
EARLYCROW: Detecting APT Malware
Command and Control over HTTP(S)

Using Contextual Summaries

Almuthanna Alageel1,2(B) and Sergio Maffeis1

1 Department of Computing, Imperial College London, London, UK
{a.alageel18,sergio.maffeis}@imperial.ac.uk

2 National Center for Cybersecurity, King Abdulaziz City for Science and
Technology, Riyadh, Saudi Arabia

Abstract. Advanced Persistent Threats (APTs) are among the most
sophisticated threats facing critical organizations worldwide. APTs
employ specific tactics, techniques, and procedures (TTPs) which make
them difficult to detect in comparison to frequent and aggressive attacks.
In fact, current network intrusion detection systems struggle to detect
APTs communications, allowing such threats to persist unnoticed on vic-
tims’ machines for months or even years.

In this paper, we present EarlyCrow, an approach to detect APT
malware command and control over HTTP(S) using contextual sum-
maries. The design of EarlyCrow is informed by a novel threat model
focused on TTPs present in traffic generated by tools recently used as
part of APT campaigns. The threat model highlights the importance
of the context around the malicious connections, and suggests traffic
attributes which help APT detection. EarlyCrow defines a novel mul-
tipurpose network flow format called PairFlow, which is leveraged to
build the contextual summary of a PCAP capture, representing key
behavioral, statistical and protocol information relevant to APT TTPs.
We evaluate the effectiveness of EarlyCrow on unseen APTs obtaining
a headline macro average F1-score of 93.02% with FPR of 0.74%.

Keywords: Advanced persistent threats · Network intrusion
detection · Command and control

1 Introduction

Advanced Persistent Threats (APTs) are known to be the most sophisticated
long-term attack campaigns targeting highly protective organizations [2]. APTs
are generally aware of internal defenses related to their target [42], and usually
do not send spam, participate in DDoS attacks, or aggressively propagate to
other hosts to spread infections at scale [22].

APT malware are those malicious tools known to be used by APT cam-
paigns. The most common is the Remote Access Trojan (RAT), typically com-
posed of a builder, stub, and controller. The builder initiates a new instance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Susilo et al. (Eds.): ISC 2022, LNCS 13640, pp. 290–316, 2022.
https://doi.org/10.1007/978-3-031-22390-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22390-7_18&domain=pdf
http://orcid.org/0000-0003-1514-6857
https://doi.org/10.1007/978-3-031-22390-7_18

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 291

stub upon the infection. The stub runs on the victim machine and contains a
hard-coded Fully Qualified Domain Name (FQDN) or IP to communicate to the
RAT controller, which resides on the Command and Control (C&C) server [41].
Rootkits, spyware, downloaders, and keyloggers may also be part of an APT
campaign. APT malware such as DarkComet includes these functions in one
ecosystem [22], which may capture the audio, explore files and drop malicious
tools through visiting URLs [23]. Griffon, used by FIN 7, can gather informa-
tion, load Meterpreter, and take screenshots [28]. Hutchins et al. [31] propose
a kill chain to defend against APTs at various stages, including reconnaissance,
weaponization, delivery, exploitation, installation, and C&C. These stages nor-
mally iterate over a long time [35]. In order to limit the damage inflicted by
an APT, it is essential to detect them at an early stage, and in particular as
they establish communication with the C&C. By inspecting honeypot data, we
find that the communication to C&C starts immediately once the machine is
infected. Several automated tasks are performed, including establishing fallback
channels and downloading further payloads from the C&C server. These activ-
ities intentionally behave as legitimate web browser activities, attempting to
evade Network Intrusion Detection Systems (NIDSs).

In Sect. 2, we introduce the first public measurement study of APT mal-
ware C&C communication to investigate the deployed TTPs. We leverage our
measurements to identify the features necessary to recognize such TTPs at the
network level, and compare them with existing features from the literature.
We found that the use of evasive TTPs leads to significant overlap with legiti-
mate behavior, confusing the decision boundaries based on some known features.
Based on this analysis, we build EarlyCrow, a tool to detect APT activity in
network traffic. EarlyCrow generates four sets of data focused on connections,
hosts, destinations, and URLs. Features from these sets are grouped to form
a ContextualSummary. The ContextualSummary has multidimensional
features that help in building more informative random forest trees used for clas-
sification as described in Sect. 3. We evaluate EarlyCrow on traffic from APT
malware excluded from the measurement study and training set in order to test
generalization and mimic a real-world scenario (Sect. 4). Fresh malware samples
are also investigated to confirm the feature importance identified by our mea-
surement study on the training set. We also investigate how the performance of
EarlyCrow is affected by different deployment scenarios, where it has visibility
on HTTP traffic or where it can only observe opaque HTTPS traffic.

In summary, our main contributions are:

• We present an evidence-based analysis of various TTPs used by APTs. These
TTPs are known to be used to evade NIDS [14]. We also introduce a mea-
surement study on various APT malware over popular and novel features to
capture TTPs usage.

292 A. Alageel and S. Maffeis

• We implement EarlyCrow1, a tool to detect evasive malicious communi-
cation over HTTP(S). EarlyCrow focuses primarily on APTs but is also
effective against stealthy botnets.

• We evaluate the classification performance of new and existing features for
malicious traffic detection under different scenarios distinguishing ATP, bot-
net, and legitimate traffic.

2 Threat Model

Defining a relevant threat model, and focusing on a narrow set of attacks are
recommended best practices when proposing a novel NIDS [43]. There are several
ways to approach threat modeling for APTs at the network level. We consider
four popular cases of APT that involve HTTP(S) traffic, each of which deploys
at least one C&C TTP. In Case I, the infected machine contains APT malware
with a hard-coded FQDN. The malware issues a DNS query to resolve the FQDN
to an IP address. The subsequent communication to the C&C server can be
via HTTP or HTTPS. After that, the malware may initiate a fallback channel,
another popular TTP used by APTs [19], using either of the strategies described
in Cases I–IV, only this time no longer for the initial communication. In Case
II, the APT malware connects to a URL whose domain component is a hard-
coded IP address, in order to bypass malicious domain detectors, and its fallback
channel can be established using the DNS over HTTPS (DoH) TTP [21], as in
CobaltStrike [33], which is used by SUNBURST [24]. Case III is similar to Case
I in using a hard-coded FQDN, but the subsequent communication uses raw
TCP rather than HTTP during the malicious operation. Case IV is similar to
Case II in using direct IP without DNS resolution, but then uses raw TCP
communication as in Case III. Both Case III and IV may use fallback channel
with various TTPs, although not including those related to HTTP(S).

Additional TTPs introduced by MITRE and relevant to APTs can be com-
bined with the use of a fallback channel: web protocol [13] where an adversary
may use HTTP to avoid network filtering and mimic legitimate and expected
connections, non-application protocols [20] such as Raw TCP, UDP or ICMP,
encrypted channel [18] to hide C&C malicious content, fast flux [17] is a sub-
technique of dynamic resolution to obtain different IPs for the same FQDN, and
data obfuscation through protocol impersonation [15] to impersonate legitimate
use of HTTP or to mimic a trustworthy entity using a fake SSL/TLS certificate.

This paper focuses on Case I and II, where at least one malicious HTTP(S)
connection exists between the infected host and C&C server. Other cases are
challenging to detect with low False Positive Rate (FPR) at the network level
only, and require additional host-level logs.

2.1 TTP Relevant Data

The TTPs considered here are a group of host and network-level techniques used
by APTs to evade Host and Network IDSs. To track TTPs at the network level,
1 EarlyCrow code, datasets, and experiments are publicly available at [1].

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 293

an investigator needs to collect “static” Indicators of Compromise (IoCs) for
known APTs, or analyze sequences of network packets and assess the likelihood
of specific TTPs manifested by the traffic behavior. Security vendors publish IoCs
of discovered APTs. Novel attacks can be discovered when suspicious TTPs are
being observed, as for instance in the HTTP request and response behavior.

IoC-Like Data. APT campaigns dedicate one or more FQDN(s) to locate C&C
servers. They may mimic the targeted organization interests, or use dynamic
resolution, which is another TTP [16] used to communicate back to C&C
servers [3,22]. The resolved FQDN holds at least one A resource record. Some
APTs provide several A resource records to provide fallback channels for follow-
up connections. URLs are known to be used as IoCs, and used in HTTP-based
malware detection [7,34,38,40]. Some APT malware download an executable
file or pass other malicious FQDNs, IPs, or configuration commands in URL
parameters of subsequent requests. A typical URL structure includes FQDN,
nested folders (which we will refer to as depth), filename, parameters and values
with a delimiter (&) to separate between them and (=) to assign value to the
parameter, and encoded strings which typically contain %-encoding.

Traffic Data. Although multiple traffic-based TTPs were used by APTs in the
past, it is challenging to capture them by configuring NIDS with straightforward
rules. For this reason, we need to consider the context where malicious packets
are sent. First, we need to cover the details of HTTP requests and responses,
and then the traffic behavior of all protocols used for the same flow. HTTP
request and response context involves consecutive HTTP transactions composed
of several requests and responses. A request is mainly characterized by the URL,
method type (e.g. GET, POST) and User-Agent (UA). Response headers spec-
ify among other properties, the content type and status codes. To detect APT
malware, we need to efficiently store that information between two endpoints in
one flow and enable the NIDS to extract valuable statistics at the packet level.

