
VulBERTa: Simplified Source Code Pre-Training
for Vulnerability Detection

Hazim Hanif
Department of Computing

Imperial College London, UK;
Faculty of Computer Science and Information Technology,

University of Malaya, Malaysia
m.md-hanif19@imperial.ac.uk

Sergio Maffeis
Department of Computing

Imperial College London, UK
sergio.maffeis@imperial.ac.uk

Abstract—This paper presents VulBERTa, a deep learning
approach to detect security vulnerabilities in source code. Our
approach pre-trains a RoBERTa model with a custom tokeni-
sation pipeline on real-world code from open-source C/C++
projects. The model learns a deep knowledge representation
of the code syntax and semantics, which we leverage to train
vulnerability detection classifiers. We evaluate our approach on
binary and multi-class vulnerability detection tasks across several
datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker)
and benchmarks (CodeXGLUE and D2A). The evaluation results
show that VulBERTa achieves state-of-the-art performance and
outperforms existing approaches across different datasets, despite
its conceptual simplicity, and limited cost in terms of size of
training data and number of model parameters.

Index Terms—Vulnerability detection, Software vulnerabilites,
Pre-training, Deep learning, Representation learning.

I. INTRODUCTION

MITRE [1] reports an increase in the number of software
CVEs submitted yearly since 2016, reflecting the increased
threat to the overall security of the software ecosystem.
Accordingly, there has been a steady growth of research in
software vulnerability detection over the years [2], across
the spectrum of vulnerability detection approaches such as
static analysis, dynamic analysis and machine learning-based
detection models.

Deep learning has obtained encouraging results for software
vulnerability, in particular using sequence- and graph-based
techniques such as Bidirectional-LSTM [3]–[5] and Graph
Neural Networks [6], [7]. These techniques attempt to embed
syntactic and semantic information from the code explicitly,
for example by using various dependency and data flow analy-
ses to preprocess source code and extract various artefact such
as code gadgets, control flow graphs and dependency graphs
which are eventually fed to the respective neural network.

In this paper, we follow a different approach inspired by
the recent successes of Transformer-based neural architec-
tures [8]–[12] able to learn deep representation knowledge of
natural language textual data. Our aim is to build a repre-
sentation model of C/C++ that embeds syntactic and semantic
information about the language without our direct intervention,

Accepted as a conference paper at IJCNN 2022.

and then use that model as a basis to build vulnerability
detection models using standard neural architectures.

We present VulBERTa, which aims to learn a deep represen-
tation of C/C++ source code from large codebases that consist
of different software projects. To facilitate learning the internal
code representation, we need to create a language-aware
reliable tokenisation pipeline, to parse and tokenise source
code while ensuring that basic, yet key syntactic and semantic
information is made available to the model. In our tokenisation
pipeline, we implemented several novel features to enhance
the tokenisation ability of the existing Byte-pair Encoding
(BPE) [13] tokeniser. We introduce a custom tokeniser that
combines BPE with custom pre-defined code tokens to build
the vocabulary of our tokeniser. These pre-defined tokens are
based on the AST node type of Clang [14] (standard keywords
and punctuation) and lists of common C/C++ API function
names. Our custom tokenisation pipeline creates a better code
representation while maintaining its original syntactic structure
even after being encoded.

VulBERTa implements a Transformer-based deep learning
architecture called RoBERTa [15]. VulBERTa builds its code
representation knowledge via Masked Language Modelling
(MLM) [9]. We pre-train VulBERTa on fewer samples (2.28
million) and model parameters (125 million) than existing
approaches [16], [17]. Then, we connect the pre-trained
VulBERTa model with alternatively a MultiLayer Percep-
tron (VulBERTa-MLP) and a Convolutional Neural Network
(VulBERTa-CNN) in order to fine-tune vulnerability detection
models.

We evaluate VulBERTa across different datasets to test
the performance and transferability of our pre-trained model.
The evaluation results show that we achieve state-of-the-art
detection performance across these datasets. In particular, we
achieved an F1 score of 57.92% on the Draper [18] dataset,
outperforming existing approaches, which is encouraging as
this dataset is considered challenging due to being imbalanced
and having a mix of real-world and synthetic samples. Vul-
BERTa also performs well on multi-class classification task
on the easier muVuldeepecker [5] dataset, with a weighted F1
score of 99.59%. We also tested VulBERTa on two software
vulnerability detection benchmarks (CodeXGLUE and D2A),

ar
X

iv
:2

20
5.

12
42

4v
1

 [
cs

.C
R

]
 2

5
M

ay
 2

02
2

where it outperforms most existing approaches, despite using
less training data and fewer model parameters. These results
show that VulBERTa is effective in learning a deep repre-
sentation of source code, and using that knowledge to detect
software vulnerabilities.

In summary, our main contributions are:
• A custom tokenisation pipeline which combines the BPE

algorithm with novel pre-defined code tokens (standard
C/C++ keywords, punctuation and library API calls),
providing better code encodings while maintaining the
syntactical structure of source code.

• A small and simplified pre-trained model, (VulBERTa)
that provides transferability of pre-trained embedding
weights, which is reusable in less complex architectures
such as MLP and CNN.

• Software vulnerability detection models, VulBERTa-MLP
and VulBERTa-CNN that achieve state-of-the-art (SOTA)
detection performance across different datasets and top-3
positions in two benchmarks (CodeXGLUE and D2A).

