Group Decision and Negotiation (2007) 16: 213—254
DOI 10.1007/s10726-006-9064-4 © Springer 2006

Formalising Workflow: A CCS-inspired
Characterisation of the YAWL Workflow Patterns

ANDREW D. H. FARRELL AND MAREK J. SERGOT
Department of Computing, Imperial College, London, SW7 2AZ, UK
(E-mails: andrew farrell@imperial.ac.uk, m.sergot@imperial.ac.uk)

CLAUDIO BARTOLINI
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304-1126, USA
(E-mail: claudio.bartolini@hp.com)

Abstract

We present work concerning the formal specification of business processes. It is of substantial benefit to be
able to pin down the meaning of business processes precisely. This is an end in itself, but we are also
concerned to do so in order that we might prove properties about the business processes that are being
specified. It is a notable characteristic of most languages for representing business processes that they lack
a robust semantics, and a notable characteristic of most commercial Business Process Management
products that they have no support for verification of business process models. We define a high-level
meta-model, called Liesbet, for representing business processes. The ontological commitments for
Liesbet are sourced from the YAWL workflow patterns, which have been defined from studies into the
behavioural nature of business processes. A formal characterisation of Liesbet is provided using Milner’s
Calculus of Communicating Systems (CCS). In this article, we omit some of the technical details of this
characterisation and instead present the essential features by means of an abstract machine language,
called LCCS. We also explain how we have facilitated the verification of certain properties of business
processes specified in Liesbet, and discuss how Liesbet supports the YAWL workflow patterns. We
include a simple three-part example of using Liesbet.

Key words: business process, workflow, meta-model, formal semantics, CCS, verification

1. Introduction

This article presents work concerning the formal specification of business processes. It
is of substantial benefit to be able pin down the meaning of business processes
precisely. This is an end in itself, but we are also concerned to do so in order that we
might prove properties about the business processes that are being specified. We start
by presenting some background to the modelling and specification of business
processes.

The operation of companies and organisations is characterised by a number of
business processes that need to be carried out in a way that is strategically aligned
with the objectives of the business. The Workflow Management Coalition (WfMC)

214 FARRELL, SERGOT AND BARTOLINI

defines a business process to be (Workflow Management Coalition 1999) a set of one
or more linked procedures or activities which collectively realise a business objective or
policy goal, normally within the context of an organisational structure defining func-
tional roles and relationships (Workflow Management Coalition 1999).

Business Process Management (BPM) is a term that has been used to refer to
aligning business processes with an organisation’s strategic goals, designing and
implementing process architectures, establishing process measurement systems that
align with organisational goals, and educating and organising business managers so that
they will manage processes effectively (http://www.bptrends.com). In Marin (2002),
BPM is described as process technology enhanced with process management capabil-
ities, implemented in a way that is appealing to business users. Although BPM tends to
be a term that is differently applied, the consensus behind its use seems to be the
notion of a managed automation of business processes, where the management
generally is meant to align the enactment of a process to the objectives of the
(business) enterprise.

Workflow technologies (Georgakopoulos et al. 1995; Jablonski and Bussler 1996)
have become a key enabling technology for the implementation of BPM. Notably,
one of the principal areas in which Information Technology (IT) has been deployed
to help automate the enactment of business processes has been in the co-ordination of
activity enactment. (IT has also been used to provide application-led support to the
enactment of individual activities, empowering workers to complete activities in a
more timely and efficient manner.)

Workflow technologies handle the co-ordination of activities in a business process
by initiating their execution through assigning agents to them at appropriate times.
The term workflow is used in an abstract sense in that it refers to the automation of a
(specific) business process, without any reference to how the process is automated. In
contrast, the term workflow model refers specifically to the machine representation of
a business process.

An example graphical representation of a workflow is presented in Figure 1. The
language used to express a workflow model is commonly referred to as a workflow
language. In the context of formalising such languages, the term workflow meta-
model, or workflow ontology, is commonly used to refer to the collection of constructs
used to represent a workflow model. We use the terms workflow meta-model
and workflow ontology interchangeably in this report. Finally, the term workflow

B C
Pay(>
A

D»E/‘

Figure 1. An example workflow model.

FORMALISING WORKFLOW 215

management system (WfMS) (a.k.a. process engine) is used to refer to the engine
responsible for executing workflow models.

Within enterprises, there is a seemingly inexorable drive to improve agility and
competitiveness. One proposed means of improving the efficacy of enterprise opera-
tion is the Service-Oriented Architecture (SOA) (Newcomer and Lomow 2005), where
IT applications are repackaged as services with a standard interface, thus promoting
re-use of enterprise components. Web services are rapidly emerging as a key facilitator
of the SOA. They are proposed as the cornerstone for architecting and implementing
business processes and collaborations within and across organisational boundaries. W3C
defines a web service as a software application identified by a URI, whose interfaces and
bindings are capable of being defined, described and discovered as XM L artefacts. A Web
service supports direct interactions with other software agents using XM L-based
messages exchanged via Internet-based protocols (WWW Consortium 2002).

Web services are used to encapsulate business functionalities. They can be
invoked by applications or other web services using standardised XML-based
Internet protocols, such as HTTP, SOAP, WSDL and UDDI (Curbera et al. 2002).
Service Composition is a principal aspect of the Web Services framework, where
composite (web) services may be created by inter-connecting deployed web services
from potentially many different service providers. WS-BPEL (OASIS 2005) is a
standardised language for (web) service composition. A composition is the equiva-
lent of a workflow model in the context of SOA. Just as for a workflow model, a
composition is concerned with the co-ordination of activities and the data that passes
between them, except that the work carried out for an activity is typically realised by
a web service rather than some other kind of IT application, or other resource. As
compositions and workflows share many similarities, they are typically discussed
together when talking about business process modelling.

An important distinction should be made between Web Services Orchestration
(WSO) and Web Services Composition (WSC). WSO is concerned with defining
composite web services from web services that may belong to the same enterprise, or
some other. WSC is concerned with defining collaborations between web services
(Newcomer and Lomow 2005; Weerawarana et al. 2005). WSOs are typically viewed
as under-writing WSCs, or facilitating the driving of WSC-style interactions across
enterprise boundaries. That is, the WSO is the private, end-point, or local, per-
spective of the operation of a business process, which will need to support the public,
global view (WSC) of the collaboration between the business process and others.
In this work, we are solely concerned with Web Services Orchestration. An example
of a WSO language is WS-BPEL (OASIS 2005). An example of a WSC language is
WS-CDL (Web Services Choreography Description Language) (WS-CDL 2004).

It is often convenient to divide the description of a workflow model into several
different perspectives. There have been several suggested taxonomies for workflow
perspectives, e.g., (Jablonski and Bussler 1996; van der Aalst 2004). We follow the
one presented in van der Aalst (2004). Here, Van der Aalst describes a number of
different perspectives, but we shall concentrate on just two — the control and data
perspectives. The control perspective is arguably the most important in the definition

216 FARRELL, SERGOT AND BARTOLINI

of a workflow model. It is concerned with the definition of the (partial) ordering by
which activities should be executed (by a WfMS). Figure 1 is an example of a
workflow model defined at the control perspective.

The data perspective is concerned with the management of data during the
enactment of the workflow model. We can define two types of data: control and
application (or production) data. Control data is used to evaluate branching condi-
tions, or, more generally, is used by the WfMS to determine how execution should
proceed (Alonso et al. 2004). It is usually declared, or allocated, within a workflow
model, and its scope of existence is the workflow model. It is simply meant to control
the enactment of the model. Application data, on the other hand, is data that pri-
marily exists outside of the model, but is imported, and used, by the model. For
example, in the case of workflow models, such data may be documents, forms and
tables (van der Aalst 2004), or, in the case of service compositions, such data would
be that sent and received in messages that are exchanged between services (Alonso
et al. 2004).

A principal aim of the Process Modelling Group (PMG) (http://www.petripi.org)
is to try to understand the behavioural nature of business processes, in order that
ontologies may be developed for them, and so that the utility of formal tools or
languages, such as Petri-nets (Reisig and Rozenberg 1998) and CCS/n-calculus
(Milner 1989, 1999; Sangiorgi and Walker 2001), for providing a robust semantics
for such ontologies, may be determined. The manifesto of the PMG says that it has
been formed to encourage the study of business processes and to experiment with them;
it aims to ease their understanding by humans, to implement them on machines, and to
develop their underlying science.

In considering this aim, an important distinction that should be made is between
who, or what, will use such business process modelling ontologies, and for what
purpose. By understanding this distinction (as well as understanding the very
behavioural nature of business processes themselves), we may discern what onto-
logical commitments are appropriate for describing business processes. We distin-
guish between (at least) the following classes of user of such ontologies, where for
each class, the pertaining ontology defines a view of business processes or workflows.

e Presentation view: Business managers, executives, customers.

o Authoring view: Business analysts and process authors — i.e. those responsible
for capturing/authoring workflows. This view would have an associated ontol-
ogy whose constructs would be considered to be intuitive to a process author.
The ontology would most likely be graphical in nature. For instance, Figure 1
might constitute a workflow model defined using such an ontology.

e Information view: Serialisation (or file) format and reference point for the com-
putational view (see below), in that it fixes the sufficient and (as much as possi-
ble) necessary representational requirements of the modelling approach. Note
that in some modelling approaches, it may be appropriate to divide this view
into two, along these two themes. However, we have not needed to make such a

FORMALISING WORKFLOW 217

distinction in our modelling approach. Note that the information view will typi-
cally be closely aligned to the authoring view (for ease of mapping between the
two views) and will, as a consequence, make similar ontological commitments to
that of the authoring view, albeit they will likely be represented by distinct
ontologies.

e Computational view: Process engine, or the process engine implementer. new s
a.(b.c.s-|d.e.s-)|s.s.f might be a computational view of a particular
workflow model, such as the one illustrated in Figure 1, where the ontology
used would be CCS/n-calculus-like (Milner 1989, 1999; Sangiorgi and Walker
2001).

Primarily, the computational view will define an ontology to provide a semantic
characterisation of the ontology defined at the information view. That is, the com-
putational view fixes the precise meaning of workflow models, by providing a
semantic characterisation of information view models. The definition of the com-
putational view will be facilitated by the use of some formal tool, such as Petri-nets
(Reisig and Rozenberg 1998) or CCS/n-calculus.

A computational view workflow model may be directly executable by a workflow
engine; that is, the engine may directly understand and execute Petri-nets or CCS/n-
calculus. In this case, a translator will map models serialised using the information
view format to the computational view. Or, as the computational view fixes the
meaning of models, an engineer may implement a process engine capable of
understanding models written at the information view, and ensure their enactment
according to computational view semantics. In either case, it is imperative that the
computational view provides an intuitive and tidy characterisation of the informa-
tion view ontology.

The existence of the computational view is important for precision and robustness
in the definition of workflow models, and for verifying properties of workflow
models, such as workflow soundness (see below). It is a notable characteristic of
most workflow languages that they lack a robust semantics (van der Aalst 2003),
which would be provided by the computational view, and a notable characteristic of
most commercial workflow products that they have no support for verification of
workflow models.

Workflow soundness (van der Aalst 2004) is a property of the control perspective
of workflow models. It is a highly desirable property that corresponds to the absence
of basic errors in a workflow model. Errors can quickly creep into workflow models
as they are being defined. Such errors may lead to undesirable execution of some or
all instances of a workflow model (Dong and Shensheng 2003). van der Aalst (2004)
says that “‘the errors may lead to angry customers, back-log, damage claims, and loss
of goodwill”. It is important, therefore, that soundness of workflow models is ver-
ified prior to model deployment.

The authoring, information and computational views of a workflow model may
be represented using the same ontology or using distinct ontologies. An example of

218 FARRELL, SERGOT AND BARTOLINI

the former is the use of Petri-nets for workflow modelling where the same formal tool
is used for all views. In the case where there are distinct ontologies for different
workflow views, it is unlikely that the information or authoring views will be defined
formally, i.e., using some mathematical formalism. Rather, they will usually be
abstracting syntaxes, or ontologies, for the computational view.

