Defensive JavaScript
Building and Verifying Secure Web Components

Karthikeyan Bhargavan!, Antoine Delignat-Lavaud®, and Sergio Maffeis?

L INRIA Paris-Rocquencourt, France
2 Imperial College London, UK

Abstract. Defensive JavaScript (DJS) is a typed subset of JavaScript
that guarantees that the functional behavior of a program cannot be
tampered with even if it is loaded by and executed within a malicious
environment under the control of the attacker. As such, DJS is ideal for
writing JavaScript security components, such as bookmarklets, single
sign-on widgets, and cryptographic libraries, that may be loaded within
untrusted web pages alongside unknown scripts from arbitrary third par-
ties. We present a tutorial of the DJS language along with motivations
for its design. We show how to program security components in DJS,
how to verify their defensiveness using the DJS typechecker, and how to
analyze their security properties automatically using ProVerif.

1 Introduction

Since the advent of asynchronous web applications, popularly called AJAX or
Web 2.0, JavaScript has become the predominant programming language for
client-side web applications. JavaScript programs are widely deployed as scripts
in web pages, but also as small storable snippets called bookmarklets, as down-
loadable web apps,’ and as plugins or extensions to popular browsers.? Main-
stream browsers compete with each other in providing convenient APIs and
fast JavaScript execution engines. More recently, Javascript is being used to
program smartphone and desktop applications®, and also cloud-based server ap-
plications,* so that now programmers can use the same idioms and libraries to
write and deploy a variety of client- and server-side programs.

As more and more sensitive user data passes though JavaScript applications,
its confidentiality and integrity becomes an important security goal. Conse-
quently, JavaScript applications rely on a number of security libraries for cryp-
tography and access control. However, neither the JavaScript language nor its
execution environment (e.g. the web browser) are particularly well suited for
security programming. For example, to aid uniform deployment across different

! https://chrome.google.com/webstore/category/apps
2 https://addons.mozilla.org/

3 http://dev.windowsphone . com/develop

4 http://node. js

A. Aldini et al. (Eds.): FOSAD VII, LNCS 8604, pp. 88-123, 2014.
© Springer International Publishing Switzerland 2014

https://chrome.google.com/webstore/category/apps
https://addons.mozilla.org/
http://dev.windowsphone.com/develop
http://node.js

Defensive JavaScript 89

browsers, JavaScript allows a number of core language primitives to be rede-
fined and customized. This means that a JavaScript security library that may
run alongside other partially-trusted libraries must take extra care so that its
functionality is not subverted and its secrets are not leaked.

In this tutorial, we investigate approaches to build and verify JavaScript pro-
grams that implement security-criticial tasks, such as cryptographic protocols.
Our programs must contend not just with the traditional network attacker, but
also with a variety of web-specific attacks, such as malicious hosting websites and
Cross-Site Scripting (XSS). In other words, not just the communication channel
but even parts of the execution environment may be under the control of the
adversary. We propose a typed subset of JavaScript, called Defensive JavaScript,
that enables formal security guarantees for programs even in this threat model.
Our language and verification results previously appeared in [12].

Many existing works investigate the security of formal models of web applica-
tion protocols [3,17,8], but none of them can provide concrete security guarantees
for JavaScript code. Still, we build upon these prior results (especially [8]) to de-
velop our threat model and verification techniques. Another closely related line
of work investigates the use of type-preserving compilers to generate JavaScript
programs that are secure-by-construction [18,25]. We will focus only on language-
based protections in JavaScript, but note that HTML-level isolation techniques
may also be effectively used to separate trusted web security components from
untrusted JavaScript [4].

In the rest of this section, we will seek to better understand the threat model
and security goals of JavaScript security components through three examples.

1.1 Encrypted Cloud Storage Websites

Storage services (e.g. Dropbox) allow users to store their personal files on servers
hosted within some cloud infrastructure. Since users often rely on these services
to back up important files and share them across devices, the integrity and con-
fidentiality of this data is an important security requirement, especially since
the cloud servers may be under the control of a third party. Consequently, main-
stream storage services typically encrypt user files before storing them in the
cloud. A hacker who breaks into the cloud server to obtain the encrypted files
would also need to steal the file encryption key from the storage service.

Some services, such as SpiderOak and Mega, seek to provide a stronger privacy
guarantee to their users, sometimes called host-proof hosting — even if the
storage service and its cloud servers are both hacked, the user’s files should
remain confidential. The key mechanism to achieve this goal is that a user’s file
encryption keys are generated and stored on the client-side; even the storage
service does not get to see it, and so cannot accidentally leak it.

For example, to access their files stored on Mega, users visit the Mega website,
which downloads and runs a JavaScript program in the browser. The program
asks the user for a master passphrase, derives an authentication token and an
encryption key from the passphrase, and sends the username and authentication
token to the website. If the token matches the username, the web page allows the

90 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

user to download or upload encrypted files from a cloud server. The JavaScript
program encrypts and decrypts user files upon request, using the encryption key
derived from the master passphrase, but the key and the passphrase never leave
the browser.

Hence, the storage service implements an application-level cryptographic pro-
tocol in JavaScript. This programming pattern is also popular with other security
web applications such as password managers (more below) and with privacy-
preserving websites like ConfiChair [5] and Helios [1].

The main threat to this design is that if the attacker manages to inject a
malicious script into the website, that script will be able to steal the master
passphrase (and hence the user’s files). This script injection may be achieved
by hacking the web server, or by tampering with externally loaded scripts on
the network, or by exploiting a cross-site scripting (XSS) attack. Many such
attacks have been found in previous work [10,7,12] and reports from the MEGA
bug bounty program indicate that such attacks are a common concern. Cloud
storage websites employ many techniques to block these attack vectors, such as
Strict Transport Layer Security [20] and Content Security Policy [24], but the
increasing incidence of server-side compromises, man-in-the-middle attacks on
TLS, and XSS vulnerabilities on websites, indicates that it would be prudent to
try to protect user data even if the website had a malicious script.

Even ignoring malicious scripts, to provide any formal security guarantee for
a website security component that runs alongside unknown third party scripts,
the component would need to be robust against bugs in these scripts. To give a
concrete example, the MEGA website relies on about 70 scripts, and less than
10% of their code is related to cryptography; most of the rest implements the
user interface. So the correctness of the cryptographic library and the secrecy of
its keys relies on the good behavior of these Ul scripts, which are not written by
security experts and may be difficult to formally review.

1.2 Password Manager Bookmarklets and Browser Extensions

Password managers (e.g. LastPass) help users manage and remember their pass-
words (and other sensitive data such as credit card numbers) on various websites.
They are often implemented in JavaScript and deployed as a browser extension
or bookmarklet that detects the login page of a website, looks up a password
database for a matching username and password, and offers to fill it in auto-
matically. If there is no matching password, it may offer to generate a difficult-
to-guess password and store it in the database. To synchronize and backup the
password database across a user’s devices, many password managers implement
the host-proof encrypted cloud storage pattern described above.

For example, LastPass users can generate a “Login” bookmarklet and add it
to their browser’s bookmarks. The bookmarklet contains a JavaScript program
embedded with an encryption key for the user’s password database. When a user
next visits the login page at some website, she may click on the bookmarklet
to automatically log in. Clicking on the bookmarklet executes its JavaScript
program in the scope of the current page. The program contacts the LastPass

Defensive JavaScript 91

website and retrieves the currently logged-in LastPass user’s encrypted password
data from the cloud server. It then uses the encryption key embedded in the
bookmarklet code to decrypt the password for the current page and fills in the
login form. If the browser does not have an active login session with LastPass,
the bookmarklet has no effect.

The main threat to the bookmarklet design is that it may be clicked on a
malicious website that may then tamper with the JavaScript environment to
subvert the bookmarklet’s functionality. A typical case is if the user acciden-
tally clicks the bookmarklet on a website that looks like a known trusted site.
Or the user has passwords for two different sites stored in her database, and
one of them may have been compromised. In these situations, the main goal
of the malicious website is to steal the user’s password at a different honest
website. The bookmarklet tries to prevent such attacks by identifying the web-
site the bookmarklet has been clicked on and only using its embedded secret
on trusted websites. However, identifying the host website and protecting the
bookmarklet secret are difficult in a tampered JavaScript environment, leading
to many attacks [2,10,7,12]. We propose a programming discipline that enables
secret-keeping bookmarklets that are robust against tampered environments.

As an alternative to bookmarklets, many password managers also provide a
downloadable browser extension that executes a similar JavaScript program, but
in a safer, more isolated JavaScript context. Password manager browser exten-
sions are subject to their own threat model [9], not detailed here. In particular,
even extensions must protect their secrets from being leaked by bugs in other
included JavaScript programs. To give a concrete example, the LastPass exten-
sion for the Google Chrome browser has 119 JavaScript files, of which only 5
contain any cryptography, but their security guarantees still must rely on the
correctness of these other scripts.

1.3 Single Sign-On and Social Sharing Buttons

Single Sign-On protocols (e.g Facebook’s Login button) are widely used by web-
sites that wish to implement authenticated sessions without the hassle of user
registration and password management. Another advantage is that the website
can leverage their users’ social networks to provide a richer experience (e.g.
Facebook’s Like button). From the user’s viewpoint, single sign-on and social
sharing buttons offer her a convenient and secure way of accessing and sharing
data across different websites, without needing to remember different passwords.

For example, to include the Facebook Login button on a web page, a website
W loads a JavaScript library provided by Facebook that displays the button.
When a user clicks on the button, the program asks Facebook for the currently
logged-in user’s access token for the current website W. If the user is logged in
and has previously authorized Facebook to provide an access token to W, Face-
book returns the access token in a URL. Otherwise, the user is forwarded to a
page where she may login and authorize W (or not). The program then gives the
access token to the website and also provides functions to access the Facebook
APT and read or write (authorized elements of) the current user’s social profile.

92 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

The protocol implemented by Facebook is OAuth 2.0 [19], which also prescribes
other message flows for server-side tokens and smartphones. Other popular sin-
gle sign-on protocols, such as OpenlD, SAML, and BrowserID, provide similar
message flows that websites may use to obtain access tokens as user-specific
credentials.