Our code and data are open source, and made available at
https://github.com/ICL-ml4csec/VulBERTa.

II. RELATED WORK

This Section discusses related work on software vulnera-
bility detection using deep learning, and more in general on
pre-training models for representing programming languages.

A. Vulnerability detection using deep learning

Software vulnerability detection remains a challenging prob-
lem for security researchers across academia and industry.
Much work has been done to reliably and efficiently detect
security vulnerabilities in source code [19]–[21]. However,
recent advances in deep learning and its application across
different domains have induced security researchers to test the
effectiveness of deep learning on vulnerability detection tasks.

One of the earliest works that use deep learning techniques
to detect software vulnerabilities on raw source code is [18].
The unusual aspect of this work is that instead of using CNN
and RNN to train a classifier model, they used it as a feature
extractor. The extracted features are then passed to a Random
Forest (RF) classifier trained to detect software vulnerabilities.
This approach achieves an AUC score of 90.4% when tested
on real-world dataset.

Vuldeepecker [3] proposes a structure called code gadgets
that is based on the extraction of library/API function calls
from the source code. However, a limitation of this work is
that it only considers vulnerability that involves library/API
function calls. To overcome such limitations, the authors
extended their work and proposed SySeVR [4] as a systematic
framework for detecting vulnerabilities and can learn from
syntax and semantic of the source code. They updated the code
gadgets approach to accommodate both data and control de-
pendency information from the code. Following the success of
code gadgets in Vuldeepecker and SySeVR, muVuldeepecker
[5] was introduced to detect different types of vulnerabilities
through multi-class classification task. In addition, this work

proposed a mechanism to pinpoint the location of a specific
vulnerability in the source code.

Independently from the work on code gadgets, other re-
search investigated graph-based approaches for vulnerability
detection. Devign [6] implemented a Graph Neural Network
(GNN) model to learn data and control dependency code
graphs and proposed a novel Conv module that extracts
interesting features from source code. DeepWukong [22]
embeds code fragments in a compact and low-dimensional
representation to detect ten different types of vulnerabilities
using GNN. Beyond C/C++, DeepTective [23] detects SQLi,
XSS and command injection vulnerabilites in PHP source
code by combining Gated Recurrent Units (GRU) and Graph
Convolutional Networks. Hybrid neural networks were also
explored in [24], where the authors constructed a Hybrid Deep
Learning Network to detect code injection attacks in HTML5-
based applications.

Another interesting line of research for deep learning-
based vulnerability detection focuses on dataset quality. RE-
VEAL [25] leverages the SMOTE re-sampling and dupli-
cate removal method to address the problem of imbalanced
datasets. D2A [26] proposes a curated benchmark dataset
based on a differential analysis approach, by analysing version
pairs of source code from multiple open-source projects.

B. Pre-trained models of source code

Pre-training is a technique used by the Transformer [8]
neural architecture, initially introduced in the Natural Lan-
guage Processing (NLP) domain to learn deep representation
knowledge of textual data, for language-specific tasks such as
text translation, text completion and text generation [9]–[12].

To investigate and test the hypothesis of whether program-
ming languages can be understood using NLP techniques,
[17] presented C-BERT, a pre-training architecture that is
based on Abstract Syntax Trees (AST). The main idea behind
this is to learn AST-based features automatically from source
code during pre-training. In the fine-tuning task, C-BERT
outperformed existing approaches across AST node tagging
and vulnerability detection tasks.

CodeBERT [27] implemented BERT [9], one of the earliest
pre-training architectures, on programming languages. The
authors pre-trained the model using bimodal and unimodal
data, consisting of code and natural language pairs from
different programming languages such as Java and Python.
CodeBERT achieved high BiLingual Evaluation Understudy
(BLEU) score as compared to RoBERTa [15] models.

DOBF [28] proposes a new pre-training objective that is
based on code deobfuscation. The deobfuscation objective
focuses on the structural aspect of programming language,
whether pre-training helps the model to learn syntactic and
structural information of the source code. Besides that, in
order to learn and investigate large graph-based representa-
tion, GraphCodeBERT [29] proposed a pre-trained model that
incorporates graph structure into the Transformer-based model
using graph-guided masked attention to filter irrelevant signals.

https://github.com/ICL-ml4csec/VulBERTa

In the evaluation, GraphCodeBERT showed a strong perfor-
mance compared to other pre-trained models (RoBERTa and
CodeBERT) in different tasks such as code clone detection,
code translation, and code refinement.

III. VULBERTA

In this section, we introduce VulBERTa, our pre-training
architecture for detecting vulnerabilities in C/C++ source code
at function-level granularity. The architecture is divided into
three key components: a tokenisation technique that parses
and tokenises code using a custom vocabulary; a pre-training
session that builds a representation model for code; and a
fine-tuning session that refines the model to target a concrete
classification task. Figure 1 visualises the 8 main steps of the
VulBERTa training pipeline.

A. Tokeniser

Our tokenisation pipeline aims at preserving syntactic struc-
ture and selected semantic identifiers. It consists of a parser,
a tokeniser and an encoder. These components stack onto
each other to transform raw source code into a structure
understandable by a neural network. Figure 2 visualises the
overall tokenisation pipeline of VulBERTa from raw code to
encoded output sequence. Below, we describe each step of the
pipeline.