Due to the stealthiness and low-profile operation of APTs, we also need to
provide a way to investigate Traffic Behavior. This can be achieved by stor-
ing packets arrival times, their lengths and other related information. Such a
summary needs to cover the control and data planes of TCP, UDP and ICMP
packets. With this summary on data points, NIDS designers can catch APTs
TTPs such as fallback channel and using non-application protocols. For instance,
a host contacting three different destinations after only one DNS query can be
a sign of infection by the fallback channel technique. Another example is the
non-application protocol TTP, when the APT malware opens a legitimate look-
ing HTTP connection which is followed by a sequence of malicious raw TCP
packets.

2.2 Measurements

We provide several measurements taken on the training set summarized in
Table 2 and described in Sect. 4. Since our objective is to detect APTs at the

294 A. Alageel and S. Maffeis

early stage, all measurements are observed during the first 15min of each con-
nection. In Sect. 4.2, we will investigate these measurements and other proposed
features, to see if they generalize to unseen malware.

Traffic Statistical Measurements. Statistical end-to-end observations may
highlight the evasive behavior of APTs compared to legitimate actors. The pres-
ence of a slight deviation may reflect malicious use of three TTPs, including
non-application protocols, data obfuscation through protocol impersonation and
web protocol. Since this study focuses on malicious HTTP(S) usage, we mea-
sure the HTTP packets ratio across all classes. Other related protocols are also
measured, including raw TCP and DNS ratios. Legitimate connections show a
positive linear relationship between DNS and HTTP packets (Fig. 1). With every
additional page requested by a user, such packets are exchanged with a remote
web server in order to fetch additional resources. For APTs, we notice that DNS
ratios are half or less than for legitimate or botnets, respectively. 95.2% of APTs
do not exceed a 0.19 DNS ratio, compared to 0.38 for legitimate and 0.46 for
botnets.

Next, we focus on DNS requests and conclude that almost no malicious
behavior exceeds the legitimate, except for Conficker botnets, which use Domain
Generation Algorithms (DGAs). 84% of APT or botnet traffic issues 2 or 6
requests at most, while legitimate traffic can generate up to 18. Once a domain
is resolved to one or more IPs, a typical APT avoids requesting another DNS for
the rest of HTTP communication unless they plan to establish another fallback
channel. Another useful feature is the raw TCP ratio, which helps detect the
non-application protocols TTP: a high ratio indicates the adversary uses HTTP
as camouflage while still heavily relying on raw TCP. It is extremely rare for an
APT to have a raw TCP ratio lower than 48.84%, whereas we observed minimum
ratios of 2% of legitimate, and 0% of botnets.

Since we focus on the early stage of connections originating from the victim
side, we found that around 70.58% of APTs receive 3.35 times more data than
they send to the remote server, compared to 1.45 and 0.75 for legitimate and
botnets, respectively. This is consistent with the threat model in [3], where an
adversary uploads more tools on the victim’s machine at the beginning of an
APT campaign to continue other operations such as lateral movement, unlike
botnets which may show more data exfiltration behavior. We also examine the
number of resumed connections. Legitimate HTTP usage typically increases the
number of resumed connections, since shortly after a web resource is downloaded,
the TCP connection is terminated with FIN. Upon clicking another link, even
for the same website, a new TCP three-way handshake is initiated. We count
that as a resumed connection. With a web caching service, the scenario remains
similar, although the server is contacted via a proxy or content delivery network
(CDN). While legitimate and botnets connections may easily be resumed up to
21 times, APTs tend to terminate less (roughly 50% less). It seems plausible
that APTs avoid frequent connection termination and resumption to increase
stealthiness.

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 295

Fig. 1. Measurements for APT, botnets, and legitimate connections.

Time-Based Measurements. We measure stealthiness and low profile of APTs
by monitoring time-based features. Delta, the packet inter-arrival time between
a remote server and a host, is estimated based on the arrival time difference
between packets, independently from their protocol. For 94.73% of cases, we
found the mean delta time in seconds to be at most 23.5 × 10−2 for APTs,
6× 10−2 for botnets and 0.5× 10−2 for legitimate. Hence, APTs may act slower
than botnets and legitimate by up to 4 and 47 times respectively.

A new metric, data packet exchange idle time, is proposed to measure the
time difference between actual data packets. We found APTs idle time to be 3
and 6.57 times shorter than botnets and legitimate: 92% of cases have an idle
time of at most 28, 84, and 184 s, respectively. Once APTs establish a commu-
nication channel, they send bursts of data packets (low idle time), then pause
communications (high delta) until the next burst. We also measure the max-
imum magnitude of outliers which exceed the Simple Moving Average (SMA)
with respect to the predefined bins described in Sect. 3.3. We found that for
84% of the cases, the maximum magnitude for APTs (0.338 KB) is half the one
for botnets (0.676 KB), and 10% of the one for legitimate (3.33 KB). These
three time-based features partially capture the low and stealthy profile of APTs
compared to botnets or legitimate.

Remote Web Server. Analysis of contacted web servers may help identifying
the web protocol and fallback channel TTPs. Typical web servers mostly adhere
to best practices in setting up their HTTP configurations. APTs appear to be
more professionally configured than botnets, but not as much as legitimate ones.
For instance, the packet failure rate for legitimate servers and APTs (HTTP
responses with status codes 4xx and 5xx) is relatively low. To be precise, 90%
have at most one packet failure, while the botnets may receive as many as five.
Total GET and POST requests are less similar. 92% of APTs and legitimates
have 9 and 10 or less, respectively while the botnets have up to 14.

296 A. Alageel and S. Maffeis

We also investigate the ratios of content types declarations. We focus on
the ratios of HTML and images, since these are most frequently used in HTTP
connections. 73% of APTs, legitimate and botnets declare HTML 2%, 2% and
98% of the time, so APT behavior in this case is similar to legitimate. However,
due to the possible use of the data obfuscation through protocol impersonation
TTP, we found that APTs and botnets are less likely to declare image type, which
is not the case for web browsing activities. 70% of legitimate declare images 30%
at most during a connection, while it is zero for both APTs and botnets.

Next, we measure the URL characteristics, due to their proven effectiveness
for detecting malicious web servers. Measuring the distinct URLs accessed in a
given network may highlight the rich number of web pages which is more likely
to be legitimate [30,38]. We observe that APTs invest heavily in legitimate-
looking pages, to evade NIDS that rely on URL-based features. For example,
we find that 87% of botnets query only one URL, while legitimate and APTs
query up to five and four, respectively. APTs have more resources than botnets
in general. As depicted in Fig. 1, 90% of APTs have 3 nested folders (depth),
close to legitimate, which is 4, while botnets have 1 at most. URL parameters
differ even more: 87% of APTs and legitimate use 3 and 7, while botnets use
only 1. Following that, URL length is determined by the length of FQDNs,
depths, filenames, parameters, values, fragments, and strings. 90% of legitimate
URL lengths are 249 or less, whereas APTs and botnets are up to 145 and 109.
Finally, APTs deploy a fallback channel in several ways, as discussed in Sect. 2.
We measure the number of HTTP(S) connections established to an IP without
a previous domain resolution. 57.89% of APTs reached 32% of C&C with IP
only, while it is 9% and 1% for botnets and legitimates. Therefore, it is unusual
for legitimate to perform such behavior, while it is more common for APTs and
occasional for botnets.

3 EARLYCROW

EarlyCrow detects malicious HTTP(S) connections, and in particular APT
malware. In this section we discuss the architecture of EarlyCrow, and how
the features used by EarlyCrow are extracted and updated.

3.1 Architecture Overview

EarlyCrow is composed of four main processes, as depicted in Fig. 2. First,
it starts with buffering and dispatching using PairFlow (Fig. 2, 1), which
summarizes a PCAP into contextually relevant fields including packet behavior,
domain and URL list, UA, status code, and content type for HTTP. After the
PairFlow HTTP variant is generated, these flows are preprocessed for pro-
file pivoting (Fig. 2, 2) to generate three profiles: Host, Destination, and URL.
Then, two types of feature extraction follow (PairFlow and profile features in
Fig. 2, 3) to form a ContextualSummary (Fig. 2, 4) which is the input for a
random forest classifier. When another PairFlow is received, it will follow the

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 297

Updating Relevant Features

Packets Collection
(Granularity = n sec

Contextual
Summary ID

Last PairFlow
ID

BlackList
IP and
related
Domain

R
andom

Forest

Legitimate

Proceed Contextual
Summary

Repository
Add to

Contextual Summary

Host Related
Features

URL Related
Features

Destination
Related Features Malicious

Update

U
R

L Profiles

Enterprise's
Gateway

Varients
Extrcation

H
osts Profiles

Host IP (Pair A)

D
estination

Profiles

Destination IP (Pair
B)

U
pdate B

lacklist

Contexutal Summary Updating Process

PairFlow-based

Pair A Pair B Time
Window EPFLAG

Fetch the corresponding ContextualSummary

Contextual
Summary ID Pair A Time

Window
Pair Flow

ID Pair B EPFLAG FQDN

Statistical Behaviour Time-based Behavior

Profile
Pivoter

R
aw PairFlow

 H
TTP Variant

... ...

