2):E+(m2):red(m2)

E+(m2):(trans=red)

-E+(m2):E+(m2):(trans=red)

Fig. 9. Transitions from the red state s8 (m1 on the left, m2 and f1 on the right)

or otherwise, for bringing about that a transition complies with system norms,
for bringing it about that the system recovers from a red system state to a green
system state, for sustaining the case that the system remains in a green system
state, and so on.

Besides the generalisation to (unwitting) collective agency [3] there are three
main directions of current work.



(1) Scaleability It might be felt that the ‘rooms’ example used in this paper
is too simple to be taken seriously as representative of real-world domains. We
deliberately chose the simplest configuration of rooms and agents that allowed
us to make the points we wanted to make while still being able to be depicted
in their entirety. The example works just as well with more rooms, more than
two categories of agents, and a wider repertoire of actions that the agents are
able to perform. Generally, the issues we have addressed arise whenever we put
together a complex system of interacting agents, acting independently, whose
behaviours are subject to their own agent-specific norms, and where we wish to
impose further system norms to regulate possible interactions.

Nevertheless, it is clear that serious issues of scaleability remain, and that
in particular we confront the same state explosion problems that arise in all
modelling approaches of this kind. These are problems, however, that are the
subject of extensive current research. There is nothing that prevents us from
applying emerging techniques and solutions to agent-stranded transition systems
too.

One promising direction that we are exploring is the use of agent-centric pro-
jections. Roughly, given a model M describing system behaviour, it is possible
to define a projection Mx in which all states and transitions indistinguishable
for an agent x are collapsed into one, and all other states and transitions are
discarded. Mx thus models system behaviour from an individual agent x’s per-
spective. Some information is lost, but (depending of course on what is indis-
tinguishable for an individual x), the projection Mx is much smaller and more
manageable than the full model M.

(2) Agent-specific norms One fundamental feature of agent-specific norms, as
we see it, is that to be effective or even meaningful in guiding the actions of an
individual agent x they must be formulated in terms of what the agent x can
actually sense/perceive of its environment, and the actions that an agent x can
actually perform. We referred to the ‘absence of moral luck’ constraint as the
minimal requirement we must impose on agent-specific norms. To do a proper
job it is necessary to refine and extend the semantical structures in order to
model these features explicitly. This part is not so difficult. We will present the
details in another paper. There is also the further question of how agent-specific
norms once formulated can be incorporated into an agent’s implementation—in
the case of a ‘lightweight’ reactive agent, how to modify its program code to
take agent-specific norms into account, and in the case of a deliberative agent,
how to represent the agent-specific norms in a form that the agent can use in its
reasoning processes. We have very little to say about that yet.

(3) The representation of norms We gave in the paper one simple formulation of
what it can mean to say that an action is obligatory or permitted for x according
to the agent-specific norms for x. There are many other variations and distinc-
tions that can be expressed using the resources of the language. Generally, the
logic of norms and the logic of action/agency have often been studied together,
and it remains to explore how the full resources of the language can be used



to articulate distinctions and issues that have previously been discussed in the
literature. Further, it is well known in the field of deontic logic that a simple
binary classification of states and/or transitions into green/red (ideal/sub-ideal,
permitted/not permitted) is too simple to deal adequately with many kinds of
norms. In [6], for instance, we presented a refinement of the current approach
in which the states of a transition systems were ordered depending on how well
each complied with a set of explicitly stated norms. Much more remains to be
done along these lines.
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