1) Parser: We remove comments from the source code
of each function using several regular expressions. Then, we
parse the source code using Clang [14], a robust C/C++
parser that can parse code without including any libraries
or external dependencies. Clang allows us to preserve the
syntactic structure of the source code while breaking it down
into a sequence of code tokens.

2) Tokenisation: The tokens produced by the Clang parser
are further processed by the BPE algorithm, modified to take
into account our pre-defined tokens, to further break the parsed
input down into fine-grained tokens for encoding.

Byte Pair Encoding (BPE) is a subword tokenisation
algorithm proposed by [13] that replaces a similar pair of
consecutive bytes with a byte that does not appear in the data.
Subword tokenisation also reduces the possibility of encoun-
tering out-of-vocabulary tokens as most subword tokens are
available in the vocabulary. Following several implementations
of BPE, such as in [17], [27], we define a vocabulary size of
50000 as our maximum number of entries in the vocabulary.

Pre-defined tokens are tokens we explicitly include in
the vocabulary, thus excluding them from the subword to-
kenisation process. Our goal is to preserve their syntactic or
semantic meaning. We have considered using token bucketing,
normalization and standard C/C++ tokens. We found that by
pre-defining C/C++ keywords, punctuation, and standard API
names, we preserve more information about the meaning of
the source code during pre-training. Table I summarises our
pre-defined tokens, which are excluded from BPE. The full list
consists of 451 pre-defined tokens. The other tokens consist
of literals and identifiers, and are passed to BPE to undergo
the tokenisation process.

TABLE I
CUSTOM PRE-DEFINED TOKENS.

Token type Total Examples

BPE reserved tokens 5 <pad>, <unk>, <mask>
Standard C/C++ keyword tokens 104 int, if, void
Standard C/C++ punctuation tokens 54 =, ++, ->
Standard C/C++ API call tokens 288 strlen, scanf, memcpy

3) Encoder: Encoding is the process of converting the
code tokens into tensors. For pre-training, we have set the
maximum sequence length to 512 to maximise and generalise
the learning throughout the data, as the pre-training dataset
comprises different codebases. Meanwhile, we increase the
maximum sequence length to 1024 for the fine-tuning task
so that it can contain, without truncation, more than 90% of
the actual samples on average. We pad shorter sequences to
the right, with a special padding token (<pad>).

B. Pre-training

Pre-training is the initial training session where we train a
standard RoBERTa [15] model with MLM objective in order
to learn an informative general representation of C/C++ code
across different software project. We will refer to the model
obtained from this pre-training session as the VulBERTa
model. Combining different software projects is beneficial
to the learning process, as it generalises the representation
knowledge of the code even further across different coding
styles. This also helps to increase the robustness of the
model during pre-training. We set the embedding size to be
768 dimensions, following RoBERTa-base. This is the core
embedded knowledge of the model, that will be useful for
downstream fine-tuning tasks.

C. Fine-tuning

In fine-tuning, we further train the pre-trained model on
a specific downstream task, which in our case is software
vulnerability detection. Figure 3 shows our fine-tuning pipeline
for vulnerability detection. We implement two different clas-
sification approaches for fine-tuning. The first approach is a
standard multilayer perceptron (MLP) on top of the pre-trained
model, and the second approach uses a Text Convolutional
Neural Network (TextCNN), which is cheaper and faster to
fine tune due to the robustness of CNN architecture.

VulBERTa-MLP: We implement a fully-connected layer
with 768 neurons and one output layer 2 or 41 neurons based
on whether our fine-tuning dataset is a binary or multi-class
classification dataset. During fine-tuning, we reuse the pre-
trained weights from VulBERTa and continue the training for
several epochs. This approach is the most common approach
for fine-tuning pre-trained models as it takes advantage of the
whole VulBERTa architecture with little modification [9], [15].

VulBERTa-CNN: We extract the embedding weights of the
pre-trained VulBERTa model and use them as the embedding
weights for a Hybrid TextCNN [30]. The TextCNN archi-
tecture consists of three 1-dimensional CNN, each with its
max-pooling layer. The outputs are concatenated and flattened,

Encoded pre-trained data

Encoded fine-tuned data

Tokenisation pipeline

Raw code

Tokenised code

Encoded
sequence

Parsed code

Step 3: Parses,
tokenises and encodes

pre-training datasets
based on the prebuilt

vocabulary

Step 5: Pre-train the
RoBERTa model using the

encoded source codes
through a Masked Language
Modelling (MLM) objective

Step 4: Initialises the RoBERTa model with the appropriate model
configuration (i.e. small, medium, base) and hyperparameters

Fine-tuning
datasets

RoBERTa model

Step 8: Fine-tune the VulBERTa
model on a software

vulnerability detection task
across multiple vulnerability

detection dataset Fine-tuning
(vulnerability detection)

[0] [12] [2][89]

E[0] E[2]E[12] E[89]

Encoded sequence Input

T0 TN T<\s>T<s>

RoBERTa

Output

Masked encoded source code
(input)

Predicted masked token
(output)

Encoded source code
(input)

VulBERTa

Pre-training
(masked language

modelling)

D2ADevign

REVEAL

Vuldeepecker

muVuldeepecker

Vulnerable or Non-vulnerable
(output)