In this work, we are concerned with capturing the computational view of work-
flows as an end in itself, as well as for facilitating the verification of workflow
properties. For these purposes it is also appropriate to define an information view
ontology, to serve as an abstract syntax which can, on the one hand, act as a
serialisation syntax, and on the other hand, act as a reference point for the com-
putational view ontology to target. Its primary purpose, however, is to fix concisely
what we are concerned with representing. As a result, it may closely resemble an
authoring view ontology — which we do not define in this article.

We define the Liesbet meta-model, or ontology, for the definition of (the control
perspective of) workflow models at the information view. We underwrite Liesbet by
providing a formal semantic characterisation using Milner’s Calculus of Commu-
nicating Systems (CCS) (Milner 1989, 1999). We defer details of this characterisation
to an associated technical report (Farrell 2006), and choose instead to provide a
somewhat informal presentation of the semantic characterisation of Liesbet in this
article. To this end, we introduce a CCS-based abstract machine language, called
LCCS, which provides a number of CCS agent (or, process) definitions for the
specification of workflow models. We have chosen CCS as the basis for our com-
putational view ontology because of the natural, and intuitive, way in which it
represents process dynamics (such as action sequencing and interleaved concurrent
action execution), and because of the wealth of mathematical theory that under-
writes it.

The ontological commitments that any approach to business process modelling
makes should be sourced from an understanding of the behavioural nature of
business processes. Members of the PMG community have previously set about
characterising the behavioural nature of business processes, in the form of the
YAWL (Yet Another Workflow Language) workflow patterns (Kiepuszewski 2003;
van der Aalst et al. 2004; van der Aalst and ter Hofstede 2002, 2005). We use these
patterns as the basis for the definition of our information view ontology (the
Liesbet meta-model).

In summary, our main aims are as follows. We are concerned with defining an
ontology for workflow workflow (Liesbet). It is intended to be used in other work
that we are undertaking (as outlined in Section 6), in particular to support the
modelling of abstract workflows for use in planning the fulfilment of business pro-
cesses. We consider the YAWL workflow patterns to be a good starting point from
which to derive the sufficient and necessary ontological commitments for Liesbet.
Further, we seek to provide a formal characterisation of Liesbet using Milner’s
CCS to fix precisely the way in which workflow models evolve — a presentation,
which we give in Farrell (2006) using standard CCS, and which we (somewhat
informally) give in this article using a conceived abstract machine language, called

FORMALISING WORKFLOW 219

LCCS. With such a characterisation to hand, we are able to define a verification
procedure for Liesbet workflow models, enabling us to verify model soundness and
other model properties.

The structure of this article is as follows. In Section 2 we present an introduction
to the Liesbet meta-model and some of its (core) constructs, and discuss how we
have supported the YAWL workflow patterns through Liesbet. Section 3 provides
a simple three-part example that uses the meta-model. In Section 4 we introduce
LCCS and present an LCCS-based characterisation of the Liesbet constructs
introduced in Section 2. In Section 5 we discuss verification of Liesbet models, and
also discuss notions of Liesbet model equivalence. In Section 6 we conclude with a
discussion and overview of related work. In the Appendix, we present a BNF
grammar for Liesbet.

2. Liesbet Meta-Model

We have defined in this work a workflow meta-model (called Liesbet) corre-
sponding to the information view of a workflow model, and a CCS-based (Milner
1989, 1999) characterisation (called LCCS) of Liesbet, corresponding to the com-
putational view.

In this section we give an introduction to some Liesbet basics, and then proceed
to introduce the most commonly used constructs of the Liesbet meta-model. For
convenience, we describe just a handful of constructs in this section, leaving the
remainder to an accompanying technical report (Farrell 2006). The constructs that
we introduce here are: Activity (Act), Synchronisation (Sync), Sequence (Seq and
SeqgCancel), Parallel (Par), Exclusive Choice (DefaultChoice and Choice), Multiple
Choice (MultiChoice), Cancel Activity (CancelActivity), Free Choice (Free-
Choice) and Empty.

For each Liesbet construct, we present what we call an ‘Easy Syntax’. For the
purposes of implementing a verification approach for Liesbet workflow models, we
have also defined an XML serialisation (or file format) syntax for each construct.
This is not presented in this article, for brevity. A BNF grammar for Liesbet is
presented in the Appendix.

2.1. Liesbet basics

We start by introducing some terminology. A customised activity type is a cus-
tomisation of a Liesbet meta-model construct when used in the specification of a
Liesbet workflow model. In contrast, the term generic activity type is used
synonymously with meta-model construct. For example, in the Liesbet model Seq
(A, B), the Seqis a ‘sequence’ generic activity type which is customised to mean a
sequence that contains two activity types, A and B.

A basic activity type, defined using the Liesbet meta-model construct Act, cor-
responds to a self-contained piece of work, where conceptually we would defer to the
environment to inform us when the work of the activity type has completed.

220 FARRELL, SERGOT AND BARTOLINI

In contrast, structured activity types, defined using any other Liesbet construct,
exist for the purpose of marshalling instances of basic activity types (i.e. Act types),
where the enactment of instances of these other constructs (e.g., Par and Seq) is
handled wholly within the realms of the workflow engine.

During enactment of a workflow model, activity types will be instantiated to
create activity instances. It is through activity instances that work is realised in the
enactment of a workflow model. If an activity type is instantiated twice in the
enactment of a model, the work associated with that type will be carried out
twice.

Basic activity types defined in ‘Easy syntax’ may either be simply defined in situ, or
in a separate definition which is then referred to when instantiating the activity type
elsewhere. For basic activities, defining them in situ is done simply by referring to
them, e.g. A, or A (join(...), ...). Defining them separately would be done thus:
A=Act, or A=Act (join(...),...). Here, Ais the customised type name and Act is
the generic type for basic activity types. join(...) is one of the optional attributes
that may be attached to an activity type to express synchronisation conditions (see
Section 2.5 below).

For structured activity types defined in situ, an explicit name for the activity type
is not given. An example might be Par (A,B), where Par is the (structured) generic
type name, and Par (A,B), the customised type definition. Structured activity types
can also be defined separately and assigned a name, e.g. P = Par (A,B). Here, Pis the
customised type name.

Activity types that are defined separately and not in situ are called defined types.
Consider the following simple Liesbet model as an example.

Par (S1,Seq (B,C))
S1=Seq (A,B)

Here, A, B, and C are in situ definitions of basic activity types; we can tell this as
they are not defined types. The second argument of the Par is a structured activity
type defined in situ. In contrast, the first argument, S1, is a defined type.

The definition of a workflow model will include just one defined type that is
unnamed. This is taken to be the top-level activity of the workflow model. A
workflow model is a hierarchical structure with this activity at its root. In the
example, Par (S1,Seq (B,C)) is the top-level workflow activity type.

2.1.1. Finite state machine for activity instances

The following Finite State Machine (FSM) is defined for the operation of an activity
instance. An activity instance may be in one of four states — Ready, Running,
Cancelled or Completed. We also consider an activity instance to be finished, if it is
in a Cancelled or Completed state.

Ready — execute — Running
Ready — cancel — Cancelled

FORMALISING WORKFLOW 221

Running — complete — Completed
Running — cancel — Cancelled

e An activity instance begins life in the Ready state. At some point, the parent of
the activity instance will initiate execution of the instance. The instance will be
moved into the Running state, by virtue of the execute action.

e When the work of the instance is done, it is moved to the Completed state, by
means of the complete action.

e From the Ready and Running states, the instance may be moved into the Can-
celled state, by means of the cancel action. This will have the effect of not
only immediately cancelling the activity instance itself, but also all of its descen-
dants.

Cancellation of an activity may happen because of the execution of a Cancel-
Activity instance (Section 2.8), because of a failed join condition (Section 2.5), or
because of dead-path elimination (DPE) (Leymann and Roller 1999). DPE is per-
formed in workflow model enactment when it is identified that an activity instance
will never be executed. This happens, for instance, when executing a Choice activity
instance. Those continuation activity instances within the Choice instance that
correspond to unselected branches are moved to the Cancelled state.

2.1.2. Isolated scopes

As explained in Section 2.2, below, instances (of certain activity types) may query the
state of other activity instances. However, since the enactment of a workflow model
may create multiple instances of the same activity type, there is potential ambiguity
about which specific instance is referred to in the query. In the example shown in
Figure 2, the join condition on activity B queries the state of activity C of which there
are three separate instances. Liesbet provides several methods for disambiguating
such references, of which the isolated scope declaration is the most fundamental.

Par

Par Isolated (P)

Seq * Isolated(s)
“\\“~~>

Figure 2. Tsolated scopes in operation. The join condition on activity type B will have a visibility hori-
zon that is restricted to the descendants of the isolated scope P, but not including the isolated scope S
and its descendants. The only candidate instance of activity type C for the query in the join condition
of B is thus the instance of C marked *.

’ join(Sync (Completed_act(C)))

222 FARRELL, SERGOT AND BARTOLINI

Any activity may be marked as an isolated scope. In Easy Syntax this is achieved
by encapsulating the definition of an activity type in the container Isolated. In the
example below, both activity types A and B are isolated scopes but C is not. The scope
of an activity type is not isolated, by default.

Par (Isolated(A), B)

A=...
B=1Isolated(...)
C=Seq(...)

This has the effect of creating a visibility horizon on the workflow state for activity
instances that exist within an instance of the isolated scopes A and B.

When an instance i exists within the scope of another activity instance which is
isolated, the instance i can only query the state of activity instances that are
descendants of the isolated scope instance that is the most immediate ancestor of i,
and this isolated scope instance itself. Moreover, if any of these descendant instances
more immediately fall within the scope of a different isolated scope instance, then
these particular instances will not be visible to the querying instance i. The visibility
horizon for a querying instance is thus the sub-tree extending from its (immediate)
ancestor isolated scope instance, from which are pruned any sub-trees extending
from further isolated scope instances (as is demonstrated in the figure). We call the
pruning aspect, co-related instance pruning.

There is another way of creating a visibility horizon for an activity instance, and
that is by using so-called reference activity types in queries. These queries take
(what is called) a ‘plain’ or ‘distinct’ reference type. We will not describe the use of
distinct reference types in this article — instead, we refer the reader to Farrell
(2006). The use of a reference type is similar to that of an isolated scope, in that it
is used to limit the visibility horizon of querying instances, except that, in contrast
to the use of isolated scopes, we may specify within individual queries what the
visibility horizon for the query should be. That is, it is the individual query that
determines the visibility horizon, within the visibility constraints of any isolated
scopes that might exist. Note that multiple queries may be made by a single
querying instance, all with different visibility horizons. As a result, we can set a
much finer granularity for the visibility of certain queries, rather than setting a
universal visibility horizon for a whole tree of querying instances. Figure 3 shows
an example of using queries with reference types. A workflow model may use a
mixture of isolated scopes and reference queries.

Note that in order to seek the most immediate ancestor of a querying instance
having a particular reference type, we traverse the instance tree from the que-
rying instance towards the root instance. If in doing so, we first encounter an
activity instance that is marked as an isolated scope, then this instance is taken
to be the reference type instance for the purpose of establishing the visibility
horizon.

FORMALISING WORKFLOW 223

’join(Sync(Completediact(C in P))w

join(Sync (Completed_act(D)))

Figure 3. Since P is not an isolated scope in this example, the visibility horizon for the join condition
on activity type A extends beyond P, and includes the instance of type D marked *. For the join condi-
tion on activity type B, the visibility horizon is determined by means of a reference type, specified as P.
Since S is not an isolated scope, the instances of C marked * will be in the visibility horizon of this
instance of B.

2.2. Sync — synchronisation activity types

The synchronisation activity types of Liesbet represent synchronisation points in the
workflow model. The most general of these constructs is Sync(StopQuery,
GoQuery) in which StopQuery and GoQuery are queries on the current workflow
state. There is a race between which of these queries is satisfied first, which ultimately
determines whether the synchronisation activity itself completes successfully or not.

Easy Syntax
Sync (StopQuery, GoQuery)
Sync (GoQuery)

A StopQuery or GoQuery query is a blocking query on current workflow state that
must be satisfied. That is, a query blocks until it is satisfied. A query is a boolean
compound (using | for conjunction and + for disjunction) of the following (where
ATN stands for Activity Type Name).

e Completed_act (ATN) — This query is satisfied if and only if an instance of the
activity type ATN, within the visibility horizon of the querying instance, has com-
pleted.

e Completed act(ATN in Ref ATN) — This query is the same as Completed_
act (ATN) except that it specifies a plain reference type, Ref_ATN, in order to
create a visibility horizon for the query.

e Completed_all(ATN) — This query is satisfied if and only if all extant instances
of the activity type ATN, within the visibility horizon of the querying instance,
have completed.

