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Abstract. We investigate an extension of the formalism of interpreted systems by Halpern and col-
leagues to model the correct behaviour of agents. The semantical model allows for the representation
and reasoning about states of correct and incorrect functioning behaviour of the agents, and of the
system as a whole. We axiomatise this semantic class by mapping it into a suitable class of Kripke
models. The resulting logic, KD45%7, is a stronger version of KD, the system often referred to as
Standard Deontic Logic. We extend this formal framework to include the standard epistemic notions
defined on interpreted systems, and introduce a new doubly-indexed operator representing the knowl-
edge that an agent would have if it operates under the assumption that a group of agents is functioning
correctly. We discuss these issues both theoretically and in terms of applications, and present further
directions of work.

1. Introduction

The design of complex multi-agent systems is increasingly having to confront the
possibility that agents may not behave as they are supposed to. In e-commerce, in
security, in automatic negotiation, in any application where agents are programmed
by different parties with competing interests, it is unrealistic to assume that all
agents will behave according to some given protocol or standard of behaviour. In
addition to analysing the properties that hold if protocols are followed correctly,
it is also necessary to predict, test, and verify the properties that would hold if
these protocols were to be violated. It is also necessary to test the effectiveness of
introducing proposed control and enforcement mechanisms. For these purposes it
is often useful to view the behaviour of agents as governed by norms, and to seek
to apply the formal tools of deontic logic (the logic of obligation and permission)
to represent and reason about the distinction between ideal (correct, acceptable)
behaviour and actual (possibly incorrect, unacceptable) behaviour [JS93].

Formal methods and logic in particular have a long tradition in artificial intelli-
gence and distributed computing. Their role, it is argued, is to provide a precise and
unambiguous formal tool to specify and reason about complex systems. However,
they have often been attacked by software engineers because of the allegedly some-
what unclear contribution they make towards the engineering of complex comput-
ing systems. One of the criticisms most often aired is that logic specifications do
not provide constructive methodologies for building distributed systems, and so
they can be of only limited significance in practice. These different views have led
the fields of theoretical and practical distributed computing to diverge. This situa-
tion has not changed in the advent of the Multi-Agent system (MAS) paradigm.
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One of the suggestions that have been put forward [Wo000] to make MAS
theories more relevant to practitioners is the shift to a semantics which is com-
putationally grounded. This remark applies to distributed artificial intelligence in
general but it is particularly relevant for the case of MAS theories, where semantics
are usually given by borrowing ideas developed originally in analytical philosophy.
Indeed, most of the more highly respected theories for modelling knowledge, be-
liefs, intentions, obligations, communications, etc, in MAS are based upon works
done in the second half of the last century in philosophical logic. While cross-
fertilisation of fruitful ideas can only be regarded positively, one should note that
the semantics developed in philosophical logic, even if appropriate for the original
task (which is already a matter of debate), may not be the best option for distributed
computing applications.

As is widely known, the semantics commonly used for MAS theories is based
on Kripke models [Kri59]. A Kripke model M = (W, Ry, ..., Ry, ) is a tuple
composed of a set W, n relations R; C W x W, together with an interpreta-
tion 7 for the atoms of the language. The points W represent possible alterna-
tives of the world, and depending on the application under consideration stand for
temporal snapshots of the evolution of the world (temporal logic), epistemic al-
ternatives (epistemic logic), ‘ideal’ or “‘deontically perfect’ alternatives (standard
deontic logic), and so on. Various modal operators can be interpreted by using this
semantics, and a heritage of techniques has been developed to prove meta-logical
properties about the logics [BARVO01]. Notwithstanding this, no clear correspon-
dence can be drawn between a Kripke model and a distributed computing system.

It has been argued that this lack of correspondence is a serious drawback for
attempts to close the gap between theory and practice. Indeed, without a relevant
semantics well studied meta-logical properties such as completeness do not seem
to be of relevance, and the only possible point of contact between the theorist and
the practitioner seems to be logical formulas representing specifications that the
theorist would propose to the practitioner. Appropriate grounded semantics aim at
bridging this gap by providing practitioners and theoreticians with a convenient and
intuitive semantical tool. A grounded semantics should aim at ensuring that a clear
correspondence can, at least in principle, be found between states in the computing
system and configurations in the semantical description.

The idea of moving away from Kripke models, while still benefiting from most
of its technical apparatus, is not new. Indeed, part of the knowledge representation
literature uses modal languages defined on semantic structures called Interpreted
systems (see Chapter 4 of [FHMV95] for details). The idea is to describe a dis-
tributed computing system by specifying the states in which every agent and the
environment can find itself. In this setting, the level of abstraction at which one
chooses to operate is left open; one has the possibility of adopting a fine grain of
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detail by describing precisely the protocol that the MAS operates, or one can limit
oneself to describing macroscopic properties of the MAS, such as epistemic and
temporal properties. If needed, logics similar or equivalent to the ones used in
philosophical logic can be defined on these semantics. One obvious advantage is
the possibility of studying the logic characterisation of systems defined semanti-
cally, as opposed to isolating complete semantical structures for a specification.

In this paper we run the following exercise. We consider the basic notion of
interpreted system as defined by Halpern et al. in [FHMV95] and show how it can
be trivially adapted to provide a basic grounded formalism for some deontic issues.
In particular we aim at representing local and global states of violation and com-
pliance (with respect to some functioning protocol). By using these concepts we
would like to give a grounded semantics to the deontic notions of ideal functioning
behaviour of an agent, or of a system of agents, to the concept of the knowledge
that an agent is permitted to have (again with respect to an ideal functioning pro-
tocol), and to the knowledge that an agent has on the assumption that components
of the system are functioning correctly according to their protocols. Once this task
is accomplished, we axiomatise the resulting semantical class, and discuss some of
the properties of the logic it determines.

The rest of the paper is organised as follows. In the next section we fix the
notation and point to some basic modal logic facts that will become useful later on.
In Section 2, we define deontic interpreted systems, and define satisfaction, and
validity, of a modal language on them. In Section 3 we study their axiomatisation.
We analyse the theorems and logical properties of the system in Section 4, where
we also comment on other related notions. In Section /refapplications we show how
the framework can be applied to the analysis of the a widely discussed example in
distributed computing, the bit transmission problem. We conclude in Section 7.

2. Deontic interpreted systems

2.1. Syntax

We assume a set P of propositional atoms, and aset A = 1,...,n of agents.

DEFINITION 1. The language £ is defined as follows.
pu=false|anyelementof P | o | oA | O;p (i€ A).

We use the indexed modal operator O; to represent the correctly functioning
circumstances of agent 4: the formula O; ¢ stands for “in all the possible correctly
functioning alternatives of agent ,  is the case”, or “whenever agent : is function-
ing correctly (with respect to some protocol or specification) ¢ is the case”. The
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formula ¢ can either refer to local or global properties or to both at the same time.
We write P; for the dual of O;: P; ¢ =4y = O; ~¢. P; ¢ can be read as “there is
a state where agent ¢ is functioning correctly, and in which ¢ holds.”.