Feed-forward network

Fully-connected
neural network

Hybrid
TextCNN

Step 1: Extracts raw source codes from pre-training
datasets and build the vocabulary for the tokeniser

using BPE and custom pre-defined tokens

Vocabulary

1 4

GitHub

Draper

Draper

Pre-training
datasets Step 2: Pass the

prebuilt
vocabulary to
the tokenisation

pipeline

2

3

Step 7: Parses, tokenises
and encodes fine-tuning
datasets based on the

prebuilt vocabulary

5

6
Step 6: The pre-trained

model is known as
VulBERTa and it is

ready for fine-tuning task

7

8

PR
E

- T
RA

IN
IN

G
FI

N
E

- T
U

N
IN

G

Fig. 1. VulBERTa training pipeline. Steps are taken in order from 1 to 8.

 int void main () {
 char dest [50];
 strcpy(dest,"Heloooo!!");
 printf("dest = %s\n", dest);
 return(0);
 }

 ['<s>' ,'int' , 'void' , 'main' , '(' , ')' ,
 '{' , 'char' , 'dest' , '[' , '50' , ']' , ';' ,
 'strcpy' , '(' , 'dest' , ',' , '"' , 'He' , 'lo'
 , 'oo' , 'o' , '!' , '!"' , ')' , ';', 'printf' , '('
 , '"' , 'dest' , '=' , '%s; ,'"', 'dest' , ');' ,
 'return', '(' , '0' , ')', ';' , '}' , '</s>']

[0, 3616, 3810, 4389, 3583, 5396,
528, 130, 7327, 113, 115, 26269,
110, 109, 130, 43, 345, 353,
250,423,24,232,64, 9349, 5753, 379,
128, 2]

Tokenised code

Raw code
(input)

Encoded sequence
(output)

['int', 'void', 'main', '(', ')', '{', 'char', 'dest',
'[', '50', ']', ';', 'strcpy', '(', 'dest', ',',
'"Heloooo!!"', ')', ';', 'printf', '(', '"dest =
%s', '", dest);', 'return', '(', '0', ')', ';', '}']

Parsed code

Prebuilt
Vocabulary

1

2 3

4

Fig. 2. Tokenisation pipeline.

and then fed to two fully-connected layers (256 and 128
neurons) with one output layer for classification. Since the
embeddings are already pre-trained on a large language model,
we freeze them during the training task. This technique allows
the TextCNN model to inherit and use the representation
knowledge of the embeddings and focus on tuning the weights
of the task-specific CNN layers.

IV. DATASETS

This Section describes the datasets used in the rest of
the paper. They consist of function-level C/C++ source code
from various codebases, including open-source repositories
and synthetic code samples. We divide these datasets in two
categories based on their prevalent use for either pre-training
or fine-tuning. All datasets mentioned below are in the public
domain, and available for download.

Pre-trained
VulBERTa model

Non-vulnerable or
Vulnerable class

prediction

Pre-trained VulBERTa
embedding weights

Fully-connected
Neural Network

VulBERTa-CNN

Convolutional Neural
Network

" int void main () {char dest [50] return(0); "

<s> int void main (.... </s><pad>

[0] [9] [45] [153] [11] [2][3]

Tokenisation pipeline

VulBERTa-MLP

Feedbacks through
backpropagation to

improve the detection
performance

Non-vulnerable or
Vulnerable class

prediction

Fig. 3. Fine-tuning (vulnerability detection) pipeline.

A. Pre-training datasets

For pre-training, we use the Masked Language Modelling
(MLM) task on the GitHub and Draper datasets.

1) GitHub: The GitHub dataset consists of the source code
of 1,101,075 C/C++ functions extracted from 1060 open-
source repositories on GitHub. We compiled this dataset using
the public GitHub API and the PyGithub [31] package.
First we gathered all the names of repositories containing
C/C++ source code, together with their stars count. Then we
sorted these repositories based on their star counts, and started
fetching files from the repositories. This process took around

two days to complete due to API rate-limit restrictions. Finally
we used Joern [19], an open-source code querying engine for
C/C++, to efficiently extract individual functions from each
downloaded file. This step is essential as our approach aims
to detect function-level security vulnerabilities.

2) Draper: The Draper dataset is a software vulnerability
detection dataset initially introduced by [18]. This dataset
consists of 1,274,366 C/C++ functions gathered from various
locations such as Debian Linux distributions, open-source
GitHub repositories and the Juliet test suite [32]. This dataset
ranges from highly documented production code to synthetic
test samples.

B. Fine-tuning datasets

For the fine-tuning task, which in our case is vulnerability
detection, we have selected a number of datasets which
security researchers have compiled in order to evaluate their
respective vulnerability detection approaches.

1) Vuldeepecker: The Vuldeepecker dataset is a vulnerabil-
ity detection dataset introduced in [3]. It consists of real-world
samples from the National Vulnerability Database (NVD) [33]
and synthetic samples from the Software Assurance Reference
Dataset (SARD) [34] project. These two projects are actively
maintained by the National Institute of Standards and Tech-
nology (NIST). This dataset is frequently used as a bench-
mark dataset to evaluate vulnerability detection techniques for
C/C++ source code.

2) Draper: This is the same dataset we described in Section
IV-A2, however for fine-tuning we include the (binary) labels.
This dataset was checked by three static analysers and labelled
by a team of security experts.

3) REVEAL: The REVEAL dataset is a real-world software
vulnerability detection dataset introduced in [25] in response
to existing datasets that contain lots of data duplication and
unrealistic distribution of vulnerable classes. This dataset is a
binary detection dataset consisting of source code from two
open-source projects: Linux Debian kernel and Chromium.