PairFlow

PairFlow

PairFlow

Host

D
estination

HTTP Server
Identifier

PairFlow Preprocessing

Feature Space Generation

Raw Data Buffering and Dataform at Transform ation

PairFlow Related
Features

1

2
3

5

4 67

Host Features Destination
Features

P
airFlow

G
enerator

URL Features

Encapuslation Filter Black List IPs
and Domains

Aggregation Tracking

Feature Extraction

Fig. 2. Overview of the EarlyCrow architecture.

same workflow. A further step is required when the new PairFlow matches one
of the previous ContextualSummary ID in the repository. The Contextual-
Summary updating process (Fig. 2, 5) is responsible for updating the matched
ContextualSummary to maintain the contextualization and reclassify again.
The rest of this section discusses in detail the feature space generation and how
the ContextualSummary is formed.

3.2 PAIRFLOW

PairFlow is a proposed data format that allows the NIDS designer to quickly
pivot flows into many profiles such as host, destination, and URL profiles. Pair-
Flow data can also be used by detectors of malicious domains or IPs. Instead of
detecting one flow according to the initiation and termination of TCP, protocol-
based or time window, PairFlow digests all information to extract features
later based on the whole context over time.

PairFlow receives raw PCAP data and stores these packets in a buffer until
a time window of size t has passed. The buffer sends the current granular data
with all the connections of a network during a time window, to the Tracking
module to group unique pairs and label related packets. A unique pair refers
to any (possibly bidirectional) connection observed between a host on the local
network and a remote server. We take the source of the pair to be the local host,
and the destination to be the remote server. Next, the Aggregator module adds
a PairFlow ID and time window to the flow data. The Aggregator module
is also responsible for marking packets according to their plane, extracting the
domains and HTTP fields. Next, the Encapsulation module groups all these
pieces of information contextually, so that all possible TTPs discussed in Sect. 2
can be analyzed later. Therefore, each pair of connections has a comprehensive
description of their packets behavior (described in Sect. A.3), HTTP settings,
accessed domains, and cipher suites setting. Finally, PairFlow outputs four
additional JSON files which can be used by any external classifier. We only use
the HTTP variant for EarlyCrow. The technical details for each component
of PairFlow can be found in Appendix A.

298 A. Alageel and S. Maffeis

3.3 PAIRFLOW Features

EarlyCrow benefits from using the statistical features produced by Pair-
Flow, which are presented in Appendix A and Table 5. It also extracts higher-
level contextual features from the TCP and UDP planes.

Statistical Behavior. As we found in Sect. 2, where raw TCP ratio may reveal
the non-application protocols TTP. We count the raw TCP ratio per PairFlow
in addition to other protocols ratios such as DNS, which can also detect APTs
malicious use of HTTP because it tends to request a domain resolution one time
during a connection [3]. From Data Sub-Plane in Fig. 5, we calculate GET/POST
requests and the fraction of status codes started with 1xx, 2xx, 3xx, 4xx, 5xx to
identify the most salient behavior of such a connection. Using the control sub-
plane, we count the termination of TCP connection FIN-ACK (0x11) during a
PairFlow instead of the sequence of TCP handshaking, i.e., SYN, SYN-ACK,
ACK (0x02, 0x12, 0x10) due to the lower computation cost. However, to exclude
a typical HTTP flow (e.g., browsing sessions) and reduce false positives, we
consider also the number of DNS requests during a given PairFlow, using the
UDP plane. EarlyCrow calculates the number of declarations of content types
and their ratios to the others in the data sub-plane. Examples of considered
types include JavaScript, HTML, image, video, application, and text.

Time-Based Behavior. The challenge of time-based features is to identify
APTs connections that operate at low-profile mode. First, we consider using a
couple of time-based features from the PairFlow such as packet TTL, duration
of the PairFlow, and delta packets inter-arrival time. We also measure the
max/min/mean data packet exchange idle time using the data sub-plane, the
difference between subsequent data packets’ arrival time. During a typical web
browsing session, there is little or no difference between delta packet inter-arrival
time and data packet exchange idle time.

We propose additional time-based features that attempt to measure the
stealthy behavior with time-series techniques. We present features based on the
simple moving average (SMA). The purpose of the SMA is to average the data
points over a time window of size t decided in advance, so that an analyst
can identify when a data point is above or below such average. SMAk can be
described as follows: 1

k

∑n
i=n−k+1 pi, where p is the packet length, k is the num-

ber of previous data points in a time window, and n is the current data point.
Since packets arrive asynchronously, in order to calculate an SMA we need to
introduce a sampling rate such that packets arriving within two sampling events
are combined together in a single point. For example, if the time window is
one minute and we sample points every second then k = 60 and if we receive
two packets of length respectively 128 and 32 between seconds 5 and 6, then
p6 = 160. After calculating the SMA, we can extract the number of outliers
and their ratio and magnitude. Outliers are those points two times above the
corresponding SMAk. Therefore, we can capture the stealthy behavior of APTs,
which has fewer outliers than legitimate and botnet traffic. However, it is also
essential to find the number of packets below and above average. These features

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 299

can capture the APTs that touch or slightly exceed the SMA, reflecting cautious
operation.

3.4 Profiles Features

Profiles features are generated based on all PairFlows with longer time win-
dows, for example lasting days, weeks, or even months. EarlyCrow queries
the related information using a host IP, destination IP, and FQDN for the host,
destination, and URL profiles, respectively. The purpose of the host profile is to
identify whether that host has a sign of infection, such as discrepant information
or a fallback channel. The destination profile may reflect those destinations that
an enterprise can access and avoid some false positives. The URL profile helps
identify the typical use of a given FQDN. FQDNs commonly accessed without
parameters or values, especially with GET as method type, could signal the use
of the dynamic DNS or fast flux technique to point to frequently changed IP
addresses known to be used for APTs [3]. The URL profile helps pinpoint the
malicious use of HTTP protocol from their past behavior. Nevertheless, APT
cannot be easily detected based on such single features, so these will only con-
tribute in part to the final classification.

Host Profile. The host profile aims to investigate the effect of infection on a
machine behavior over t̂ time, which should be longer than the selected granu-
larity t time for PairFlow. Benign hosts should have specific characteristics in
terms of resumed connections, DNS requests per flow, time difference of sequence
connections, and type of UA used. When a host is infected with APT malware,
its characteristics may move to another point further from the benign host cen-
troid. For instance, it is suspicious for a host to initiate a connection by IP only,
which is highly linked to a fallback channel. EarlyCrow investigates the num-
ber of resumed connections per flow for each host. Similarly, we extracted the
DNS request per flow to identify a host with lower DNS requests than expected,
which is also a sign of APTs using dynamic resolution, DGA, and data obfusca-
tion through protocol impersonation TTPs.

In addition, we measure the Mean Time Difference of Sequenced Connections
(MTDSC), which can help to identify fallback channel. MTDSC can be calculated
as follows: 1

n

∑n
i=0 ti+1 − ti, where n is the number of new connections and t are

their timestamps. The input timestamp should be the first packet sent or received
from Control, UDP, or ICMP planes for any PairFlow, where the source is the
same host. We also compute a ratio of connected destinations using IP only to
those with FQDN. The feature can capture the APTs behavior of using DNS
requests to locate the IP address of C&C; once the first channel is established,
APT malware sends another IP as a fallback channel and starts another three-
way handshake. It can also indicate the malicious use of DoH. As pointed out in
Sect. 2, any client that uses HTTP will have an optional UA in a request packet,
and it could be a (non-)browser, malicious string, or just an empty. Similar to
[38], we extract several features for UA, including the distinct number of UAs
and their popularity among an enterprise.

300 A. Alageel and S. Maffeis

Destination Profile. The destination profile analyzes the servers contacted
by internal hosts to find the characteristics of the provided services. We are
interested in determining if it is normal for a destination to have fewer/more DNS
requests, short/long data packet exchange idle times, high/low packet failure
rates, sending/receiving dominant, and high/low resumed connections.

For instance, we measure the number of DNS requests per flow for a destina-
tion to investigate if such destination is using dynamic resolution, DGA or data
obfuscation through protocol impersonation TTPs. An APT destination tends
to have fewer DNS requests than usual. Once the domain is resolved and TCP
establishment has been completed, it is rare to request more DNS packets. The
legitimate use of HTTP(S) is to query the DNS packet every time they visit each
page. Therefore, the number of DNS requests is directly proportional to HTTP
packets. It is also essential to measure the destination data packet exchange
idle time to identify legitimate web servers with a reasonable time to be idle
for browsing. Again, the data packet exchange idle time here focuses only on
the meantime of zero data exchange packets from a destination point of view
without considering the control ones.

As pointed out in Sect. 2, some APTs use protocol impersonation such as
HTTP as a camouflage to communicate with C&C. Thus, identifying the packet
failure for each destination can explain if the failure comes from the destination
itself or the PairFlow in Sect. 3.3. The objective is to find if a destination
mimics web browsing activities while mainly communicating with the victims
through raw TCP as non-application protocol. Another important aspect for each
destination is calculating the number of resumed connections. Browsing behavior
has frequently more resumed connections than the APT ones as we presented
in our measurement study (Sect. 2.2). Finally, we observe the number of hosts
connected to each destination. Popular web servers and botnets destinations
are routinely contacted by a considerable number of hosts. In contrast, APTs
typically infect as few as possible hosts, hence receiving few connections to their
destinations.

URL Profile. We present URL-based features which are separated from those
in the destination profile, as many FQDN-based URLs share the same IP or
vice versa. The URL profile summarizes the standard behavior of resources and
the traffic statistics for each FQDN or IP-based URL. We count here how many
URLs are reached during a connection and how many are distinct. A malicious
C&C server typically has fewer than a legitimate one (Sect. 1).