We have chosen the symbol O; because its semantics will be similar to that
of the obligation operator of standard deontic logic. However, it would not be
appropriate to read O; ¢ as “it is obligatory for agent 7 that o”. The concept we
explore is clearly related to what is discussed in mainstream Deontic Logic, but it is
not our aim in this paper to provide a characterisation of the multi-faceted concepts
of obligation and permission.

Note. In line with much of the literature, we denote a normal modal logic by
listing the axioms that define it, under the assumption that uniform substitution,
necessitation, and modus ponens hold. For example by KT45,, we denote the logic
obtained by considering axioms K, T, 4, and 5 for n agents (see [FHMV95] for
more details).

2.2. Kripkeframes

In the following we assume familiarity with basic modal logic techniques and re-
sults. We refer the reader to [HC96, Gol92, BdRV01] for more details. In particular,
we record here the following for convenience.

DEFINITION 2. A frame F = (W, Ry, ..., Ry,) is serial if for any relation R; we
have that for any w € W there exists a w’ € W such that w R; w’. A frame F =
(W, Ry, ..., Ry,) is Euclidean if for any relation R; we have that for all w, w', w" €
W, w R; w', w R; w" implies w' R; w". Aframe F = (W, Ry, ..., R,) is transitive
if for any relation R; we have that for all w, w’,w"” € W, w R; w', w' R; w" implies
w R; w'.

OBSERVATION 1. The logic KD45,, is sound and complete with respect to serial,
transitive and Euclidean frames.

DEFINITION 3 (p-morphism). A frame p-morphism from F' = (W, Ry,...,Ry) to
F' =(W',R},...,R])isafunction p : W — W' such that:

1. the function p is surjective,
2. forallu,v € Wandeachi=1...n,ifu R;v then p(u) R; p(v),

3. foreachi=1...nandu € W and v’ € W', if p(u) R} v’ then there exists
v € W such that u R; v and p(v) = v'.
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If there is a p-morphism from F' to F', F' is also said to be a p-morphic image
of F.

The following result (see for example [Gol92] for the mono-modal case) shows
that p-morphisms preserve satisfaction and validity for the language L.

OBSERVATION 2. If p is a frame p-morphism from F' to F’ then for all ¢ € L, if
F E pthen F' = o.

2.3. Deontic interpreted systems

Interpreted systems were originally defined by Halpern and Moses [HM90], and
their potential later investigated in greater detail in [FHMV95]. They provide
a general framework for reasoning about properties of distributed systems, such
as synchrony, a-synchrony, communication, failure properties of communication
channels, etc. One of the reasons for the success of interpreted systems is the ease
with which states of knowledge can be ascribed to the agents in the system.

The fundamental notion on which interpreted systems are defined is the one of
‘local state’. Intuitively, the local state of an agent represents the entire information
about the system that the agent has at its disposal. This may be as varied as to
include program counters, variables, facts of a knowledge base, or indeed a history
of these. The (instantaneous) state of the system is defined by taking the local states
of each agent in the system, together with the local state for the environment. The
latter is used to represent information which cannot be coded in the agents’ local
states such as messages in transit, etc.

More formally, consider n non-empty sets L1, ..., L,, of local states, one for
every agent of the system, and a set of states for the environment L.. Elements of
L; will be denoted by 11,1, 12,1, . ... Elements of L, will be denoted by [, 1., ... .

DEFINITION 4 (System of global states). A system of global states for n agents S
is a non-empty subset! of the Cartesian product L, x Ly X - -+ X Ly,.

An interpreted system of global states is a pair (S, n) where S is a system of
global states and 7 : § — 2 is an interpretation function for the atoms.

The framework presented in [FHMV95] represents the temporal evolution of a
system by means of runs; these are functions from the natural numbers to the set
of global states. An interpreted system, in their terminology, is a set of runs over
global states together with a valuation for the atoms of the language on points of
these runs. In this paper we do not deal with time, and so we will simplify this
notion by not considering runs.

1The case of the full Cartesian product was analysed in [LMROO].
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We now define deontic systems of global states by assuming that for every
agent, its set of local states can be divided into allowed and disallowed states. We
indicate these as green states, and red states respectively.

DerINITION 5 (Deontic system of global states). Given n agents and n + 1 mutu-
ally disjoint and non-empty sets G, G1, - . . , Gy, a deontic system of global states
is any system of global states defined on L, O G, ..., L, 2 G,. G, is called the
set of green states for the environment, and for any agent 7, G; is called the set of
green states for agent <. The complement of G with respect to L. (respectively G;
with respect to L;) is called the set of red states for the environment (respectively
for agent 7).

Given an agent, red and green local states respectively represent “disallowed’
and ‘allowed’ states of computation. An agent is in a disallowed state if this is
in contravention of its specification, as is the case, for example, in a local system
crash, or a memory violation. The notion is quite general however: classifying a
state as “disallowed’ (red) could simply signify that it fails to satisfy some desirable
property. In applications to specific examples it is often useful to classify as red the
states that result from the failure of an agent to follow its functioning protocol.
In these cases one can consider a finer-grained notion of interpreted systems in
which the concepts of protocols and transitions are introduced. Moreover, a rather
different and interesting approach is to label runs of the system as ‘red’ or ‘green’
instead of states, enabling us to reason about allowed/acceptable as opposed to
disallowed/unacceptable/faulty runs. We do not consider these further issues in
this paper.

Note that any collection of red and green states as above identifies a class of
global states. The class of deontic systems of global states is denoted by DS.

DEFINITION 6 (Interpreted deontic system of global states). An interpreted deontic
system of global states 7D S for n agents is a pair IDS = (DS, ), where DS is
a deontic system of global states, and = is an interpretation for the atoms.

In the knowledge representation literature interpreted systems are used to as-
cribe knowledge to agents, by considering two global states to be indistinguish-
able for an agent if its local states are the same in the two global states. Effec-
tively, this corresponds to generating a Kripke frame from a system of global states
(some formal aspects of this mapping have been explored in [LR98]). In this case,
the relations on the generated Kripke frame are equivalence relations; hence (see
[FHMV95]) the logic resulting by defining a family of modal operators represent-
ing a ‘bird’s eye view’ of the knowledge of the agents is S5,,.

In this paper we set out to do a similar exercise. We investigate how to axioma-
tise deontic systems of global states using the languages defined in Definition 1,
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Figure 1. An example of deontic system and its generated frame. In the example above the en-
vironment is not considered and the local states for the agents are composed as follows. Agent
1. L1 = {h, 1, lll,lll”},Gl = {ll,lll}. Agent 2: Ly = {lz,l’g,lg,lg’/},GQ = {12,1’2}.
DS = {(11,15), (11, 19), (1Y, 12), (1Y, 15")}. In the figure the sets DS, DS- represent the subsets
of DS which present acceptable configurations respectively for agent 1, and 2. The labelled links
indicate the relations R; and Ry of the generated frame.

and study the properties of the resulting formalisation. In the spirit of the inter-
preted systems literature we interpret modal formulas on the Kripke models that
are built from deontic systems of global states. In order to do this, we first define
the frame generated by a deontic system.