4) muVuldeepecker (MVD): The muVuldeepecker dataset is
a multiclass vulnerability detection dataset introduced in [5].
It is remarkably similar to the Vuldeepecker dataset as this
dataset also comes from the NVD and SARD. However, the
main difference is that this dataset consists of code gadgets
instead of the usual function-level source code.

5) Devign: The Devign dataset is a real-world software
vulnerability detection dataset initially introduced in [6]. This
dataset consists of function-level C/C++ source code from two
popular open-source software projects, QEMU and FFmpeg.
The labelling and verification have been done manually by a
team of security researchers over a two-round process.

6) D2A: The D2A dataset is a real-world vulnerability
detection dataset curated and introduced by the IBM Research
team [26]. This dataset consists of several open-source soft-
ware projects like FFmpeg, httpd, Libav, LibTIFF, Nginx and
OpenSSL. It was created using a differential analysis technique
to label issues reported by static analysers.

V. SOFTWARE VULNERABILITY DETECTION

In this Section we describe how we pre-train the VulBERTa
model, build fine-tuned VulBERTa-MLP and VulBERTa-CNN
models, and evaluate them across several vulnerability detec-
tion datasets and benchmarks.

A. Experimental setup

1) Hardware and software: We use PyTorch 1.7 [35] with
CUDA 10.2 on top of Python 3.7 for all fine-tuning experi-
ments. For pre-training we use Google Compute Engine (GCP)
VMs that have 48 vCPUs, 240GB RAM and 2 NVIDIA Tesla
A100 40GB GPUs. For fine-tuning, we use a machine with
48 cores Intel Xeon Silver CPU, 292GB RAM and 2 NVIDIA
GTX TITAN Xp GPU. Each GPU has 12GB of video memory
to accommodate different model configurations.

2) Performance criteria: For every experiment, we report
several evaluation metrics, including those used in the initial
work for each dataset. This way, we can perform a fairer
comparison. The metrics are true negatives (TN), false neg-
atives (FN), true positives (TP), false positives (FP), accuracy,
precision, recall, F1-score, Receiver Operating Characteristic
area under the curve (ROC-AUC), precision-recall AUC (PR-
AUC), and Matthews Correlation Coefficient (MCC).

3) Baselines methods: In the performance evaluation, we
compare VulBERTa with two baselines techniques on top of
existing approaches for each dataset. These two baselines are
widely used to analyse sequence-based input for vulnerability
detection and have been used for example in [6] and [17].

(i) Baseline-BiLSTM: This technique is a variation of
LSTM, which implements a two layers Bi-directional LSTM
[36] and several fully-connected layers to learn from sequences
of source code for vulnerability detection. The bi-directional
LSTM learns forward and backward relationships of code
sequence simultaneously.

(ii) Baseline-TextCNN: This is a variant of CNN [30],
where the input data is natural language text instead of images.
In this case, we use source code as the input data and feed it
into CNN. This technique deploys three convolutional layers
with pooling, and concatenates them into a single layer before
passing the results to several fully-connected layers.

4) Model pre-training: We pre-train the VulBERTa model
with Draper and GitHub datasets using MLM. We experiment
with different RoBERTa configurations (i.e. small, medium and
base) to see how the number of model parameters affects the
pre-training performance of the model. The duration of each
pre-training session falls between 72 to 96 hours depending
on the model configuration. The training session is done up
to 500,000 steps and a learning rate scheduler is used to
reduce the learning rate over time as the training loss plateaus.
Based on the results, we found that the Base model gives the
lowest loss during training after 500,000 steps. Therefore, we
choose the VulBERTa model with Base configuration (∼125M
parameters) as our reference pre-trained model for fine-tuning.

5) Model fine-tuning: We fine-tune our pre-trained
VulBERTa-MLP and VulBERTa-CNN models separately, on
each dataset described in Section IV-B, using vulnerability

detection as the fine-tuning objective. We set the maximum
number of epochs to 10, which is more than sufficient as the
models tend to start overfitting to the training set after 4-5
epochs. We set the learning rate to 0.00003 with a learning
rate scheduler to reduce the learning rate as the training loss
plateaus. We follow the original split for each dataset, but
if the split information is unavailable, we split the dataset
80/10/10 (training/validation/testing). Each fine-tuning session
lasted between 5 and 10 hours, depending on the size of the
dataset and model.

B. Evaluation on selected datasets

The vulnerability detection experiments are separated by
dataset. For each dataset, we selected the preferred evaluation
metric (PEM) used for comparison in the original paper.
Table II shows the evaluation results, where we highlighted
the highest PEM score for each dataset.

1) Vuldeepecker: The precision score reported by Vuldeep-
ecker is 91.9%. However, using VulBERTa-MLP, we achieved
a precision score of 95.76%, which beats the original score
by 3.86%. On top of that, our model obtained a higher F1
score, 93.03%, compared to the score obtained by Vuldeep-
ecker, 92.9%, which shows that our model is balanced when
classifying vulnerable and non-vulnerable samples. The low
rate of false positives (0.39%) and negatives (9.14%) indicates
that VulBERTa-MLP detects vulnerabilities both in synthetic
and real-world code with a low misclassification rate.

2) Draper: The authors of [18] use several evaluation
metrics to evaluate their model on the Draper dataset. We
choose MCC as a basis for comparison because it is suitable
for imbalanced datasets, and the the vulnerable and non-
vulnerable classes of the Draper dataset are imbalanced.
VulBERTa-CNN obtained an MCC score of 55.86% on this
dataset. That is a 2.26% increase on the performance reported
in [18], and is significant as we can provide better detection
while maintaining the class balance across prediction.

