
NSAD 2016

Abstract Domains for Type Juggling

Vincenzo Arceri1

Department of Computer Science, University of Verona, Italy

Sergio Maffeis2

Department of Computing, Imperial College London, UK

Abstract

Web scripting languages, such as PHP and JavaScript, provide a wide range of dynamic features that make
them both flexible and error-prone. In order to prevent bugs in web applications, there is a sore need for
powerful static analysis tools. In this paper, we investigate how Abstract Interpretation may be leveraged
to provide a precise value analysis providing rich typing information that can be a useful component for
such tools.
In particular, we define the formal semantics for a core of PHP that illustrates type juggling, the implicit
type conversions typical of PHP, and investigate the design of abstract domains and operations that, while
still scalable, are expressive enough to cope with type juggling. We believe that our approach can also be
applied to other languages with implicit type conversions.

Keywords: PHP, Static analysis, Abstract interpretation, Type conversions

1 Introduction

The success of web scripting languages such as PHP and JavaScript is also due

to their wide range of dynamic features, which make them very flexible but un-

fortunately also error-prone. A key such feature is that language operations allow

operands of any type, applying implicit type conversions when a specific type is

needed. PHP, our example language, calls this feature type juggling.

In this paper, we investigate how the Abstract Interpretation approach to pro-

gram analysis [3,4] may be leveraged to provide a precise value analysis in presence

of type juggling. Since PHP is dynamically typed, meaning that the same variable

can store values of different types at different points in the execution, our analysis

does not aim to enforce type invariance, but instead aims to determine the most

precise type for each variable in the final state.

Filaretti and Maffeis [6] define a formal operational semantics for most of the

PHP language that is faithful to its mainstream Zend reference implementation [1].

In Section 2, we propose µPHP (micro-PHP), a much smaller core of the language

that is still large enough to illustrate the main challenges related to type juggling. In

fact, µPHP is valid PHP, and behaves exactly like the full language 3 , although the

omission of certain language features from our formalisation (see Section 5) allows

us to define a more straightforward semantics than the one in [6]. We present µPHP

1 Email: vincenzo.arceri@studenti.univr.it
2 Email: sergio.maffeis@imperial.ac.uk
3 All the examples in the paper are both derivable via our semantics and executable in PHP 5.4.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:vincenzo.arceri@studenti.univr.it
mailto:sergio.maffeis@imperial.ac.uk

Arceri & Maffeis

in big-step semantics style, as we are interested in properties of the final state. 4 We

show many examples that will reveal surprising behaviour of PHP to the non-expert.

In Section 3, we define an abstract semantics parametric on the domain, which

defines a corresponding flow- and path-sensitive value analysis. We discuss assump-

tions on such domain under which we can argue that the analysis is sound with

respect to the concrete semantics of µPHP. The design of our semantics makes it

straightforward to implement an abstract interpreter to calculate the analysis result.

In Section 4, we define abstract domains and operations that capture the sub-

tleties of type juggling. Rather than giving the definitions upfront, we expound the

rationale behind our design, stressing expressivity, modularity and hopefully high-

lighting subtle points that can be useful to design domains for other languages with

similar features. Some practical static analyses of realistic languages with dynamic

type conversions, such as [9,11], add to each type lattice extra points that represent

information which can improve the precision of the analysis. Other analyses, such

as [8], use powersets of values, limiting the set sizes by a parameter k in order to

avoid infinite computations. That leads to very expressive domains when up-to-k

values are analysed, that drastically loose precision for further values.

In contrast, we advocate an expressive and systematic approach that refines each

type domain to include just the information necessary to obtain precise abstract

operations and type juggling functions. Our analysis may not be highly efficient but

is scalable, having polynomial complexity: we emphasise precision over performance.

As argued in [4], in theory one should aim for the best correct approximation of a

concrete operator f defined as f 7 “ α˝f ˝γ, but f 7 is sometimes not computable, or

practical. In defining the abstract operations of our type juggling domain we follow

the spirit of this equation, striving to exploit at most the concrete information

available, and delay as much as possible the loss of information caused by merging

values with the \ operator.

Related Work. Since the seminal work of [2], abstract interpretation has been

used to define many value and type analyses, but we are not aware of any analysis

designed to handle in particular the implicit type conversions for scripting languages.

On the practical side, several static analysers for JavaScript and PHP are directly

based, or at least inspired, by abstract interpretation [5, 8–12]. All aim to analyse

real-world PHP programs, and focus most effort on prominent issues such as the

analysis of associative arrays and functions, while paying less attention to implicit

type conversions. As far as we can tell (sometimes essential details are missing from

the cited references), none of the analyses in [5, 9–12] comes close to our level of

precision, except for [8] which, as discussed above, uses expensive powerset domains.