The main threat to the single sign-on interaction above is that the access
token may be stolen by a malicious website and then used to impersonate the
user at an honest website, or to read or write the user’s profile information on
her social network. The OAuth 2.0 flow is particularly vulnerable since access
tokens are sent in URLs which may be leaked by Referer headers, or by HTTP
redirection, or by various browser and application bugs [8,26,12]. Since the access
token is used as a bearer token, and is often not specific to a website, it can be
immediately used by the adversary on any website to impersonate the user.

The BrowserID single sign-on protocol seeks to mitigate the effects of token
theft by using public key cryptography to authenticate the client®. Mozilla’s im-
plementation of BrowserID is written fully in JavaScript. The client includes a
JavaScript cryptography library that may be included by any site to retrieve
and sign tokens on behalf of the user. Even the single sign-on server is written
in JavaScript and deployed over node.js. The design of BrowserID has been
carefully evaluated by formal analysis [17], but to prove the code correct, one
must show that all the scripts loaded alongise behave safely. In Mozilla’s imple-
mentation, the server-side protocol moduls is loaded among 158 other node. js
modules, and a bug or malicious function in any of these modules could com-
promise both ther server’s and user’s private keys.

1.4 Towards Verifiably Secure Web Components

We have discussed three popular categories of JavaScript security components
that seek to protect sensitive user data such as files, passwords, and access
tokens from malicious websites using various combinations of authentication
protocols and cryptography. Each of these components is used in conjunction
with a number of other scripts that may modify the JavaScript environment.

Our goal is to write JavaScript security components in a style that their se-
curity can be formally proved even if the context is malicious. In particular,
we aim for a language-level isolation guarantee for our programs — that their
input-output functional behavior cannot be tampered with by the environment.
As a corollary, any secrets that are correctly protected by cryptography in our
programs cannot be stolen or modified by the adversary. This simple-sounding
isolation guarantee would be trivial to obtain in traditional programming langu-
gages with sound type systems, such as OCaml and Java. However, the flexibility
of JavaScript breaks many guarantees presumed by the programmer and the lan-
guage must be reined in before we can achieve our goal.

In Section 2, we discuss the peculiarities of JavaScript and the browser envi-
ronment that make it difficult to isolate security components. In Section 3, we

® http://login.persona.org

http://login.persona.org

Defensive JavaScript 93

present Defensive JavaScript (DJS), a typed subset of JavaScript that guarantees
isolation from the environment. In Section 4, we present a large cryptographic
library written in DJS and use it to write and verify simple cryptographic web
applications. Section 5 concludes.

2 Secure Messaging in an Untrusted Environment

As a motivating example, we consider how to implement a JavaScript program
that sends an authenticated message to a server. Our target web page is hosted
on a website W at URL http://W.com and it loads three scripts:

1 <html>

2 <body>

3 <script src="attackerl.js"></script>
4 <script src="messaging.js"></script>
5 <script src="attacker2.js"></script>
6 </body>
7 </html>

The first and third scripts are arbitrary malicious scripts chosen by the at-
tacker. The second script is our program that provides an API to send messages
to a server S at the URL http://S.com, via the XMLHttpRequest asynchronous
messaging API provided by the browser. (In some cases, W may be the same
site as S.) We assume that the program and S share a secret MACing key k.
The program uses this key to attach a MAC to each message sent to S.

The security goal is message authentication: every message received and ver-
ified by S must have been sent by our program running at W. In particular, it
should not be possible for the attacker scripts to steal the MAC key k and forge
messages to S. The above web page scenario may seem too paranoid, but more
generally, we want to guarnatee that that even if the surrounding scripts are just
buggy, not malicious, they still cannot accidentally leak the key.

2.1 Secure Delivery of the Secret Key

The first challenge is to deliver the MAC key to messaging.js in a way that
cannot be read by the other two attacker scripts.

Injecting the key as a token into the HTML document, or an HTTP cookie,
or in browser local storage would not work; if the messaging script can read it,
so can the attacker’s script. The only safe place for the key is to embed it into
the messaging program. But even in this case, there are many pitfalls. Consider
the following messaging script messaging. js with a key included on top:

1 var key = k;
2 var api = function(msg){ .../*send authenticated message*/}

Unfortunately, the attacker script attacker?2. js can simply read the variable
key from the environment and obtain the key. A better solution would be to
protect the key within the function:

94 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

1 var api = function(msg){
2 var key = k;
3 .../*send authenticated message*/

4}

Now the script attacker?2. js can no longer read the local variable key. How-
ever, it can retrieve the source code of the function api as a string by calling
api.toSource(). It can then extract the embedded key & from the string. To pro-
tect the source code of the function, we need to rewrite the function by wrapping
it within an anonymous function closure:

1 var api = (function (){

2 var _api = function(msg){
3 var key = k;
4 .../*send authenticated message*/}

(o3}

return function(msg){return _api(msg);}

)O3

[}

Now, calling api.toSource() only reveals the code of the wrapper function,
and the code of the real _api function (which embeds the key k) remains private.

There remains another way for the attacker scripts to obtain the source code
of _api. If the script messaging.js is served from the current website’s origin
http://W.com, the source code of the whole script can be retrieved by either
attacker script by making an XMLHttpRequest to the script’s URL:

1 var xhr = new XMLHttpRequest();

2 xhr.open("GET", "http://W.com/messaging.js",false);
3 xhr.send();

4 var program = xhr.responseText;

To prevent this, the messaging script must be served from a separate origin.
For example, the website W could set aside a separate origin for serving only
scripts, and place the messaging script at say http://scripts.W.com/messaging.
js. in our example, it would also be suitable to source it from S’s origin, say at
http://S.com/messaging. js, so S can inject the shared key into the script. In
both cases, the attacker scripts on http://W.com would be unable to make an
XMLHttpRequest to read the code, due to the Same Origin Policy.

2.2 Calling External Functions

To construct and send a message, our messaging program will rely on several
external functions either builtin to the JavaScript language or provided by the
browser as part of the DOM library. For example, commonly used string func-
tions such as concatenation (s.concat(t)) or search (s.index0f(t)) are defined
as methods in the String prototype. Other useful functions on arrays and ob-
jects are provided by the Array and Object prototypes. The window.Math object
provides implementations of many mathematical functions. The XMLHttpRequest
object allows asynchronous messaging with remote servers, and the postMessage
API implements client-side messaging between windows. Finally, the document

http://scripts.W.com/messaging.js
http://scripts.W.com/messaging.js

Defensive JavaScript 95

object (or DOM) provides functions for reading and writing the HTML docu-
ment (e.g. document .getElementById (¢ ‘body’’)).

These external library functions are widely used by JavaScript programs. How-
ever, in our threat scenario, the attacker script attacker1. js may have redefined
every one of these functions by modifying the String, Array, and Object proto-
types, or by redefining these functions and objects in the window and document
objects. For example, the following code redefines the XMLHttpRequest object, so
that all messages send by the messaging script can be intercepted:

1 window.XMLHttpRequest =

2 function(){

3 return {open: function(){/*do whateverx/},
4 send: function(){/*do whatever*/}}}

Suppose our messaging program is written as follows; in addition to the
XMLHttpRequest object (and its methods), the code calls Crypto.HMAC:

1 var api = (function (){

var _api = function(msg){
var key = k;
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://S.com",false);
xhr.send(Crypto.HMAC(key,msg) + "," + msg);
}

return function(msg){return _api(msg);}}

AON

© 00 g O Uk W N

This code exemplifies three dangers of calling an external function.

First, the call to Crypto.HMAC leaks the key, since the attacker may have rede-
fined the function. Consequently, the only safe choice here is to inline the code
of the HMAC function into the messaging program. The HMAC function in turn re-
lies on a hashing function (say SHA-256) which would also need to be included
within the program. (To see what these functions look like in JavaScript, see our
implementation in Appendix A.)

Second, the call to any external function exposes _api function to a stack-
walking attack. For example, the attacker can redefine XMLHttpRequest .send SO
that when it is called, it reads the source code of its calling function using the
caller method in the Function prototype:

1 stackwalk = function(){var program = stackwalk.caller.toSource();...}
2 window.XMLHttpRequest =

3 function(){

4 return {open: stackwalk,

5 send: stackwalk}}

Adding the above code in attackerl.js will set up the environment such
that when _api calls xhr.open, the attacker obtains the source code of _api and
hence its embedded key. The attack relies on the implementation of the caller
method, and it it works at least in Firefox at the time of writing. More generally,
this kind of stack-walking is a powerful attack vector. Whenever a function £ is

96 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

called, it can access its caller by accessing f.caller, and the next level on the
call stack by accessing f.caller.caller. At each level, it may examine (and even
overwrite) the arguments of the function.

Third, if our messaging script ever calls an external function, the attacker
may redefine its behavior so that the result of the function is not as expected.
For example, s.concat (t) may always return a constant string or Math.pow may
always return 0. In such cases, the functional integrity of our script has been
compromised, and if the results of these functions are used in the MAC function,
the authentication protocol may be broken even without leaking the secret key.

In summary, any external function calls from a the messaging script may lead
to a full compromise of its secrets and its functionality. To be safe, the script
must never call functions from within security sensitive functions whose source
code or arguments may be secret. Instead, all external function calls should be
factored out into a top-level wrapper function that calls a self-contained API:

1 var api = (function (){

2 var hmac = function(key,msg){/* inlined HMAC code */}
3 var _api = function(msg){

4 var key = k;

5 return (hmac(key,msg) + "," + msg);
6 }

7 return function(msg){return _api(msg);}

8 IOK

9 var msg_api = function (msg) {

10 var mac = api(msg);

11 var xhr = new XMLHttpRequest();

12 xhr.open("GET", "http://S.com",false);

13 xhr.send(mac) ;

14 }

Here, the external function call to XMLHttpRequest is performed outside the
sensitive API by a function msg_api that has no access to the secret MACing
key. Walking the stack to get to msg_api does not allow the attacker to steal any
secrets or to tamper with the _api function.