3) REVEAL: The VulBERTa-MLP model achieved a higher
F1 score of 45.27% than the one of 41.25% reported in [25],
despite not using the data rebalancing techniques proposed
there. Instead, we assigned weights to each class (vulnerable
and non-vulnerable) during fine-tuning to reduce the class
imbalance problem without altering the dataset. Our approach
also obtained a true positive rate (TPR) higher by 2.57%. This
indicates that VulBERTa-MLP is more effective in detecting
vulnerable samples correctly while also maintaining the bal-
ance with the non-vulnerable class.

4) muVuldeepecker: Differently from the previous experi-
ments, this is a multi-class classification task. The muVuldeep-
ecker dataset contains separate classes for 40 CWEs, so
each positive sample can be mapped to a specific security
vulnerability. VulBERTa-MLP achieved a very high weighted
F1 score of 99.59% compared to the 96.28% reported in [5].
It also reduced the false negatives rate (FNR) from 5.53%
to 0.41%, which is significant as the additional samples
detected as vulnerable need to be assigned to the correct
class. Furthermore, looking into the prediction for specific

classes such as CWE-190 and CWE-191 (integer overflow
and underflow), we can see that VulBERTa-MLP is able to
correctly assign more than 90% of the vulnerable samples in
their respective classes.

Our models manage to surpass the performance of the com-
pared models despite using the latter’s datasets and preferred
evaluation metrics. This happens across a variety of datasets
with synthetic and real world data, balanced and imbalanced
classes, binary and multi-class classification tasks.

C. Evaluation on benchmarks

We also evaluated VulBERTa-MLP and VulBERTa-CNN on
two publicly available benchmarks which are used by the
community as a basis for comparing different source code
models on standardised tasks. In both cases, the PEM for the
vulnerability detection task is Accuracy.

1) CodeXGLUE: The CodeXGLUE [37] benchmark is the
first and most popular benchmark for programming language
understanding, introduced by Microsoft Research. We focus
on the defect detection task, which consists of vulnerability
detection on the Devign dataset, described in Section IV-B5.
Table III-A shows the standings of the CodeXGLUE bench-
mark leaderboard at the time of publication, including our
results1. VulBERTa-MLP achieved an accuracy of 64.75%,
ranking 3rd below CoText and C-BERT. Note that VulBERTa-
MLP has a significantly lower number of model parameters
(55.07%) than CoTexT, and is trained on a fraction of the data
of the top 2 models. Impressively, VulBERTa-CNN achieves
a slightly lower performance yet with a model size less than
1% of CoTexT and 2% of C-BERT.

2) D2A: D2A [26] is a benchmark for vulnerability de-
tection introduced by IBM Research. It is based on the D2A
dataset, described in Section IV-B6. Table III-B shows the
standings of the D2A benchmark leaderboard at the time of
publication, including our models2. VulBERTa-MLP tops the
leaderboard for the “function” task (the only one relevant to
our approach) with an accuracy of 62.30%, and VulBERTa-
CNN is second with 60.68%. Interestingly, on this dataset both
our models outperform C-BERT, despite its larger pre-training
dataset, and the larger number of parameters (in comparison
to VulBERTa-CNN).

D. Discussion

Table II shows that VulBERTa-MLP has the best PEM
score on 3 out of 4 datasets and VulBERTa-CNN has the best
PEM score on the remaining dataset. However, if we compare
our two models on the full spectrum of fine-tuning results,
we notice that the difference between the two is negligible.
Similarly, we can see a close relationship between VulBERTa-
MLP and VulBERTa-CNN on the benchmark evaluation. Both
models consistently ranked next to each other and achieved
state of the art performance across both benchmarks. A
possible explanation is that the code representation knowledge

1Leaderboard accessible at https://microsoft.github.io/CodeXGLUE.
2Leaderboard accessible at https:// ibm.github.io/D2A.

https://microsoft.github.io/CodeXGLUE
https://ibm.github.io/D2A

TABLE II
DATASET EVALUATION RESULTS: SUMMARY OF EVALUATION METRICS

Dataset PEM Model FN FP TN TP Acc
(%)

Prec
(%)

F1
(%)

Recall
(%)

PR-AUC
(%)

ROC-AUC
(%)

MCC
(%)

Weighted
F1 (%)

Vuldeepecker Precision Vuldeepecker [3] - - - - - 91.90 92.90 - - - - -
VulBERTa-MLP 99 39 15002 881 - 95.76 93.03 - - - - -
VulBERTa-CNN 89 44 14997 885 - 95.26 90.86 - - - - -
Baseline-BiLSTM 76 810 14231 898 - 52.58 66.97 - - - - -
Baseline-TextCNN 58 527 14514 916 - 63.48 75.80 - - - - -

Draper MCC Russell et al. [18] - - - - - - 56.60 - 51.80 90.40 53.60 -
VulBERTa-MLP 4693 4598 114568 3555 - - 43.34 - 36.24 87.52 39.44 -
VulBERTa-CNN 2168 6675 112491 6085 - - 57.92 - 56.72 92.11 55.86 -
Baseline-BiLSTM 1497 13836 105330 6756 - - 46.84 - 46.75 91.35 46.97 -
Baseline-TextCNN 1522 12266 106900 6731 - - 49.40 - 49.02 91.83 49.24 -