224 FARRELL, SERGOT AND BARTOLINI

e Completed all(ATN in Ref ATN) — This query is a combination of
Completed all(ATN) and Completed_act (ATN in Ref ATN).

Queries can also be made to ascertain the existence of activity instances in the
Cancelled state, as well as finished instances (i.e., those in Completed or Cancelled
states), and those not in a Ready state (i.c., those in Completed, Cancelled or
Running states). To use such queries, the keyword Completed is replaced with the
keywords: Cancelled, Finished, and NotReady, respectively.

In the following example, the query is satisfied if either an instance of activity type
A or B has completed, and an instance of activity type C has completed.

((Completed_act(A) + Completed _act(B)) | Completed_act(C))

We may also write True for the query that is trivially satisfied, and False for the
query that can never be satisfied.

Informal Operational Semantics

When an instance of the activity type Sync(StopQuery, GoQuery) is running, and
StopQuery is satisfied before GoQuery, then the synchronisation activity instance
goes to Cancelled. If GoQuery is satisfied, and StopQuery is not satisfied before-
hand, then the synchronisation activity instance goes to Completed. While neither
query is satisfied, the instance remains in the Running state.

An instance of the activity type Sync (GoQuery) will remain in the Running state
until the GoQuery query is satisfied, whereupon it will move to Completed. It is thus
equivalent in behaviour to Sync (False, GoQuery).

Finally, note that a Sync type can be used to effect the YAWL workflow pattern
Milestone (Kiepuszewski 2003; van der Aalst et al. 2004), which is where the en-
abling of an activity depends on the (instance of the) workflow model being in a
specified state, i.e., the activity is only enabled if a certain milestone has been reached
which did not expire yet. Consider three activities named A, B, and C. Activity A is only
enabled if activity B has been executed and C has not been executed yet, i.e., A is not
enabled before the execution of B and A is not enabled after the execution of C.

This synchronisation behaviour can be captured in Liesbet as Sync(Fin-
ished_act(B), NotReady_act(C))). Here, if C has started executing then the Sync
will complete successfully (go to Completed). However, if B has finished but we are
yet to execute C then the Sync will go to Cancelled. Thus, the milestone has been
reached but is yet to expire, if the Sync gets cancelled; but, the milestone has expired
if the Sync gets completed. If neither occur, then B has not yet finished executing and
C has not started, thus, the milestone is yet to be reached. If we author a De-
faultChoice construct that executes different behaviours depending on whether the
Sync gets completed or cancelled, then we may effect the Milestone behaviour we
desire — DefaultChoice(Sync(Finished_ act(B), NotReady act(C)), Mile-
stoneStop, MilestoneGo). Here, we execute MilestoneGo if the Sync gets
cancelled — the milestone is satisfied. But, we execute MilestoneStop if the Sync
completes, as the milestone has expired.

FORMALISING WORKFLOW 225

2.3. Seq and SeqCancel — sequence

The Liesbet constructs Seg/SeqCancel are a direct facilitation of the YAWL
workflow pattern Sequence (Kiepuszewski 2003; van der Aalst et al. 2004), which is
where an activity in a workflow process is enabled after the completion of another
activity in the same process.

We also support an unordered sequence construct, which in YAWL is called the
interleaved parallel routing construct, but do not present details here. The interested
reader should consult Farrell (20006).

Easy Syntax
Seq(Acty, ..., Act,)
SeqgCancel (Acty, ..., Act,)

Informal Operational Semantics

When a sequence (Seq/SeqgCancel) instance is running, it executes each constituent
activity in the order specified, waiting for each to get to a finished Completed or
Cancelled state. For Seq, if a constituent activity is cancelled, then the sequence
continues as normal; for SeqCancel, the sequence is cancelled. When the last con-
stituent activity finishes, Seq goes to Completed, and SeqCancel goes to Completed
if the last constituent activity completed successfully and to Cancelled otherwise.

2.4. Par — Parallel

The Liesbet construct Par is a direct facilitation of the YAWL workflow pattern
Parallel (Kiepuszewski 2003; van der Aalst et al. 2004), which is a point in the
workflow model where a single thread of control splits into multiple threads of control
which can be executed in parallel, thus allowing activities to be executed simultaneously
or in any order.

Easy Syntax
Par (Acty, ..., Act,,)

Informal Operational Semantics
When the parallel instance is running, it starts the execution of each child instance in
parallel. Once all have reached a finished state (Completed or Cancelled), the
parallel instance goes to Completed. Note therefore that cancelling child instances
does not cancel the Par activity.

2.5. Activity join and transition conditions

An activity definition in Liesbet may optionally specify a join condition and/or a
transition condition for the activity type.

A join condition is used to specify conditions under which execution of an activity
can occur. When execution of an activity instance is initiated, the join condition, if

226 FARRELL, SERGOT AND BARTOLINI

specified, is evaluated. If the join condition is satisfied, then the instance is executed
(moves to Running); if the condition is not satisfied, the activity instance is cancelled.

A join condition can be any activity type, although it would rarely be anything
but a synchronisation activity type (i.e., a Sync). Activity types that are used as join
conditions may not themselves specify join (nor transition) conditions.

A transition condition for an activity A is used to specify synchronisation con-
ditions that must be evaluated after A has finished executing. Whereas a join con-
dition can be any activity type, a transition condition must be a Par activity type,
which will encapsulate the synchronisation activity types.

Easy Syntax

Join and transition conditions, when specified, sit to the right of an activity type
definition. They are given in a separate set of parentheses, and are enclosed in the
containers join and trans. There are thus three possible forms (besides an activity
definition without join and transition conditions).

A(join(AJoin))
AJoin=...

A(trans(ATrans))
ATrans =Par(...)

A(join(AJoin) ,trans(ATrans))
AJoin=...
ATrans =Par(...)

Informal Operational Semantics

An activity type with a join condition should be considered as being equivalent to a
SeqgCancel activity type containing (in order) the join condition activity type and the
actual activity type. This realises the desired behaviour, namely: that if the join
condition does not complete successfully, the activity instance that it is attached to is
not executed. If a transition condition is specified, then the join condition (if any)
and the actual activity type are run first, followed by the transition condition Par.
Even if the join condition or the instance of the actual activity type get cancelled, the
transition condition will still be evaluated.

In summary, the following mappings should be applied, at the level of the meta-
model (that is, at the information view). Note that as there exist mappings for join
and transition conditions at the level of the meta-model, they do not demand specific
treatment within a semantic characterisation, such as that provided by LCCS.

e A(join(AJoin) ,trans(ATrans)) maps to Seq(SeqgCancel(AJoin, A), ATrans)
e A(join(AJoin)) maps to SeqCancel(AJoin, A)
e A(trans(ATrans)) maps to Seq(A, ATrans)

where ATrans is always of the form Par(...)

FORMALISING WORKFLOW 227

The root activity of a Liesbet workflow model is not permitted to have join, nor
transition, conditions.

2.6. DefaultChoice, Choice — Exclusive Choice with and without default

The Liesbet constructs DefaultChoice/Choice are a direct facilitation of the
YAWL workflow pattern Exclusive Choice (Kiepuszewski 2003; van der Aalst et al.
2004), which is a point in the workflow model where, based on a decision or workflow
control data, one of several branches is chosen.

Easy Syntax
DefaultChoice(Guard;, ContAct; ...; Guard,, ContAct,; ContActy)
Choice(Guard;, ContActy; ...; Guard,, ContAct,)

Informal Operational Semantics

Each Guard, is a guard activity type and ContAct; is a continuation activity type. A
guard will usually be a synchronisation activity type (Section 2.2), although it
could actually be any activity type. For example, Empty, which is an activity type
that trivially completes (see Section 2.9), can be used to effect a non-deterministic
choice.

The first guard instance that goes to Completed initiates its corresponding con-
tinuation instance. All other continuation instances go to Cancelled. In the case of
DefaultChoice, if all of the Guard; activities go to Cancelled, then an instance of
the default continuation activity type, ContActy, is executed. In the case of Choice,
which has no default activity type, the Choice will itself go to Cancelled. The
DefaultChoice/Choice instance completes once the executed continuation instance
has finished.

2.7. MultiChoice — Multiple Choice

The MultiChoice construct is a direct facilitation of the YAWL workflow pattern
Multiple Choice (Kiepuszewski 2003; van der Aalst et al. 2004), which is a point in the
workflow model where, based on a decision or workflow control data, a number of
branches are chosen.

Easy Syntax
MultiChoice(Guard;, ContActy; ...; Guard,, ContAct,)

Informal Operational Semantics

MultiChoice is similar to Choice, except that there is no race between guard
instances to complete first. For MultiChoice, those guard instances that complete
successfully have their corresponding continuation instances executed. Those that go
to cancelled have their corresponding instances cancelled.

228 FARRELL, SERGOT AND BARTOLINI

2.8. CancelActivity

The Liesbet construct CancelActivity is a direct facilitation of the YAWL
workflow pattern Cancel Activity (Kiepuszewski 2003; van der Aalst et al. 2004),
which is where an activity is cancelled.

Easy Syntax
CancelActivity(CancelAct)
CancelActivity(CancelAct in RefAct)

Informal Operational Semantics

A CancelActivity instance will cancel all running (i.e., Running) and all possible
future running (i.e., Ready) instances of the named activity type, CancelAct, within
its visibility horizon. Optionally, CancelActivity may specify a reference type (see
Section 2.1.2) to constrain the visibility horizon.

2.9. Empty
Do nothing but trivially complete! Useful, for example, for an empty default branch
in a Default Choice activity.
Easy Syntax
Empty
2.10. FreeChoice

Non-deterministically complete or cancel.

Easy Syntax
FreeChoice

2.11. Support for YAWL workflow patterns

In Table 1, we present an overview of how the Liesbet meta-model supports the
YAWL workflow patterns (van der Aalst et al. 2004).

3. Three-Part Liesbet example

In this section, we illustrate the use of the Liesbet meta-model by means of a three-
part Travel Agency example. We have sought to keep this example simple, as its main
purpose is to give a general impression of how processes may be modelled with
Liesbet. We do not seek to cover, in this section, the full range of constructs
supported by Liesbet. The main source of requirements for Liesbet is the YAWL
workflow patterns — in Section 2.11, we summarise how Liesbet supports these. In
Farrell (2006), we present further examples.

FORMALISING WORKFLOW

229

Table 1. Satisfaction of the YAWL Workflow Patterns (Kiepuszewski 2003; van der Aalst and ter

Hofstede 2005).

Workflow Pattern

Satisfied How?

. Sequence

. Parallel Split

. Synchronisation, A.k.a. AND-JOIN

. Exclusive Choice

. Simple Merge, A.k.a. XOR-JOIN

. Multiple Choice

. Synchronising Merge, A.k.a. OR-JOIN
. Multimerge

O 0 9 N L AW N —

. Discriminator

—_
(=]

. Arbitrary Cycles

. Implicit Termination
. Multiple Instances (MIs)

Without Synchronisation
13. MIs With A Priori Design Time Knowledge
14. MIs With A Priori Run Time Knowledge
15. MIs Without A Priori Run Time Knowledge
16. Deferred Choice
17. Interleaved Parallel Routing

—_
o

(Unordered Sequence)
18. Milestone
19. Cancel Activity
20. Cancel Case

Seq

Par

Yes (See Note 1)

DefaultChoice, Choice

Yes (See Note 1)

MultiChoice

Yes (See Note 1)

Multimerge (see Farrell (2006))
Discriminator (see Farrell (2006))
Yes (See Note 2)

Yes (See Note 3)

MultiLimit, Multi or Par (see Farrell (2006))

Par (see Farrell (2006))

MultiLimit or Multi (see Farrell (2006))
MultiLimit or Multi (see Farrell (2006))
DeferredChoice (see Farrell (2006))
UnorderedSequence (see Farrell (2006))

Sync
CancelActivity
Exit (see Farrell (2006))

Notes
1. Supported in multiple ways:

a. Implicit Synchronisation when activity completes.

b. Arbitrary Synchroniser can run in parallel.
2. An arbitrary cycle is a cycle with multiple sources and/or sinks (as described in Kiepuszewski (2003)).
Liesbet supports the definition of arbitrary cycles, as any use of activity types within a Liesbet model
definition may create a cycle. However, a Liesbet workflow fragment with arbitrary cycles may be
converted to one consisting solely of multiple-instance activity instances. The algorithm for this conversion
is trivial but is omitted here for brevity. The use of arbitrary cycles, however, should be carefully mar-
shalled by an authoring tool, as their intuitive meaning is often unclear. It is assumed that an authoring
tool will perform a conversion of arbitrary cycles to multiple-instance activity types so that its output will
have such cycles removed. Thus, in considering issues such as verification, we can assume an absence of
arbitrary cycles.
3. Implicit termination (from Kiepuszewski (2003)): A given subprocess should be terminated when there is
nothing else to be done. In other words, there are no active activities in the subprocess and no other activity
can be made active (and at the same time the subprocess is not in deadlock).
Liesbet operates on the basis of implicit termination.