DEFINITION 7 (Frame generated by a system). Given a deontic system of global
states DS, the generated frame F(DS) = (W, Ry, ..., Ry,) is defined as follows.

e W =DS.
o Foranyi=1,...,n, (le,l1,...,0ln) R (I, 1,.... 1) ifl} € G;.

The function F'is naturally extended to map interpreted systems of global states
to Kripke models as follows: if F(DS) = (W, Ry,...,Ry,) then F(DS,7) =
(VV,R1, e ,Rn,ﬂ').

Intuitively, the relations R; represent an accessibility function to global states
in which agent 4 is running according ‘correct (or acceptable) operating circum-
stances’. We illustrate this in Figure 1.

We make use of the construction above to give an interpretation to the formulas
of a language as follows. Given an interpreted deontic system IDS = (DS, ),
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the interpretation of formulas of the language £ is defined on the corresponding
generated Kripke model F'(DS, ), where the truth of a formula O; ¢ at a global
state signifies the truth of formula ¢ at all i-related worlds, i.e., at all the global
states in which ¢ is in a correct (‘green’) local state.

DEFINITION 8 (Satisfaction on interpreted deontic systems of global states). For
anyp € L,g€ DS,and IDS = (DS, «), satisfaction is defined by:

IDS =g ¢ it F(DS,7) =4 ¢,
where this is defined as:

F(DS,7) |54 true

F(DS.m) kgp g €n(p)

F(DS ) =g~ ifnot F(DS, ) =4 ¢

F(DS,m) =g O; if for all g’ we have that g R; ¢’ implies F(DS, ) =y o. ||

In other words, the truth of formula O; ¢ at a global state signifies the truth of
formula ¢ in all the global states in which agent i is in a correct local state, i.e. in a
green state.

Validity on deontic systems is defined similarly.

DEeFINITION 9 (Validity on deontic systems). Forany ¢ € £,and IDS = (DS, 7),}}
validity on interpreted deontic systems of global states is defined by IDS = ¢ if
F(DS,7) = ¢. Forany ¢ € L, and DS € DS, validity on deontic systems of
global states is defined by DS (= ¢ if F(DS) = ¢.

For any ¢ € L, we say that ¢ is valid on the class DS, and write DS = o, if
for every DS € DS we have that DS = ¢

In the following we investigate the logical properties that deontic systems of
global states inherit. From Definition 9 it follows that this analysis can be carried
out on the class of the generated frames.

3. Axiomatisation

In this section we study deontic systems of global states from the axiomatic point
of view. An immediate consideration comes from the following.

LEMMA 1. Given any DS, we have that F(DS) is serial, transitive, and Eu-
clidean.
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PROOF. F(DS) is serial: this follows from the assumption that for any i € A, we
have that G; # 0.

F(DS) is transitive: assume g R; ¢’, and ¢’ R; g", for some i € A. But then, by
definition, it must be that ¢’ = (I.,...,1,,... 1), and I} € G;. Similarly, it must
be that ¢" = (I7,...,07,... 1), and I/ € G,. Butthen it must be that g R; g".

F(DS) is Euclidean: assume g R; ¢', and g R; g", for some 7 € A. So, it must
be that ¢" = (I,...,07,... 1), and I/ € G,. So, we have ¢’ R, g". [ ]

This observation leads immediately to the conclusion that the logic of deon-
tic systems of global states must be at least as strong as KD45,,, which is to be
expected. However, as will be clearer in the following, it turns out that the logic
determined by deontic systems of global states is in fact stronger than KD45,,. In
order to see this, we need to introduce a few semantic structures.

3.1. Some secondary properties of Kripke frames

In order to obtain an axiomatisation for deontic systems of global states, we intro-
duce some secondary properties of Kripke frames, by which we mean properties
that hold on any sub-frame that can be reached from some point in the frame. (The
term ‘secondarily reflexive’ is used in [Che80, p92].)

Notation For a binary relation R on W and w € W, R(w) denotes the set of
points in W that are R-accessible from w, i.e., R(w) =g4¢¢ {w' € W | w Rw'}.

LEMMA 2. Let R be a binary relation on W. R is Euclidean iff R is universal on
R(w) forallw € W.

PROOF. Suppose w; € R(w) and wy € R(w). Then (by definition) wRw; and
wR ws. But then w1 R ws (R is Euclidean). For the other half: suppose wR w; and
wRws. Then wy € R(w) and wy € R(w), and so w; R w, since R is universal on
R(w). [ ]

DEFINITION 10 (Secondarily universal). Let R be a binary relation on W. R is
secondarily universal if

(i) forall w € W, R is universal on R(w);

(ii) forall w',w" € W, R(w') = R(w").

Aframe F = (W, Ry,..., R,) is a secondarily universal frame if every relation
R;, i € A, is secondarily universal.

It follows (by Lemma 2) that condition (i) of the definition is equivalent to the
requirement that R is Euclidean. We have then that every secondarily universal
relation is Euclidean.
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Figure 2. An example of a secondary universal frame. The arrows represent relations between points
(not shown), and the dotted ellipses represent sets of points in which each point is related to all the
points in the dotted ellipse. Note that a secondary universal frame may contain a number of these
unconnected sub-frames.

Example Consider R = {(wl, wz), (’wg, wz), (w3,w3), (’11)2,’11)3), (’U)3, wz)}. ThiSI
R is not secondarily universal. R(wi) = {w2}, R(w2) = R(ws) = {we,ws}.
R(wy) # R(ws). R' = RU {(wy,ws)} is secondarily universal (assuming R’ is

a relation on the set {wy, w9, ws}). The relation R” on the set {w1, wo,ws, w4}
where R" = R' U {(w4, w2), (w4, ws)} is also secondarily universal.

LEMMA 3. Let R be a binary relation on W. If R is secondarily universal then R
is transitive.

PROOF. Suppose wRw' and w'Rw"”. Then w' € R(w) and w"” € R(w'). But
R(w) = R(w'), so w" € R(w), i.e., wRw". ]

Now we have a very useful representation result.

THEOREM 1 (Secondarily universal: Representation theorem). Let R be a binary
relation on W. R is secondarily universal if and only if there exists a subset S C W
such that, for all w,w’ € W, wRw' iffw' € S.

Furthermore, R is serial if and only if S is non-empty.

PROOF. Right to left is easy to check and omitted here.

Left to right: If R is empty, take S = (). The result holds trivially. If R is not
empty, take S = R(w) for some w € W. Consider any w,w’ € W. wRw' iff
w' € R(w) (by definition). But R secondarily universal implies R(w) = R(w) =
S. So wRw' iff w' € S as required. And clearly if R is non-empty then S is
non-empty; from its definition, it also then follows that R is serial. [ ]



Deontic Interpreted Systems. . . 11

We are now in a position to relate validity on the class of serial secondarily
universal frames to validity on the class of serial, transitive and Euclidean frames.
However, we are interested here in the multi-modal case, and for this we need a
property of frames we call i-j Euclidean.