Nevertheless, we hope that our investigation may contribute to improve the precision

of these analysers for programs that make intensive use of implicit type conversions.

Moreover, none of the cited works above provides formal proofs of soundness, and

some such as [10,12] openly admit to be unsound.

Summarising, our main claim of novelty is to apply a systematic approach

grounded in the theory of Abstract Interpretation to analyse, in a provably sound

way, non-trivial features of (the core of) a practical programming language.

4 It would be easy, but notationally more cumbersome, to define an equivalent small-step semantics better
able to represent trace properties.

2

Arceri & Maffeis

2 Type Juggling in µPHP

We now define syntax and semantics of µPHP, a subset of PHP able to express most

type juggling behaviour. Our examples can be verified in a PHP 5.x interpreter.

2.1 Syntax

To appreciate some subtle points of type juggling, we need to be somewhat precise

about the representation of literals. Let Char be the finite set of characters used

in PHP, and Dig Ĺ Char the set of digits 0,...,9. The literals of µPHP are

partitioned in the sets

‚ Null: the constant NULL, which is the default value of undefined variables.

‚ Bool: the boolean constants true and false.

‚ Str “ Char˚: strings such as "hi!","","bye!".

‚ Int “ ´?Dig`: signed integers such as -5,0,1,00042.

‚ Float “ ´?Dig˚.Dig˚: decimal notation numbers, 5 such as -1.3,0.,4.200.

The capitalisation of NULL, true, and false above is irrelevant. An empty sequence

of digits between the optional sign and the decimal point of a float is interpreted as

0, so for example -.3 is an alternative representation for -0.3, and the degenerate

case “.” is not a valid Float. The syntax of µPHP is reported below:

Lit ::= Null

| Bool

| Str

| Int

| Float

Exp ::= Lit

| Var

| 1 Exp

| Exp 2 Exp

Var ::= $Id

Block ::= { }

| { Stmt }

Stmt ::= Var = Exp ;

| if (Exp) Block else Block

| while (Exp) Block

| Stmt Stmt

| ;

where Id is a subset of Str suitable to define identifiers. We denote

prefix unary operators by 1 P t!,-,+u and infix binary operators by

2 P t+,-,*,/,%,&&,||,==,!=,>,<,>=,<=u.

2.2 Semantics

Semantic values correspond to literals, but abstract away from representation de-

tails. In particular, leading zeros are dropped when parsing an Int, except for

the literal 0, and leading and trailing zeros are dropped when parsing a Float, so

-004.20 is the semantic float -4.2. With a slight abuse of notation, we use the same

font to denote literal and values, as the meaning should be clear from the context.

Str, Int, and Float are finite sets, and floating point numbers have limited pre-

5 PHP floats normally use the IEEE 754 double precision format. For simplicity, we use instead decimal
numbers in µPHP.

3

Arceri & Maffeis

cision. We denote by Num the union IntYFloat, and by Val the union of all the

semantic values above. For any set S and X Ď S, we also define the notation X for

the complement of X with respect to S.

Program states State : Id ÝÑ Val, ranged over by σ, are partial functions

from identifiers to values. State updates and lookups are defined as follows:

σrxÐß vspyq “

#

v if x “ y

σpyq otherwise

Statements. The big-step semantics of blocks and statements is defined by the

function J¨K¨ : Stmtˆ State ÝÑ State defined below

J$x = e;Kσ “ σrxÐß JeKσs

Jif (e) bl1 else bl2Kσ “

#

Jbl1Kσ if toBoolpJeKσq “ true

Jbl2Kσ if toBoolpJeKσq “ false

Jwhile (e) blKσ “ Jif (e) { bl while e bl } else { }Kσ
J{ S }Kσ “ JSKσ

J{ }Kσ “ J;Kσ “ σ

JS1 S2Kσ “ JS2KpJS1Kσq

All the rules are standard except for the if-else, which contains the first example

of type juggling, where the value resulting from evaluating the guard expression e

in state σ is then automatically converted to a boolean, using the function toBool
defined below, where Num0 “ t0,0.0u, Strfalse “ t"","0"u.

toBoolpvq “

$

’

&

’

%

v if v P Bool

false if v P NullYNum0 Y Strfalse

true if v P Num0 Y Strfalse

This leads us to our first example of odd behaviour in PHP:

php > if (0) {echo "yes ";} else {echo "no";} // "no"
php > if ("0") {echo "yes ";} else {echo "no";} // "no"
php > if (0.0) {echo "yes ";} else {echo "no";} // "no"
php > if ("0.0") {echo "yes ";} else {echo "no";} // "yes"

Expressions. The semantics of expressions is given by the function J¨K¨ : Exp ˆ

State ÝÑ Val which we describe case-by-case below. The semantics of a literal is

just the corresponding parsed value, as described at the beginning of this Section.