230 FARRELL, SERGOT AND BARTOLINI

3.1. Travel agency

Adapted from PMG (http://www.petripi.org):

Consider a fragment of the process of booking trips involving six steps: Register, (Booking of)
Flight, (Booking of) Hotel, (Booking of) Car, Pay and Cancel. The process starts with activity
Register and ends with Pay or Cancel. The activities Flight, Hotel and Car may succeed or fail.

Presented in the following sub-sections are a number of variants of the Travel
Agency scenario.

3.1.1. Travel Agency 1
Adapted from PMG (http://www.petripi.org)

Every trip involves a flight, hotel and car and these are booked in parallel, having registered with
the travel agent. If all three succeed, the payment follows. Otherwise activity cancel is executed.
Cancel is delayed until all three bookings succeed/fail and does not withdraw work.

We now present a solution, using the Liesbet meta-model.

PaySync = Sync(Completed act (Flight) | Completed act (Hotel) |
Completed act (Car))
CancelSync = Sync(Cancelled act (Flight) + Cancelled act (Hotel)
+ Cancelled act (Car))
PayCancelChoice = Choice (PaySync,Pay; CancelSync,Cancel)
Book = Par(Flight,Hotel,Car)

Seqg (Register, Book, PayCancelChoice)

Here, we execute basic activity Register and structured activities Book and
PayCancelChoice in sequence. Book consists of the basic activities of booking a
Flight, a Hotel and a Car, which are carried out in parallel. Once Book has finished,
PayCancelChoice is executed. It uses two Sync activities, which by definition will not
both succeed (go to Completed) nor both fail (go to Cancelled). If PaySync succeeds
then all booking attempts must have completed successfully and we execute the basic
activity Pay. Otherwise CancelSync will succeed and the basic activity Cancel will be
executed. The purpose of Cancel might be to carry out some house-keeping, such as
updating the agency’s database records.

3.1.2. Travel Agency I1
Adapted from PMG (http://www.petripi.org)

Every trip involves a flight, hotel and car and these are booked in parallel, having registered with
the travel agent. If all three succeed, the payment follows. Otherwise activity cancel is executed.
Activity cancel should be executed the moment the first activity fails and, at the same time, all
outstanding booking activities should be withdrawn.

FORMALISING WORKFLOW 231

We now present a solution, using the Liesbet meta-model.

PaySync = Sync(Completed act (Flight) | Completed act (Hotel) |
Completed act (Car))

CancelSync = Sync(Cancelled act (Flight) + Cancelled act (Hotel)
+ Cancelled act (Car))

Withdraw = Par (CancelActivity(Book), Cancel)

PayCancelChoice = Choice (PaySync,Pay; CancelSync,Withdraw)

Book = Par(Flight,Hotel, Car)

Par (Seq(Register,Book), PayCancelChoice)

This is a variant of the first travel agency solution. It is the same except that the
choice of whether to pay or cancel is made in parallel with the Book activity, meaning
that Book may be cancelled once any of the booking attempts fail. That s, if at any time
CancelSync succeeds the structured activity Withdraw will be executed. This has the
effect of executing the basic activity Cancel and, in parallel, cancelling the booking
activity Book by means of the Liesbet construct CancelActivity.

3.1.3. Travel Agency II1
Adapted from PMG (http://www.petripi.org)

Every trip may involve a flight, hotel and/or car and these are booked in parallel, having registered
with the travel agent. A trip should involve at least a flight, hotel or car but may be any combina-
tion of the three bookings, e.g., a flight and car but not a hotel. If all bookings succeed, the pay-
ment follows. Otherwise activity cancel is executed. Activity cancel should be executed the moment
the first activity fails and, at the same time, all outstanding booking activities should be withdrawn.

We now present a solution, using the Liesbet meta-model. We do not define the
synchronisation activities BookF1lightSync, BookHotelSync, and BookCarSync here.
Their definitions are straightforward and are omitted for brevity.

PaySync = Sync((Completed act (Flight) +
Cancelled act (BookFlightSync)) |
(Completed act (Hotel) +
Cancelled act (BookHotelSync)) |
(Completed act (Car) +
Cancelled act (BookCarSync)))

CancelSync = Sync((Cancelled act(Flight) |
Completed act (BookFlightSync)) +
(Cancelled act (Hotel) |
Completed act (BookHotelSync)) +
(Cancelled act (Car) |
(

Completed act (BookCarSync)))

232 FARRELL, SERGOT AND BARTOLINI

Withdraw = Par (CancelActivity (Book), Cancel)
PayCancelChoice = Choice (PaySync, Pay; CancelSync,Withdraw)

Book = MultiChoice (BookFlightSync,Flight;
BookHotelSync,Hotel;
BookCarSync, Car)

Par (Seqg(Register,Book) ,PayCancelChoice)

This is a variant of the second travel agency solution. It is largely the same except
that we make a MultiChoice for the booking activity, Book, meaning that not all
booking activities, Flight, Hotel, Car, have to be executed. As such, PaySync and
CancelSync are adjusted accordingly, to account for booking activities not being
executed. The activity Pay will eventually be executed, unless one of the booking
activities we do execute fails — then, Withdraw is executed instead.

4. CCS-based Characterisation of Liesbet

We now present the CCS-based (Milner 1989, 1999) language (or ontology in the
parlance of Section 1), LCCS, that we shall use to give a semantic characterisation to
Liesbet. It should be emphasised that LCCS has been conceived as an abstract
machine language whose purpose is to give a somewhat informal account of the
semantics of Liesbet, in order to promote ease of understanding. We provide a
precise characterisation of the semantics of Liesbet using standard CCS in an
accompanying technical report (Farrell 20006).

In the following, we present a brief overview of (standard) CCS and the abstract
machine language, LCCS, and then proceed to describe how we have used LCCS to
give a characterisation of the Liesbet constructs introduced in Section 2.

4.1. An overview of CCS

We present a brief overview of some of the main features of CCS. For readers unfa-
miliar with CCS, (Bruns 1997; Milner 1989, 1990, 1999) are excellent starting points.

First, we assume the availability of an infinite set of action names N, ranged over
by a, b, ..., and a corresponding set of co-names (or, co-actions) N~ = {a"|a € N},
where N and N~ are disjoint and in bijection via ~, and where a~ = a. The set
L =NUN" is the set of labels, ranged over by / and /-, and 7 is a distinguished
silent action, such that 7 ¢ L. The set Act = L U {1} is the set of actions that may
be performed by a CCS agent. We assign o, f3, v ... to range over Act.

The set E of CCS agents is defined inductively. It is the smallest set which includes
the following expressions, where E and E; are already in E (from Milner (1989)):

e agent constants
o o.F — prefix (o € Act)

FORMALISING WORKFLOW 233

> icr Ei — summation, where the indexing set / may be empty, in which case we
write 0 to indicate the deadlocked agent

E\|E; — composition

E\L — restriction (L CL)

E[f] — relabelling. The relabelling function f : Act — Act relabels action names,
where f(/7)=/f"(/)and f(7) =

An agent constant is an agent whose meaning is given by a defining equation. In
the definition 4 =ger E, A4 is an agent constant, and F an agent. The definitional
mechanism is the means by which recursive behaviour may be defined.

Note that, for the Concurrency Workbench of the New Century (CWB-NC) (http://
www.cs.sunysb.edu/~cwb), which is a tool that we use for verification (see Section 5),
‘a denotes ¢, an output on a, and nil denotes 0. Also, the keyword proc is used in
CWB-NC for the definition of agent constants.

In CCS, a system is characterised by a number of agents which may perform
transitions. Note that we often use the term t-synchronisation for t-transitions, in
order to emphasise the notion of synchronisation. (We prefix the word synchronisa-
tion with 7 in order to avoid ambiguity with the use, in this article, of the word
synchronisation in the context of Liesbet’s synchronisation activity types.) The
transitions that a system may make define a labelled transition system
(E,Act, {—"}), where —*C E x E is a transition relation for each « € Act (Milner
1989). The semantics for the set of agents, E, is given by the definition of each
transition relation —* over E. The following set of transition rules enable us to build
the transition relations over each agent in E, using ACT to begin with.

ACT . i‘?M
- I

wESE o Ei E’] <

COM, COM, COM3

ELE FLF ELEFLFE
EFSE'\F EFSE|F’ E|F S E'|F

RES REL CON

EiE/ _ E*}E LN 24 def
—E2E (o g L — E—E =
E\L—»E/\L(agL) El) Y B A;E,(A E)

o ACT allows us to infer transitions for prefixed agents. That is, the agent o.F
may make a transition labelled with action o to the agent F

e Given an agent E; which makes an o-labelled transition to agent Ej, ', we may,
by SUM, infer an o-labelled transition for a summation agent »_ E,, where
j € 1, such that it too transitions to E]’

iel

234 FARRELL, SERGOT AND BARTOLINI

e Given an agent E which makes an a-labelled transition to agent E’, we may, by
COM,, infer an a-labelled transition for a composed agent E|F such that it tran-
sitions to E'|F. Similarly, COM, allows us to infer an o-labelled transition for
the right-hand agent in a composition

e Given two agents E and F that make complementary a-labelled transitions to E’
and F, respectively, we may, by COM;, infer a t-synchronisation for the com-
posed agent E|F to E'|F’

e Given an agent E which makes an a-labelled transition to agent E’, we may, by
RES, infer an a-labelled transition for the L-restricted agent E\L so long as o
or its co-action, is not in L. The restriction \L has the effect of restricting the
scope of an action in E, when named in L, to be E

e Given an agent E which makes an a-labelled transition to agent E’, we may, by
REL, infer an f{o)-relabelled transition from E[f] (which is the result of relabel-
ling names comprising agent E by f) to E’[f] (which is the result of a similar
[f-relabelling of E').

e Given an agent E which makes an o-labelled transition to agent E’, we may, by
CON, infer an o-labelled transition for A4 to E’ just in case 4 is an agent con-
stant whose definition is £

4.2. LCCS abstract machine language

The LCCS abstract machine language is conceived to augment CCS with a library of
agent constants, namely: state-tracking agents for activities, scheduling agents for
structured and basic activity instances, and agents pertaining to the generic activity
types of structured activity types (i.e. Seq, Par, Choice, etc). All of these have an
elaboration in the CCS characterisation of Liesbet, presented in Farrell (20006).

LCCS defines a countably infinite number of Tracker” agents, which serve to
maintain the current state of activity instances (that is, Running, Ready, Completed,
or Cancelled). n is the number of structured activity instances that the pertaining
instance has as children. Tracker” agents define a number of channels, which can be
used to query the current state of the agent, and to progress the state of the agent,
specifically:

e exec (resp., comp, canc) — used to instruct the instance to move to the Running
(resp. Completed, Cancelled) state

e runn (resp. cotd, cald, £ind, nread) — used to query whether the instance is a
Running (resp. Completed, Cancelled, Finished or not Ready) state

e yes, no — used to answer state queries.

In defining a semantics for Liesbet, it is appropriate to consider that the pro-
gression of structured activity instances takes priority over the completion, or can-
cellation, of basic activity instances. That is to say, on executing the root instance of
a workflow model, we advance the model internally as far as we can go. Then, we

FORMALISING WORKFLOW 235

offer the basic activity instances that are now in a Running state to the environment.
The environment may (in time) signal the completion, or cancellation, of one of these
instances. Then, again, we progress the model internally as far we can go, and
proceed, once more, to offer the current set of running basic instances to the envi-
ronment to select one to complete, or cancel. This procedure continues until all
instances have reached a finished state.