2.3 Implicit Calls to External Functions

In addition to explicit function calls, many JavaScript constructs implicitly trig-
ger methods defined in various prototypes. Since these prototypes may be mod-
ified by the adversary, we must also avoid such implicit calls in defensive code.

The first category of implicit function calls are coercions. For example, in the ex-
pressione == e’, ifeisan object and e’ is anumber, then the equality will trigger an
implicit coercion e.valueOf e was an object; rest of paragraph assumes string. This
method value0f is defined in the String prototype. More generally, comparison be-
tween any object and a string or a number may trigger the value0f or toString
methods in that object’s prototype. Hence, by redefining these methods in the
Object prototype, the attacker can intercept any function that triggers an implicit
coercion and mount the attacks described in the previous subsection.

Defensive JavaScript 97

The second category of implicit function calls are getters and setters. When-
ever an object is accessed at an undefined property (e.g. o.x), the JavaSript
interpreter traverses the prototype hierarchy to see if the property x is defined
in one of the prototypes that the object is derived from. If, say, none of the pro-
totypes has defined x, but the Object prototype defines a getter function for x,
then reading the property o.x will trigger this function. Similarly, if the Object
prototype has a setter function for x, writing to o.x will call the setter.

By defining getters and setters for specific properties, an attacker script can
cause trusted code to trigger an external function if it ever accesses an undefined
property. Similarly, if an array or string is every indexed out of bounds, it may
trigger a getter or setter in the Array prototype. Consequently, in our setting, the
messaging program should never access arrays, strings, or objects outside their
declared ranges. In particular, the popular JavaScript idiom of first declaring an
empty object and then extending it is vulnerable to attack:

1 Object.defineProperty (Object.prototype,"a",{set:function(O{...}});
2var x = {};

3x.a = 1; // triggers malicious setter

4 Object.defineProperty (Array.prototype,"0",{set:function(O{...}});
s5var y = [J];

6 y[0] = 1; // triggers malicious setter

7 Object.defineProperty (Array.prototype,"1",{get:function(O{...}});
8 y[0] = y[1]; // should be undefined, but triggers malicious getter

A particular subcase of prototype poisoning is worth mentioning. JavaScript
offers a for...in loop construct that goes through all the properties of an
object. For example for (i in {x:1})print(i) is expected to print ‘‘x’’ and
for (i in [1])print(i) is expected to print the single array index 0. However,
if the attacker modifies Object and Array prototypes to add more properties,
those properties will also be printed here. Even checking that each property was
defined locally within the object using the Object.hasOwnProperty function does
not help, since this function could also be modified by the adversary.

2.4 Defensive Programming Idioms

We have discussed many potential attack vectors that a malicious script may
employ when trying to subvert an honest JavaScript program running in the
same environment. To prevent these attacks, we advocate a defensive program-
ming discipline where programs aim to isolate their security-critical code from
the environment by using function closures, by being loaded from a different
origin, by refusing to explicitly call external functions, and by carefully prevent-
ing the triggering of coercions and prototype lookups. To systematically check
our programs for all these isolation conditions, we propose a static type system.
Defensiveness is a first step towards formal security guarantees. Once scripts
like our messaging program are correctly isolated, we may rely on their context-
independent semantics and on the functional integrity of their cryptographic
libraries to build automated security verification tools.

98 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

Alternative Mitigations. The injunction that the core messaging API must be
fully self-contained may seem draconian and one may wonder if there are some
cases in which calling external functions is safe. If the goal is only to prevent
stack-walking, one may hide the stack by calling all external functions through a
recursive wrapper function [25]. However, this requires a source-to-source trans-
lation to implement effectively, especially for object methods like xhr.send.

Recent versions of JavaScript give programs the ability to freeze objects
and mark various properties as unmodifiable and/or unconfigurable (cannot be
deleted). It is tempting to suggest that the website W should freeze some objects
or that the browser should guarantee that some DOM properties are unforgeable.
These objects and properties would then be safe to access. However, the problem
with both Object.freeze and Object.defineProperty is that they need to apply
to the top object in the object hierarchy, otherwise it is ineffective. For example,
the properties document .location.href and window.location.href are commonly
considered unforgeable since modifying them would take the webpage to a new
location. Indeed, most browsers prevent JavaScript from redefining these prop-
erties. However, the attacker may directly redefine the window.document object
(FireFox) or the window.location object (Internet Explorer).

Another option is for the website W to run a script first that makes copies
of all relevant objects before they have been tampered by the attacker [18].
However, ensuring that a script runs first on a web page is surprisingly tricky [25].
Moreover, this solution does not work in scenarios where the website W itself
may be malicious or compromised.

One may also use isolation mechanisms outside JavaScript, such as HTML
iframes to effectively separate trusted and untrusted code [4]. In this paper, we
do not investigate such mechanisms and instead focus only on language-based
isolation. We note that the use of iframes relies on the semantics of the Same
Origin Policy which remains to be fully standardized, let alone formalized [28].
Furthermore, iframes may not be available in some JavaScript runtime envi-
ronments, such as smartphones and server applications. In these environments,
defensive programming becomes necessary.

3 Defensive JavaScript

We present a subset of JavaScript that enforces a strong defensive programming
discipline. Our language, Defensive JavaScript (DJS), imposes restrictions on
JavaScript code both at the syntactic level and through a static type system.
The main elements guiding the design of DJS are as follows:

Static Scopes. The variable scoping rules of JavaScript are notoriously difficult
to understand. For example, functions may use local variables before they are
declared. More worryingly, if a JavaScript program ever accesses a variable
that is not in its local scope, this access may trigger a getter or setter in
some prototype object. Consequently, we require that all variables in DJS
programs be strictly statically scoped. We impose this by restricting the

Defensive JavaScript 99

occurance of variable declarations (var) and by enforcing a strong scoping
restriction on the bodies of with statements.

Static Types for Functions, Objects, and Arrays. To prevent out-of-
bound accesses to object properties, function arguments, and array indices,
we require that all these objects be statically types. Notably, this means that
the objects and arrays are not extensible and the types of variables cannot
be changed. Furthermore, dynamic accesses to arrays and strings are only
allowed when the index can be guaranteed to fall within bounds.

Coercion-Free Operations. To avoid triggering coercions, we enforce strict
types for all unary and binary operators. Comparisons, for example, can
only be performed between expressions of the same types.

Disjoint Heaps. To provide full isolation for our programs, we require that no
heap references are imported or exported by DJS code. Importing an external
object (array, function) is forbidden since accessing any of its properties may
trigger malicious code. Exporting an internal object is forbidden because it
may expose internal program state (and secrets) to the attacker. Hence, we
require that DJS programs can only export scalar (string -> string) APIs.

3.1 Syntax

The syntax of DJS depicted in Figure 1 reflects these design constraints. Since
DJS is a subset of JavaScript, much of the syntax is standard JavaScript and we
refer the reader to the full language specification for more syntactic details [16].

DJS includes the standard JavaScript literals: booleans, numbers, strings,
objects, and arrays. In fact, literals are the only way one may construct an
object or an array. DJS does not allow object constructors, and extending an
existing object or an array is forbidden.

DJS supports several unary () and binary (¢) operators over numbers, strings,
and booleans. Since these operators are built into the language and cannot be
modified we can use them freely, except that the type system ensures that we
do not trigger coercions.

Left-hand-side expressions denote the various ways that objects, strings, and
arrays may be accessed in DJS code. Notably, dynamic accessors are severely
limited. For example, properties cannot be accessed via the e[i] syntax (where
i may have been dynamically computed). Instead, they must use the static
accessor e.x. This helps the typechecker ensure (statically) that only explicitly
defined properties are accessed (at runtime).

Arrays (and strings) can be accessed only at indexes that can be statically
shown to fall within the array (and string) bounds. We allow three kinds of
array indexes. The constant index e[n] is allowed when 7 is known to be within
the bounds of the array. The integer index e[e’&n] is allowed when 7 is an
integer (0 < n < 23°) and is within the array bounds. The bounded access
z[(e>>>0)%z.length] is always allowed.

Strings can be accessed with the three array access forms as well as a condi-
tional form that checks that the index is within the length of the string before

100

K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

a,b,c =

n
o

true, false
le1s. .., en]
{z1:€1,...,2n:€n}

= +775 !7N

+7 —, %k, /7%
&, |, ", <<, >>, >>> >>>=

&&, | |
== 1= > < >= <=

l,m,n =

d:
Py

function (z1,..

r,this.zx
e.xr

e[n]
ele’'&n)

z[(e>>>0)%z.1length]
e>>>=0) < z.length?z[e] :

~ ~Q

=e
>e

eoe

er(er, ... en)

(&

with (e) s

if (e) s1 else sz

while (e)s

{s1;...8n;}

S1;...Sk; return e;}

=c|f

- on){

var y1 =d1,...

literals
numbers (0, 1, ...)xo
strings (¢¢...77)
booleans

array literals (n > 0)

object literals (n > 0)
unary operators
binary operators

arithmetic operators

bitwise operators

boolean operators

comparison operators
left-hand-side expressions

variables

object property

constant array index

integer index (0 < n < 2%9)

bounded array index

conditional string index
expressions

literals

left-hand-side expressions

assignment

unary operation

binary operation

function application (n > 0)
statement

expression

scope

conditional (else optional)

while loop

sequential composition (n > 0)

function expression
(n,m,k > 0)

defined expression

= program (wrapping function f)
(function () {
var _ = f;
return function (z) {if (typeof z == ‘‘string’’) return _(z);}})();

Fig. 1. Defensive JavaScript: Syntax

Defensive JavaScript 101

accessing it, otherwise it returns a new string constant. The restrictions on dy-
namic accesses to objects, strings, and arrays are governed by the limits of our
type system and type inference algorithm. With a more expressive type system,
one may be able to allow other safe dynamic accessors.

Expressions include assignments, unary and binary operations, and function
and method applications. Functions and methods must be fully applied; we do
not allow optional arguments that may be left undefined.