DEFINITION 11 (i-j Euclidean frame). A frame F = (W, Ry,...,R,) is i-j Eu-
clidean if for all w,w',w"” € W,andforall i, ; € A, wehave thatw R; w',w R; w"|]
implies w” R; w'.

The class of i-j Euclidean frames collapses to ‘standard’ Euclidean frames for
i=j.

There is a precise correspondence that can be drawn between i-j Euclidean
frames and the following axiom:

Pip—O;P;p (foranyi,j € A) 547
LEMMA 4. A frame F is i-j Euclidean if and only if F |= 5%,

PROOF. From left to right. Consider any i-j Euclidean model M = (F, ), such
that M =, P;p, so there exists a point w’ such that wR;w', and M =, p. It
remains to prove that for any w" such that wR;w" it must be that M =,,» P;p.
But F' is i-j Euclidean, so we have w” R;w’, which is what we needed.
From right to left. Consider three points w, w’, w"” € W such that wR;w', wR;w" ]

Consider a valuation 7 such that w(p) = {w'}, and the model M = (F, «). we have
M =, P;p. We have that M =, O; P; p; therefore it must be that M =, P; p;
but then it must be that w"” R;w’. [

Now we will relate validity on the class of (serial) secondarily universal frames
to validity on the class of (serial) transitive, i-j Euclidean frames.

LEMMA 5. If a frame F' is secondarily universal then it is also i-j Euclidean.

PROOF. Consider any relations R; and R; of the frame F. R; and R; are sec-
ondarily universal, and so by the representation Theorem 1, there exist subsets S;
and S; of W such that, for all w,w’,w" € W, wRw' iff w’' € S; and wR;w" iff
w” € S;. So now: wR;w' and wR;w" implies w” € Sj, and hence w'R;jw". m

Notation For frame F' = (W, Ry,...,R,) we write wR*w' when w' can be
reached from w by a path of finite length (including zero) using any combination
of relations Ry, ..., R,, i.e. (more precisely) when R* is the reflexive transitive
closure of U7, R;.

With this notation, the standard notion of a generated (sub-)frame is expressed
as follows.
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DEFINITION 12 (Generated frame). Letw be any world inaframe F' = (W, R1,..., Ry).}
Then F* = (W",RY, ..., RY) is the frame generated by w from F when

e WY = R*(w) (i.e., W™ is the set of worlds accessible from w by any path
of finite length of relations Rq,..., R,);

e each R is the restriction of R; to W™, i.e., R’ = R; N (WY x W").

Let F be any class of frames. G(F) is the class of frames generated by any point
of any frame in F. F = {F¥ | F € F,w € W}.2

Now we have the standard result:

OBSERVATION 3. Let F be any class of frames and let G(F) be the class of gen-
erated frames. Then for all ¢ € L, ¢ is valid on the class of frames F if and only
if ¢ is valid on the class of frames G(F).

PRrROOF. Straightforward, by induction on the structure on ¢. [

COROLLARY 4. Let F; and F; be classes of frames such that 71 O F, D G(F1).
Then for all p € L, Fy |= ¢ ifand only if 7 = .

PROOF. From F; D F; it follows by definition that F; = ¢ implies 7, | ¢.
From F, D G(F;) it follows that 7> = ¢ implies G(F1) = ¢. But G(F1) E ¢
implies 71 = ¢. So we have F; |= ¢ implies F, = ¢ which in turn implies
.7:1 |: Q. | ]

We will make use of this corollary in the proof of the main theorem of this
section. A couple of further lemmas are also required. We report them in the
Appendix, and refer to them in the proofs below when required.

We now prove that the class of serial, transitive, i-j Euclidean frames and the
class of serial, secondarily universal frames are semantically equivalent, that is, the
same set of formulas ¢ is valid on both.

THEOREM 2. Forall ¢ € L, ¢ isvalid on the class of serial, secondarily universal
frames if and only if ¢ is valid on the class of serial, transitive and i-j Euclidean
frames.

2\We are using the term “generated frame” to denote both a frame generated by a system (Defini-
tion 7), and a frame generated by a world from a frame (Definition 12). We trust any ambiguity is
resolved by the context.
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PROOF. Since every secondarily universal frame is also transitive and i-j Euclidean
(Lemmas 3 and 5), it suffices by Corollary 4 to prove that the class of frames
generated from serial, transitive and i-j Euclidean frames is contained in the class
of serial, secondarily universal frames, that is, that every frame that is generated
by some world from a serial, transitive and i-j Euclidean frame is also secondarily
universal.

Let F™ be a frame generated from some world @ of a serial, transitive and
i-j Euclidean frame F. We show that F% is serial and secondarily universal by
showing that, for each i € A, wR¥w' iff w' € R¥(w) and RY (w) is non-empty;
the result follows by the representation Theorem 1. Since F' is serial, every R;
is serial and hence RY(w) is non-empty. It remains to show that for all w,w’ €
R*(w), wR;w' iffw’ € R;(w). For the first half: wR*w and wR;w' implieswR;w'
by Lemma 6, and hence that w' € R;(w). For the other half, suppose wR*w and
w' € R;(w). Then wR*w and wR;w', which implies wR;w' by Lemma 7. [ ]

THEOREM 3. The logic KD45%7 is sound and complete with respect to

e serial, transitive and i-j Euclidean frames
e serial, secondarily universal frames.

PROOF. We show the first part; the second part follows immediately by Theorem 2.
We show that the logic KD4557 is canonical, i.e. that the frame F of the canon-
ical model M is serial, transitive, and i-j Euclidean. Since the logic in question
is stronger than KD45,,, from the literature we know that F¢ is serial and transi-
tive; we show it is i-j Euclidean. To do so, consider three maximal consistent sets
w,w’,w", such that wR;w', wR;w". It remains to show that w” R;w’. By contra-
diction suppose this is not the case; then there must exist a formula o € £ such
that O; a € w”, and —a € w'. But then P; ~ar € w, and so O; P; ~a € w, which
in turn implies P; —a € w", i.e. = O; a € w", which is absurd, because it would
make w" inconsistent. [ ]

Before we can axiomatise deontic systems of global states we need to make
clear the correspondence between deontic systems of global states and secondarily
universal frames.

THEOREM 4. Any serial, secondarily universal frame is the p-morphic image of
the frame generated by an appropriate deontic system of global states.

PROOF. Let FF = (W, Ry,..., R,) be any serial secondarily universal frame; we
define a deontic system D.S as follows. Pick some w € W. For any relation i € A,
let G; = R;(w). Since R; is serial, this satisfies the requirement that G; is not
empty. Let G, = W.
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Consider now the deontic system D.S defined as DS = {(w,w,...,w) | w €
W'}, For simplicity we use the shortcut (w, w, ..., w) = [w]. The frame generated
by DS is defined (see Definition 7) by F(DS) = F' = (W', R, ..., R},), where
W' = {[w] | w € W}, and for any : € A we have R, = {([w], [w']) | v’ € G;}.