In view of this intended behaviour, we must progress structured activities ahead of
progressing basic activities in the model. As a result, we need some way of specifying
the priority of structured instances over basic instances. As there is no notion of
priority in CCS, we code an explicit scheduler into the semantics. In an alternative
characterisation using Cleaveland’s Prioritised CCS (PCCS) (Cleaveland et al. 1996),
which we present in Farrell (2006), we make use of the facility to specify priorities
and, thus, avoid the need for an explicit scheduler.

LCCS defines (a countably infinite number of) scheduler agents, Scheduler’,
where s is the number of structured activity instances that exist within a model. It has
channels lock, idle, prog and reset.

e lock — may be used by an agent pertaining to the generic activity type of a
structured instance (e.g. Seq2 — see Section 4.3) to grab execution

e idle (resp. prog) — an agent that has grabbed execution using lock may signal
that it has no work to do (resp. has done some work) using idle (resp. prog)

e reset — an agent that has signalled that it has idled (using idle) may be reset,
in order that it may grab execution again, using reset

Whenever the scheduler agent receives s synchronisations on idle, without any
structured instance indicating progression, this indicates that all of the structured
instances are currently idling. In this case, one of the basic instances may either
go to Completed, or Cancelled. To realise this logic, LCCS defines a Basics”
agent, where b is the number of basic activity instances that exist within a model.
Alternatively, if a structured instance reports progression, then all of the struc-
tured instances are reset so that they may attempt to grab the execution lock
again.

In the LCCS-characterisation, any structured instance may attempt to grab the
lock at any time, unless it has done so already and has not been reset. An
alternative, and (arguably) equally valid semantics, is to impose some order by
which structured instances may claim the execution lock. This would lead to a
reduced state space, which would be desirable for more efficient verification.

LCCS also defines the agents Comp and Idle. The agent pertaining the generic
activity type of a structured instance will eventually evolve to Comp, in order that
the Tracker” agent pertaining to the structured instance may be told to move
into a Completed state. Note that such completion will not occur until all of the
children of the pertaining instance have themselves moved to a finished state. The

236 FARRELL, SERGOT AND BARTOLINI

agent will then evolve into a recurring Idle agent, whose purpose is to grab the
execution lock, but report idle. This occurs in order that all structured instances
report their status prior to allowing a basic instance to complete or cancel.

Finally, LCCS defines a number of other agents, which pertain to Liesbet’s
generic activity types for structured activities, namely Seq, Par, Choice etc. We shall
present the (standard) CCS definitions of these agents, in the following section, in
order to give a flavour of the CCS semantic characterisation.

4.3. LCCS-characterisation of Liesbet workflow models

We provide Liesbet models with an operational semantics by giving their transla-
tion to LCCS. The translation process is documented in full in Farrell (2006). For
the purposes of this article, it is sufficient to present the translation informally. It is
also worth noting that we have implemented a translator for Liesbet models, which
outputs their characterisations in CCS, so that properties of the models may be
verified using CWB-NC.

For the translation process, we start at the root of the given Liesbet workflow
model, and work our way down the workflow tree in a depth-first fashion. The
translation process assumes that there will be no cycles in the workflow model. As
documented in Section 2.11, it is a reasonable stipulation to make that Liesbet
models are free from cycles. The workflow engine that we have implemented
implements a check for such cycles.

For every structured activity instance, a Tracker” agent will be inserted into the
LCCS workflow specification, to run in parallel (|), at the top level. Also, there
will be inserted an agent pertaining to the generic activity type of the activity
instance, such as Seqg2 for a sequence with two children. Both of these agents have
their channels suitably relabelled, in order to connect them together, and to
connect them to the scheduler agent (see Section 4.2). For every basic activity
instance, there is a suitably relabelled TrackerO agent, which is set to run, in
parallel, at the top level.

We now proceed to present the definitions of the agents for the generic activity
types. There will be a definition of Sed’, in the translation of a workflow model, for
each distinct number of child types of a Seq Liesbet activity type. In the following
example, one of the Segs has two children — as such, it is called Seqg2. Note that the
child types are executed in decreasing order. Thus, the first item in a sequence should
be labelled n, for a sequence with n child instances; the next n—1, and so on. This
convention simplifies the definition of the agents, which can be seen from studying
Seq3. For this activity type, we are able to make use of the definition of Seq2f.
A definition for a 4-child sequence would make use of the definition of Seq3f,
and so on.

FORMALISING WORKFLOW 237

proc Seqgz2 =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'exec2.'prog.Seqg2f +
no.'idle.reset.Seqg2))

proc Seqgl2f =
lock.'find2. (yes2.'execl. "'prog.Comp +
no2.'idle.reset.Seqg2f)

proc Seqg3 =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'exec3.'prog.Seq3f +
no.'idle.reset.Seqg3))

proc Seq3f =
lock.'find3. (yes3.'exec2.'prog.Seg2f +
no3.'idle.reset.Seqg3f)

proc SeqgCancel2 =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'exec2. 'prog.SeqgCancel2f +
no.'idle.reset.SeqgCancel?2))

proc SegCancel2f =
lock.'cotd2. (yes2.'execl. "'prog.Comp +
no2.'cald2. (yes2.'canc.yes. 'prog.Idle +
no2.'idle.reset.SegCancel2f))

The definition for a Seq’ agent executes its first child instance, (labelled n), and
then effects its corresponding ‘finishing’ agent, namely, Seq'f to effect the remaining
logic. That being, to wait for the first instance to finish, and, then, to execute the next
one. After that, the logic for Seq”'f is exposed. And so on, until we reach Seq2f,
whereon, we wait for the penultimate instance to finish, and then execute the
last. Following that, we expose Comp, to complete the instance (see Section 4.2).
SegCancel” differs from Sed’, in that whenever a child instance is cancelled, the
SegCancel” instance is cancelled.

Similarly, there will be a version of Par” in the translation of the workflow model
for each distinct number of child types of a Liesbet Par. The definition of Par2 for
parallel types with two children is shown. It executes all children together (in the
same execution window).

proc Par2 =
lock.’cald. (yes.’idle.reset.Idle +
no.’runn. (yes. 'execl. "exec2. 'prog.Comp +
no.’idle.reset.Par2))

238 FARRELL, SERGOT AND BARTOLINI

There will be distinct versions of DefaultChoice” and DefaultChoice” f for each
distinct number of continuation child types (not including the default) of a Liesbet
DefaultChoice.

In DefaultChoice2f, which is exposed once we ascertain that the choice
activity type has been put into a running state (by its parent) and have set the
guard instances of the choice type running, we check to see whether any of the
guard instances have completed. If so, we expose DefaultChoice2fComp, which
serves to execute a continuation instance pertaining to one of the completed
guard instances. It also cancels the remaining continuation instances (including
the default instance). If, on the other hand, none of the guard instances have
completed, but, commensurately, none of them are running either, then all of
them must have been cancelled. In this case, we execute the default continuation
instance. If none of these possibilities obtain, we expose another copy of
DefaultChoice2f.

proc DefaultChoice2 =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'execlg. 'exec2g. 'prog.DefaultChoice2f +
no.'idle.reset.DefaultChoice?2))

proc DefaultChoice2f =
lock. 'cotdlg. (yeslg.DefaultChoice2fComp +
nolg. 'cotd2g. (yes2g.DefaultChoice2fComp

+
no2g. 'runnlg. (yeslg.'idle.reset.DefaultChoice2f
+
nolg. 'runn2g. (yes2g.'idle.reset.DefaultChoice2f
+

no2g.'canclc.yeslc.'canc2c.yes2c. 'execd. 'prog.Comp))))

proc DefaultChoice2fComp =
('cotdlg. (yeslg. ('win.'execlc.'tidy.nil +
'lose. 'canclc.yeslc.'tidy.nil) +
nolg.'lose.'canclc.yeslc.'canclg.yeslg. 'tidy.nil)
| 'cotd2g. (yes2g. ('win.'exec2c.'tidy.nil +
'lose.'canc2c.yes2c. 'tidy.nil) +
no2g.'lose.'canc2c.yes2c.'canc2g.yes2g. 'tidy.nil)
| win.tidy.lose.tidy.'cancd.yesd. 'prog.Comp) \{win, lose,tidy}

For Choice”, which has no default continuation instance, we do much the same.
However, in the case that all guard instances get cancelled, we cancel the choice
instance, as shown.

FORMALISING WORKFLOW 239

proc Choicez =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'execlg. 'exec2g.'prog.Choice2f +
no.'idle.reset.Choice?2))

proc Choice2f =
lock.'cotdlg. (yeslg.Choice2fComp +
nolg. 'cotd2g. (yes2g.Choice2fComp

T

no2g.'runnlg. (yeslg.'idle.reset.Choice2f
+

nolg.'runn2g. (yes2g.'idle.reset.Choice2f
+

no2g.'canclc.yeslc.'canc2c.yes2c. 'canc.yes. 'prog.Comp))))

proc Choice2fComp =
('cotdlg. (yeslg. ('win.'execlc.'tidy.nil +
'lose.'canclc.yeslc.'tidy.nil) +
nolg.'lose.'canclc.yeslc.'canclg.yeslg.'tidy.nil)
| 'cotd2g. (yes2g. ('win.'exec2c.'tidy.nil +
'lose.'canc2c.yes2c.'tidy.nil) +
no2g.'lose.'canc2c.yes2c. 'canc2g.yes2g. 'tidy.nil)
| win.tidy.lose.tidy. 'prog.Comp)\{win, lose,tidy}

There will be distinct versions of MultiChoice” and MultiChoice”f for each
distinct number of continuation child types of a Liesbet MultiChoice. For
MultiChoice”, once it is running, and we have executed its guard instances, we
proceed to MultiChoice” f, whereon, we check for continuation instances that
are still in the ready state. For those that are, we check their guard instances and
act appropriately — for those which have now completed successfully, we execute
their corresponding continuation instances, for those which have been cancelled,
we cancel their corresponding continuation instances, and for those which are still
running, we do nothing. If all guard instances have finished, we expose Comp.

proc MultiChoice2 =
lock.'cald. (yes.'idle.Idle +
no.'runn. (yes. 'execgl.'execg2.'lock.MultiChoice2f +
no.'idle.MultiChoice2))

proc MultiChoice2f =
lock. ("'nreadcl. (yescl.'done.nil +
nocl.'cotdgl. (yesgl. 'execcl.'done.nil
+
nogl.'caldgl. (yesgl. 'canccl.yescl.'done.nil +
nogl. 'done.nil))

240 FARRELL, SERGOT AND BARTOLINI

|
'nreadc?. (yesc2.'done.nil +
noc?2.'cotdg2. (yesg2. 'execc2.'done.nil
+
nog2.'caldg2. (yesg2.'cancc?2.yesc2.'done.nil +
nog2.'done.nil))
\
done.done.'findgl. (yesgl.'findg2. (yesg2.Comp +
nog2.MultiChoice2f)
+
nogl.MultiChoice2f))\{done}

Finally, the definitions of FreeChoice and Empty are presented. In the first case,
we may either complete or cancel the instance — a non-deterministic choice. In the
second case, we trivially complete the instance.

proc FreeChoice =
lock.’cald. (yes.’idle.reset.Idle +
no.’runn. (yes. ('comp.yes. 'prog.Idle +
"canc.yes. 'prog.Idle) +
no.’idle.reset.FreeChoice)
proc Empty =
lock.’cald. (yes.'idle.reset.Idle +
no.’runn. (yes.’comp.yes. 'prog.Idle +
no.’idle.reset.Empty))

We defer a presentation of the semantic characterisation that we have provided
for Sync and CancelActivity activity types to Farrell (2006), as it is rather
involved.

4.4. A complete example

We now present a complete example: Par (Seq(A,B), Seq(B,C)). It is a parallel
activity consisting of two sequences, which respectively consist of instances of
basic activity types A and B, and B and C. Note that we have annotated the
output from the translator (that we have implemented for Liesbet models),
which already labels instances with a number, by adding information concern-
ing the customised activity type of instances. For brevity, we have also
replaced the relabelling of names for agent constants by ellipses; that is we simply
write [...].