Statements include if-then-else conditionals, while loops, and sequencing. No-
tably, variable declarations var x cannot appear in statements and property
enumeration via for-in is forbidden. General for loops are allowed by the type-
checker, even though they are not part of the formal syntax.

There are two mechanisms of introducing scope frames in DJS; functions (and
methods) and with. The statement with (e) s takes an object expression e and
makes its properties available as local variables to the statement s. To enforce
static scoping, we require that all the free unqualified variables of s be properties
in e. That is, looking up a free variable in the body of a with statement should
never require looking beyond the current with context.

The syntax of functions is restricted to make it easier to infer their scope
frames and return types. The function body begins with a series of variable
declarations; in fact, this is the only place where var statements appear in DJS
programs. The body continues with a series of statements and ends with a single
return statement. The function is not allowed to invoke return anywhere else.

The top-level program p; is a wrapper around a single function f; it ensures
that the argument to the function is a string, calls the function, and returns
the result. The wrapping ensures that the source code of the internal function
is not leaked to the environment, and the argument typecheck ensures that the
program does not accidentally import an external heap reference.

3.2 Typing

The type rules depicted in Figures 2 and 3 enforce the language restrictions
described informally above. We write types and typing environments as follows:

Types and Environments

T = Types

number | boolean | string | undefined ~ Base Types

p Object

[T]n Array of length n > 0

(T1yeyTn) = Te Function n > 0

(T1y-. o,)[p] = 7 Method on object of type p (n > 0)
pu=A{x1 71, . 20 Th} Object Type (n > 0)
ku=f|w Scope frame kind: function or with
Ii=¢|T,[plk Typing Environment

Types 7 include the primitive base types of JavaScript, plus static types for
objects, arrays, functions, and methods. Object types p look like records; they

102 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

declare a fixed set of properties and assign a static type to each property. Unlike
JavaScript, DJS array types [7], require that all elements of the array must have
the same type 7 and that the array length (n) must be fixed at initialization.

Each function is given a type (71,...,7,) — 7, which says that the function
expects n arguments with the indicated types 71,...,7, and returns a result
of type 7,.. Method types look like function types, except that they have an
additional implicit argument — the object within which the method resides,
denoted by its type p. In DJS, methods may only be invoked with the syntax
e.m(z1,...,2,); it is, for example, forbidden to copy a method into a variable
and invoke it without the object prefix.

Typing environments consist of a sequence of scope frames, where each frame
looks like an object type p: it declares the types for a set of variables local to the
frame. Each frame also has a kind annotation that denotes whether the frame
was generated by a with statement or by a function (or method).

Most of the typing rules of DJS (Figures 2 and 3) are straightforwars. We give
a brief overview, focusing on the more unusual rules:

— The rules for typing literals (Num, String, BoolTrue, BoolFalse, Object,
Array) are standard.

— The casting rules (BoolCast, NumCast, StrCast) allow specific conversions
between primitive types that do not trigger coercions.

— The type rules for operators (Concat, UnaryOp, ArithmeticOp, Compar-
isonOp, BooleanOp) ensure that their arguments are already of the required
type, so that no coercions will be triggered during their execution.

— The object access rule (Property) ensures that the property is declared
within the object’s type.

— The three array access rules (ConstantIndex, IntegerIndex, BoundedIndex)
ensure that the index is an unsigned integer between 0 (inclusive) and the
array length (exclusive). The additional string indexing rule (Conditional-
StringIndex) also ensures that the string is accessed at an unsigned integer
index within the string.

— Assignment requires the left and right hand sides to have the same type.
Formally, there is no subtyping in DJS, even though the DJS typechecker
internally infers subtyping constraints.

— The rules for control-flow statements (Sequence, If, While) are standard.

— The rule for with e s (With) introduces a new frame of kind w into the typing
environment and uses this frame to typecheck the statement s. The frame
consists of the properties in the object type of the expression e.

— The variable scoping rules (VarLocal, VarFunctionScope) prescribe how to
lookup a variable in the typing environment. We first look for a local variable
in the current scope frame (VarLocal); if we fail, and if the current scope
frame was introduced by a function definition, we look further back into the
environment. If the current scope frame was introduced by a with statement,
we never look further. Hence, a well-typed with context in DJS must define
all the variables that may be used in its body, it cannot let any variable
lookup escape to the surrounding context.

Defensive JavaScript 103

N Stri
' 7 : number Tme o : string

BoolT: BoolFal
ootitue F true : boolean ooitalse - false : boolean

T'ke:T NumCast I' \- e : string

BoolCast
oolCas I Hle : boolean '+ 4e€ : number

't e : number Concat 't ey :string I’k eg:string

StrCast
rioas I'-e+"":string I'-e1 + ez : string

I'te:number >e€{— ~}

UnaryOp I' F >e : number

' e1 : number ' ez : number
o€ {+,—,%,/,%,&,|, ", <<, >> >>> >>>=}
'+ ey ¢ es : number
I'kFe:7 I'ktex: 7
7 € {number,string} ¢ € {==, =< > >= <=}
' e1 ¢ez : boolean

ArithmeticOp

ComparisonOp

I'ke:boolean I'k f:boolean o€ {&&, ||}

BooleanO
ooleanUp I'eo f: boolean

Fei:m i€[l.n] Fei:T i€[l.n]

Object Array

F{zi:e,...,znent:{z1 71, ., %0 T} Flel,. . en]: [T]n

I'ke: ST, ..., Xy Tn I'e:|[T]m >n>0
ei{min Tn i T} ConstantIndex elrl men =

Propert,
roperty I'Fex;:n; Iien]:7

I'kte:[rlm T'Feée :number 2¥>m>n>0

IntegerIndex ,
I'tele'&n]: T

I'tz:[rln, I'Fe:number n>0

BoundedA Ind
oundedAttayindex I' - z[(e>>>=0)%x.length] : 7

I'tx:string I'Fy:number

ConditionalStringInd
ORAIIONATHNSIASK 1y ((y>>>=0) < z.length?z[y] : o) : string

Fig. 2. Defensive JavaScript: Typing Rules (Literals and Expressions)

104 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

. . I'F s; :undefined i€ [l.n
Frlir Theim goionce undefin [1..n]

Assi
e I'kFl=e:T I't{s1;...;8n; } : undefined

I'e:boolean I'F s,t:undefined

If
I'+if(e) s else ¢ : undefined

While I'te:boolean I'F s:undefined
I' - while(e) s : undefined

I'te:p I,[plwF s:undefined

With
I' - with(e) s : undefined
(2] = d P I'x:
VarLocal () =7 VarFunctionScope @ & dom(®) v
I[@l.tx:7 I@skzx:7
'k f: e, Tn - I'Fe :m 1¢€]ll.
FunctionCall filmy o) = ciimi i€ L]
't flei,...,en) : 7r
Fre:p={z1:7,. .., Zn: T} Ti=(T1,-..,Tm)p] = 7=
Ihe 7 i€l
MethodCall coimi i€ fl.ml
I'texi(er,....em): 7r
pe = (i : Ti)ien.n]s (Y5 * 1i)jen.m}
I, [pk_l]f Fdg : Ik ke [lm]
. I',[pm]f F s : undefined I [pm]i b er : 7
FunctionDef ~ 5
I' - function(Z){var y1=di,...,ym=dm; S ; returne,}: 7 — 7,
MethodDef I' - function (this~, j){body}: (p, 7) = 7r
I' + function (Z){body} : T[p] — 7~
I' = f : string — string
Program

I' F py : string — string

Fig. 3. Defensive JavaScript: Typing Rules (Statements and Programs)

Defensive JavaScript 105

— Function and method calls must be fully applied with arguments of the
right types. Additionally, a method may only be called with an object of the
expected object type p.

— Function definitions introduce a sequence of scope frames. The first frame
consists of only the argument variables, and is used to typecheck the first
variable declaration. Each successive frame adds one local variable and is
used to typecheck the next variable definition. After all local variables have
been declared, the rest of the function body is typechecked with a frame that
consists of all arguments and all local variables.

— The rule for method definitions is similar to function definitions, except that
the body is typechecked in a frame that includes an implicit this argument
that has the object type p declared in the method type.

— Programs have the scalar API type string -> string. In practice, the DJS
typechecker is more general; it allows programs to export an object contain-
ing multiple scalar functions.

These typing rules are implemented by the DJS typechecker, which infers
types automatically without any annotations. The source code and an online
demo of the typechecker is available at http://defensivejs.com.

The DJS language and its type system imposes many restrictions on JavaScript
programs. In exchange, well-typed DJS programs enjoy strong isolation guaran-
tees. The key functional integrity property is called independence [12]:

Definition 1 (Independence). A program py preserves the independence of
f if any two sequences of calls to the result of py with the same sequence of
arguments, interleaved with arbitrary JavaScript code, return the same sequence
of return values, as long as no call triggered an exception.

The other key property, called encapsulation [12], guarantees that the DJS
program’s internal heap is isolated from the environment and that any internal
secrets can only be leaked though the exported API.

Definition 2 (Encapsulation). A program py encapsulates f over domain D
if no JavaScript program that runs py can distinguish between running py and
running p} for an arbitrary function [without calling the wrapped function
returned by pg. Moreover, for any tuple of values v € D, the heap resulting from
calling py(0) is equivalent to the heap resulting from calling f(0).

Well-typed DJS programs are guaranteed both these properties [12].

Theorem 1 (Defensiveness). If - f : string — string then the DJS program
py encapsulates f over strings and preserves its independence.

4 Writing Defensive Cryptographic Applications

We present several case studies illustrating the use of DJS for building secure
web components. We begin by describing three libraries, and then describing
applications built with these libraries. Code sizes and verification details for these
programs are listed in Table 1. All our libraries, applications, and verification
tools are available from http://defensivejs.com.