We show that F' can be seen as the target of a p-morphism of domain F’. Define
the function p : W’ — W such that p([w]) = w. We prove that p is a p-morphism
as defined in Definition 3.

e pis clearly surjective.

e Forany i € A, consider [w] R, [w']. By definition it must be w’ € G;. So
Vw"” € W we have that w” R; w'. But then in particular w R; w'.

e Consider w R; p([w']). So, by construction, we have p[w'] = ', and w’ €
G,. But then [w] R [w'].

For the result presented in this paper, the notion of p-morphism is enough to
achieve the result, but it can be noted that the function defined above is actually an
isomorphism.

We can now prove the main result of this section.

THEOREM 5. The logic KD45%7 is sound and complete with respect to deontic
systems of global states.

PrRoOF. The proof for soundness is straightforward and omitted here. For com-
pleteness, we prove the contrapositive. Suppose t/ ¢; then by Theorem 3, there
exists a serial, secondarily universal model M = (F, ) such that M F,, ¢, for
some w € W. By Theorem 4 there exists a deontic system DS such that F'(DS)
is the domain of a p-morphism p : F(DS) — F. But then by Lemma 2, since
F = o, we have that F(DS) [~ ¢, 50 DS - ¢, so DS [~ ¢, which is what we
needed to show. [ ]

4. Discussion

4.1. Thelogic K D457

In the previous section we showed that the logic KD45%7 provides a complete
axiomatisation for deontic systems of global states. In the following we look at the
individual axioms in a little more detail.
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In light of much of the literature in this area the logic above should be seen
as providing a bird’s eye view of the properties of the MAS. Therefore validity of
axiom K:

Oilp = q) = (Oip = Oiq) K

seems reasonable. Indeed, if agent i’s functioning specification requires that when-
ever p is the case then ¢ should also be the case, then, if according to the agent’s
functioning protocol p is the case, then ¢ should also be the case according to that
protocol.

Axiom D guarantees that individual specifications are consistent:

Oip——=0;—p D

Another way of seeing the above is to note that in normal modal logics, axiom D
is equivalent to — O, false. Axiom D is sometimes called the characteristic deontic
axiom: together with axiom K, axiom D is the basis for Standard Deontic Logic
(SDL).
Moving to the next pair of axioms, if we give a bird’s eye view reading of the
O; modality, axiom 4
Oip—0;O0;p 4

and axiom 5
Pip— OiPip 5

are perhaps not as strong as a first reading might suggest.

Another way of reading axiom 4 is to note that it forbids the situation in which
p is prescribed but it is allowed that p is not prescribed. This seems reasonable with
respect to strong deontic notions such as the one we are modelling. For example
consider the case of one agent running a program in which one of its variables is
supposed to be ‘guarded’, say to a boolean value. It would then be unreasonable if
the protocol were to specify that the variable has to be a boolean, but at the same
time allowed it not to be prescribed that it be a boolean. It is worth pointing out
that the underlying reason for the validity of axioms 4 and 5 in this context is that
the criterion for what counts as a green state is absolute, that is to say, the set of
green states for an agent is independent of the state in which it currently is. An
alternative would be to introduce functions g; : L; — 2 to identify green states;
but that seems to have less appeal in the present context and we do not explore it
further.

Lastly, axiom 5¢°7 of the previous section, of which axiom 5 is a special case,
also reflects the absolute nature of the specification of ‘green’. It represents an
interaction between the states of correctly functioning behaviour of pairs of agents.

Pip—O;Pip 5i7d
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57 expresses the property that if a state of the system can happen under the correct
behaviour of one agent 7, then the protocol of any agent j must allow this eventu-
ality in any correct state that it specifies for j. Again, this seems a reasonable
assumption. Suppose that agent 4 can follow its functioning protocol and reach a
state coded by p. Axiom 5°7 stipulates that in this case agent j’s protocol cannot
prescribe as admissible any states in which agent 4 does not have the opportunity
to move to a state coded by p. In other words, axiom 57 asserts a sort of in-
dependence in the interplay between agents. Naturally, we do not have the very
strong property that all specifications are mutually consistent: O;p — —O; —p is
not valid. However, 57 provides a weak kind of mutual consistency: agent j’s
protocol cannot forbid the possibility of p for agent 4 if this is granted by agent 4’s
protocol. o
It is instructive to note that the logic KD45;,7 contains also the following gen-
eralisation of axiom 4:
Oip— Oj O;p 4+

This can be checked semantically, or derived as follows: O;p — O; O; p (by 4);
0;0ip—=P;Oip (byD); P; Oip — O; P; O; p (by 57); O; Pi Oip — O; O p
(by the rule RK and the dual of 5°77). o
It is now easy to check that the logic KD45,,7 contains all axioms in the fol-
lowing scheme:
Xip < Y; Xip

where X; is any one of O;,P; and Y is any one of O;,P;. There are thus only
2(2n + 1) distinct modalities in the logic KD45;,”.

4.2. Alternative characterisation: reduction strategies

It is instructive to consider also an alternative characterisation of the logic of deon-
tic systems of global states in a manner analogous to the well-known Andersonian
reduction of Standard Deontic Logic to alethic modal logic [And58].

Suppose we augment the language £ of Definition 1 with a modal operator O
to represent what holds in all global states and a set g1, ..., g, of distinguished
propositional constants. Each g; is intended to be read as expressing that agent 7 is
in a correctly functioning local state according to its own protocol. We write < for
the dual of O. The relevant truth conditions are:

F(DS,m)Eggi  ifge Ri(g) (i€ A
F(DS,m) g Q¢ ifforallg', F(DS,7) =g .

The constant g; is true in a global state g when agent i is in a correct (green)
local state. Expressed directly in terms of the interpreted deontic system IDS =
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(DS, ), the truth conditions for each g; are:
(DS,m) g g ifli(g) € G;

where [; is a function that returns 4’s local state from a global state.

One can see that the truth conditions for O; ¢ are identical to those for the
expression O(g; — ¢). Each operator O; can thus be defined as an abbreviation in
terms of O and g; as follows:

O; ¢ =der O(gi — ) Def.O;

P; ¢ is then an abbreviation for &(g; A ).
The model property that every R; is serial, equivalently that every G; in the
interpreted deontic system is non-empty, validates the following:

—O-g; ie, Og; D(s:)
The logic of O is obviously S5 (i.e. type KT5 = KT45). It is easy to check that

©; as defined above has the properties K, D, 4 (4°7) and 5¢". For example 4%
may be derived as follows:

Oip — 0O(gi—p) (Def.0)
— 0O0(g; — p) (40)
— O(g; — O(g; —p)) (O normal)
- 0;0;p (Def.0;, Def.0;)

The derivation of 5°7 is similar:

Pip — <(giAp) (Def.P;)
— 0O(giAp) (50)
— O(g; = <(gi Ap)) (O normal)
— O;Pip (Def.O;, Def.P;)

We also have the following interaction between O and each O;:
Op— O;p 0- O;
Although reduction strategies can be useful to relate and compare the definition

of modal operators, note that issues such as completeness cannot be proven through
them.