FORMALISING WORKFLOW 241

KA K A A KRR A A A A KRA A AR AR I AR A A A A A AR A AR A AR XA K

* LCCS Verification Run ****xkddkkkkxdk

* # 0

* Generated from: file:owl/LiesbetTest.xmi
* On: Tue Mar 9 14:39:25 BST 2006

dhkhkhkkhkhkhkhkhkhhkhkhkhkhkhkrhrkhkhkkhkhkkhkhkkhkhkhkhkhkhkxkhkxkx

* x

* Definitions of Tracker, Scheduler and some other agents have
* been cut from here. Refer to Farrell (2006) for full example.

* %
proc Seqg2 =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'exec2.'prog.Seqg2f +
no.'idle.reset.Seqg2))
proc Seqg2f =

lock.'find2. (yes2.'execl.'prog.Comp + no2.'idle.reset.Seqg2f)

proc Parz =
lock.'cald. (yes.'idle.reset.Idle +
no.'runn. (yes.'execl. 'exec2.'prog.Comp +
no.'idle.reset.Par2))

proc Workflow(O =
(

***Instance:0 **Par (Seq(A,B), Seq(B,C))
Tracker2[..] | Par2[..] |

***Instance:1 **Seqg(A,B)
Tracker2[..] | Seg2[..]]|

***Instance:2 **A
TrackerO[..] |

***Instance:3 **B
TrackerO[..] |

***Instance:4 **Seq(B,C)
Tracker2[..] | Seg2[..] |

***Tnstance:5 **B
TrackerO[..] |

***Instance:6 **C
TrackerO[..] |

Basics4[..] | Scheduler3

)N{L)

242 FARRELL, SERGOT AND BARTOLINI

5. Verification of Liesbet Models

In this section we introduce our support for static verification of the key property
of model soundness. As documented in Farrell (2006), we also support the verifi-
cation of LCCS characterised Liesbet models against arbitrary temporal logic
specifications.

5.1. Liesbet model soundness

In the verification of LCCS-characterised Liesbet models, we are fundamentally
concerned with the notion of model soundness, which is a property of the control
perspective. Van der Aalst and colleagues have defined this property (Verbeek et al.
2001; van der Aalst 2004). We now present a definition of soundness based on theirs
but adapted for our needs. A workflow model is sound (at the control perspective) if
(and only if) it satisfies the following conditions.

e Option to complete — It should always be possible to complete a workflow
instance

e Proper completion — It should not be possible that the workflow model signals
completion of an instance while there is still work in progress for that instance

e No dead activities — For every activity instance that may be created in the
enactment of a workflow model, there must exist at least one enactment path
where that instance is run. This property ensures that every activity instance
plays a meaningful role in the workflow model.

The first property, option to complete, stipulates that the workflow model should
not be subject to locking along any of its enactment paths. Specifically, we consider
two types of locking, namely, deadlock and livelock.

A Liesbet model is considered to be in a state of deadlock whenever we reach
a state where some activity instances are yet to finish while not being able to
progress the model any further. Model deadlock may be introduced into a model,
through an inappropriate use of synchronisation primitives (see Farrell (2006)).
Using these, we may block the execution of an instance until some model state is
realised. However, if this state is never realisable, the blocking will be a source of
deadlock. Such deadlock is model specific. There is also one other potential kind
of deadlock. It is conceivable that in our semantic characterisation we have
introduced sources of deadlock, for instance in the process specifications for the
generic activity types. However, as explained in Farrell (2006), this other kind of
deadlock does not arise.

Livelock in a LCCS Liesbet model would be where there are infinite executions
of LCCS reductions within the model without any progress being made towards
(proper) completion of the model. This is not considered to be a significant issue for
LCCS-characterised Liesbet models. Model livelock pertains to the situation where

FORMALISING WORKFLOW 243

we define an infinite cycle within a Liesbet model. A simple example of this is
X =Seq(A,X). As described in Section 2.11, we stipulate that cyclic behaviour be
limited to that which can be expressed using multiple-activity instances (so-called
structured cycles). For this example, we would use a MultiSeq activity type (see
Farrell (2006)). For structured cycles, model livelock is not possible, under the
assumption that structured cycles will eventually be exited. As documented in Farrell
(2006), the possibility of livelock at the level of the LCCS characterisation can be
discounted.

We define proper completion for an LCCS Liesbet model to be achieved when
the root workflow instance and all of its descendant instances have reached finished
(i.e., Cancelled or Completed) states. As, according to the LCCS semantics for
Liesbet, the root instance may not complete until all of its child instances have
entered a finished state, it is sufficient to say that, for proper completion, the root
instance should be in a finished state. This will occur if, and only if, we have an
absence of locking in a LCCS Liesbet model. As a result, verification of LCCS
Liesbet model soundness reduces to verifying an absence of model deadlock and an
absence of dead activity instances (Farrell 2006).

It is worth noting that the general procedure for verification, including that for
model soundness, splits a Liesbet model into a number of verification runs based on
isolated scopes. This is because isolated scopes can not be permeated by synchro-
nisation primitives, and so can be verified in isolation when it comes to model
soundness. A full argument for this is presented in Farrell (2006). Thus, we start with
the root instance of the workflow model for the first verification run, seeking to
check every path through the workflow model for deadlock and dead activity in-
stances. Whenever an instance of an isolated scope would be created in the verifi-
cation run, that instance is skipped. The scope type for that instance will be verified
in a separate verification run, where it can be treated as its own workflow, with itself
as the root type. The results of the verification process are the sum of the separate
verification runs.

5.2. Example verification of LCCS-characterised model using concurrency
workbench

We present a simple verification example, where we check for an absence of deadlock
in the Liesbet model presented in Section 4.4: Par (Seq(A,B), Seq(B,C)). That is,
we wish to check that along all enactment paths, the root instance (and thus the
workflow model as a whole) eventually reaches a finished state. This is a key property
to check in verifying the soundness of workflow models, as we have described in
Section 5.1.

In the definition of the scheduling agent, Scheduler” (which we describe briefly in
Section 4.2), we perform an output on (unrestricted) channel rfind, once the root
instance has reached a finished state. In order to check for an absence of deadlock,
we need to verify that, on all enactment paths, an output on rfind eventually occurs.
The test that we write is the simple modal-mu formula:

244 FARRELL, SERGOT AND BARTOLINI

prop cotd =

min X = <->tt /\ [-'rfind]X

The output from running this test under CWB-NC for the example model is
presented.

>cwb-nc.bat ccs

cwb-nc.bat ccs

Currently supported languages are : ccs, pccs, sccs, tccs, csp,
lotos

The Concurrency Workbench of the New Century
(Version 1.2 --- June, 2000)

cwb-nc> load test.ccs

Execution time (user,system,gc,real):(0.047,0.000,0.000,0.047)
cwb-nc> load test.mu

Execution time (user,system,gc,real): (0.000,0.000,0.000,0.000)
cwb-nc> chk Workflow0O cotd

Invoking alternation-free model checker.

Building automaton...

......... 1000...

States: 1343

Transitions: 1529

Done building automaton.

TRUE, the agent satisfies the formula.

Execution time (user,system,gc,real):(16.499,0.000,3.343,16.499)
cwb-nc>

5.3. Observational equivalence of LCCS-characterised Liesbet models

The question of when two workflows are equivalent is an important issue in the study
of workflow. As reported in Hidders et al. (2005), this is a non-trivial question. The
crux is how to treat internal actions — those actions which progress the model but are
not concerned with the fulfilment of (basic) activity instances. One approach to
formalising workflow equivalence is that taken by Kiepuszewski (2003). There,
workflows are considered to be equivalent if there exists a weak bisimulation (as
defined by Milner for CCS) between them (where activity completions are considered
to be the only observable actions), with the additional requirement that all enact-
ment paths within the workflows must lead to proper completion. Notwithstanding
the issues highlighted in Hidders et al. (2005), which we do not seek to resolve, for
simplicity we have adopted the approach taken in Kiepuszewski (2003). (We could
also include the possibility of cancelling basic activity instances as part of the set of
observable actions, but omit to do so for simplicity).

The definition of Observational Equivalence (Milner, 1989) requires some addi-
tional notation. The transition E =% E’, for o« € Act, means that £ may transition
to £’ through an o-labelled transition prefixed and postfixed by a number (including

FORMALISING WORKFLOW 245

zero) of t-transitions. That is, E=*E'if E(—")"(—*)(—=")E’, where p,q > 0.
Also, for 7 € Aet®, ¢ € L is the sequence gained by deleting all occurrences of 7
from ¢.

Observational Equivalence, ~, is the largest symmetric relation such that when-
ever E ~ F,if E—*E’' then F =%~ E'. Elaborating, two CCS agents are obser-
vationally equivalent if and only if, abstracting away from z-transitions, whenever
either agent can make an o-labelled transition the other agent can similarly perform
an o-labelled transition and the resulting agents are themselves observationally
equivalent.

In order to be able to define an appropriate notion of equivalence between
Liesbet models, we need to make visible transitions pertaining to the completion of
basic activities. We define two LCCS-characterised Liesbet models to be model
equivalent just when they are observationally equivalent according to the offering, to
the environment, of transitions pertaining to the completion of basic activities, and
completion (or cancellation) of the root instance. Further details are deferred to
Farrell (2006).

The concept of model equivalence is demonstrated in the following examples.

Liesbet Model Equivalence, Example 1 v Strong Equivalence

Observational equivalence is a weaker notion than strong equivalence. For strong
equivalence, we do not abstract away from t-actions. An example that highlights this
distinction is the following simple one.

Let Liesbet Model WorkflowO be defined as: A, and Liesbet Model Work-
flowl be defined as Seq(a). These two models are model equivalent, as they both
effect just A. However, they would not be equivalent if we were to define model
equivalence on the basis of strong equivalence. This is because, for model
Workflowl, there is more internal activity in encapsulating A within a Seq activity
type.

If we check their observational equivalence under CWB-NC, we can see that they are
observationally equivalent.

cwb-nc> load test.ccs

Execution time (user,system,gc,real):(0.031,0.000,0.000,0.031)
cwb-nc> load test.mu

Execution time (user,system,gc,real): (0.000,0.000,0.000,0.000)
cwb-nc> eqg -S obseqg WorkflowO Workflowl

Building automaton...

States: 59

Transitions: 57

Done building automaton.

Transforming automaton...

Done transforming automaton.

TRUE

Execution time (user,system,gc,real):(0.125,0.000,0.000,0.125)

246 FARRELL, SERGOT AND BARTOLINI

But, if we check for strong equivalence, we can see that they are not found to be
equivalent. Strong equivalence is too strong a notion for workflow model equiva-
lence.

cwb-nc> eq -S bisim WorkflowO Workflowl

Building automaton...

States: 59

Transitions: 57

Done building automaton.

FALSE. ..

Workflowla satisfies:
<E>LKE>CE>CE>E>CE>LE>E><E><E> [t] £

Workflowlb does not.

Execution time (user,system,gc,real):(0.078,0.000,0.000,0.078)

cwb-nc>

Liesbet Model Equivalence, Example 2 v Trace Equivalence

Observational equivalence is a stronger notion than trace equivalence. For trace
equivalence, we are concerned solely with comparing the possible sequences of basic
activity completion of workflow models. For observational equivalence, however, we
seek to compare the choices of basic activities to complete at corresponding stages of
evolution of workflow models.

An example that highlights this distinction is the following simple one. Let
model WorkflowO be defined as Seq(A, Choice(Empty, B, Empty, C)), and let
Workflowl be defined as Choice(Empty, Seq(A, B), Empty, Seq(A, C)). For
WorkflowO, we do not make a commitment on the choice between B and C until
after we have performed A. For Workflowl, in contrast, we make the choice
before we execute A. These models do not maintain the same choices of activities
to complete at corresponding points in their evolution. That is, after A has been
completed, both B and C are available in WorkflowO, whereas either B or C is
available in Workflowl. However, the two models are trace equivalent, as they
both manifest the sequences of activity completion: A,B and A,C.

If we check their observational equivalence under CWB-NC, we can see that they
are not observationally equivalent. As reported, WorkflowO is capable of com-
pleting either B or C after completing A, but Workflowl is not capable of this.