106 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

Table 1. Defensive JavaScript Libraries and Verified Applications

Program LOC Typechecking ProVerif LOC ProVerif
Encodings 339 24ms - -

DJCL 1425 300ms - -
DJSON and JOSE 433 36ms - -

Secure RPC 61 Tms 243 12s
Password Manager Bookmarklet 43 42ms 164 21s
Single Sign-On Library 135 42ms 356 43s
Encrypted Storage API 80 31ms 203 25s

4.1 Encoding and Decoding Strings

JavaScript applications often have to convert between different data encodings.
Unicode strings are typically encoded in UTF-8. Byte arrays can be stored in
integer arrays and converted either to ASCII strings, where each character rep-
resents a byte, or encoded in Base64, say for use in URLs.

Typical website JavaScript relies on a variety of libraries to implicitly and ex-
plicitly interconvert between strings and byte arrays in various formats (e.g.
window.atob, s.charCodeAt(i)). Since defensive code cannot rely on these li-
braries, we built our own encoding library that performs these conversions. The
library currently supports byte arrays encoded in Hexadecimal, UTF-8, Base64,
and ASCII and conversions between these formats.

The main limitation to using our DJS encoding library is performance, since
it has no access to native objects and libraries. Since we cannot trust that the
attacker has not tampered with efficient library objects like Int32Array, we en-
code all byte arrays as ASCII strings. Instead of relying on the String methods
fromCharCode and charCodeAt, which may be modified by the adversary, we use
large tables that map UTF-8 codes to their byte representations. The resulting
performance penalty depends on the amount of data being encoded, and on the
browser and hardware being used. We measured its impact on several applica-
tions (listed below), and surprisingly, even with the cost of encoding and de-
coding, DJS applications run as fast or faster than comparable JavaScript code.
Of course, encoding performance could be vastly improved if the browser could
provide access to an untamperable native library, such as the String prototype.

4.2 DJCL: Defensive JavaScript Crypto Library

We built a fully-featured JavaScript cryptography library in DJS, by adapting
and rewriting well-reputed libraries like SJCL [23] (for symmetric cryptography)
and JSBN (for public-key cryptography). Our implementation covers the follow-
ing primitives: AES on 256 bit keys in CBC and CCM or GCM modes, SHA-1
and SHA-256, HMAC, RSA encryption and signature on keys up to 2048 bits
with OAEP, PKCS1, or PSS padding. All our functions operate on byte arrays

Defensive JavaScript 107

encoded as ASCII strings. Appendix A presents a detailed listing of the full code
for our HMAC and SHA-256 functions.

Typing guarantees that the input-output behavior of the cryptographic func-
tions cannot be tampered with by a malicious environment. However, this does
not mean that our code correctly implements the cryptographic algorithm, or
that it does not accidentally leak its secrets either explicitly in a return value or
implicitly via a side-channel. Proving the functional correctness of our crypto-
graphic library or its robustness against side-channels remains an open problem.

We evaluated the performance of various DJCL functions using the jsperf
benchmark engine® on Chrome 24, Firefox 18, Safari 6.0 and IE 9. We found that
our AES block function, SHA compression functions and RSA exponentiation
performed at least as fast as their SJCL and JSBN counterparts, and sometimes
even faster. We conclude that defensive coding is well suited for bit-level, self-
contained crypto computations, and JavaScript engines find it easy to optimize
our non-extensible arrays and objects.

On the other hand, when implementing high-level constructions such as HMAC
or CCM encryption that operate on variable-length inputs, we must pay the
cost of encoding and decoding data as ASCII strings. Despite this performance
penalty, even on mobile devices, DJCL achieves encryption and hashing rates
upwards of 150KB/s, which is sufficient for most applications.

To further exercise our cryptographic library, we built an implementation of
the upcoming W3C Web Cryptography API standard [15], which is currently
being implemented by various browsers and JavaScript libraries as an extension
to the window object. We implement this API as a set of non-defensive func-
tions that wrap DJCL. We compared the performance of our implementation
on benchmarks provided by Chrome and Microsoft; our code is as fast as both
native and JavaScript implementations provided by mainstream browsers.

4.3 JSON Serialization

Messaging applications in JavaScript widely use the JSON format, which is con-
sidered more compact and easier to use programmatically than XML. JSON
defines a JavaScript-like syntax for serializing scalar objects and arrays. For ex-
ample, the object {a:"s",b:[0,1]1} is written in JSON notation as the string
{rarinst, 1 [0,1137.

All modern browsers provide libraries for serializing and deserializing JSON
objects. The function JSON.stringify takes any JavaScript object and serializes
it as a string, typically by ignoring any functions it finds in the object’s structure.
Conversely, the function JSON.parse takes a string and attempts to reconstruct a
scalar JavaScript object from the string. DJS programs cannot use the browser’s
JSON library, since it may have been tampered by the adversary. So we build a
defensive JSON library (DJSON) to provide this functionality.

DJSON.stringify is conceptually a simple function; it takes an object, enumer-
ates its properties, and writes them out to a string. However, since the attacker

5 http://jsperf.org

http://jsperf.org

108 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

may tamper the Object and Array prototypes, neither the for. . .in loop nor new
APIs like Object.keys can be trusted to correctly enumerate properties. Conse-
quently, DJSON.stringify takes an additional parameter — an object “schema’”
that describes the type of the JSON object. For example, to serialize the JSON
example above, an application would call DJSON.stringify as follows:

1 DJSON.stringify({a:"s",b:[0,1]1}, // JSON object
{type:"object", // Schema object
props: [
{name:"a",value:"string"},
{name:"b",value:{
type: "array",
props: [{name:"0",value: "number"},
{name:"1",value: "number"}]1}}13})

0 N O Ul W N

Given such a schema, DJSON.stringify ensures that the given object has all
the fields and array indices declared in the schema before returning the serialized
string; if the object does not match the schema it returns an error.

Implementing DJSON.parse is a bit more challenging, since the function needs
to create a new object with an arbitrary number of properties. Creating an empty
object and adding properties to it would not work, since the attacker may have
set up malicious setter functions on the Object prototype. We define a defensive
DJSON.parse function that requires three parameters — the string to parse, the
schema for the expected JSON object, and a pre-allocated object that matches
this expected schema. DJSON.parse does not create a new object; instead, it fills
in this pre-allocated object. To return to our example, to parse the serialized
JSON string, the application would first create an object result and then call
DJSON.parse as follows:

1 var result = {a:"",b:[-1,-11}; // Pre-allocated JSON object
2 DJSON.parse(’{"a":"s","b":[0,1]1}’, // Serialized JSON string

3 {type:"object", // Schema object

4 props: [

5 {name:"a",value:"string"},

6 {name:"b",value:{

7 type:"array",

8 props: [{name:"0",value: "number"},

9 {name:"1",value: "number"}]1}}13},

10 result)

The schemas used for these two functions are closely related to the expected
object types of the JSON objects. Indeed, our typechecker processes these
schemas as type annotations and uses them to infer types for code that uses
these functions.

Using explicit schemas with fixed object and array lengths imposes an impor-
tant restriction; our JSON library only works with objects whose sizes are known
in advance to the programmer. We have implemented extensions of DJS that use
ML-style algebraic constructors (e.g. cons, nil) to allow extensible objects and
arrays. The resulting encoded objects are less efficient than object literals but
more flexible since they can represent dynamically-sized objects.

Defensive JavaScript 109

By combining our cryptographic library DJCL with DJSON, we implemented
a family of IETF standards collectively called Javascript Object Signing and
Encryption (JOSE) [21]. These standards include JSON Web Tokens (JWT),
which specifies authenticated JSON messages, and JSON Web Encryption, which
specifies encrypted JSON messages. Our defensive JOSE library interoperates
with other implementations of these specfications, and we use it to implement
various cryptographic messaging protocols, such as Secure RPC (see below).

4.4 Applications

We briefly describe four DJS applications that we built using our libraries. We
ran the DJS typechecker to verify their defensiveness. Furthermore, as we shall
see in the next subsection, we also verifed their cryptographic security against
both network and web attackers by translation to the applied pi calculus.

Secure RPC. Using the JOSE libraries, we programmed a variation of the se-
cure messaging program of Section 2 in DJS. The program consists of a core
typechecked API object that embeds a secret shared between the program and
a trusted server S.

The API provides two functions: makeRequest takes a string and returns a
serialized JWT object containing the argument and its HMAC; processResponse
takes a string, parses it as a JW'T object, verifies the HMAC and returns the
payload (or an error). A non-defensive function then wraps this API to imple-
ment a secure RPC: it calls makeRequest to create the request, sends this request
via XMLHttpRequest (or postMessage) to a recipient, waits for a response, calls
processResponse and returns the result.

The security goal of this RPC application is authentication and correlation
for the request and response. The goal relies on the secrecy of the HMAC key
and the correct use of the HMAC function. Defensiveness guarantees that the
key is not accidentally leaked, but the authentication protocol implemented by
the application may still fail to achieve its goals. For example, the application
may leak the key in its outgoing message or serialize the message incorrectly
before MACing. We will see how to analyze the cryptographic security of the
application using the protocol analyzer ProVerif [13].

Password Manager Bookmarklet. We implemented a version of the LastPass
password manager bookmarklet in DJS. The bookmarklet embeds a secret HMAC
key, and when it is clicked on a website W, it performs a secure RPC with the
LastPass website using this key to retrieve the currently logged in LastPass user’s
username and password for the website W and fill it in.

The security goal of the bookmarklet is to enable LastPass to authenticate
that the user clicked the bookmarklet on the hosting website W. In particular,
a malicious website W should not be able to steal the secret HMAC key or
impersonate another website S, even if the user clicks the bookmarklet at W.
At LastPass, the bookmarklet is authenticated by the secret key, whereas the
website W is authenticated by the Origin header that the browser sends along

110 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

with the XMLHttpRequest message. While many previous attacks have been found
on password manager bookmarklets [2,10], our DJS-based solution is the first
that can verifiably protect the bookmarklet and its secrets in this scenario.

Protecting Single Sign-On Tokens. We implemented a version of the Facebook
JavaScript library that uses a DJS component to protect the user’s Facebook
access token from other scripts on the page. The DJS component embeds the
access token and provides an API though which scripts on the page can access
an authorized subset of the user’s Facebook profile. The DJS script uses the
access token as a MAC key to avoid leaking it to the environment.