18 Alessio Lomuscio and Marek Sergot

4.3. Notions of ‘global’ correctness

So far we have described and discussed the use of a green and red state seman-
tics for interpreting the indexed deontic operator of correct behaviour. There are
many possible ways to extend these notions to model the notion of globally correct
functioning behaviour of the MAS. For example, it is straightforward to augment
the framework with another modality O capturing global correctness, interpreted
in terms of G, the set of green states for the system as a whole, as follows:

F(DS,r) =4 Ogifforall ¢’ € G we have that F(DS, ) =4 ¢.

How is the notion of global correctness related to local correctness of individual
agents or groups of agents? There are many possible relationships, depending on
which notion of global correctness we wish to model. For example, the following
are the three simplest definitions:

1. G={(le)l1,...,0n) | le € Ge},
2. G={(e,lh,...,ln) | l; € G forsome i € A},
3. G:{(le,ll,...,ln)|lieGiforaIIieA},

The first version corresponds to a notion of correct behaviour for the environment.
This can be used to model system failures where these are associated with events
such as communication breakdown, etc. In the second definition of G, a state of the
system is regarded as correct whenever one or more of the agents in the system are
in locally correct states; parts of the system might not be performing as intended
but parts of it are. This can serve as a guarantee that the system is not completely
crashed, as is the case, for example, in a system containing redundant components.
It could also perhaps be used to model liveness. The third definition models correct
states as states in which all the subcomponents are working correctly. This can be
used to model a conservatory notion of correctness, useful when modelling safety
critical systems.

Should the second definition from the list above be chosen as semantical model,
the resulting axiomatisation would inherit the following interplay between globally
and locally correct behaviours:

Op—0O;p for some i € A.
Should the third possibility be adopted, we would inherit the validity of:

Op—0O;p forall 7 € A.
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There are also cases in which a sound notion of global correctness may be
unrelated to what the local states are.

It is also straightforward to generalise, to allow for the modelling of arbitrary
groups of agents, and not just individual agents and the global system as a whole:
Ox would represent correct functioning of any group of agents X C A, with O x
interpreted in various ways, in analogous fashion to the different notions of global
correctness identified above. The indexed modality @; is then the limiting case
where X is a singleton {i}, and global correctness O is the limiting case where
X = A. We leave detailed examination of these possibilities to future papers.

5. Deontic states of knowledge

Interpreted deontic systems are an extension of interpreted systems, and as such can
be used to interpret knowledge in the same way. To see this, augment the language
L of Definition 1 with an indexed modality K; representing knowledge of agent i.
To give an interpretation to this modality, extend Definition 8 with the following
clause:

F(DS,7) =y Kip ifforall g’ we have that
li(g) = li(¢') implies F(DS, ) =4 o,

where I; is a function that returns the 7’s local state from a global state. It is rea-
sonable to expect that an axiomatisation of the resulting augmented logic will be
given by S5,, for the K; component union (in the technical sense of [KW91, Gab98,
GS98]) the logic KD45;,” for the deontic part.

What is more interesting though, is that deontic systems of global states allow
us to express some more subtle concepts of knowledge not expressible in bare in-
terpreted systems. One of these is the knowledge that an agent is allowed to have.
Consider, in the first instance, the notion expressed by the construction O K;. For
ease of reference, the truth conditions can be stated equivalently as follows:

F(DS,m) =g OK; @ ifforall ¢’ € G we have that F(DS, ) =4 K; ¢.
Or:

F(DS,m) g OK; ¢ ifforall ¢, g" we have that
li(¢") = li(¢") and ¢" € G implies F(DS,7) =y ¢.

Again there are different notions that can be expressed, depending on how we
choose to interpret the notion of global correctness modelled by O, that is, what
we choose for the specification of the set G of green global states.



20 Alessio Lomuscio and Marek Sergot

It is particularly important when reading these expressions to remember that
they express the “bird’s eye” view of the MAS: O K; ¢ says that in all states con-
forming to correct global behaviour, agent i has sufficient information to know that
. There are many other notions of ‘agent ¢ ought to know ¢’ that are not captured
by this construction. For example, a well-known problem in the study of epistemic
obligations is the following observation, sometimes referred to as the paradox of
the knower [Aqv67]. Since K; ¢ — ¢ is valid, when O is normal, we have also
validity of the following formula

OK;po— 0. 1)

So (Aqvist’s example) “You ought to know that your wife is committing adultery”
implies “it ought to be that Your wife is committing adultery”. Clearly, Formula 1
cannot be accepted as a general principle of reasoning about ‘ought to know’. An
analysis of this problem has driven much of the development of epistemic obliga-
tions. With the information theoretical reading of knowledge we use in this paper
the formula above is not contentious: it says merely that if in all states conform-
ing to correct global behaviour agent ¢ has sufficient information to know that ¢,
then in all states conforming to global behaviour ¢ is the case. Can the account
developed in this paper be adapted to give a formalisation of these other senses of
‘ought to know’? Perhaps, but this is not something we have explored. Similarly,
O; K; ¢ expresses that in all states in which agent j is functioning correctly ac-
cording to its protocol, agent ¢ has the information to know that ¢. And likewise
for the expression O x K; ¢ where X is any subset of the agents A.

A well known paper [GMP92] in the literature of Computer Security by Glas-
gow et al. attempts to combine deontic and epistemic modalities to express what
an agent is permitted to know. The authors provide only a syntactic presentation,
making comparisons with this paper hard to draw.

Clearly, we can also study the notions expressed by constructions of the form
K;0;, K; O, and K; Ox. More interesting is a third possibility still, which is
knowledge that an agent 7 has on the assumption that the system (the environment,
agent j, group of agents X) is functioning correctly. We shall employ the (dou-
bly relativised) modal operator ﬁ{ for this notion, interpreted as follows on the
interpreted deontic system (DS, ) itself:

(DS, 7) |=y KI o ifforall ¢’ such that I;(g) = li(¢') and I;(¢') € G
we have that (DS, ) =g ¢,

and as follows on the generated frame F (DS, r):

F(DS,w) =, Kl ifforall ¢ such that Z;(g) = li(¢') and ¢’ € R;(g')
we have that F'(DS, ) =g .
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We write Ki for the corresponding global analogue: the truth conditions are ob-
tained by replacing the condition /;(¢’) € G; by ¢’ € G: again, different versions
are obtained by choosing among the different options for the definition of what
counts as the set of green global states G. And likewise for the obvious generalisa-
tion to IA{ZX where X is any (non-empty) subset of the set of agents A.

Itis easy to check that the operator K7 satisfies axioms K, 4, and 5 but does not
satisfy axiom T. For the epistemic notions modelled by IAif , positive and negative
introspection (axioms 4 and 5, respectively) do seem reasonable. Moreover, we
should not expect that knowledge on the assumption that some other agent or group
of agents is behaving correctly implies truth.

It is perhaps clearer to see the relationship between the constructions O; K;,
K; O; and KJ when they are expressed using the reduction method of section 4.2.