FORMALISING WORKFLOW 247

cwb-nc> eqg -S obseq Workflow0 Workflowl
Building automaton...

......... 1000.........2000.........3000.........4000.........5000
......... 6000.........7000.........8000.........9000.........10000
......... 11000.....

States: 11523
Transitions: 14647
Done building automaton.
Transforming automaton...
Done transforming automaton.
FALSE. ..
WorkflowO satisfies:
<<'eyes a>>(<<'rfind>>tt /\ <<'eyes b>>tt /\
<<'eyes c>>tt)
Workflowl does not.
Execution time
(user, system,gc,real) : (4529.139,941.599,3332.864,5475.923)

cwb-nc>

But, if we check for trace equivalence, we can see that they are found to be
equivalent. Trace equivalence is too weak a notion for workflow model equivalence.

Execution time (user,system,gc,real):(0.024,0.004,0.004,0.179)
cwb-nc> eq -S trace Workflow0O Workflowl
Building automaton...

......... 1000.........2000.........3000.........4000.........5000
......... 6000.........7000.........8000.........9000.........10000
......... 11000.....

States: 11523

Transitions: 14647

Done building automaton.

Transforming automaton...

Done transforming automaton.

TRUE

Execution time (user,system,gc,real):(42.283,1.676,12.633,44.286)

6. Related Work, Discussion and Future Work

In this work we have considered the formal representation of workflow for the
purposes of performing (static) verification of certain properties, such as workflow
soundness. We have thereby sought to make a contribution to the work of the
Process Modelling Group (PMG) (http://www.petripi.org), which is concerned with
understanding the behavioural nature of processes, such as business processes (which
are their primary concern), and seeking to understand the utility of formal tools,
such as Petri-nets (Reisig and Rozenberg 1998) and CCS/n-calculus (Milner 1989,
1999; Sangiorgi and Walker 2001), for modelling and verifying the behaviour of
processes.

248 FARRELL, SERGOT AND BARTOLINI

The YAWL Workflow Patterns are a significant contribution made by members
of the PMG community (van der Aalst and ter Hofstede 2002, 2005; Kiepuszewski
2003; van der Aalst 2004). They are the result of extensive studies of many
workflow languages and tools, and many representative workflow scenarios, in
order to arrive at a definitive set of representational requirements, or ‘patterns’,
for workflow. Our contribution to the PMG effort is primarily to provide a
formal characterisation (i.e., at the computational view, Section 1) of the YAWL
workflow patterns, and as a consequence to fix the meaning of workflow models
that make use of such patterns.

Approaches to the modelling of YAWL workflow patterns include (van der
Aalst and ter Hofstede 2002, 2005; Dong and Shensheng 2003, 2004; Kie-
puszewski 2003; Puhlmann and Weske 2005; Stefansen 2005a, b; van der Aalst
et al. 2004). van der Aalst et al. (2004) presents a graphical (authoring view)
meta-model for the definition of workflow models, which is formally underwritten
with a Petri-net inspired transition-system based semantics (the computational
view).

We have presented a meta-model, called Liesbet, at the information view. This
view is primarily concerned with describing concisely the sufficient and (as much as
possible) necessary representational requirements for the workflow modelling ap-
proach. Liesbet is formally underwritten (at the computational view) by a semantic
characterisation in Milner’s Calculus of Communicating Systems (Milner 1989,
1990, 1999), and in a prioritised form of CCS thanks to (Cleaveland and Hennessy
1990, 1996), as presented in Farrell (2006). In this article, we have used a conceived
abstract machine language, LCCS, to provide a more informal account of the
semantics of Liesbet.

In Dong and Shensheng (2003) and Puhlmann and Weske (2005) (resp. Stefansen
(2005a)) are presented m-calculus-based (resp. CCS-based) characterisations of the
YAWL patterns. (Actually, these works could all be classified as being CCS-like, in
that none of them make use of the channel-passing aspect of the n-calculus and thus
could be viewed as using variants of CCS rather than n-calculus.)

A key difference in our work lies in the capability for arbitrary querying of
workflow state facilitated by the use of state tracking agents — the Tracker”
agents. These other approaches only support very primitive querying against
workflow state, in order to facilitate the Milestone YAWL workflow pattern.
Moreover, in our approach, in synchronising the performance of activity in-
stances, or in cancelling activity instances, a model author can, through the use
of isolated scopes and reference query types, gain a fine level of control over
how activity instances are synchronised, or what instances are cancelled.
The support of arbitrary synchronisation patterns, such as those highlighted in
Keller et al. (2003) and Belhajjame et al. (2001), has been a requirement in our
work.

These other works do not appear to provide any tool support for the purposes of
verification either. We have implemented a tool which translates Liesbet models to
Milner’s CCS, or Cleaveland’s PCCS, so that properties of Liesbet models may be

FORMALISING WORKFLOW 249

verified using the Concurrency Workbench of the New Century (CWB-NC), (http://
www.cs.sunysb.edu/~cwb).

We have sought to make verification under CWB-NC practicable by ensuring
that the CCS/PCCS characterisations are as efficient as possible in their semantic
characterisation of Liesbet. Unfortunately, both characterisations do still lead to
rather inflated state spaces. It is notable that the simple example, presented in
Section 5.2, had a state space, when constructed by CWB-NC, of 1463 states. When
compared with the output from CWB-NC for the PCCS model of 53 states, it is
quite clear to see that the use of an explicit scheduler in the CCS semantics does
lead to an explosion in the size of the state space, even for such a simple model.
It is notable that the minimal state space (as argued in Farrell (2006)) for this
particular model is 15 states. As described in Farrell (2006), we have provided
another semantic account of Liesbet which minimises the possible state space of
a Liesbet model. It is this semantic account, presented in the Situation Calculus
(Reiter 2001), which provides the formal basis of our workflow engine for
Liesbet.

It is important to note a distinction between data-driven and process-oriented
computational models for workflows and compositions. YAWL’s semantic charac-
terisation presented in van der Aalst et al. (2004) is data-driven, but this does not
mean that the YAWL workflow patterns are necessarily best characterised using a
data-driven approach.

A process-oriented workflow model, such as one based on CCS or m-calculus,
will principally operate in terms of the consumption (that is, execution) of
process actions. An action is scheduled for consumption whenever it reaches the
head of the process specification, and as actions are consumed they are removed
from the head. In a data-driven approach, such as Petri-nets generally, an
activity is scheduled for execution whenever there exist token(s) in the input
conditions of an activity. If tokens are fed back to these input conditions, then
the activity might be executed many times. In the process-oriented approach, we
would need to replicate the process definition explicitly to achieve something
similar. Our LCCS characterisation of the YAWL workflow patterns is primarily
process-oriented, although the use of Tracker” agents, to record instance state,
also gives it a data-driven flavour, where these agents could be viewed as a state
chalkboard.

Certain artefacts that are easily represented using a process-oriented approach
may not be so easily represented using a data-driven approach, and vice versa.
Indeed, criteria that we have alluded to in the Introduction to this article in-
clude the eloquence, or succinctness of the representation, as well as its intui-
tiveness. Perhaps, we should also add to that the requirement to be able to
represent the state spaces of workflow models minimally as our Situation Cal-
culus approach, documented in Farrell (2006), does. It is certainly the case, as
we argue further in Farrell (2006), that the CCS and PCCS representations fall
rather short on these criteria; while some of their failings are compensated for
(in part) by the use of an abstract machine language, such as LCCS, which

250 FARRELL, SERGOT AND BARTOLINI

serves to abstract (by means of defined agent constants) from some of the detail
of the technical underpinnings of the semantics, while still providing a compu-
tational view of Liesbet models.

There is a need to understand the nature of the business processes that we
would like to represent in order to understand which is more appropriate, in which
circumstances. This is a stated aim of PMG. The YAWL workflow patterns
originated from researchers who are members of this group; now the group is
actively looking to evolve their understanding of the behavioural nature of business
processes in order to further ground studies into the use of formal tools for their
representation.

It is worth noting that we have extended the Liesbet meta-model to be able
to represent the control perspective of WS-BPEL (OASIS 2005) for the purpose
of verification of soundness of WS-BPEL compositions. Approaches to the
formal specification of WS-BPEL (OASIS 2005) compositions, typically for the
purpose of verifying certain properties of compositions, include (Foster et al.
2003; Koshkina and van Breugel 2003; Duan et al. 2004a, b; Ferrara 2004
Fisteus et al. 2004; Fu et al. 2004; Viroli 2004; Ouyang et al. 2005; Farahbod
et al. 2005; Kazhamiakin and Pistore 2005; Lucchi and Mazzara 2006). More
information regarding our characterisation of WS-BPEL will be provided in a
future report.

The work presented in this report is part of a larger effort looking at the
planning of fulfilment strategies for (primarily, enterprise) workflows. Essentially,
we use Liesbet models, as abstract templates, to drive the planning procedure
for the realisation of a business process, where the planned strategy must satisfy a
collection of constraints. We also need to verify properties of these abstract
workflows, such as soundness Farrell (2006), before they can be used to guide the
planning process. Although we allow an arbitrary representation for the abstract
workflow models, we have sought to propose an ontology for them, and for this
purpose the YAWL workflow patterns were a natural choice. An obvious alter-
native would be WS-BPEL (OASIS 2005), and formal models for this language
could easily be used in our work instead, as could many other ontologies, such as
PSL (Gruninger 2003).

In Farrell (2006), we present full details of the work described in this article.

Appendix — Liesbet (Easy Syntax) Grammar
The following is a presentation of the grammar of the Easy Syntax for Liesbet in

BNF (Backus-Naur Form). Refer to Farrell (2006) for full details regarding Liesbet
constructs.

FORMALISING WORKFLOW 251

<Liesbet_Model> ::= <Activity Type> <Activity_Type_ Defs>
<Activity Type Defs> <Activity Type Def>

<Activity Type Def> <Activity Type Defs>
<Activity Type Def> ::= <Activity Type Name> = <Activity Type>
<Activity Type> <Activity> (<ActConds>)

<Activity Type Name> ::= o|B|y]..
<Activity> <Activity Type_Name> | Act | <StructAct>
<ActConds> join (<GuardAct>) | trans(<GuardAct>) |
join (<GuardAct>), trans (<GuardAct>)
<StructAct> ::= <CancelActs> | <Choices> | <Merges> | <Empty> | <Exit> |
FreeChoice | <MultiActs> | <ParSeg> | <SyncActs>
<CancelActs> ::= CancelActivity(<Activity_ Type_ Name>) |
CancelActivity(<Activity Type Name> in <Activity Type Name>)
<Choices> ::= DefaultChoice (<GuardContActs>; <ContAct>) |
Choice (<GuardContActs>) | DeferredChoice (<ContActs>) |
MultiChoice (<GuardContActs>) | MultiChoiceMin (<T>, <GuardContActs>)
<Merges> ::= Disc(<GuardActs>; <ContAct>) | Multimerge (<GuardActs>; <ContActs>)
<MultiActs> ::= <MultiLimitActs> | <MultiNoLimitActs>
<MultilimitActs> ::= MultilLimit (<T>, <Go>, <ExecAct>) |
MultiSegLimit (<T>, <Go>, <ExecAct>)
<MultiNoLimitActs> ::= Multi (<Go>, <ExecAct>) | MultiSeq(<Go>, <ExecAct>)
<ParSeqg> ::= Par (<ExecActs>) |
Seqg(<ExecActs>) | SegCancel (<ExecActs>) | UnorderedSeq(<ExecActs>)
<SyncActs> ::= Sync (<GoQuery>) | Sync(<StopQuery>, <GoQuery>)
<GuardContActs> ::= <GuardAct> <ContAct> | <GuardAct> <ContAct>; <GuardContActs>
<GuardActs> ::= <GuardAct> | <GuardAct>, <GuardActs>
<ContActs> <ContAct> | <ContAct>, <ContActs>
<ExecActs> := <ExecAct> | <ExecAct>, <ExecActs>
<GuardAct> ::= <Activity Type Name> | <Activity Type>
<ContAct> <Activity Type Name> | <Activity Type>
<DefAct> <Activity Type Name> | <Activity Type>
<ExecAct> ::= <Activity Type_Name> | <Activity Type>
<Go> ::= <Activity Type Name> | <Activity Type>
<T> ::= 1 | 2 | .
<GoQuery> ::= <Query>
<StopQuery> ::= <Query>
<Query> ::= <Query>|...|<Query> | <Query>+...+<Query> | QueryOnAct | True | False
<QueryOnAct> ::= <QueryOnCompletedAct> | <QueryOnCancelledAct>
<QueryOnNotReadyAct> | <QueryOnFinishedAct>
<QueryOnCompletedAct> ::= Completed Act (<Activity_Type_ Name>) |
Completed_ Act (<Activity Type_ Name> in <Activity Type_Name>)
Completed Act (<Activity Type Name> in <Activity Type Name>
dist in <Activity Type Name>)
Completed All (<Activity Type Name>) |
Completed All (<Activity Type Name> in <Activity Type Name>)
<QueryOnCancelledAct> ::= Cancelled Act (<Activity_ Type_ Name>) |
Cancelled Act (<Activity Type Name> in <Activity Type Name>)
Cancelled Act (<Activity Type Name> in <Activity Type_ Name>
dist in <Activity Type Name>)
Cancelled All (<Activity Type_ Name>) |
Cancelled All (<Activity Type_Name> in <Activity Type_Name>)
<QueryOnNotReadyAct> ::= NotReady Act (<Activity Type Name>) |
NotReady_ Act (<Activity Type Name> in <Activity Type_Name>) |
NotReady Act (<Activity Type_ Name> in <Activity_ Type_ Name>
dist in <Activity_Type Name>) |
NotReady All (<Activity_Type_ Name>) |
NotReady All (<Activity Type Name> in <Activity Type Name>)
<QueryOnFinishedAct> ::= Finished Act (<Activity Type Name>) |