In this design, malicious scripts on the page can access (parts of) the user’s
Facebook profile as long as the page is open, but do not get direct (long-term,
offline) access to the access token, and they lose all access when the page is closed
and the DJS script stops executing. In particular, the malicious script can never
use the token to impersonate the user at another website.

An Encrypted Storage API. Our final DJS application implements an API for
encrypted cloud storage. User files are encrypted at the client (via DJCL) and
uploaded to a cloud server. The file encryption keys themselves are stored en-
crypted in local storage, using a master encryption key derived from a passphrase
that is known only to the user. The user enters the passphrase on a protected
login page (served from a distinct origin), and the derived key is subsequently
embedded into a DJS script on the main storage service website.

By using DJS, we isolate the application code that implements cryptography
from the rest of the page. Hence, an XSS attack on the main website cannot
steal the file encryption key or the master encryption key. However, it can still
read and modify user files as long as the page is open. As such, our proposed
DJS API is the first to protect long term secrets on encrypted cloud storage
websites from XSS attacks, unlike many previous designs [7].

4.5 Verifying Applications with ProVerif

Well-typed programs in DJS enjoy functional integrity and heap isolation, so
the environment can only interact with them through their exported scalar
(string -> string) APIs. Even if the environment is malicious, it cannot ac-
cess or interfere with the internal state of the program. This isolation guarantee
makes it possible to analyze a DJS program independently of its environment,
an immense advantage over traditional JavaScript.

DJS prevents some kinds of accidental leakage of secrets, but it cannot protect
a program that leaks secrets through its exported interface. For example, even
a well-typed DJS program may foolishly return a secret in the result of a public
function. Furthermore, even though the DJCL cryptographic library is defensive,
it cannot ensure that the application uses it correctly to achieve its security goals.

Designing application-layer cryptographic protocols is an error prone task
(e.g. see the attacks in [10]). We advocate the use of formal protocol analysis
tools that can verify that DJS applications meet their goals.

Defensive JavaScript 111

We define a translation from DJS programs to processes in the applied pi
calculus. The translation mimics previous formal translations to the applied
pi calculus from F# [11] and Java [6]. These previous works prove translation
soundness — every attack on the source program is present in its translation.
However, we do not prove any soundness result for our translation.

Appendix B provides a detailed listing of the applied pi calculus translation
for a simple DJS program that can send and receive authenticated messages.

Each DJS function is translated to a process following Milner’s famous “func-
tions as processes” encoding of the lambda calculus into the pi calculus [22].
The translated process waits for arguments on an input channel, computes the
function result and sends it back on an output channel.

The DJS programmer may selectively prefix any function name by _1ib. (thus
placing it in the _1ib object) to indicate that the code of the function should not
be translated; instead the function should be treated as a trusted primitive. For
example, we label all cryptographic primitives and encoding functions as trusted.
Their code is not verified; instead, calls to these functions are translated to calls
to symbolic constructors and destructors in the applied pi calculus.

The JavaScript heap and stack frames are modeled by a global private table
heap that is indexed by unique references (fresh pi calculus names). Each object,
array, function, and local variable corresponds to an entry in the table. A function
can read and write an entry as long as it knows its reference.

Programs may contain two kinds of security annotations that will be treated
specially in the translation. A function may log a security event by calling _1ib.
event. For example, _1ib.event (Send(a,b,x)) may indicate that a is going to use
a secret key to authenticate a message x to b. These are translated to events in the
applied pi calculus and are then used to specify authentication goals. A function
may also label a certain value as secret (_lib.secret(x)). This expression is
translated as the application of a private constructor, and is used to specify
secrecy goals for an application.

The translated applied pi calculus process is composed with the WebSpi li-
brary and analyzed for violations of its security goals using the cryptographic
protocol analyzer ProVerif. The WebSpi library models web browsers, web
servers, and enables a variety of well-known web and network attacks. To model
the malicious JavaScript environment, we give the attacker read and write ac-
cess to the global heap table, but only for the entries for which he knows the
references. The attacker cannot forge pointers. In addition, the attacker is given
control over all public channels and access to the function input and output
channels for the API exported by the DJS program. The attacker cannot di-
rectly access the processes corresponding to internal functions.

Table 1 reports the ProVerif verification time for a few DJS applications.
As depicted in Appendix B, ProVerif may find a counterexample to the security
goals, which probably indicates an attack on the source DJS program. If ProVerif
verifies the security goals, one gain some confidence in the application, but we
caution that there may be other attacks not captured by our WebSpi model.
Occasionally, ProVerif may not terminate, typically when the source program

112 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

uses loops or recursive functions. In this case, the programmer may need to edit
the source program or its translation to help ProVerif reach a conclusion.

5 Conclusions

We presented the design of DJS, a defensive subset of JavaScript that is par-
ticularly suited for programming web security components that may execute in
malicious environments. DJS is not meant for programming whole websites. It
does not allow access to any external libraries and imposes many language re-
strictions that may feel awkward to a typical JavaScript programmer, but are
necessary for security on malicious websites. We have shown that large libraries
such as DJCL and various applications can be programmed in DJS, at little cost
to performance but great gains in security. We showed how DJS applications can
be automatically verified for security using the cryptographic protocol analyzer
ProVerif. As future work, we plan to relax some of the restrictions of DJS by
relying on frozen and unforgeable objects in the environment, as well as by using
more expressive types to capture more safe programs. We also plan to prove a
formal soundness result for our translation from DJS to the applied pi calculus.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium,
pp. 335-348 (2008)

2. Adida, B., Barth, A., Jackson, C.: Rootkits for JavaScript environments. In:
WOOT (2009)

3. Akhawe, D., Barth, A., Lam, P., Mitchell, J., Song, D.: Towards a formal foundation
of web security. In: IEEE CSF 2010, pp. 290-304 (2010)

4. Akhawe, D., Saxena, P., Song, D.: Privilege separation in HTML5 applications. In:
USENIX Security (2012)

5. Arapinis, M., Bursuc, S., Ryan, M.: Privacy supporting cloud computing: Con-
fiChair, a case study. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 89-108. Springer, Heidelberg (2012)

6. Avalle, M., Pironti, A., Pozza, D., Sisto, R.: JavaSPI: A framework for security
protocol implementation. International Journal of Secure Software Engineering 2,
34-48 (2011)

7. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Keys to the cloud: For-
mal analysis and concrete attacks on encrypted web storage. In: Basin, D., Mitchell,
J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 126-146. Springer, Heidelberg (2013)

8. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF, pp. 247-262 (2012)

9. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from exten-
sion vulnerabilities. In: Network and Distributed System Security Symposium, NDSS
(2010)

10. Bhargavan, K., Delignat-Lavaud, A.: Web-based attacks on host-proof encrypted
storage. In: WOOT (2012)

11. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. In: CSFW, pp. 139-152 (2006)

12. Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Language-based defenses against
untrusted browser origins. In: 22nd USENIX Security Symposium (2013)

13.
14.

15.
16.

17.

18.

19.
20.

21.
22.
23.
24.

25.

26.

27.

28.

A

Defensive JavaScript 113

Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363-434 (2009)

Blanchet, B., Smyth, B.: ProVerif: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, http://www.proverif.inria.fr/manual.pdf

Dahl, D., Sleevi, R.: Web Cryptography API. W3C Working Draft (2013)

ECMA International: ECMAScript language specification. Stardard ECMA-262,
3rd edn. (1999)

Fett, D., Kiisters, R., Schmitz, G.: An Expressive Model for the Web Infrastruc-
ture: Definition and Application to the BrowserID SSO System. In: 35th TEEE
Symposium on Security and Privacy (S&P 2014). IEEE Computer Society (2014)
Fournet, C., Swamy, N., Chen, J., Dagand, P., Strub, P., Livshits, B.: Fully abstract
compilation to JavaScript. In: POPL 2013 (2013)

Hardt, D.: The OAuth 2.0 authorization framework. IETF RFC 6749 (2012)
Hodges, J., Jackson, C., Barth, A.: HTTP Strict Transport Security (HSTS). IETF
RFC 6797 (2012)

IETF: JavaScript Object Signing and Encryption, JOSE (2012),
http://tools.ietf.org/wg/jose/

Milner, R.: Functions as processes. In: Paterson, M. (ed.) ICALP 1990. LNCS,
vol. 443, pp. 167-180. Springer, Heidelberg (1990)

Stark, E., Hamburg, M., Boneh, D.: Symmetric cryptography in JavaScript. In:
ACSAC, pp. 373-381 (2009)

Sterne, B., Barth, A.: Content Security Policy 1.0. W3C Candidate Recommenda-
tion (2012)

Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.Y.,
Bierman, G.M.: Gradual typing embedded securely in javascript. In: ACM Sym-
posium on Principles of Programming Languages (POPL), pp. 425-438 (2014)
Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: A traffic-guided security study of commercially deployed single-sign-on
web services. In: IEEE S&P, pp. 365-379. IEEE Computer Society (2012)

Woo, T., Lam, S.: A semantic model for authentication protocols. In: IEEE Sym-
posium on Security and Privacy, pp. 178-194 (1993)

Zalewski, M.: Browser Security Handbook

Defensive HMAC-SHA-256 Code

To illustrate the DJS programming style as it is used in cryptographic libraries,
we present below the full code for the HMAC and SHA-256 functions imple-
mented in DJCL. The code shown here is accepted by the DJS typechecker and
hence does not rely on any external functions. To see the code for other defen-

sive

cryptographic functions and applications and to try out variations of these

programs against the DJS tpechecker, visit http://defesnsivejs.com.

/*
*
*

{

1
2
3
4 v
5
6
7

*
A hashing library to include with Defensive Applications

/

ar hashing = (function()

return {

http://www.proverif.inria.fr/manual.pdf
http://tools.ietf.org/wg/jose/

114 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

/** SHA-256 hash function.

9 * @param {string} msg message to hash, as a hex string
10 * Q@returns {string} hash, as an hex string.