REVEAL F1 REVEAL [25] - - - - 84.37 30.91 41.25 60.91 - - - -
VulBERTa-MLP 84 269 1775 146 84.48 35.18 45.27 63.48 - - - -
VulBERTa-CNN 59 402 1642 171 79.73 29.84 42.59 74.35 - - - -
Baseline-BiLSTM 63 457 1587 167 77.13 26.76 39.11 72.61 - - - -
Baseline-TextCNN 48 561 1483 182 73.22 24.50 37.41 79.13 - - - -

muVuldeepecker Weighted muVuldeepecker [5] - - - - - - - - - - - 96.28
F1 VulBERTa-MLP 94 48 8604 27583 - - - - - - - 99.59

VulBERTa-CNN 94 65 8587 27583 - - - - - - - 99.56
Baseline-BiLSTM 8 8642 10 27668 - - - - - - - 65.93
Baseline-TextCNN 17 8639 13 27660 - - - - - - - 65.95

TABLE III
BENCHMARK EVALUATION RESULTS

Rank Model Pre-training data
size (# of functions)

Model size Accuracy
(%)

A: CodeXGLUE leaderboard for defect detection as of 23 May 2022.

1 CoTexT [16] 375M 220M 66.62
2 C-BERT [17] 8.1M 110M 65.45
3 VulBERTa-MLP 2.28M 125M 64.75
4 VulBERTa-CNN 2.28M 2M 64.42
5 PLBART [38] 680M 140M 63.18
6 Code2vec [39] - - 62.48
7 CodeBERT [37] 8.5M 125M 62.08
8 RoBERTa [37] 2.4M 125M 61.05
9 TextCNN - - 60.69
10 BiLSTM - - 59.37

B: D2A leaderboard for the “function” category as of 23 May 2022.

1 VulBERTa-MLP 2.28M 125M 62.30
2 VulBERTa-CNN 2.28M 2M 60.68
3 C-BERT [17] 8.1M 110M 60.20
4 AugSA-S [26] - - 55.20
5 AugSA-V [26] - - 45.60

inherited from the pre-trained VulBERTa model plays a crucial
role for vulnerability detection.

Model size and pre-training data size commonly play an
essential role in learning better code representations. However,
VulBERTa contains only 125M parameters, and our pre-
training data contains only 2.28M C/C++ functions compared,
for example, to CoTexT (375M) and C-Bert (8.5M). We are
on par with these approaches by delivering SOTA detection
performance with smaller models and pre-training data.

Based on our preliminary analysis of testing and imple-
menting different tokenisation techniques, we believe that
our tokenisation approach plays an important role in making
syntactic and semantic information easily available to the
simple neural architectures that use it for fine tuning.

In fact, model simplicity seems to be part of the solution.
VulBERTa-CNN, our simple TextCNN-based approach (with

only 2M parameters) has an MCC score of 55.86% on the
Draper dataset, higher than the 52% obtained by the complex
3GNN model recently proposed in [40], which uses a Crystal
Graph Convolutional Network and Self Attention Pooling.

E. Limitations

Despite the encouraging results, we identify a number of
limitations in our approach. A common and still unsolved
problem with vulnerability detection datasets is that manual
inspection reveals occasional label inaccuracies. While deep
learning should be resilient to label noise in training, the
presence of noise during testing somewhat undermines the
quantitative preformance results. Although our models are
relatively small, they are still expensive to train. Due to
limited resources, we could not explore significantly larger
model configurations and combinations, including performing
hyper-parameter sweep. Therefore it is possible that different
VulBERTa configurations could achieve a higher performance.
Finally, the main limitation of our work is the lack of a
systematic attempt to detect novel 0-days vulnerabilities in
open-source projects in-the-wild. This was due to the challenge
of manually reviewing false positives, which we would like to
address in future work, leveraging explainability techniques.

VI. CONCLUSIONS

We have presented VulBERTa, a pre-training model which
learns a deep representation of C/C++ code. A key component
of our model is a custom tokenisation pipeline which aims to
preserve syntactic and semantic knowledge from source code
without recurring to overly complicated neural architectures.
We used the VulBERTa model as the basis to fine-tune two
models for vulnerability detection which achieve state of the
art performance on several datasets and benchmarks. This
models stand out in virtue of their conceptual simplicity and
low complexity as measured in terms of number of parameters.

Acknowledgments. This work was partially supported by
the Google Cloud Research Credits program with the award
GCP19980904.

REFERENCES

[1] MITRE, “Browse CVE vulnerabilities by date,” 2021. [Online].
Available: https://www.cvedetails.com/browse-by-date.php

[2] H. Hanif, M. H. N. Md Nasir, M. F. Ab Razak, A. Firdaus, and
N. B. Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Journal of
Network and Computer Applications, vol. 179, p. 103009, 2021.

[3] L. Zhen et al., “Vuldeepecker: A deep learning-based system for
vulnerability detection,” in 25th Annual Network and Distributed System
Security Symposium (NDSS 2018), San Diego, CA, USA, 2018.

[4] ——, “Sysevr: A framework for using deep learning to detect software
vulnerabilities,” IEEE Transactions on Dependable and Secure Comput-
ing, p. 1–1, 2021.

[5] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “muvuldeepecker: A
deep learning-based system for multiclass vulnerability detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp.
2224–2236, 2021.