The variable rule returns the value of the corresponding identifier, if it is defined in

the current state, and NULL otherwise.

J$xKσ “

#

σpxq if x P dompσq

NULL otherwise

Arithmetic operations are defined on any type of operands:

Je1 2 e2Kσ “ toNumpJe1Kσq 2 toNumpJe2Kσq

4

Arceri & Maffeis

where the operands are converted to numbers (integers or floats) via another type

juggling function toNum. Let parseNum : Str ÝÑ pNum`tKuq˚Str be a function

that returns the number that can be parsed as the largest prefix of a string (if any),

and the remainder of the string that does not contribute to parsing the number. For

example, parseNump".42000.37hi"q “ p0.42, ".37hi"q and parseNump"bye666"q “
pK, "bye666"q. The function toNum is defined by

toNumpvq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

v if v P IntY Float

1 if v “ True

0 if v P NullY tFalseu

0 if parseNumpvq “ pK, vq

n if parseNumpvq “ pn, sq for some s

When 2 P t+,-,*u, 2 corresponds to the most precise corresponding primitive

operation between integers and floats (denoted by t`,´, ˚u). So, for example:

php > var_dump (3.2*" hi" + 45 - "3bye"*true); // float (42)

When 2 P t/,%u instead, 2 implements a µPHP-specific function that returns

false when division by zero occurs.

n1 / n2 “

#

n1{n2 if n2 P Num0

false if n2 P Num0

The semantics of comparison operators is tricky, as it depends on the type of the

operands. For example, to compare a string with a boolean, first it is converted to

a boolean, and then both booleans are compared after being converted to numbers,

leading to the perhaps surprising example below.

php > var_dump ("0" < true); // bool(true)
php > var_dump ("0.0" < true); // bool(false)

More formally, we define the semantics for the less-than operator as follows (the

other comparison operators follow a similar pattern):

Je1 < e2Kσ “ Je1Kσ < Je2Kσ

When e1 and e2 reach final values v1 and v2, the semantics rules reported in Figure 1

are applied, where ă is the primitive operator of less-than for numbers, and ăStr

is a non-standard comparison between strings. If two strings can be parsed exactly

as numbers, they are compared using ă on the parsed numbers; otherwise, they are

compared in the lexicographic order ăL.

s1 ăS s2 “

#

n1 ă n2 if parseNumps1q “ pn1, ""q and parseNumps2q “ pn2, ""q

s1 ăL s2 otherwise

This leads to more surprising behaviour. For example,

php > var_dump ("10" <"9"); // bool(false)
php > var_dump ("10 LOW"<"9HIGH"); // bool(true)

5

Arceri & Maffeis

< Int Float Bool

Int v1 ă v2 v1 ă v2 toNumptoBoolpv1qq ă toNumpv2q

Float v1 ă v2 v1 ă v2 toNumptoBoolpv1qq ă toNumpv2q

Bool toNumpv1q ă toNumptoBoolpv2qq toNumpv1q ă toNumptoBoolpv2qq toNumpv1q ă toNumpv2q

Str toNumpv1q ă v2 toNumpv1q ă v2 toNumptoBoolpv1qq ă toBoolpv2q

Null toNumpv1q ă v2 toNumpv1q ă v2 toNumpv1q ă toNumpv2q

< Str Null

Int v1 ă toNumpv2q v1 ă toNumpv2q

Float v1 ă toNumpv2q v1 ă toNumpv2q

Bool toNumpv1q ă toNumptoBoolpv2qq toNumpv1q ă toNumpv2q

Str toNumpv1q ă v2 toNumptoBoolpv1qq ă toBoolpv2q

Null toStrpv1q ăStr v2 false

Figure 1. Tables with semantics rules for the less-than operator applied to basic values

php > var_dump (0+"10 LOW"<"9HIGH"); // bool(false)

where the use of + in the third example forces the use of toNum on the first string

(hence on the second one too), and the use of ă instead of ăStr in the comparison.