11 * Qalias hashing.sha256

oo}

12 */

13 sha256: {

14 name: ’sha-256’,

15 identifier: ’608648016503040201°,

16 size: 32,

17 block: 64,

18

19 key: [0x428a2f98, 0x71374491, 0xb5cOfbcf, Oxe9bb5dbab,
20 0x3956¢25b, 0x59f111f1, 0x923f82a4, Oxablcbed5,
21 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
22 0x72bebd74, 0x80deblfe, 0x9bdcO6a7, Oxcl19bfl74,
23 0xe49b69cl, Oxefbed786, 0x0fc19dc6, 0x240calcc,
24 0x2de92c6f, 0x4a7484aa, 0xbcb0a9dc, 0x76f988da,
25 0x983e5152, 0xa831c66d, 0xb00327c8, Oxbf597fc7,
26 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
27 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
28 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
29 Oxa2bfe8al, 0xa8l1a664b, 0xc24b8b70, Oxc76c51a3,
30 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
31 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34bObcb5,
32 0x391c0cb3, Ox4edBaada, 0xb5b9ccadf, 0x682e6ff3,
33 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
34 0x90befffa, 0xa4506ceb, Oxbef9a3f7, 0xc67178f2],
35

36 hash: function(s)

37 {

38 var s = s + ’\x80’, len = s.length, blocks = len >> 6,
39 chunk = len & 63, res = ’’, p = 77,

40 i=0,3j=0,k=0,1=0,

41 H = [0x6a09e667, Oxbb67ae85, 0x3c6ef372, 0xab4ff53a,
42 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cdi9],
43 v = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

44

45 while(chunk++ != 56)

46 {

47 s+="\x00";

48 if (chunk == 64){ blocks++; chunk = 0; }

49 }

50

51 for (s+="\x00\x00\x00\x00", chunk=3, len=8+*(len-1);
52 chunk >= 0; chunk--)

53 s += encoding.b2a(len >> (8xchunk) &255);

54

55 for(i=0; i < s.length; i++)

56 {

57 j = (j<<8) + encoding.a2b(s[il);

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

}

/*%
*

*/

Defensive JavaScript 115

if ((i&3)==3){ wl(i>>2)&15] = j; j = 0; }
if ((1&63)==63) this._round(H,w);
¥

for(i=0; i < H.length; i++)
for(j=3; j >= 0; j--)
res += encoding.b2a(H[i] >> (8%j) & 255);

return res;

Fo
_round: function(H,w)

var a = H[0], b = H[1], ¢ = H[2], d = H[3], e = H[4],
f = H[5], g = H[6], h = H[7], t =0, u=0, v=0, tmp = 0;

for(t=0; t < 64; t++)
{
if(t < 16) tmp = w[t&15];
else
{
u = wl(t+1)&15]; v = w[(t+14)&15];
tmp = wlt&15] = ((u>>>7 ~ u>>>18 ~ u>>>3 ~ u<<25 ~ u<<i4) +
(v>>>17 = v>>>19 ~ v>>>10 ~ v<<15 ~ v<<13) +
wlt&15] + wl(t+9)&15]) | 0;
}

tmp = (tmp + h + (e>>>6 ~ e>>>11 ~ e>>>25 ~ e<<26 " e<<21 " e<<7)
+ (g " e & (£7g)) + this.key[t&63]);

h=g;, g=£f; f =e; e =d + tmp] 0 d=c; c =b; b= a;

a = (tmp + ((b&c) ~ (d&(b~c))) + (b>>>2 ~ b>>>13 ~ b>>>22 ~ b<<30
~ b<<19 " b<<10)) | 0;

}

H[O]=H[0]+al|0; H[1]=H[1]+b|0; H[2]=H[2]+c|0; H[3]=H[3]+d|0;
H[4]=H[4]+e|0; H[5]=H[5]+f|0; H[6]=H[6]+g|0; H[7]1=H[7]+h|O0;
}

>

The hash function to use for HMAC, hashing.sha256 by default
Q@alias hashing.hmac_hash

hmac_hash: sha256,

/**
*
*
*
*

*/

HMAC: Hash-based message authentication code

@param {string} key key of the authentication

@param {string} msg message to authenticate

@returns {string} authentication code, as an hex string.
Q@alias hashing.HMAC

116 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

107 HMAC: function(key, msg)

18 {

109 var key = key+’’, msg = msg+’’, i = 0, h = this.hmac_hash,
110 c = 0’ p =))’ inner = uu’ outer = uu;

111

112 if (key.length > h.block) key = h.hash(key);
113 while(key.length < h.block) key += "\x00";
114

115 for(i=0; i < key.length; i++)

116 {

117 c = encoding.a2b(key[i]);

118 inner += encoding.b2a(c ~ 0x36);

119 outer += encoding.b2a(c ~ 0x5C);

120 }

121

122 return encoding.astr2hstr(h.hash(outer + h.hash(inner + msg)));
123}

124 };

125 HDO;

B Verification Example

Source Program. We begin with the following DJS program that uses a cryp-
tographic hash function _1lib.hmac (as defined above) to authenticated messages
between two scripts that are running on the same malicious page and which
share a symmetric HMAC key.

Both scripts run the same core DJS program that embeds the key mac_key
and provides an API with three functions:

— mac takes a string message x, logs a security event Send(x), and returns the
HMAC of x using the key mac_key.

— verify takes a string message x and a string t and verifies that t is the
HMAC of x using mac_key. It then logs the event Accept (x,t,res) with the
boolean result of the verification and returns the boolean.

— guess is used to specify syntactic secrecy. It takes a string argument k and
logs the event Leaked(k,true) if k is the same as the secret key mac_key.

These core functions may be used by untrusted wrapper functions to create
messages that are then sent from one script to other via any communication
mechanism, such as window.postMessage. We assume that this external wrapper
code is under the control of the adversary, who may subvert it by tampering
with the window object. Hence, for verification, we assume that the attacker can
directly call our core API and state our goals using security events in this API.

The intuition for the security events is that whenever Accept(x,t,true) is
logged for a message x, that is the recipient program accepts x, it must be the
case that Send(x) has been logged before, that is the sender program must have
intended to send x. This is called a correspondence assertion [27] and is a common

Defensive JavaScript 117

way of formalizing authentication goals in cryptographic protocols. Conversely,
we expect that the event Leaked (k,true) is never logged, that is the HMAC key
remains unknown to the adversary.

These authentication and secrecy queries are embedded on the top of the
script using the _1ib.spec function, which tells the ProVerif translator to directly
embed its argument into the generated scripts. We run the ProVerif translator
on this simple DJS library and verify that the API satisfies these queries.

1 /* Declaring Events */

2 _1lib.spec("event Send(String)");

3 _lib.spec("event Accept (String,String,Boolean)");

4 _lib.spec("event, Leaked(String,Boolean)") ;

5

6 /* Sanity Check: Are the Events Reachable? */

7 _lib.spec("query x:String; event (Send(x))");

8 _lib.spec("query, x:String,t:String; event (Accept(x,t,bool_true(D))");

9

10 /* Authentication Query */

11 _lib.spec("query x:String,t:String; event (Accept(x,t,bool_true())) ==>,
event (Send (x))");

12

13 /* Secrecy Query */

14 _1ib.spec("query x:String; event (Leaked(x,bool_true()))");

15

16 x = (function()

17 {

18 var mac_key = _lib.secret("xxx");
19

20 var mac = function (x) {

21 _lib.event(_1ib.Send(x));

22 return _lib.hmac(x, mac_key);
23}

24

25 var verify = function (x,t) {

26 var res = _lib.hmac(x, mac_key) === t;
27 _lib.event(_lib.Accept(x,t,res));
28 return res 7 "yes" : "no";

29 }

30

31 var guess = function (k) {

32 var res = k == mac_key;

33 _lib.event(_lib.Leaked(k,res));
34 return res ? "yes" : "no";

35)

36

37 var _ = function(s)

38 o

39 var o = _1ib.DJSON_parse(s, {t: "", h: ""});
40 var h = o.h;
41

118 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

42 // oops = mac_key;

43 return (o.t == "" ? guess(h) :
44 (h == "" ? mac(o.t) :
45 verify(o.t, h)));
46}

47

48 return function(s){if (typeof s=="string") return _(s)};

91 0;

Generated Model. The ProVerif script generated by our model extraction tool
(DJS2PV) is presented below to illustrate the translation. The script uses the
typed applied pi calculus syntax described in [14]. It shows how the various DJS
objects and variables are stored in the heap table, how the functions are encoded
as processes, how the call to the _1ib.hmac function is turned into a function
call, and how all constant strings are extracted as top-level declarations.

The generated script relies on an external WebSpi library that defines all the
types (String, Boolean, MemLoc, Function), the cryptographic functions (hmac,
secret), and a table representing the JavaScript heap (heap). The WebSpi li-
brary encodes a rich attacker model that includes both web and network at-
tacks. To verify DJS, we extend WebSpi to allow the attacker direct access
to the JavaScript heap: the attacker can insert any object into the heap and
read any object for which he knows the table index (representing the heap
reference). More details on the original WebSpi library can be obtained from
http://prosecco.inria.fr/webspi. Other verification examples that rely on
WebSpi have appeared in [8,7].

1 free var_x:Memloc.

2

3 free str_1:String.

4 free str_2:String.

5 free str_3:String.

6 free str_4:String.

7 free str_5:8tring.

8

9 event Send(String).

10 event Accept(String,String,Boolean).

11 event Leaked(String,Boolean).

12 query x:String; event(Leaked(x,bool_true())).

13 query x:String; event(Send(x)).