We also check if a URL has a query string, filename, and whether it has
an executable extension, then calculate the fraction of the number of each
field compared to the distinct number of URLs. A legitimate URL is likely to
possess a filename with a variety of extensions. Other statistical features, i.e.,
Min/Max/Mean, are also calculated on URL length, depth, number of parame-
ters, values, and fragments.

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 301

Table 1. EarlyCrow features. Note that features reused from the literature are
computed from PairFlow data rather than from other data formats.

ID Feature New? ID Feature New?

I. PairFlow features
1 Total bytes [7,8,46] 28–31 Number and ratio below and above

average
�

2 Sent/received ratio [7,8,38,46] 32–33 Number and ratio outliers �
3–9 Ratio of raw TCP, raw UDP, ICMP,

DNS, HTTP, TLS and SSL packets
� 34–37 Outliers magnitude Max/Min/ Mean/SD �

10–13 Ratio of HTTP response packets with
2xx, 3xx, 4xx, 5xx

[38] 38–40 Data packet exchange idle time
Max/Min/Mean

�

14–15 Ratio of frequent GET and POST [38,40] 41 Active duration �
16–19 Content length total/Max/ Min/Median � 42–45 Packet TTL Max/Min/Mean/SD �
20–26 Ratio of content type Javascript, HTML,

Image, Video, App, Text, and Empty
[38] 46–49 Delta packets interarrival time Max/

Min/Mean/SD
Similar to [7]

27 Number of resumed connections � 50 Number of DNS request �
II. Host profile features

51–53 Max/Min/Mean time difference of
sequenced connections

� 59 Distinct UAs per host �

54 Ratio of connected destination IP only to
FQDN

� 60 Inverse average of UA popularity [39]

55–57 Max/Min/Mean of resumed connections
per flow for a host

� 61–62 Fraction of UA 1, and 5 [39]

58 Number of DNS request per flow for a
host

� 63 Ratio of UAs [39]

II. Destination profile features
64 Number of hosts connected to destination [39] 72 Number of distinct URLs associated to a

destination
�

65–67 Destination received/sent Max/ Min/Avg � 73–75 Destination Max/Min/Mean packets
failure

�

68–70 Destination data packet exchange idle
time Max/Min/Mean

� 76–81 Max/Min/Mean number and ratio of
DNS request per flow for a destination

�

71 Number of resumed connections per flow
for a destination

�

II. URL profile features
82 Fraction of URLs filename [38] 94–96 URLs values Max/Min/Mean [7,38,40]
83 Fraction of URLs filename exe � 97–99 URLs fragments Max/Min/Mean [38]
84 Number of distinct extensions [38] 100 Fraction of query [38]
85–87 URLs length Max/Min/Mean [7,30,38,40] 101 Number of strings �
88–90 URLs depth Max/Min/Mean [7,38,40] 102 Number of URLs and distinct ones [32]
91–93 URLs parameters Max/Min/Mean [7,30,38,40]

3.5 CONTEXTUALSUMMARY

When all features are extracted for a received PairFlow and profile-based fea-
tures are prepared, the ContextualSummary module collects these features
in one bundle to be dispatched to the classifier. When a new PairFlow is
received, EarlyCrow checks the ContextualSummary repository to iden-
tify if the pair had been already processed in the past. If so, the PairFlow will
be processed as described in the previous sections. Then, it will be dispatched
to the updating process module to combine the new flow with the previous ones
as described in the next section. The purpose is to track the same connection
over time to catch malicious behavior. For example, if a malicious actor bypasses
EarlyCrow for the first flow, it will be tracked over time until it gets blocked.
Indicators associated to positive detections may stay in the ContextualSum-

302 A. Alageel and S. Maffeis

mary repository and the blacklists for training the classifier. In Table 1, we
summarize all features included in ContextualSummary.

3.6 CONTEXTUALSUMMARY Updating Process

While PairFlows are stored in a repository, the ContextualSummary gets
updated over time, using different rules for Host, Destination, and URL Profiles.
If an incoming PairFlow has no associated ContextualSummary (Fig. 2,
6), a new one is created. Otherwise the new PairFlow is considered for fea-
ture extraction, causing an update of the corresponding features of the associated
ContextualSummary (Fig. 2, 7). The time window is expanded with the new
PairFlow to describe the overall time window covered by the Contextual-
Summary. However, updating profile-based features could cause higher time
complexity because these profiles are to be updated for every different Contex-
tualSummary. Therefore, new profile-based features are recalculated every t̂
time, such that t̂ > t, where t is the selected granularity for EarlyCrow. For
instance, we can configure t̂ at 15min in our experimental settings, which is
higher than t by 50% if t at 10min.

EarlyCrow considers different methods to update features according to
their data type. Numerical features are updated by using a weighted average. As
shown in Fig. 2, each ContextualSummary stores the last PairFlow ID as a
counter of previous ones to be used for the weighted average formula. EPFLAG-
based features, Boolean data types, are updated with OR operation with an
incoming one to summarize the overall protocol used during ContextualSum-
mary. For instance, APTs often have the DNS packets at the first PairFlow,
but not the subsequent one, as we discussed in Sect. 2. Therefore, updating the
ContextualSummary does not reset EPFLAG for the DNS. For Host-Profile
features, strings of UA are stored to accurately extract other related UA, such
as the number of distinct UAs which cannot be updated without having access
to their strings.

4 Evaluation

This section evaluates EarlyCrow in a standard setting to investigate how our
system performs against APTs and botnets. We evaluate EarlyCrow perfor-
mance on the three datasets described below. The same experiments are per-
formed on a baseline, inspired by Made [38], which is a NIDS detecting C&C
used by botnets, ransomware, and APTs. Since we assume EarlyCrow to run
in parallel with a malicious-domain detector, we omit domain-related features,
which would also not be relevant for the considerable portion of traffic conform-
ing to the Case II pattern of Sect. 2.

4.1 Datasets

APT malware attacks a few targets in discontinued time-frames spanning months
or years, unlike other malware and common attacks. Therefore, the chance of

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 303

Table 2. Dataset characteristics used for measurements (training set) and for unseen
malware evaluation (testing set).

Label Set Malware families

Malicious (567,090
packets)

Training Bitsadmin (0.09%), Carbank (0.05%), Conficker (27.56%),
Mivast&Sakula (0.93%), NanoCore (0.13%), njRAT (28.45%), PlugX
(0.11%), Remcos (0.87%), Sogou (3.65%), Virut (9.59%), Zebrocy
(0.98%),

Testing (unseen) Ammyy (1.01%), ChChes (0.13%), CobaltStrike (0.39%), Dridex
(0.23%), Emotet (0.02%), Empire (1.70%), FlawedAmmy (0.24%),
ImminentMonitor (11.27%), MagicHound (0.40%), OnionDuke
(0.14%), PoisonIvy (0.25%), Ramnit (0.21%), StrongPity (11.38%),
Zeus (0.04%)

Legitimate
(766,641 packets)

Training: 70%, Testing: 30%

finding a real network infected with various APT campaigns is unrealistic. We
resort to raw PCAP captures from two different honeypot networks, each of
which includes legitimate, APTs and botnets C&C connections (Table 2). These
APTs are often temporarily inactive. Due to this, we run them during multiple
time windows (April 2020–January 2021, October–November 2019) until each
campaign’s activities are resumed, and their command and control are activated.

APTraces. We run different active malware using Any.Run2 sandbox machines
to generate PCAP files. These malware families are known to be used by 48
APT campaigns, and they were active and tied to an APT campaign at the
time of the capture. These include RATs (njRAT, Imminent Monitor, Cross-
RAT, Mivast & Sakula, NanoCore, PlugX, PoisonIvy) and trojans (Empire,
OnionDuke, MiniDuke, Remcos, StrongPity, Zebrocy). We also consider legiti-
mate connections from the same sandbox to avoid data bias based on the victim
machine, configuration settings, or temporal bias [5] against legitimate.

Malware Capture Facility Project (MCFP). The MCFP3 includes mal-
ware used in APTs such as (Magic Hound and Cobalt), admin tools (Ammyy),
and RATs (njRAT). We also add botnets captures that use HTTP(S) for C&C
communication (Conficker, Dridex, Emotet, Ramnit, Sogou, Virut, Zeus) and
normal traffic (CTU-Normal-12, 20–22). After PairFlow compiles the PCAPs
and generates HTTP variant files, we build three combined datasets: APTs vs.
Legitimate, botnets vs. Legitimate, and Malicious (APTs or botnets) vs. Legiti-
mate.

4.2 Classification Performance

Classifiers are evaluated in two modes. First, HTTP-Mode, which assumes the
administrator connects the NIDS to a web proxy to decrypt HTTPS and accesses
features such as UA, HTTP response codes, content type, and URL. Second,

2 https://any.run.
3 https://www.stratosphereips.org/datasets-overview.

https://any.run
https://www.stratosphereips.org/datasets-overview

304 A. Alageel and S. Maffeis

Table 3. Classification performance.