The semantics of string concatenation is defined as follows

Je1.e2Kσ “ toStrpJe1Kσq . toStrpJe2Kσq

where . is the primitive operation of string concatenation.The type juggling func-

tion toStr is defined below, where FloatInt “ Int?.0˚ (excluding the degenerate

case “.”) represents the floats that can be interpreted as integers without approx-

imation, such as .00, 42., 0.0. When an element of FloatInt is concatenation

with a string, only its integer part is concatenated.

toStr(v)“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

"1" if v “ true

"" if v “ false

"v" if v P IntY FloatInt

"u" if v P FloatInt and u “ floorpvq

v if v P Str

Above, floor : Num ÝÑ Int rounds down its argument to the nearest integer.

3 Abstract Interpretation of µPHP

Our goal is to design an efficient value analysis that retains precise information on

the type of variables. Hence, our concrete domain representing the properties of

interest is the standard complete lattice x2Val,Ďy. With the above goal in mind,

we now define an abstract semantics for µPHP that is parametric in the choice of

an abstract domain of values xVal7,Ďy.

6

Arceri & Maffeis

3.1 Abstract Semantics

Our analysis is non-relational, hence we can somewhat simplify the design of the

abstract semantics and the definition of its soundness properties. In particular,

abstract program states State7 : Id Ñ Val7, ranged over by ξ, can partition

the available information per identifier, and be defined as partial functions from

identifiers to abstract values. State updates and lookups are defined as for the

concrete semantics.

Statements. The abstract semantics of blocks and statements J¨K7¨ : Stmt ˆ

State7 ÝÑ State7 is similar to the concrete one.

J$x = e;K7ξ “ ξrxÐß JeK7ξs
J{ S }K7ξ “ JSK7ξ

J{ }K7ξ “ J; K7ξ “ ξ

JS1 S2K7ξ “ JS2K7pJS1K7ξ)

The rules for assignment, blocks and sequences are analogous to the ones for the

concrete semantics. Note that in particular we are considering strong updates to

the state: our analysis is flow-sensitive.

Jif (e) bl1 else bl2K7ξ “

$

’

&

’

%

Jbl1K7ξ if γptoBool7pJeK7ξqq “ ttrueu
Jbl2K7ξ if γptoBool7pJeK7ξqq “ tfalseu
Jbl1K7ξ \ Jbl2K7ξ if γptoBool7pJeK7ξqq Ě Bool

The rule for if-else is path-sensitive, mimicking the concrete one, yet includes a

conservative extra case when the evaluation of the guard does not result in a precise

boolean value. It relies on an abstract type juggling function toBool7 which is to be

defined together with the abstract domain xVal7,Ďy, as discussed in Section 4.2.

Jwhile (e) blK7ξ “ lfpξpλρ.pρ\ Jif (e) bl else {}K7ρqq

The rule for while loops in the concrete semantics can be equivalently formulated

as Jwhile (e) blKσ “ lfpσpJif (e) then bl else {}Kq: the abstract rule is simply

a conservative approximation, whose computability depends on the definition of

abstract domain. 6

Expressions. The abstract evaluation of expressions is denoted by J¨K7¨ : Exp ˆ

State7 ÝÑ Val7. Literal values are simply abstracted by the rule JLitK7ξ “ αpLitq.

The abstract variable look-up rule is analogous to the concrete one, except that

looking up an undefined identifier returns αpNULLq instead of NULL. Depending on

the choice of Val7 and the definition of α, that could be a specific element NULL7,

6 Our abstract semantics does not use boolean filter functions, because it is not practical to define realistic
ones for a programming language as complicated as PHP. This choice has the downside of sacrificing some
precision in the semantics of while loops, because we do not refine the information in the abstract state at
the end of the loop to reflect that the guard has to be false .

7

Arceri & Maffeis

or J, or a different abstract element.

J$xK7ξ “

#

ξpxq if x P dompξq

αpNULLq otherwise

The abstract evaluation of arithmetic expressions is analogous to the concrete case

Je1 2 e2K7ξ “ toNum7pJe1K7ξq 2
7 toNum7pJe2K7ξq

where 2
7 is the abstract operation corresponding to 2 , and toNum7 is the ab-

stract type juggling function corresponding to toNum. Both 2
7 and toNum7 are

to be defined along with the abstract domain on which they depend. The abstract

semantics of the other expressions follows a similar pattern.

3.2 Soundness of the analysis

We argue that the class of analyses defined by our abstract semantics is sound,

assuming that the abstract domain has the right structure, and that the abstract

operations provided with such domain satisfy some local soundness conditions.

Assumption 3.1 (Abstract Domain) The abstract domain xVal7,Ďy is a com-

plete lattice, and it forms a Galois connection 2Val ´́ Ñ́Ð́´́
α

γ
Val7 with the concrete

domain x2Val,Ďy.