[6] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32, Vancouver, Canada, 2019.

[7] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “Bgnn4vd: Constructing bidi-
rectional graph neural-network for vulnerability detection,” Information
and Software Technology, vol. 136, p. 106576, 2021.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1. Association for Computational Linguistics,
Jun. 2019, pp. 4171–4186.

[10] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” in International Conference on Learning Representations, 2020.

[11] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced
bert with disentangled attention,” in 2021 International Conference on
Learning Representations, May 2021.

[12] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.
Brussels, Belgium: Association for Computational Linguistics, Nov.
2018, pp. 353–355.

[13] P. Gage, “A new algorithm for data compression,” C Users J., vol. 12,
no. 2, p. 23–38, Feb. 1994.

[14] LLVM, “libclang: C interface to clang,” 2021. [Online]. Available:
https://clang.llvm.org/doxygen/group CINDEX.html

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[16] P. Long et al., “CoTexT: Multi-task learning with code-text transformer,”
in Proceedings of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021). Association for Computational
Linguistics, Aug. 2021, pp. 40–47.

[17] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang, and G. Domeniconi,
“Exploring software naturalness through neural language models,” 2020.

[18] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA). Orlando, FL, USA: IEEE, 2018, pp. 757–762.

[19] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy. California, USA: IEEE, 2014, pp. 590–604.

[20] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
NY, USA: Association for Computing Machinery, 2015, p. 426–437.

[21] J. Stuckman, J. Walden, and R. Scandariato, “The effect of dimen-
sionality reduction on software vulnerability prediction models,” IEEE
Transactions on Reliability, vol. 66, no. 1, pp. 17–37, 2017.

[22] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3, Apr. 2021.

[23] R. Rabheru, H. Hanif, and S. Maffeis, “DeepTective: Detection of
PHP vulnerabilities using hybrid graph neural networks,” in 2022 IEEE
Conference on Dependable and Secure Computing (DSC), 2022, pp.
1–8.

[24] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, “New deep learning
method to detect code injection attacks on hybrid applications,” Journal
of Systems and Software, vol. 137, pp. 67–77, 2018.

[25] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[26] Y. Zheng et al., “D2A: A dataset built for AI-based vulnerability
detection methods using differential analysis,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2021, pp. 111–120.

[27] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 1536–1547.

[28] B. Roziere, M.-A. Lachaux, M. Szafraniec, and G. Lample, “Dobf: A
deobfuscation pre-training objective for programming languages,” 2021.

[29] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” 2021.

[30] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1746–1751.

[31] PyGithub, “PyGithub: Typed interactions with the GitHub API v3,”
2021. [Online]. Available: https://github.com/PyGithub/PyGithub

[32] NIST, “Juliet test suite 1.3,” 2017. [Online]. Available: https:
//samate.nist.gov/SRD/testsuite.php

[33] National Institute of Standards and Technology, “National Vulnerability
Database,” 2021, [Accessed November 10, 2021]. [Online]. Available:
https://nvd.nist.gov

[34] ——, “Software Assurance Reference Dataset,” 2021, [Accessed
November 10, 2021]. [Online]. Available: https://samate.nist.gov/SARD

[35] P. et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, vol. 32, pp.
8026–8037, 2019.

[36] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5, pp. 602–610, 2005, iJCNN 2005.

[37] S. Lu et al., “Codexglue: A machine learning benchmark dataset for
code understanding and generation,” CoRR, vol. abs/2102.04664, 2021.

[38] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, Jun. 2021, pp. 2655–2668.

[39] D. Coimbra, S. Reis, R. Abreu, C. Păsăreanu, and H. Erdogmus, “On
using distributed representations of source code for the detection of c
security vulnerabilities,” 2021.

[40] Y. Zhuang, S. Suneja, V. Thost, G. Domeniconi, A. Morari, and
J. Laredo, “Software vulnerability detection via deep learning over
disaggregated code graph representation,” 2021.

https://www.cvedetails.com/browse-by-date.php
https://clang.llvm.org/doxygen/group__CINDEX.html
https://github.com/PyGithub/PyGithub
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://nvd.nist.gov
https://samate.nist.gov/SARD

	I Introduction
	II Related Work
	II-A Vulnerability detection using deep learning
	II-B Pre-trained models of source code

	III VulBERTa
	III-A Tokeniser
	III-A1 Parser
	III-A2 Tokenisation
	III-A3 Encoder

	III-B Pre-training
	III-C Fine-tuning

	IV Datasets
	IV-A Pre-training datasets
	IV-A1 GitHub
	IV-A2 Draper

	IV-B Fine-tuning datasets
	IV-B1 Vuldeepecker
	IV-B2 Draper
	IV-B3 REVEAL
	IV-B4 muVuldeepecker (MVD)
	IV-B5 Devign
	IV-B6 D2A

	V Software vulnerability detection
	V-A Experimental setup
	V-A1 Hardware and software
	V-A2 Performance criteria
	V-A3 Baselines methods
	V-A4 Model pre-training
	V-A5 Model fine-tuning

	V-B Evaluation on selected datasets
	V-B1 Vuldeepecker
	V-B2 Draper
	V-B3 REVEAL
	V-B4 muVuldeepecker

	V-C Evaluation on benchmarks
	V-C1 CodeXGLUE
	V-C2 D2A

	V-D Discussion
	V-E Limitations

	VI Conclusions
	References