Classifier name Known malware Unseen malware
FPR Prec. Recall Acc. F1 mF1 FPR Prec. Recall Acc. F1 mF1

I. Dataset: APTs vs. Legitimate
EarlyCrow 0.40 94.20 93.69 99.17 99.17 93.89 0.74 94.48 91.67 98.11 98.08 93.02
Baseline 0.49 92.4 89.09 98.75 98.73 90.45 0.00 98.04 75.00 96.22 95.63 82.33
EarlyCrow-HTTPS 0.51 92.85 93.18 99.03 99.03 92.79 0.74 94.68 92.81 98.28 98.26 93.72
Baseline-HTTPS 0.72 82.90 68.96 97.19 96.72 73.18 0.00 96.70 56.82 93.47 91.10 60.29

II. Dataset: Botnets vs. Legitimate
EarlyCrow 0.48 96.49 95.40 98.92 98.91 95.90 0.19 96.77 92.01 99.26 99.24 94.25
Baseline 0.57 94.64 86.92 97.61 97.49 90.24 0.19 95.08 78.85 98.35 98.16 85.06
EarlyCrow-HTTPS 0.42 96.79 95.02 98.92 98.90 95.84 0.19 95.49 81.48 98.53 98.40 87.12
Baseline-HTTPS 0.96 90.73 80.76 96.39 96.14 84.79 0.00 48.25 50.00 96.51 94.79 49.11

III. Dataset: Malicious vs. Legitimate
EarlyCrow 0.86 95.41 94.79 98.29 98.29 95.06 0.93 94.77 91.60 97.51 97.46 93.11
Baseline 0.93 93.76 88.20 96.97 96.86 90.68 0.19 95.89 76.10 94.85 94.15 82.62
EarlyCrow-HTTPS 0.93 95.07 94.76 98.23 98.23 94.89 0.93 94.27 89.22 97.01 96.92 91.54
Baseline-HTTPS 0.95 91.21 78.66 95.13 94.689 83.47 0.00 95.22 54.76 90.53 86.86 56.18

HTTPS-Mode, where the administrator places the NIDS at the network edge
without deciphering HTTPS. Because of imbalanced classes of APT (3.9%) and
botnet (8.3%) compared to legitimate, we focus on macro average F1-score (mF1)
in Table 3.

Known Malware. We randomly split the training and testing sets ten times.
Then, we take the average performance under two constraints. First, the malware
should be presented in both sets. Second, the infected hosts and the destination
C&C server should be unique and not leaked from training to testing. Early-
Crow obtains the best performance with mF1 of 93.89%, 95.9%, and 95.06%
for the three datasets. Even in HTTPS mode, which cannot take advantage of
plaintext HTTP features such as headers or URL details, EarlyCrow still out-
performs the baseline on both three tasks, scoring 92.79%, 95.84%, and 94.89%
respectively. Note that EarlyCrow can operate almost similar on both modes
on known malware. However, we will investigate that on unseen malware.

Unseen Malware. We train our classifiers on the training set that used for
our measurement study. Then we evaluate the performance against unseen mal-
ware described in Table 2. EarlyCrow obtains the best performance with mF1
of 93.02%, 94.25%, and 93.11% for the three datasets. On all three tasks in
HTTPS mode, EarlyCrow surpasses the baseline, achieving 93.72%, 87.12%,
and 91.54%. For EarlyCrow, the performance loss between known and unseen
is marginally low (1.96% of mF1) in the third dataset, while the baseline suffers
a loss of 8.04%.

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 305

Fig. 3. Effect of using only the top % of features.

4.3 Discussion

We limit our discussion to the results of unseen malware on the third dataset pre-
sented in Table 2, which evaluates the generalization of EarlyCrow to mimic
the real-world environment.

Features Diversity. The detection of APTs necessitates a spread of features,
as presented in Sect. 2. In Fig. 3, we show the extent to which additional fea-
tures affect the performance of the various classifiers. The first 10% of fea-
tures for EarlyCrow show rapid improvements in terms of precision but with
poor recall. Also, stronger features between 48% and 62% can improve the per-
formance of mF1 up to 92.26% for EarlyCrow-HTTPS. Adding more fea-
tures afterward increases the detection rate, enabling more unseen APTs to be
detected. Furthermore, a system with diverse and strong features will require
more time and resources to defeat as opposed to one that relies on a few partic-
ular features [47].

Top Features. We investigate the feature importance of the third dataset in
HTTPS mode, which comprises APTs, botnets, and legitimate samples, because
it is the one closest to a realistic scenario for APT hunting. Figure 4 illustrates
the top features based on their information gain. MTDSC is an effective fea-
ture that reveals 82% of hosts infected with APTs and botnets spend up to 73.7
and 38.5 s, which are higher than 1.1 s of typical benign hosts, confirming the
expected HTTP browsing. The longer time for APTs indicates using a fallback
channel, which is generally established after a long time. Next, the average num-
ber of DNS requests for a host per connection is lower in APTs than botnets
and legitimate, with 90% at most 2, 6, and 19, respectively. Interestingly, hosts
infected with APTs have higher connections reaching further destinations by IP
without domain resolution as fallback channels. This is consistent with our mea-
surement study in Sect. 2.2. 70% of APTs use such an approach, with 88% or
less for their connections, compared to only 1% for the legitimate.

While 60% of legitimate connections are repeated six times resumed or less,
botnets are rarely disconnected, and APTs are weakly imitating legitimate web
protocol TTPs, with two-thirds lower. Next, APTs and botnets are considerably
slower than legitimate, with mean delta inter-arrival times at most 33.5× 10−2,
46 × 10−2, and 0.5 × 10−2 seconds at 95% of their probability. We confirm
that APTs tend to switch from HTTP to raw TCP for malicious operations
representing non-application protocols. Within a PairFlow, we find that 50%

306 A. Alageel and S. Maffeis

Fig. 4. Cumulative distribution of top features gains on the testing set for Early-
Crow-HTTPS.

of APTs rely on 81.09% (58.35% for legitimate) of the whole exchange packets on
raw TCP, indicating the adversary use HTTP as camouflage while still relying on
TCP for many tasks. Nonetheless, the APTs and botnets are faster regarding the
difference between data packets. They tend to be shorter/faster than legitimate,
where 90% of them take 104, 124, and 168 s, respectively.

Evasion Attacks. In Table 4, we break down the results of EarlyCrow-
HTTPS on unseen malware. 92% of unseen malware are detected with at least
one C&C communication, and 64% of different malware are fully detected. How-
ever, one server belonging to StrongPity is not detected in HTTPS. We found
StrongPity is not using a fallback channel, and its measurement reflects a legiti-
mate one. In HTTP mode, EarlyCrow managed to detect StrongPity because
of its malicious URL characteristics, such as using .exe file extension, and lacks
a rich web server (i.e., No. of URLs distinct) compared to the proportional data
volume. Also, some C&C servers belonging to OnionDuke and Zeus managed to
evade detection. These servers are established as fallback channels with minimum
data transfers, which evade many features. Since the malware is detected on a
specific machine, we recommend a SOC analysis to sanitize the victim machine
from the malware to stop other possible C&C communications.

Table 4. Detection rate on unseen malware over HTTPS.

Malware C&C servers Detection (%) Malware C&C servers Detection (%)

Ammyy 8 100 ImminentMonitor 4 75

ChChes 1 100 Magic-Hound 3 100

CobaltStrike 2 100 OnionDuke 6 33.34

Dridex 2 100 PoisonIvy 1 100

Emotet 13 53.84 Ramnit 2 100

Empire 5 100 StrongPity 1 0

FlawedAmmy 4 100 Zeus 3 33.34

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 307

4.4 Limitations

APT Campaigns. EarlyCrow is geared toward detecting the early stages of
infection. Nevertheless, it is difficult to conclude which suspicious activities are
due to advanced adversaries and which are due to mainstream malware vari-
ants. Hence, we recommend tracking APT campaigns and malware activities
over a longer period of time on a live system. This could be done by deploying
EarlyCrow on the network of several likely targets, such as a sovereign entity
or large financial institution, over months and periodically reevaluating Early-
Crow reports against each APT campaign to drive further improvement. By
maintaining our repository publicly accessible [1], we encourage collaboration
with the open source and research communities to run EarlyCrow on their
targeted networks and to share their findings for further improvements.

Adversarial Robustness. Previous work has studied adversarial attacks
against deep learning based NIDS [12,26,27,36], and discussed robustness for
traditional machine learning such as random forest [9,37,38]. Although Ear-
lyCrow is motivated by the techniques used by APTs to evade NIDS, Prac-
tical and Feature-space Attacks [11,25] specifically targeting PairFlow fields
and EarlyCrow features may still be possible. For instance, Random Interval-
Time (RIT) [8,44] and Random Duplication (RD) [29] were used against botnets,
and could be tested against APTs. The former generates adversarial samples by
altering packets’ arrival times, which APTs could easily do, although it may
have less effect on lower volume traffic. The latter duplicates the number of
packets randomly, and may be less useful to APTs, but still useful as a measure
of robustness.

Practical and Feature-space Attacks [25] could also be considered. In a Prac-
tical Black-box Attack (PBA) the adversary knows what traffic features are
selected by the classifiers, including in our case, the PairFlow fields from
Table 5. Moreover, adversaries can access most features published in the past to
adapt their traffic according to the targeted feature extraction to evade NIDS.
We refer such assumption to Practical Gray-Box Attack (PGA) for those features
used in the literature presented in Table 1. Another two attack configurations
can be considered [11,25,48], including Feature-space Grey-box Attack (FGA),
Feature-space Black-box Attack (FBA). FGA may attack all features produced
by EarlyCrow, while the FBA is produced by the state of art baseline, i.e.,
reproducible Made and non-novel features in Table 1. However, there are several
variations in finding the optimization of evasion attacks. We suggest to adopt
variants of Euclidean norm [10,45] (lp) for black-box configuration and free-range
[49] for Gray-box.