Assumption 3.2 (Abstract Operations) The abstract operations provided with

the domain xVal7,Ďy are monotonic and locally sound approximations of the con-

crete ones: @f 7.@u, v P Val7 : u Ď v ñ f 7puq Ď f 7pvq and @f, f 7.@v P Val :

αpfpvqq Ď f 7pαpvqq.

We can take advantage of the big-step style of our semantics, and of our interest

in properties of the final state, to bypass the standard definition of a collecting

semantics and state our soundness theorem directly in terms of the concrete and

abstract semantics. We only need to lift the definition of α from values to states:

αpσq “ α ˝ σ, and similarly for γ,Ď.

Theorem 3.3 (Soundess) The abstract semantics is a sound approximation of

the concrete semantics: @s P Stmt : α ˝ JsK Ď JsK7 ˝ α.

Proof By induction on the derivation of J¨K¨ (joining the definition for state-

ments and expressions), using Assumption 3.1, Assumption 3.2 and standard prop-

erties of lattices. We show the case for if-else which is representative of the

other cases. Assume that toBoolpJeKqσ “ true (the case when toBoolpJeKq “
false is analogous). Let ξ “ αpσq. By inductive hypothesis, αpJbl1Kσq Ď

Jbl1K7ξ. By definition, Jbl1K7ξ Ď Jbl1K7ξ \ Jbl2K7ξ. Hence, we only need

to exclude the case where γptoBool7pJeK7ξqq “ tfalseu. By Assumption 3.2,

αptoBoolpJeKσqq Ď toBool7pαpJeKσqq. By inductive hypothesis, αpJeKσq Ď JeK7ξ.
By monotonicity of toBool7, toBool7pαpJeKσqq Ď toBool7pJeK7ξq. By transitivity

of Ď, αptoBoolpJeKσqq Ď toBool7pJeK7ξq. By assumption, toBoolpJeKqσ “ true.

If γptoBool7pJeK7ξqq “ tfalseu, substituting in the equations above, we obtain

8

Arceri & Maffeis

γpαptrueqq Ď tfalseu. By Assumption 3.1, ttrueu Ď γpαptrueqq, which leads to

the contradiction ttrueu Ď tfalseu. l

Proposition 3.4 (Incompleteness) The abstract semantics is not complete:

Ds. α ˝ JsK Ĺ JsK7 ˝ α.

Proof We show that there is a counterexample even for the most precise abstract

domain possible: x2Val,Ďy itself, where α and γ are the identify function. Let P be

the µPHP program $x=1; while ($x>0){ $x=$x-1; }. For any σ P State, we have

pα ˝ JPKqpσq “ σrxÐß t0us Ĺ σrxÐß t0, 1us “ pJPK7 ˝ αqpσq. l

The informal meaning of our formal results is that if our analysis finds that a

certain property holds, then that property (or possibly a stronger one) also holds

across all the concrete executions compatible with the initial abstract state.

4 Abstract Domains for Type Juggling

Equipped with the abstract semantics of Section 3, we can design abstract domains

and operations that capture the subtlety of type juggling in µPHP. Rather than

giving the definitions upfront, we expound the rationale behind our design, stressing

expressivity, modularity and hopefully highlighting subtle points that can be useful

to design domains for other languages with similar features.

4.1 Abstract Domains

We face three main design choices: how to combine the abstraction of the various

types of µPHP; how to abstract each type; how to ensure that we can represent as

much of the information relevant to type juggling as possible.

Type combination. Let us assume that for each set of basic values T we have

defined an abstract type lattice T 7. A typical analysis for statically-typed languages

may combine abstract types using the coalesced sum lattice, which in our case yields

Val7 “

J

Int7Bool7 Float7 Str7Null7

K

This choice is not appropriate for a dynamically-typed language such as µPHP,

as the resulting lattice cannot represent union types. For example, in the lattice

above it must be the case that αp5q \ αp3.2q “ J, leading to an unnecessary loss

of precision when we convert such value to a string, because it has to be the case

that toStr7pJq “ J. In contrast, in a domain with the union type Int7 ` Float7,

toStr7 could have retained the information that numbers are never converted to

empty strings, allowing to derive toStr7pInt7 ` Float7q “ Str7
‰"", assuming that

the type abstraction of strings was able to account for such elements. A common

9

Arceri & Maffeis

solution to this problem consists in switching to the cartesian product lattice of the

abstract types

Val7 “ Null7 ˆBool7 ˆ Int7 ˆ Float7 ˆ Str7

where, for example, the union type Int7 ` Float7 is implicitly represented by the

vector pK,K, Int7,Float7,Kq. 7

Type abstraction. Another key design choice is how to abstract the types them-

selves. Fore example, consider the µPHP semantics of division. It normally returns

a Num except for the case of division-by-zero, where it returns false. Abstracting

a value directly to its type, as in αp5q “ Int7, is too imprecise because it prevents

an analysis from detecting the division-by-zero case, and it forces the return type

to be at best Num7`Bool7, instead of the more precise Num7`false7. Hence, we

include also the constants of each type to the product lattice. We define Null7 as

the lift, and Bool7 and Str7 as the flat lattices built from the corresponding sets:

Null7 “ liftpNullq Bool7 “ flatpBoolq Str7 “ flatpStrq

By a judicious definition of Int7 as the product lattice of signs, the constant 0, and

natural numbers, we obtain the discriminating power of the traditional sign domain,

plus the precision of numeric constants.

Int7 “ flatpt`,´uq ˆ liftpt0uq ˆ flatpNq

For example, pJ,K,Jq denotes non-zero integers, and p`, 0,Jq represents non-

negative integers. 8 A similar argument applies to Float7, which we define as

Float7 “

J

` ´

K

ˆ
0

K

ˆ

J

3 ¨ ¨ ¨21

K

ˆ
0

K

ˆ

J

266 ¨ ¨ ¨001 12

K

ˆ
0.0

K

and is isomorphic to Int7ˆ liftpt0uqˆflatpFracqˆ liftpt0.0uq, where Frac is the set

of non-zero “fractional parts” denoted by the regular expression r0..9s˚r1..9s. The

last component of the product is necessary to distinguish αp0.0q\αp1.2q, which can

be zero, from αp0.1q\αp1.0q, which cannot. For notational convenience, we denote

the abstraction n7 within the type domain T 7 by αT 7pnq. We also abbreviate the

bottom element of a product type, such as pK,K,Kq : Int7 simply by K (and similar

for J). Finally, we use the shorthand JBool7 for the element pK,J,K,K,Kq : Val7,

with the obvious generalisation to other elements or domains.

Type juggling. Thanks to the definitions above, most of our domains already

include enough information to handle type juggling. For example, the definition

7 The definition of α and γ will be left implicit as it can be understood from the context, as the obvious
best approximation.
8 Some points in our lattice, such as p`, 0,Kq are redundant (zero has no sign). It is possible to optimise
the domains to remove such points, slightly increasing the efficiency of the analysis (although the precision
remains the same). We leave investigating that direction to future work.

10

Arceri & Maffeis

of toBool depends on the set Num0={0,0.0}. In order to define a precise abstract

toBool7, we should avoid loss of precision when deciding if an abstract value, once

concretised, belongs to Num0. Our domain achieves that, because for example

γpαp0q \ αp0.0qq “ Num0, and similarly γpαp5q \ αp-3.2qq “ Num0. The only

domain which we need to refine explicitly is that of strings. In fact, toBool also

relies on the set Strfalse “ t"","0"u, but if Str7 is just the flat string domain,

then γpαpStrfalseqq “ Str ‰ Strfalse. A solution to this specific problem

is to add to Str7 elements representing exactly αpStrfalseq and αpStrfalseq.

The downside is that repeating this process for the other operations leads to a

proliferation of special cases. For example, the division operation needs to decide if

the result of toNum is in Num0. Hence, for a precise toNum7 we need two new points

in Str7 representing precisely αpt"0","0.0"uq and its complement. Moreover, we

would need to introduce additional structure in the lattice to compare these points

and the ones representing αpStrfalseq, αpStrfalseq, and so on. Our proposal is

instead to simply add all the information that is missing from the Str7 domain by

adding to strings additional properties reflecting their value after an hypothetical

type juggling. We re-define Str7 as a product involving also booleans, integers and

floats, interpreted as properties of the corresponding abstract string:

Str7 “ flatpStrq ˆBool7 ˆ Int7 ˆ Float7

All the points representing properties of interest hypothesised above now are

included in the lattice, with the correct ordering relation. For example, the

string type of αpStrfalseq is pJ, false, 07,Kq, whereas the one of αp"0","0.0"q

is pJ,J, 07, 0.07q. As a final example of the expressivity of our type juggling do-

main Val7, let x be the abstract value αp"0.0doh"q \ αp42q, which in our domain

is pK,K, 427,K, p"0.0doh", true,K, 0.07qq. Our domain contains enough information

to be able to infer that x is not NULL, that it is true if converted to a boolean, and

that the abstract evaluation of 84/x yields pK, false7, 27,K,Kq, assuming a suitable

definition of /
7 (see Section 4.2).

4.2 Abstract Operations

We now discuss how to implement abstract operations that take advantage of the

information represented by Val7.