Finished_ Act(<Activity Type Name> in <Activity_ Type_ Name>) |

Finished Act (<Activity Type Name> in <Activity Type_Name>
dist in <Activity Type_Name>) |

Finished All (<Activity Type Name>) |

Finished All (<Activity Type Name> in <Activity Type Name>)

252 FARRELL, SERGOT AND BARTOLINI

Acknowledgements

The first author is supported by an EPSRC bursary and a CASE award from HP
Laboratories, Bristol, UK.

References

Alonso, G., F. Casati, H. Kuno, and V. Machiraju. (2004). Web Services, ISBN: 3540440089. Springer.

Belhajjame, K., C. Collet, and G. Vargas-Solar. (2001). “A Flexible Workflow Model for Process-Oriented
Applications”, in M. Tamer Ozsu, H.-J. Schek, K. Tanaka, Y. Zhang, and Y. Kambayashi, (eds.),
Proceedings of the 2nd International Conference on Web Information Systems Engineering (WISE_01),
Organized by WISE Society and Kyoto University, Kyoto, Japan, 3—6 December 2001, Volume 1 (Main
Program). IEEE Computer Society.

Bruns, G. (1997). Distributed Systems Analysis with CCS, ISBN: 0-13-398389-7. Prentice-Hall.

Cleaveland, R. and M. Hennessy. (1990). “Priorities in Process Algebras’ Information and Computation
87(1/2), 58—1717.

Cleaveland, R., V. Natarajan, S. Sims, and G. Luttgen. (1996). “Modeling and Verifying Distributed
Systems Using Priorities. A Case Study”Software — Concepts and Tools 17(2), 50—62.

Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. (2002). “Unravelling the
Web Services Web: An introduction to SOAPWSDL and UDDI”, IEEE Internet Computing 6(2),
86—93.

Dong, Y. and Z. Shensheng. (2003). “Approach for Workflow Modeling Using n-Calculus”Journal of
Zhejiang University Science 4(6), 643—650.

Dong, Y. and Z. Shensheng. (2004). Modeling Workflow Patterns with m-calculus. Technical report,
Shanghai Jiao Tong University.

Duan, Z., A. Bernstein, P. Lewis, and S. Lu. (2004a). “A Model for Abstract Process Specification,
Verification and Composition”, in Proceedings of the Second International Conference on Service
Oriented Computing (ICSOC _04). New York City, NY, USA, November 2004, pp. 232—241.

Duan, Z., A. Bernstein, P. Lewis, and S. Lu. (2004b). ““Semantics Based Verification and Synthesis of
BPEL4WS Abstract Processes”, in Proceedings of the IEEE Conference on Web Services (ICWS_04),
pp- 734—737.

Farahbod, R., U. Glasser, and M. Vajihollahi. (2005). Abstract Operational Semantics of the Business
Process Execution Language for Web Services, SFU-CMPT-TR-2005-04. Technical report, School of
Computing Science, Simon Fraser University.

Farrell, A. D. H. (2006). Formalising Workflow: A CCS-inspired Characterisation of the YAWL
Workflow Patterns. Technical report, HP Labs Technical Report (to appear).

Ferrara, A. (2004). “Web Services: A Process Algebra Approach”, in M. Aiello, M. Aoyama, F. Curbera,
and M. P. Papazoglou, (eds.), ICSOC, ACM, pp. 242—-251.

Fisteus, J. A., L. S. Fernandez, and C. D. Kloos. (2004). “Formal Verification of BPEL4WS Business
Collaborations”, in K. Bauknecht, M. Bichler, and B. Proll, (eds.), EC-Web 2004, Volume 3182 of
Lecture Notes in Computer Science. Springer, pp. 76—85.

Foster, H., S. Uchitel, J. Magee, and J. Kramer. (2003). “Model-Based Verification of Web Service
Composition”, in Proceedings of the 18th IEEE International Conference on Automated Software
Engineering Conference (ASE 2003).

Fu, X., T. Bultan, and J. Su. (2004). ““Analysis of Interacting BPEL Web Services”, in S. I. Feldman,
M. Uretsky, M. Najork, and C. E. Wills, (eds.), WWW, ACM, pp. 621—-630.

Georgakopoulos, D., M. Hornick, and A. Sheth. (1995). ““An Overview of Workflow Management: From
Process Modelling to Workflow Automation Infrastructure” Distributed and Parallel Databases 3(2),
119—-153.

Gruninger, M.. (2003). “The Process Specification Language (PSL): Theory and Applications” A7
Magazine 24(3), 63—74.

Hidders, J., M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede, and J. Verelst. (2005). “When are
Two Workflows the Same?”, in M. Atkinson, and F. Denhe, (eds.), Proceedings Computing: The
Australasian Theory Symposium. Newcastle, NSW, Australia, pp. 3—11.

Jablonski, S. and C. Bussler. (1996). Workflow Management — Modeling Concepts, Architecture and
Implementation, ISBN: 1850322228. International Thomson Computer Press.

FORMALISING WORKFLOW 253

Kazhamiakin, R. and M. Pistore. (2005). “A Parametric Communication Model for the Verification of
bpeldws Compositions”, in M. Bravetti, L. Kloul, and G. Zavattaro, (eds.), EPEW|WS-FM, Volume
3670 of Lecture Notes in Computer Science. Springer, pp. 318—332.

Keller, A., J. L. Hellerstein, J. L. Wolf, and V. Krishnan. (2003). The CHAMPS System: Change
Management with Planning and Scheduling. IBM Research Report, RC22882 (W0308-089), August 25,
2003.

Kiepuszewski, B. (2003). Expressiveness and Suitability of Languages for Control Flow Modelling in
Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia.

Koshkina, M. and F. van Breugel. (2003). Verification of Business Processes for Web Services,
CS-2003-11. Technical report, Department of Computer Science, York University, Toronto.

Leymann F. and D. Roller. (1999). Production Workflow: Concepts and Techniques. Prentice-Hall.

Lucchi, R. and M. Mazzara. (2006). ““A Foundational Mechanism for WS-BPEL Recovery Framework™,
Journal of Logic and Algebraic Programming (JLAP) (to appear).

Marin, M. (2002). “‘Business Process Technology: From EAI and Workflow to BPM”, in L. Fischer (ed.),
The Workflow Handbook 2002, ISBN:0-9703509-2-9.

Milner, R. (1989). Communication and Concurrency, ISBN: 0-13-115007-3. Prentice Hall.

Milner, R (1990). “Operational and Algebraic Semantics of Concurrent Processes”, in Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics (B), pp. 1201—1242.

Milner, R. (1999). Communicating and Mobile Systems: The n-Calculus, ISBN:0-521-64320-1. Cambridge
University Press.

Newcomer, E. and G. Lomow. (2005). Understanding SOA with Web Services, ISBN: 0-321-18086-0.
Addison-Wesley.

OASIS. (2005). Web Services Business Process Execution Language Version 2.0 Working Draft 1st
September 2005; at: http://www.oasis-open.org/apps/org/workgroup/wsbpel.

Ouyang, C., W. M. P. van der Aalst, S. Breutel, M. Dumas, A. H. M. ter Hofstede, and E. Verbeek.
(2005). Formal Semantics and Analysis of Control Flow in WS-BPEL, BPM Report BPM-05-15
(Revised Version). Technical report, BPMcenter.org, June 2005.

Puhlmann, F. and M. Weske. (2005). “Using the m-calculus for Formalizing Workflow Patterns”, in
W. M. P. van der Aalst et al., (eds.), BPM 2005, Volume 3649 of Lecture Notes in Computer Science.
Springer.

Reisig, W. and G. Rozenberg. (1998). Lectures on Petri Nets I: Basic Models, ISBN:3-540-65307-4.
Springer.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems, ISBN: 0-262-18218-1. The MIT Press.

Sangiorgi, D. and D. Walker. (2001) The n-calculus. 4 Theory of Mobile Processes, ISBN:0-521-78177-9.
Cambridge University Press.

Stefansen, C. (2005a). “A SMAIl Workflow Language based on CCS, TR-06-05", in Proceedings of 17th
Conference on Advanced Information Systems Engineering, CAiSE0S, (to appear).

Stefansen, C. (2005b). A SMAIl Workflow Language based on CCS, TR-06-05. Technical report, Harvard
University, Division of Engineering and Applied Sciences, Cambridge, MA.

van der Aalst, W. M. P. (2003). “Don’t Go with the Flow: Web Services Composition Exposed”, in Trends
and Controversies. Web Services: Been there, Done that? IEEE Intelligent Systems, Jan—Feb 2003, pp.
72-76.

van der Aalst, W. M. P. (2004). Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management, BPM Center Report BPM-04-03. Technical report,
BPMcenter.org.

van der Aalst, W. M. P., L. Aldred, M. Dumas, and A. H. M. ter Hofstede. (2004). “Design
and Implementation of the YAWL System”, in Proceedings of The 16th International Conference
on Advanced Information Systems Engineering (CAIiSE 04), Riga, Latvia. Springer Verlag, June
2004.

van der Aalst, W. M. P. and A. H. M. ter Hofstede. (2002). “Workflow Patterns: On the Expressive Power
of (Petri-net-based) Workflow Languages”, in K. Jensen (ed.), Proceedings of the Fourth Workshop on
the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), Volume 560 of DAIMI, Aarhus,
Denmark, August 2002, pp. 1-20.

van der Aalst, W. M. P. and A. H. M. ter Hofstede. (2005). “YAWL: Yet Another Workflow
Language” Information Systems 30(4), 245—275.

Verbeek, H. M. W., T. Basten, and W. M. P. van der Aalst. (2001). “Diagnosing Workflow Processes
Using Woflan” The Computer Journal 44(4), 246—279.

254 FARRELL, SERGOT AND BARTOLINI

Viroli, M. (2004). “Towards a Formal Foundation to Orchestration Languages”, in M. Bravetti and G.
Zavattaro (eds.), Proceedings of 1st International Workshop on Web Services and Formal Methods (WS-
FM 2004), Volumel05 of ENTCS. Elsevier.

Weerawarana, S., F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. (2005). Web Services Platform
Architecture, ISBN: 0-13-148874-0. Prentice Hall.

Workflow Management Coalition. (1999). Workflow Management Coalition Terminology & Glossary.
Document Number: WFMC-TC-1011. Document Status: Issue 3.0. February 1999.

WS-CDL W3C Working Group. Web Services Choreography Description Language Version 1.0 W3C
Working Draft 17 December 2004. Available at: http://www.w3.org/TR/ws-cdl-10.

WWW Consortium. (2002). Web Services Architecture Requirements; at: http://www.w3c.org/TR /wsa-
reqs. October 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