Execution Time. EarlyCrow can speed up its execution by running its mod-
ules (of Fig. 2, 3) in parallel using Hadoop, similar to [30], optimizing memory
hierarchy, and pipelining the main processes (Fig. 2, 1 – 3). The current imple-
mentation aims to prove the concept and focuses on detection performance. Fur-
ther investigations of how to improve and measure execution speed and memory
footprint in a production environment are left for future work.

308 A. Alageel and S. Maffeis

5 Related Work

There is very limited previous work on detecting APTs at the network level.
Detecting C&C in general is the closest area. In our approach we test several
features from the literature which can be relevant for APTs including URLs and
UA features [32,38–40], traffic exchange bytes [7,8,38,46], HTTP content types
[38,39], and GET and POST ratio [38,40]. Besides directly using such features,
EarlyCrow pivots them into host, destination and URL profiles, and combines
them in contextual summaries.

Some previous works focuses on detecting APTs in addition to other kinds
of malicious communications [38,39]. Oprea et al. [39] propose a belief prop-
agation (BP) algorithm to detect early-stage infection of APTs. They model
enterprise communication using a bipartite graph with two vertices, hosts, and
domains based on simulated attacks. Once the detector identifies a malicious
remote host or domain based on several features, BP identifies communities of
malicious domains with similar features that are part of the same attack cam-
paign. Domain scores are calculated as a supervised linear regression weighted
sum of features. As discussed in Sect. 4, APTs tend to infect a lower number
of hosts than botnets. Therefore, EarlyCrow consider other features based on
different TTPs discussed in Sect. 2.

EarlyCrow is closer to Made [38], which instead uses web proxy logs at
the edge of an enterprise network to detect malicious C&C communications,
including APTs. Made leverages features related to the communication, HTTP
request, response and its content, URL, and UAs. These are used by a random
forest classifier to assign a risk score for each connection. As discussed in Sect. 4,
Made is not as effective on HTTPS traffic, which is nowadays harder to intercept
and decrypt due to technical and legal requirements. In addition, EarlyCrow
considers five other TTPs besides the Web Application Protocol TPP at the
heart of Made.

ExeceScent [37] detects C&C domains by clustering incoming requests into
five templates, including median URL path, URL query component, User-Agent,
other headers, and destination network. These templates are used to estimate
similarity scores to predefined Control Protocol Templates (CPT) centroids.
However, this is open to evasion if an adversary copies the UA of the victim
machine from the Windows Registry [9]. In addition, it is not possible to extract
most HTTP header features when HTTPS is in use, which hinders the gener-
alization process and may result in mixing APTs with legitimate ones in many
clusters. A related approach [7] adopts similar features, only using histogram
bins which also can be evaded using HTTPS.

BAYWATCH [30] is a filtering system to detect the beaconing of infected
hosts. Universal and local whitelist are filtered, then beaconing can be detected
using Fourier transform and Gaussian mixture model, awarding a high agglom-
erative hierarchical clustering score for strong periodicity. BAYWATCH filters
URLs and domains that are likely to be legitimate. Unprocessed connections
with all previous features are sent to a random forest for classification. BAY-
WATCH can be computationally expensive for only beaconing behavior, and

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 309

many APTs also have non-beaconing connections. EarlyCrow detect mali-
cious connections regardless of their pattern. Finally, Kitsune [36] adopts an
ensemble of autoencoders, proving the efficiency of unsupervised deep learning
to detect classic attacks such as ARP poisoning and SYN DoS, which are rarely
used by APTs. As discussed in Sect. 1, we avoid using deep learning because of
the scarce dataset representing various APTs TTPs, which is essential for deep
learning models.

6 Conclusions

We presented a threat model for APTs which focuses on the TTPs used by
adversaries to avoid existing NIDS. As part of our measurement study, we demon-
strated the significant overlap between APT and legitimate behaviors, and clari-
fied their characteristics. Taking this into account, we designed and implemented
EarlyCrow, a tool which can detect APT malware network activities that are
missed by current deployed defense mechanisms. Our results demonstrate the
importance of using diverse features based on contextual fields to detect unseen
APT malware. We recommend using EarlyCrow as an additional layer of
defense, besides SIEM, Host Intrusion detectors (HIDS), and domain detectors.
While EarlyCrow is motivated by the NIDS-avoiding behavior of APTs, adver-
sarial attacks specifically targeting PairFlow fields and EarlyCrow features
may still be possible. A study of adversarial defenses and their robustness, and
deployment issues is left to future work.

A PAIRFLOW

EarlyCrow defines a novel multipurpose network flow format called Pair-
Flow, which is leveraged to build the contextual summary of a PCAP capture,
representing key behavioral, statistical and protocol information relevant to APT
TTPs. We discuss the details of each component in the following.

A.1 Tracking

Packets Retrieving. The tracking module identifies all unique pair connec-
tions on the network and filters out those using non-IP protocols (Fig. 5, 1).
For each unique pair connection, PairFlow tracks, bidirectionally, all packets
related to a pair. These packets are designated with an initial Flow ID. The
Flow ID holds unchanged for all packets during the same time window for a
given pair connection. Each packet will maintain its individual index for the
aggregation step later. Packets with the same Flow ID may also use different
protocols. Therefore, each one has a one hot encoding flag called Encoding Pro-
tocol Flag (EPFLAG) used later for further filtering. These flags started with
EPFLAG_Protocol, where a protocol is a subset of {TCP, UDP, DNS, ICMP,
HTTP, SSL/TLS}.

310 A. Alageel and S. Maffeis

DNS Requests and Responses. The tracked packets do not include DNS
requests and responses, which are responsible for locating the IP address needed
to establish a connection. That is due to the pair connection being between the
host and the DNS server, which is different than the destination. Similar to [4],
to track these DNS packets, a destination of the present pair will be used as a
Local PTR to find all DNS response packets from the PCAP repository. Once
found, the DNS response resource records will be used to find all related DNS
requests. Now, any packets belonging to the pair connection are attached and
sorted according to their arrival time. Those packets outside of time window are
not included.

A.2 Aggregation

Header Generation. Besides the individual packet ID from the PCAP, every
packet is also designated with a Flow ID composed of a ContextualSummary
ID (CSID) and a PairFlow ID (PFID). The former is unique for the lifetime
of a pair, while the latter is unique for a time window. Any packets from that
PairFlow will always have the same Flow ID. To assign the PFID, the aggrega-
tion module will check the ContextualSummary repository to find if the pair
has been processed in the past (Fig. 5, 2). If so, the incoming PFID will be the
last used PFID for the same pair and ContextualSummary ID, incremented
by one. Otherwise, a new and unique ContextualSummary will be created,
and the PFID will start with zero.

Packets Aggregation. The aggregator module creates a PairFlow to store
PairFlow ID, sorted packet index, pair connection, time window, EPFlag,
FQDNs, URL, UAs, SSL/TLS settings, and initial flow-based statistics. The
initial flow-based statistics include the number of protocol-based packets (i.e.,
TCP, UDP, ICMP, HTTP, SSL/TLS, DNS packets), total (encrypted) bytes,
total (encrypted) bytes sent/received. Time-based statistics include packet Time
to Live (TTL) and delta packets interarrival time max/min/median and the flow
duration at the same time window. Similar to [6], we separate TCP packets into
data and control packets to be used later in the encapsulation process. Finally,
preprocessed flows are dispatched to the encapsulation step for further process-
ing.

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 311

T racking

Data

EPFlagPair Flow ID

Statistical Behaviour
(TCP, UDP, ICMP, DNS, HTTP,

TLS/SSL, Other)

Total (Protocol) Packets/Byes
Sent & Recieved

Mean/ Meadian / Std of TTL

HTTP
User-Agents Lists, Status Code Statstics, Content

Type and Length,

Domains list
{FQDN, Age, A, NS}

E
n

c
a

p
s

u
la

tio
n

Granular PCAP Repository

Pkt
No

DNS Server Responses Packets Received
from DNS Server e.g. 8.8.8.8

470

512

589
...

Resolved
FQDN Pair A DNS

Server IP
Pkt
No

DNS Server Request Packets to DNS
Server

192.168.0.1 8.8.8.8

192.168.0.1 8.8.8.8

192.168.0.1 8.8.8.8
... ...

FQDN

c1.rf ihub[.]net

www.msf tncsi.com

study 123.eatuo[.]com
...

Packet Level

ip.src

TCP, UDP and ICMP Packets for
a Pair

192.168.0.1

66.117.29.34

...

ip.dst

66.117.29.34

192.168.0.8

...

Pkt
No
480

481

483

...

484

A
Record

95.100.188.x

23.14.90.x

115.144.107.x
...