Type juggling functions. We focus on the example of toNum7 as it illustrates

all the main issues at hand. Since an abstract value is actually a 5-tuple of in-

dividual abstract types, in order to retain precision, we convert each component

independently, using specialised functions such as StrToNum7 : Str7 Ñ Val7,

where the result is either an abstract number or K. Hence, the type of toNum7

is Val7 ÝÑ pVal7q5. Note that we do not collapse the resulting 5-tuple into a sin-

gle Val7 so that the operation that invoked the type juggling operation can leverage

the information at best. For example,

toNum7ppK,K, 47,K, "6doh"7qq “ pKVal7 ,KVal7 , 4Int7 ,KVal7 , 6Int7q

and a division by 2Int7 can return “positive integer” instead of “positive number”.

The specialised conversions StrToNum7, BoolToNum7, etc. are straightforward to

11

Arceri & Maffeis

define, following their concrete counterparts. For example, the latter returns re-

spectively KVal7 , 0Int7 , 1Int7 , p`, 0, 1q on the inputs K, true7, false7,J. Without loss

of precision, we define StrToNum7 as the function λx.π3pxq \ π4pxq that joins the

pre-computed conversions to integer and float associated to the Str7 value.

Semantic operations. We now discuss how abstract operations can leverage the

expressiveness of our domain. We give the example of division, which is repre-

sentative of the other cases. Since toNum7 has already been applied by the ab-

stract semantics of expressions, we now have to divide two 5-tuples of Val7, hence

/
7 : Val7

5
ˆVal7

5
ÝÑ Val7.

The first step of /
7 is to normalise each tuple by removing any KVal7 value,

and retaining only its numeric components greater than K, obtaining two vectors

of at most 6 elements each. For example, let v “ toNum7pαptrueq \ αp"-5foo"q \

αp"4.2doh"qq “ pKVal7 , 1Int7 ,KVal7 ,KVal7 , αp-5q \ αp4.2qq. By normalising, we ob-

tain npvq “ r17, -57, 4.27s.

Once we have two normalised (row) vectors z and w, we can compute the anal-

ogous of the matrix product ztˆ 1{w, effectively obtaining a matrix r of dimension

|z| ˆ |w| where ri,j “ zris{7wrjs, and {7 : pInt7`Float7q2 ÝÑ Val7 is the abstract

division operator defined below

n1{
7n2 “

$

’

&

’

%

αpm1 / m2q if γpn1q “ tm1u and γpn2q “ tm2u

n1{
7
Int7n2 else, if n1, n2 are both Int7

toFloat7pn1q{
7
Float7toFloat7pn2q otherwise

where toFloat7 : Int7 Ñ Float7 maps αInt7pkq to αFloat7pk.0q. The final step of

/
7 is to join all the elements of r into a single Val7. We define

u /
7 v “

ğ

iP1..|x|
jP1..|y|

xris{7yrjs where x “ npuq and y “ npvq.

The abstract division operator {7 relies on specialised abstract divisions for inte-

gers and floats (respectively {7Int7 and {7Float7). When both operands are abstract

integers, we perform a further normalisation, separating the information about 0

from the information about N encoded in each operand. For example, npp´, 0, 5qq “
rp´,K, 5q, pK, 0,Kqs. Then, we compute u{7Int7v “

Ů

iP1..|x|
jP1..|y|

xris{7Int7{yrjs where

x “ npuq and y “ npvq, and the inner {7Int7 is computed using the rules in Figure 2.

The case for {7Float7 is analogous.

For example, let us revisit the example of 84/x from Section 4.1, where this time

x “ αp"0.0doh"q\αp"1argh"q\αp42q\αp0q “ pK,K, p`, 0, 42q,K, pJ, true7, 17, 0.07qq

We have that nptoNum7pxqq “ r17, 0.07, p`, 0, 42qs. The first two divisions are com-

puted directly as αp84 / 1q “ αp84q and αp84 / 0.0q “ αpfalseq. The third division

is computed as 847{7Int7p`, 0, 42q. The denominator is normalised to r07, 427s, lead-