O;K;p = 0O(gj —K;p)
K;Ojp = K;O(g; —p)
Klp = Ki(gj—p)

K; O; and K{ are closely related. To see the relationship, notice from the truth
conditions, or from the reduction schemes above and properties of O and K, that
the following axiom schemas are valid (among others):

K;p—Kip  (butnot the converse)
K,0;p— fi{ p  (but not the converse)
ij—)ﬁgp (bUtnOtij—)Kinp)

This seems intuitively correct. If one restricts attention to states in which j is
functioning correctly, 7 ‘knows’ at least as much as when all states, j-green and
j-red, have to be considered (first of the axioms). And if 5 knows that p holds in
all states where j is functioning correctly, i.e. K; O; p holds, then surely also Kf P;
on the other hand, there could be things p that 4 ‘knows’ on the assumption that
4 is functioning correctly that do not hold in all j-correct states: IAifp should not
imply K; O, p. Of course, to be really useful, the question is not just whether K{p
holds but whether i can determine this, i.e. whether K; ﬁjp holds. But notice:
KJ p —+K;(g; —p) (by definition), K; i(g; = p) = K; Ki(g; — p) (by property 4
of K;), and K; K;(g; —p) = K; K”p (by definition). Since we also have K; p—p,
we have the following valid axiom:

Kip & KiKip  (alli € A),
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which seems very satisfactory. N
As for the relationship between O; K; and K, various interactions can readily
be determined, such as the following:

OjKip—)KgKip
OjKip—)ﬁiKip (any k € A)

We would also like to be able to give a complete characterisation of the lan-
guage of O;, K;, and IA{{ in terms of Kripke frames. It is worth noting that the
doubly-indexed operator IAif would be interpreted on the intersection of the rela-
tions corresponding to O; and K;. Providing axiomatisations for operators defined
on intersections of relations is non trivial. One of the cases that are better known
from the literature is the case of distributed knowledge [FHV92, HM92]. Here it is
known that one can obtain a complete axiomatisation for a multi-agent epistemic
language with distributed knowledge D by adding S5 axioms to the operator D
and taking the axiom V-1, K;p — Dp. The complication of the current setting
over distributed knowledge is twofold. For the case of distributed knowledge, first
all the relations have the same properties; second they are equivalence relations.
For the case under consideration here, while it is easy to see that the intuitively
corresponding axiom: N

OjpVKip—Klp (1)

is valid on the relevant semantic structures, one cannot apply the results presented
in the literature. [FHV92] uses a reduction to equivalence Kripke trees which can-
not be applied here because R; is not an equivalence relation. The proof used in
[HM92] can be used for relations that are not necessarily equivalence relations, but
the authors do assume that the relations from which the intersection is taken have
the same properties. Still, we are hopeful that completeness can be proven by ex-
tending the rewriting technique used in [HM92], and it is reasonable to expect to
have a logic whose fragments are KD45 for each O; component, S5 for each K;
component, K45 for each IA{{ component and the interaction axiom (1).

6. Applications

One of our motivations for developing the theoretical constructs presented so far
is the following. We want to be able to examine what (epistemic) properties of
a system hold when agents conform to their specifications/protocols, and to deter-
mine which of these (epistemic) properties are retained and which are compromised
when agents fail to conform to their specification. So: we want to be able to set up



Deontic Interpreted Systems. . . 23

a model of a system which allows for and covers the case where agents’ behaviours
may deviate from what is specified. Generally only a subset of an agent’s possi-
ble behaviours will be regarded as acceptable/permitted (‘green’); the model will
also specify the behaviours that agents should exhibit when in non-acceptable/non-
permitted (‘red’) states. We are interested then in determining what (epistemic)
properties of the system hold if we restrict attention to the case where all agents
conform to specification, i.e., to the case where all states are green. We are inter-
ested in determining what (epistemic) properties of the system hold on the assump-
tion that agents 4, 7, ..., conform to their specifications. And further, once we
allow for the possibility that an agent’s behaviour may deviate from its specifica-
tion, it is natural to consider adding extra control components to the system, either
as part of the environment or by introducing additional agents whose function is to
constrain the behaviours of one or more agents to force, to some degree or other,
compliance with the specifications. In that case we want to be able to investigate
what (epistemic) properties of this extended system are recovered—and to what
extent they in turn depend on the assumption that the control agents conform to
their specifications.

One example for which we have been able to carry out such an analysis is the
bit transmission protocol (BTP). The BTP involves two agents, one sender .S, and
one receiver R, trying to communicate over a faulty channel. The channel is faulty
in that it may non-deterministically deliver a message sent on it or lose it altogether.
It may deliver a message sent in one direction whilst simultaneously losing one sent
in the other direction. It may lose both messages, or neither. S would like to send
a bit of information to R, and would like to know for sure when R has received
the bit. According to the most common protocol, sender S sends the bit until it
receives an acknowledgement from R; R remains silent until it receives the bit and
it then sends acknowledgements to S forever. This setting has been modelled in
the interpreted systems framework [FHMV95]. The set of local states for sender S,
Ls ={0,1,(0,ack), (1,ack)} represents configurations in which the value of the
bit is either 0 or 1, paired with whether or not the bit has been received. Similarly
R can be modelled by Lr = {¢,0,1}, in which € represents the configuration in
which no bit has been received by R and 0, 1, local states in which the bit has been
copied successfully by R. Given this, it is possible fully to specify functioning
protocols for sender and receiver by defining functions for each local state what
actions should be performed by that agent. For example, according to the protocol
if S'is in state O it should send the value 0O across the channel to R. We refer to
[FHMV95] for more details.

What is important in this semantical construction is that epistemic properties
of the system can be analysed by using the formal tools of interpreted systems
generated by such protocols. In particular, under the assumption of fairness (i.e.,
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assuming that the environment will not be faulty forever), one can show that the
following properties are valid (true at all global states of the system):

= recbit — (Kg (bit = 0) V Kg (bit = 1)) 2
= recack — recbit (3)

which capture our intuition about the model. From these it follows (in S5,,) that:

= recack — (Kg (bit = 0) V Kg (bit = 1)) 4)
= recack — Kg(Kpg (bit = 0) V K (bit = 1)) (5)
= recack A (bit = 0) - Kg Kg (bit = 0) (6)

(and similarly for the case (bit = 1)). So, if an ack is received by S, then S is sure
that R knows the value of the bit. Intuitively this represents the fact that although
the channel is potentially faulty, if messages do manage to travel back and forth
the protocol is strong enough to eliminate any uncertainty in the communication.
Whereas, for example,

¥ recack A (bit = 0) -+ Kr Ks Kpg (bit = 0)

In the basic version of the BTP discussed above, the environment’s faults are
treated as a kind of uncertainty in the system and modelled by non-deterministic
evolution. But there are more fundamental flaws that we may be interested in ex-
amining, in particular, flaws that pertain to the agents’ behaviour rather than the
environment’s. Suppose, to take a concrete example, that R may fail to comply to
the functioning behaviour specified in the protocol in that it may incorrectly send
an acknowledgement when it has not yet received the bit (i.e., while in state €). We
can model this situation semantically in deontic interpreted systems by extending
the set of possible local states for R and labelling as faulty (‘red”) those in which
the acknowledgement is incorrectly sent by R. If we carry out an analysis of the
epistemic properties that result from this modification (the details may be found in
[LS02]) we discover that the key property is no longer valid

- recack — recbit
and that (among other things):
= recack — Kg(Kpg(bit = 0) V (Kg(bit = 1))).