447

502

584
...

c1.rf ihub[.]net

www.msf tncsi.com

study 123.eatuo[.]com

Contextual Summary ID Pair A Time Window

Metadata

Pair B

Domains, URL Stat., HTTP, TLS Settings

Retrive all packets for each pair Retrive DNS responses related to Pair B (By A Record) Retrive DNS requests related to Pair B
 (By frequested FQDN)

TLS/SSL
{Certificate issuer,

Validaty, Client
Ciphersuits, Client

Extentions}
URL

{FQDN, Filename, Para
Stat.}

PairFlow Variants
Extractions

Flow Level

Mean/ Meadian / Std of Delta
Time

Packet Behaviour

Contextual Summary RepositoryRetrive
Contextual Summary ID

UDP Plane
{ID, Protocol, Type, Timestamp, Length}

ICMP Plane
{ID, Type, Code, Timestamp, Length}

Control Sub-Plane
{ID, TCPFlag, Timestamp, Length}

Data Sub-Plane
{ID, Protocol, Req./Resp., Req./Resp. Type,

Content Type, Timestamp, Length}

TC
P

 P
lane

FQDN.json

Domain

Hostname Lists

List of A Records

List of NSRecords

Domain Age

Metadata

HTTPS.json

Packets Behaviour

Statstical Behaviour

Ciphersuits

Client Extention

Metadata

Certificate Validaty

Certificate Issuer

TCP_UDP_ICMP.json

Metadata
Packets Behaviour
Statstical Behaviour

HTTP.json

Statstical
Behaviour

Packets
Behaviour

Content
Type and
Length

HTTP
Status
Code

Statistics

URL
{Filename, Path, Para

Stat.}

List of User Agent

Metadata

1

4

3

66.117.29.34192.168.0.1

192.168.0.1 66.117.29.34

467 stats.adobe.com66.117.29.34

Pair A

192.168.0.1

192.168.0.1

192.168.0.1
...

192.168.0.1 stats.adobe.com8.8.8.8192.168.0.1440

Hea der Gen era t ion

0 192.168.0.1

0 66.117.29.34

0

0
......

66.117.29.34

192.168.0.8

...

480

481

483

...
484

192.168.0.1 66.117.29.34

0

0

0

0
...

192.168.0.18.8.8.8467 ... A 66.117.29.34 NS ..

-

-

-

8.8.8.8192.168.0.1440 stats.adobe.com f lash_install.exe(0,600)

(0,600)

(0,600)

(0,600)

(0,600)

U

U

C

C

C

192.168.0.1 66.117.29.34 D

0

0

0

0 -

0.024

0.024

0.024

0.024

0.004

0.004

0.004

0.004

Aggregation2
...

Statstics

S
or

te
d

Pa cket s
A ggrega t ion

7 True

-

-

-

-

-

-

-

-

-

- -

0.024

0.024

0.004

0.004- - - -
...............

(0,600)

0x01

0x01

0x40

0x08

0x40

0x40

...

...

...

...

...

...

...

ip.src ip.dstPkt
No

PairFlow
ID

CSID EPFlag Time
Window

Domains
Filename

Plane Max Delta
TimePara string

URL
...

... Min Delta
Time

...

... ...

...

Fig. 5. Overview of the PairFlow workflow.

A.3 Encapsulation

The encapsulation phase explicitly groups packet behavior, FQDN and URL,
HTTP(S) and initial statistical behavior implicit in preprocessed flows in order
to make contextual information readily available (Fig. 5, 3). The data types
involved include list of strings and tuples, Boolean and numeric fields, as shown
in Table 5.

Packet Behavior. Packet Behavior encapsulates all packets according to their
protocol type (TCP, UDP, and ICMP) in a list of tuples. The first element is
the packet index for traceability of a given packet inside the original PCAP for
further investigation.

The TCP plane involves the control and data sub-planes as shown in
Fig. 5. Each packet in the data sub-plane holds protocol name, request/response
and their types, content type, timestamp, and packet length for each packet.
For example, an HTTP request packet can be described as (460854, ‘HTTP’,
‘Request’, ‘GET’, ‘Empty Content’, 1066.51, 383) and its response (460895,
‘HTTP’, ‘Response’, 200, ‘text/javascript’, 1066.86, 429). This helps the upper
system work on time series traffic and monitor the anomaly for a given Pair-
Flow. Further packet-level statistical analysis such as counting GET/POST,
HTTP response types, content analysis can be achieved as described in Sect. 3.3.

The control sub-plane provides the behavior of the initial connections before
the data exchange begins, the TCP continuation, or the termination of the TCP
connection. For example, when TCP establishes a connection with three-way
handshaking, it will summarize SYN, SNYACK, ACK packets as follows (72095,
‘0x02’, 215.73 s, 74), (72126, ‘0x12’, 215.78 s, 70 B), (72127, ‘0x10’, 215.78 s, 66
B). Then it will follow a stream of packets with TCP flag = 0x10 (ACK) until the
connection is disconnected with flag FIN. This will be useful for analyzing any
problem with time series or monitoring the discontinuity of such a PairFlow
as we can see in Sect. 3.4.

312 A. Alageel and S. Maffeis

UDP plane records all UDP-based packets with protocol name, packet type,
timestamp, and packet length. For example, if there are two packets for DNS
which are request and response for a specific domain, they will be summarized
as follows: (21160, ‘DNS’, ‘DNS Request’, 141.44 s, 75 B), (21219, ‘DNS’, ‘DNS
Response’, 141.54, 547 B). ICMP Plane is similar to the UDP plane but for the
ICMP only. However, the type and code are reporting ICMP settings for each
packet. The plane can be helpful for any classifier detecting ICMP-based attacks.

FQDN and URL. As depicted in Fig. 5, domain list encapsulates all FQDNs
related information in a list of tuples. Each tuple holds an FQDN, its A and
NS resource records, and the domain age extracted from the WHOIS file. This
helps malicious domain detectors, which often rely on FQDN strings, relative
DNS zone, and WHOIS files. URL encapsulates each relevant element of URL
during a connection in a tuple which includes FQDN, web page filename, the
number of parameters, values and fragments, and whether it contains encoded
strings or not.

HTTP(S). HTTP encapsulates HTTP-level information for a given connec-
tion, in particular, distinct HTTP server names, status codes, content types
and UAs. TLS Protocols summarizes the security settings between a client and
server. Cipher suites for both client and server are stored in a list. Cipher suites
includes the key exchange/agreement (e.g. RSA, Elliptic-curve Diffie-Hellman
(ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA)), authentication
(e.g. RSA), block/stream ciphers (e.g. AES, RC4) with their block cipher mode
(e.g. CBC) and message authentication (e.g. MD5, SHA-x). Extension types are
also listed for each connection which summarizes the cipher suite settings such as
extended master secret, session tickets, and Elliptic Curve (EC) point formats.
Supported Groups are also stored, known as the EC setting (e.g., secp256r1,
secp521r1).

Initial Statistical Behavior. A few essential fields are important to be sum-
marized statistically. We calculate max, min, mean packet TTL, delta packets
interarrival time, and duration for a given PairFlow. We also calculate the
total (encrypted) bytes and the ratio of sent/received (encrypted) bytes. Max,
min, median of cipher suites bytes, and server and client extension bytes are also
calculated. We also provide a statistical summary of individual protocol number
of packets such as raw TCP, raw UDP, ICMP, DNS, HTTP, TLS, and SSL. We
summarize statistical fields in Table 5.

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 313

Table 5. Summary of PairFlow data fields (B: Boolean, LS: List of Strings, LT: List
of Tuples, N: Numerical).

ID Field Type ID Field Type

I. Informative fields
1 Flow ID N 17 HTTP servers LS

2–3 Source & destination S 18 Status codes LS
4 Packet data points LT 19 Content type LS
5 EPFLAG S 20–21 Client and server ciphersuites LS

6–12 EPFLAG raw TCP, raw UDP,
ICMP, DNS, HTTP, TLS and SSL

B 22–23 Client and server extension types LS

13 FQDN LS 24–25 Client and server signature
algorithms and hashes

LS

14 Resource records: type nameserver LS 26–27 Client and server supported groups LS
15 Resource records: type A LS 28 ALPAN next protocol LS
16 URL LT 29 EC point format LS

II. Statistics fields
30 Total bytes N 44–48 TTL Max/Min/Mean/SD N

31–32 Total sent/received bytes N 49–52 Delta packets interarrival time
Max/Min/Mean/SD

N

33 Total encrypted bytes N 53–56 Content length
Total/Max/Min/Median

N

34–35 Total encrypted sent/received bytes N 57–59 Client and server ciphersuites bytes
Max/Min/Median

N

36–42 Number of raw TCP, raw UDP,
ICMP, DNS, HTTP, TLS and SSL
packets

N 60–62 Client and server extensions bytes
Max/Min/Median

N

43 Duration N

A.4 Variants Extraction

PairFlow processing also exports four variant JSON files which can be used
by any external classifier (Fig. 5, 4). FQDN.json includes all domains and their
hostname lists that have been accessed during a given PairFlow. In addition,
resource records such as A, NS are also included and domain age extracted from
WHOIS file, which appears to be useful for domain detection [3]. TCP-UDP-
ICMP.json is dedicated for those classifiers use time-series for detection [6,30].
All three planes are presented here in addition to related statistical fields such
as packet TTL and delta packets interarrival time. HTTP.json is employed for
those interested to detect malicious HTTP connections [30,38]. Other classifiers
may deploy HTTPS.json for detecting encrypted communications without deci-
phering the traffic [4]. A detailed study of the other variants is left for future
work.