ing to two further divisions αp84 / 0q “ αpfalseq and αp84 / 42q “ αp2q. Hence,

the final result is αp84q \ αpfalseq \ αp2q “ pK, false7, p`,K,Jq,J,Jq, where we

12

Arceri & Maffeis

{7Int7 07 17 n72 pJ,K, n2q

07 false7 07 07 07

17 false7 17 αp1 / n2q αp1 / n2q \ αp1 / ´ n2q

n71 false7 n71 αpn1 / n2q αpn1 / n2q \ αpn1 / ´ n2q

pJ,K, n1q false7 pJ,K, n1q αp´n1 / n2q \ αpn1 / n2q

αpn1 / n2q \

αp´n1 / n2q \ αpn1 / ´

n2q \ αp´n1 / ´ n2q

p`,K,Jq false7 p`,K,JqInt7

pπ1pn
7
2q,K,JqInt7 \

pπ1pn
7
2q,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

p´,K,Jq false7 p´,K,JqInt7

pπ1pn
7
2q,K,JqInt7 \

pπ1pn
7
2q,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,Jq false7 pJ,K,JqInt7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ, 0,Jq false7 pJ, 0,JqInt7

pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ, 0,JqInt7 \

pJ,K,J, 0,J,KqFloat7

{7Int7 p`,K,Jq p´,K,Jq pJ,K,Jq pJ, 0,Jq

07 07 07 07 false7 \ 07

17
p`,K,JqInt7 \

p`,K,J, 0,J,KqFloat7

p´,K,JqInt7 \

p´,K,J, 0,J,KqFloat7

p`,K,JqInt7 \

p`,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

n71
pπ1pn

7
1q,K,JqInt7 \

pπ1pn
7
1q,K,J, 0,J,KqFloat7

pπ1pn
7
1q,K,JqInt7 \

pπ1pn
7
1q,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ,K, n1q
pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

p`,K,Jq
p`,K,JqInt7 \

p`,K,J, 0,J,KqFloat7

p´,K,JqInt7 \

p´,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

p´,K,Jq
p´,K,JqInt7 \

p´,K,J, 0,J,KqFloat7

p`,K,JqInt7 \

p`,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ,K,Jq
pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

pJ,K,JqInt7 \

pJ,K,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ, 0,Jq
pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

false7 \ pJ, 0,JqInt7 \

pJ, 0,J, 0,J,KqFloat7

Figure 2. Tables for the abstract operation {7Int7 .

know that, unless there was a division by zero, we obtain a positive integer. Note

that both normalisation steps introduced by /
7 and {7Int7 were essential to retain

this level of precision.

5 Conclusions

We have defined the formal semantics of µPHP, a subset of PHP that precisely

represents type juggling behaviour, as a basis to explore new and expressive abstract

domains for type/value analysis. We have also defined an abstract interpreter that

implements, parametrically on the domain, a non-relational, path-sensitive analysis

to leverage our abstract domains. We have shown with various examples that our

value analysis is more expressive than comparable ones present in the literature. To

the best of our knowledge, a novelty of our approach is the definition of the string

domain as the product of the string type with other abstract types (integers and

floats). This construction helps retaining more precise information about strings

13

Arceri & Maffeis

after type juggling.

The main limitations of our current work also suggest natural directions for fu-

ture work. µPHP covers only a small subset of PHP, and it will be interesting to see

how our type juggling domain interacts with the analyses of other challenging lan-

guage features such as aliasing, functions, objects and exceptions. Our construction

of the type juggling domain strives to be systematic but we do not investigate how

an analysis of completeness of the abstract operations, along the lines of [7], may

lend further justification to our current design choices, or lead to the completely

automated construction of a more precise domain.

Acknowledgments. This work is partially supported by EPSRC grant EP/K032089/1.

References

[1] The PHP Group. PHP Zend Engine. http://php.net. Accessed: 2016-06-09.

[2] P. Cousot. Types as abstract interpretations. In POPL’97, 1997.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL’77, 1977.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL’79, 1979.

[5] J. Dahse and T. Holz. Simulation of built-in PHP features for precise static code analysis. In NDSS’14,
2014.

[6] D. Filaretti and S. Maffeis. An executable formal semantics of PHP. In ECOOP’14, 2014.

[7] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. ACM, 2000.

[8] D. Hauzar and J. Kofron. Framework for static analysis of PHP applications. In ECOOP’15, 2015.

[9] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for javascript. In SAS’09, 2009.

[10] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool for detecting web application
vulnerabilities (short paper). In (S&P’06), 2006.

[11] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wiedermann, and
B. Hardekopf. JSAI: a static analysis platform for javascript. In FSE’14, 2014.

[12] E. Kneuss, P. Suter, and V. Kuncak. Phantm: PHP analyzer for type mismatch. In FSE’10, 2010.

14

http://php.net

	Introduction
	Type Juggling in PHP
	Syntax
	Semantics

	Abstract Interpretation of PHP
	Abstract Semantics
	Soundness of the analysis

	Abstract Domains for Type Juggling
	Abstract Domains
	Abstract Operations

	Conclusions
	References