However, using the operator O which represents what holds in states where

R is operating correctly, we do have the following:
E Og(recack — recbit ) (7
= Og(recack — (Kg (bit = 0) V Kg (bit = 1))) (8)
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Furthermore, and more interesting, if S makes the assumption of R’s correct
functioning behaviour, then, upon receipt of an acknowledgement, it would make
sense for it to assume that R does know the value of the bit. The operator K’
representing “knowledge under the assumption of correct behaviour’ models this
notion. For example, the following are both valid on the models:

= recack — KE(Kg (bit = 0) v Kg (bit = 1)) 9)
= recack A (bit = 0) — KE Kp (bit = 0) (10)

It is possible and instructive to analyse other variants of this scenario. Suppose
for example that R were to fail in the following (different) way: if the bit is re-
ceived it may or may not send an acknowledgement. Intuitively this sort of failure
is less problematic than the case where R sends incorrect acknowledgements be-
fore receiving the bit, since it does not compromise communication. Again, this
analysis can be carried out in deontic interpreted systems: indeed, in this context
one can explore error correcting protocols for R — essentially it makes sense to
impose that from a red state R can recover to a green state just by sending the
acknowledgement. It can be checked that an error correcting protocol of this sort
does guarantee that formula (1) above is valid.

More complex variations can be devised. For example one can introduce a third
agent, a controller C, whose task is to take preemptive action before critical fail-
ures occur. Suppose for example that controller agent C' monitors the environment
(according to the spirit of interpreted systems, the internal local state of agent R
is invisible to C) and blocks any attempts by R to send incorrect acknowledge-
ments over the channel. Constructing the model for this scenario, we find that the
following hold:

= recbit — (Kg (bit = 0) V Kg (bit = 1))
=  Oc¢(recack — recbit)

from which follows, by the same derivations as earlier:

E  Oc(recack — (Kg (bit = 0) V Kg (bit = 1)))

= recack — K§ (K (bit = 0) VK (bit = 1))

= recack A (bit = 0) — K$ Kp (bit = 0)
Here, as one might expect, communication between the sender and receiver is re-
established, under the assumption that controller C behaves correctly according to
its specification.

For details of how these models are constructed and analysed, the interested
reader is referred to [LS02].
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7. Conclusions

In this paper we have explored the notion of deontic systems of global states and
axiomatised the resulting semantics. Apart from the technical issues dealt with in
the paper, we have tried to motivate the suggestion of exploring grounded seman-
tics (interpreted systems or otherwise) to give an interpretation to deontic concepts
when these are aimed at computer science applications.

Various technical issues seem to be worth exploring further. In particular the
question of finding a complete axiomatisation for the operator Kf discussed above
seems promising. Once this is achieved it will be interesting to explore the notion
of common knowledge with respect to deontic states and groups of agents.

The framework as presented here is very general. Although we have tended in
the discussion to associate the green label with “correct’ or ‘allowed’ functioning
and red with ‘incorrect’ or ‘disallowed’, nothing in the formal development relies
on this particular reading. The green/red labelling of states could be used just as
well to model other distinctions: green could be used to pick out, for instance,
the normal, non-exceptional states from the abnormal, exceptional ones. The K
operator would then express what agent ¢ knows on the assumption that agent j
is not in an unusual, exceptional state. Perhaps we have a means of modelling
defeasible knowledge. This remains to be investigated.

We have tried to apply the formal machinery to a standard example in the litera-
ture of distributed computing - the bit transmission problem. We have analysed how
violations and correct functioning behaviour of parts of the system can be repre-
sented in deontic interpreted systems, and how the effects of introducing additional
control components into the system can be determined. Of course the example is
trivial compared to the kind of complex MAS applications now being deployed.
Nevertheless, the fact that we have managed to analyse an example in detail us-
ing the formal machinery (further details can be found in [LS02]) encourages us to
believe that the methods can be applied to more complex examples. Manual calcu-
lations of even small examples, however, are tedious and prone to error. In order
to apply the formal machinery to more complex and realistic examples, we have
been experimenting with the use of model checking tools. Specifically, we have
used a model checker for temporal logic to compute the set of all possible runs of
a system where the protocols for the agents are given (as in the BTP), and we then
use a model verifier to check the validity of particular epistemic formulas on the
resulting models. We refer the interested reader to [LRS02].

We are aware that the analysis of protocol violations and message transmission
failures is a major research issue in the area of distributed algorithms. We are
interested in investigating how the results of this paper compare with the methods
that have been developed there.



Deontic Interpreted Systems. . . 27

The formal language we have used in this paper has no temporal constructs.
This is an aspect of this work that we are planning to address.
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Appendix

We report two Lemmas used in the proofs of Section 3.
Notice that seriality is required for the first but not for the second of these two
lemmas.

LEMMA 6. Let F = (W,Ry,...,R,) be a transitive, i-j Euclidean and serial
frame. Then for every i € A, and for all w,w’,w" € W, if wR*w' and w' R;w"
then wR;w".

PROOF. wR*w' means there is a path wR;, v1, v1 Ri,v2, . .., vp_1R;, w'. We have
to show wR;, v1,v1 R, v, . .., vk—1 Ry, w', w Ryw" implies wR;w". The proof is
by induction on the length k of the path. For the base case (k = 0), w = w' and the
result holds trivially. For the inductive step, suppose the result holds for all paths of
length less than k. It suffices to show vy R;w", for then we have a path of length
k — 1 from w to vx_1 and by the inductive hypothesis it follows that wR;w"”. To
show vy_1 R;w", consider vj,_1 R;, w'. Suppose first that 4, = 4. Then we have
vp—1 Rjw' and w' R;w"”, and so vy_1 R;w" by transitivity of R;. Suppose 45 # i.
Then because R; is serial, there exists a point w"’ such that v;_{ R;w"”. We must
have also w' R;w" since the frame is i-j Euclidean, and further, w" R;w" because
w'R;w" and R; is Euclidean. So now we have v;_i R;w" and w" R;w", and by
transitivity of R;, v,_1 R;w" as required to complete the proof. [

LEMMA 7. Let F = (W, Ry,...,Ry,) be an i-j Euclidean frame. Then for every
i€ A, and for all w,w',w" € W, if wR*w' and wR;w" then w' R;w".

PROOF. The proof is again by induction on the length of the path in wR*w’. Sup-
pose w = w' (base case). Then the result holds trivially. Suppose w # w’. Then
there is a path wR;, v1, v1 Ri,v2, . . ., k1 Ri, w', and for the inductive step we have
to show wR;, v1,v1 Ri,v2, - . ., vp—1 Ri, w', w’' Ryw” implies wR;w", assuming the
result holds for all paths of length less than k. wR;w" implies v R;w" since the
frame is i-j Euclidean. Now we have a path vy R*w' of length £ — 1 and vy R;w”,
so w' R;w" follows by the inductive hypothesis. [ ]
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