314 A. Alageel and S. Maffeis

References

1. EarlyCrow github repository. https://github.com/ICL-ml4csec/EarlyCrowAPT
2. Ahmad, A., Webb, J., Desouza, K.C., Boorman, J.: Strategically-motivated

advanced persistent threat: definition, process, tactics and a disinformation model
of counterattack. Comput. Secur. 86, 402–418 (2019)

3. Alageel, A., Maffeis, S.: Hawk-Eye: holistic detection of APT command and control
domains. In: ACM SAC, pp. 1664–1673. ACM (2021)

4. Anderson, B., McGrew, D.: Identifying encrypted malware traffic with contextual
flow data. In: ACM AISec, pp. 35–46 (2016)

5. Arp, D., et al.: Dos and don’ts of machine learning in computer security. In:
USENIX Security (2022)

6. AsSadhan, B., Moura, J.M., Lapsley, D., Jones, C., Strayer, W.T.: Detecting bot-
nets using command and control traffic. In: IEEE NCA, pp. 156–162. IEEE (2009)

7. Bartos, K., Sofka, M., Franc, V.: Optimized invariant representation of network
traffic for detecting unseen malware variants. In: USENIX Security, pp. 807–822
(2016)

8. Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: detect-
ing botnet command and control servers through large-scale netflow analysis. In:
ACSAC, pp. 129–138 (2012)

9. Bortolameotti, R., et al.: DECANTeR: DEteCtion of anomalous outbouNd HTTP
TRaffic by passive application fingerprinting. In: ACSAC, pp. 373–386 (2017)

10. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE S&P, pp. 39–57. IEEE (2017)

11. Clements, J., Yang, Y., Sharma, A., Hu, H., Lao, Y.: Rallying adversarial tech-
niques against deep learning for network security. arXiv preprint arXiv:1903.11688
(2019)

12. Clements, J., Yang, Y., Sharma, A.A., Hu, H., Lao, Y.: Rallying adversarial tech-
niques against deep learning for network security. In: IEEE SSCI, pp. 01–08. IEEE
(2021)

13. The MITRE Corporation: Application layer protocol: web protocols. https://
attack.mitre.org/techniques/T1071/001/. Accessed 18 Dec 2021

14. The MITRE Corporation: Command and control. https://attack.mitre.org/
tactics/TA0011/. Accessed 18 Dec 2021

15. The MITRE Corporation: Data obfuscation: protocol impersonation. https://
attack.mitre.org/techniques/T1001/003/. Accessed 18 Dec 2021

16. The MITRE Corporation: Dynamic DNS. https://attack.mitre.org/techniques/
T1568/. Accessed 18 Dec 2021

17. The MITRE Corporation: Dynamic resolution: fast flux DNS. https://attack.mitre.
org/techniques/T1568/001/. Accessed 18 Dec 2021

18. The MITRE Corporation: Encrypted channel. https://attack.mitre.org/
techniques/T1573/. Accessed 18 Dec 2021

19. The MITRE Corporation: Fallback channel TTP. https://attack.mitre.org/
techniques/T1008/. Accessed 18 Dec 2021

20. The MITRE Corporation: Non-application layer protocol. https://attack.mitre.
org/techniques/T1095/. Accessed 18 Dec 2021

21. The MITRE Corporation: Protocol tunneling. https://attack.mitre.org/
techniques/T1572/. Accessed 18 Dec 2021

22. Farinholt, B., Rezaeirad, M., McCoy, D., Levchenko, K.: Dark matter: uncovering
the DarkComet RAT ecosystem. In: WWW, pp. 2109–2120 (2020)

https://github.com/ICL-ml4csec/EarlyCrowAPT
http://arxiv.org/abs/1903.11688
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1001/003/
https://attack.mitre.org/techniques/T1001/003/
https://attack.mitre.org/techniques/T1568/
https://attack.mitre.org/techniques/T1568/
https://attack.mitre.org/techniques/T1568/001/
https://attack.mitre.org/techniques/T1568/001/
https://attack.mitre.org/techniques/T1573/
https://attack.mitre.org/techniques/T1573/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1572/
https://attack.mitre.org/techniques/T1572/

EarlyCrow: Detecting APT Malware C&C over HTTP(S) 315

23. Farinholt, B., et al.: To catch a ratter: monitoring the behavior of amateur Dark-
Comet RAT operators in the wild. In: IEEE S&P, pp. 770–787. IEEE (2017)

24. FireEye: Highly evasive attacker leverages solarwinds supply chain to compromise
multiple global victims with sunburst backdoor, 13 December 2020. https://www.
mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-
compromises-with-sunburst-backdoor

25. Han, D., et al.: Evaluating and improving adversarial robustness of machine
learning-based network intrusion detectors. IEEE J. Sel. Areas Commun. 39(8),
2632–2647 (2021)

26. Hashemi, M.J., Cusack, G., Keller, E.: Towards evaluation of NIDSs in adversarial
setting. In: ACM Big-DAMA, pp. 14–21 (2019)

27. Hashemi, M.J., Keller, E.: Enhancing robustness against adversarial examples in
network intrusion detection systems. In: IEEE NFV-SDN, pp. 37–43. IEEE (2020)

28. Heinemeyer, M.: Fin7.5: the infamous cybercrime rig “FIN7” continues its activi-
ties. https://securelist.com/fin7-5-the-infamous-cybercrime-rig-fin7-continues-its-
activities/90703//. Accessed 18 July 2021

29. Homoliak, I., Teknøs, M., Ochoa, M., Breitenbacher, D., Hosseini, S., Hanacek, P.:
Improving network intrusion detection classifiers by non-payload-based exploit-
independent obfuscations: an adversarial approach. EAI Endorsed Trans. Secur.
Saf. 5, 17 (2018)

30. Hu, X., et al.: BAYWATCH: robust beaconing detection to identify infected hosts
in large-scale enterprise networks. In: IEEE/IFIP DSN, pp. 479–490. IEEE (2016)

31. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains. In:
Leading Issues in Information Warfare & Security Research, vol. 1, p. 80 (2011)

32. Invernizzi, L., et al.: Nazca: detecting malware distribution in large-scale networks.
In: NDSS, vol. 14, pp. 23–26 (2014)

33. Jansen, W.: Abusing cloud services to fly under the radar. https://research.
nccgroup.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/.
Accessed 18 Dec 2021

34. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: KDD, pp. 1245–1254. ACM (2009)

35. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.:
HOLMES: real-time APT detection through correlation of suspicious information
flows. In: IEEE S&P, pp. 1137–1152. IEEE (2019)

36. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of
autoencoders for online network intrusion detection. In: NDSS (2018)

37. Nelms, T., Perdisci, R., Ahamad, M.: ExecScent: mining for new C&C domains in
live networks with adaptive control protocol templates. In: USENIX Security, pp.
589–604 (2013)

38. Oprea, A., Li, Z., Norris, R., Bowers, K.: MADE: security analytics for enterprise
threat detection. In: ACSAC, pp. 124–136 (2018)

39. Oprea, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage enter-
prise infection by mining large-scale log data. In: IEEE/IFIP DSN, pp. 45–56. IEEE
(2015)

40. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware
and signature generation using malicious network traces. In: NSDI, vol. 10, p. 14
(2010)

41. Rezaeirad, M., Farinholt, B., Dharmdasani, H., Pearce, P., Levchenko, K., McCoy,
D.: Schrödinger’s RAT: profiling the stakeholders in the remote access trojan
ecosystem. In: USENIX Security, pp. 1043–1060 (2018)

https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://securelist.com/fin7-5-the-infamous-cybercrime-rig-fin7-continues-its-activities/90703//
https://securelist.com/fin7-5-the-infamous-cybercrime-rig-fin7-continues-its-activities/90703//
https://research.nccgroup.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/
https://research.nccgroup.com/2021/01/12/abusing-cloud-services-to-fly-under-the-radar/

316 A. Alageel and S. Maffeis

42. Schindler, T.: Anomaly detection in log data using graph databases and machine
learning to defend advanced persistent threats. In: GI-Jahrestagung (2017)

43. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: IEEE S&P, pp. 305–316. IEEE (2010)

44. Stinson, E., Mitchell, J.C.: Towards systematic evaluation of the evadability of
bot/botnet detection methods. In: WOOT, vol. 8, pp. 1–9 (2008)

45. Szegedy, C., et al.: Intriguing properties of neural networks. CoRR abs/1312.6199
(2014)

46. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: BotFinder: finding bots in network
traffic without deep packet inspection. In: CoNEXT, pp. 349–360 (2012)

47. Wang, J., Qixu, L., Di, W., Dong, Y., Cui, X.: Crafting adversarial example to
bypass flow-&ML-based botnet detector via RL. In: RAID, pp. 193–204 (2021)

48. Wang, Z.: Deep learning-based intrusion detection with adversaries. IEEE Access
6, 38367–38384 (2018)

49. Zhou, Y., Kantarcioglu, M., Thuraisingham, B., Xi, B.: Adversarial support vector
machine learning. In: KDD, pp. 1059–1067. ACM (2012)

	EarlyCrow: Detecting APT Malware Command and Control over HTTP(S) Using Contextual Summaries
	1 Introduction
	2 Threat Model
	2.1 TTP Relevant Data
	2.2 Measurements

	3 EarlyCrow
	3.1 Architecture Overview
	3.2 PairFlow
	3.3 PairFlow Features
	3.4 Profiles Features
	3.5 ContextualSummary
	3.6 ContextualSummary Updating Process

	4 Evaluation
	4.1 Datasets
	4.2 Classification Performance
	4.3 Discussion
	4.4 Limitations

	5 Related Work
	6 Conclusions
	A PairFlow
	A.1 Tracking
	A.2 Aggregation
	A.3 Encapsulation
	A.4 Variants Extraction

	References