14 query x:String,y:String; event(Accept(x,y,bool_true())).
15 query x:String,y:String; event(Accept(x,y,bool_true())) => event(Send(x))

16

17 process

18 (new fun_1:channel;

19 ('in(fun_1, (ret_1:channel));

20 new var_mac_key:Memloc;

21 insert heap(var_mac_key,mem_string(secret(str_1)));
22 new var_mac:Memloc;

Defensive JavaScript

23 new fun_2:channel;

24 (1in(fun_2, (ret_2:channel,arg_x:String));

25 new var_x:Memloc;

26 insert heap(var_x,mem_string(arg_x));

27 get heap(=var_x, mem_string(val_1)) in

28 event Send(val_1);

29 get heap(=var_x, mem_string(val_2)) in

30 get heap(=var_mac_key, mem_string(val_3)) in

31 out(ret_2,hmac(val_2,val_3));

32 0) |

33 insert heap(var_mac,

34 mem_function(function(fun_2)));

35 new var_verify:Memloc;

36 new fun_3:channel;

37 (!in(fun_3, (ret_3:channel,arg_x:String,arg_t:String));

38 new var_x:Memloc;

39 insert heap(var_x,mem_string(arg_x));

40 new var_t:Memloc;

41 insert heap(var_t,mem_string(arg_t));

42 new var_res:Memloc;

43 get heap(=var_x, mem_string(val_4)) in

44 get heap(=var_mac_key, mem_string(val_5)) in

45 get heap(=var_t, mem_string(val_6)) in

46 insert heap(var_res,mem_boolean(equal (mem_string(hmac(val_4,val_5)),
mem_string(val_6))));

47 get heap(=var_x, mem_string(val_7)) in

48 get heap(=var_t, mem_string(val_8)) in

49 get heap(=var_res, mem_boolean(val_9)) in

50 event Accept(val_7,val_8,val_9);

51 get heap(=var_res, mem_boolean(val_10)) in

52 let val_11=(if val_10=bool_true() then str_2 else str_3) in

53 out (ret_3,val_11);

54 0) |

55 insert heap(var_verify,

56 mem_function(function(fun_3)));

57 new var_guess:Memloc;

58 new fun_4:channel;

59 (!in(fun_4, (ret_4:channel,arg_k:String));

60 new var_k:Memloc;

61 insert heap(var_k,mem_string(arg_k));

62 new var_res:Memloc;

63 get heap(=var_k, mem_string(val_12)) in

64 get heap(=var_mac_key, mem_string(val_13)) in

65 insert heap(var_res,mem_boolean(equal (mem_string(val_12) ,mem_string(
val_13))));

66 get heap(=var_k, mem_string(val_14)) in

67 get heap(=var_res, mem_boolean(val_15)) in

68 event Leaked(val_14,val_15);

69 get heap(=var_res, mem_boolean(val_16)) in

70 let val_17=(if val_16=bool_true() then str_2 else str_3) in

=

119

120 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

71 out (ret_4,val_17);

72 0) |

73 insert heap(var_guess,

74 mem_function(function(fun_4)));

75 new var__:Memloc;

76 new fun_b5:channel;

77 ('in(fun_5, (ret_5:channel,arg_s:String));

78 new var_s:Memloc;

79 insert heap(var_s,mem_string(arg_s));

80 new var_o:Memloc;

81 get heap(=var_s, mem_string(val_18)) in

82 insert heap(var_o,mem_object (DJSON_parse(val_18,obj_add(obj_add(obj_empty
(), obj_prop(str_4, mem_string(string_empty))), obj_prop(str_5,
mem_string(string_empty))))));

83 new var_h:Memloc;

84 get heap(=var_o, mem_object(val_19)) in

85 insert heap(var_h,mem_string(obj_property_string(val_19,str_4)));

86 get heap(=var_o, mem_object(val_32)) in

87 get heap(=var_guess, mem_function(val_20)) in

88 get heap(=var_h, mem_string(val_21)) in

89 let function(fun_6)=val_20 in

90 new ret_6:channel;

91 out(fun_6, (ret_6,val_21));

92 in(ret_6, val_22:String);

93 get heap(=var_h, mem_string(val_30)) in

94 get heap(=var_mac, mem_function(val_23)) in

95 get heap(=var_o, mem_object(val_24)) in

96 let function(fun_7)=val_23 in

97 new ret_7:channel;

98 out (fun_7, (ret_7,obj_property_string(val_24,str_5)));

99 in(ret_7, val_25:String);

100 get heap(=var_verify, mem_function(val_26)) in

101 get heap(=var_o, mem_object(val_27)) in

102 get heap(=var_h, mem_string(val_28)) in

103 let function(fun_8)=val_26 in

104 new ret_8:channel;

105 out (fun_8, (ret_8,obj_property_string(val_27,str_5),val_28));

106 in(ret_8, val_29:String);let val_31=(if equal(mem_string(val_30),
mem_string(string_empty))=bool_true() then val_25 else val_29) in

107 let val_33=(if equal(mem_string(obj_property_string(val_32,str_5)),
mem_string(string_empty))=bool_true() then val_22 else val_31) in

108 out (ret_5,val_33);

109 0) |

110 insert heap(var__,

111 mem_function(function(fun_5)));

112 new fun_9:channel; (!in(fun_9, (ret_9:channel, arg_s:Memval));let
mem_string(s)=arg_s in (new var_s:Memloc;insert heap(var_s,arg_s);
get heap(=var__, mem_function(val_34)) in

113 get heap(=var_s, mem_string(val_35)) in

114 let function(fun_10)=val_34 in

Defensive JavaScript 121

115 new ret_10:channel;

116 out (fun_10, (ret_10,val_35));

117 in(ret_10, val_36:String);

118 out (ret_9,val_36);

119 0) else out(ret_9, undefined()))|

120 out (ret_1,function(fun_9));

121 0) | let function(fun_11)=function(fun_1) in
122 new ret_11:channel;

123 out (fun_11, (ret_11));

124 in(ret_11, val_37:Function);

125 insert heap(var_x, mem_function(val_37));
126 0) |

127 attackerHeap ()

Example Attack. If line 42 is uncommented in the source DJS program (caus-
ing the key to be accidentally written to a global variable oops, ProVerif is able to
show that the Leaked event is triggered, and produces the following trace. (Note:
this bug is also caught by the DJS typechecker as a defensiveness violation.)

1 new fun_8 creating fun_398886 at {1}

2 new ret_260 creating ret_398877 at {419}

3 out (fun_398886, ret_398877) at {420} received at {3} in copy a_398865

4 new var_mac_key creating var_mac_key_398884 at {4} in copy a_398865

5new k_11 creating k_398878 at {6} in copy a_398865

6 insert heap(var_mac_key_398884,mem_string(k_398878)) at {7} in copy
a_398865

7 new var_mac creating var_mac_399613 at {8} in copy a_398865

8 new fun_12 creating fun_399614 at {9} in copy a_398865

insert heap(var_mac_399613,mem_function(function(fun_399614))) at {19} in
copy a_398865

10 new var_verify creating var_verify_399615 at {20} in copy a_398865

11 new fun_18 creating fun_399616 at {21} in copy a_398865

12 insert heap(var_verify_399615,mem_function(function(fun_399616))) at {43}

in copy a_398865

13 new var_guess creating var_guess_398890 at {44} in copy a_398865

14 new fun_31 creating fun_398879 at {45} in copy a_398865

15 insert heap(var_guess_398890,mem_function(function(fun_398879))) at {63}
in copy a_398865

16 new var__ creating var___398897 at {64} in copy a_398865

17 new fun_41 creating fun_398880 at {65} in copy a_398865

18 insert heap(var___398897,mem_function(function(fun_398880))) at {402} in
copy a_398865

19 new fun_249 creating fun_398892 at {403} in copy a_398865

20 out (ret_398877, function(fun_398892)) at {417} in copy a_398865 received
at {421}

21 insert heap(var_x,mem_function(function(fun_398892))) at {422}

22 in(pub, var_x) at {424} in copy a_398875

23 get heap(var_x,mem_function(function(fun_398892))) at {425} in copy
a_398875

24 out (pub, mem_function(function(fun_398892))) at {426} in copy a_398875

©

—

122 K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis

[~
(o2

in(fun_398892, (a_398872,mem_string(DJSON_stringify(a_398871)))) at {405}
in copy a_398865, a_398873
26 new var_s_253 creating var_s_398896 at {407} in copy a_398865, a_398873
27 insert heap(var_s_398896,mem_string(DJSON_stringify(a_398871))) at {408}
in copy a_398865, a_398873
28 get heap(var___398897 ,mem_function(function(fun_398880))) at {409} in
copy a_398865, a_398873
29 get heap(var_s_398896 ,mem_string (DJSON_stringify(a_398871))) at {410} in
copy a_398865, a_398873
30 new ret_257 creating ret_398893 at {412} in copy a_398865, a_398873
31 out (fun_398880, (ret_398893,DJSON_stringify(a_398871))) at {413} in copy
a_398865, a_398873 received at {67} in copy a_398865, a_398874
32 new var_s creating var_s_398895 at {68} in copy a_398865, a_398874
33 insert heap(var_s_398895,mem_string(DJSON_stringify(a_398871))) at {69}
in copy a_398865, a_398874
34 new var_o creating var_o_398894 at {70} in copy a_398865, a_398874
35 get heap(var_s_398895,mem_string(DJSON_stringify(a_398871))) at {71} in
copy a_398865, a_398874
36 insert heap(var_o_398894,mem_object (DJSON_parse (DJSON_stringify(a_398871)
,obj_add(obj_add(obj_empty,obj_prop(str_4,mem_string(string_empty)))
,obj_prop(str_5,mem_string(string_empty)))))) at {72} in copy
a_398865, a_398874
37 new var_h creating var_h_400490 at {73} in copy a_398865, a_398874
38 get heap(var_o_398894,mem_object(a_398871)) at {74} in copy a_398865,
a_398874
39 insert heap(var_h_400490,mem_string(undefined_string)) at {240} in copy
a_398865, a_398874
40 get heap(var_mac_key_398884,mem_string(k_398878)) at {241} in copy
a_398865, a_398874
insert heap(var_oops,mem_string(k_398878)) at {242} in copy a_398865,
a_398874
42 in(pub, var_oops) at {424} in copy a_398876
43 get heap(var_oops,mem_string(k_398878)) at {425} in copy a_398876
44 out (pub, mem_string(k_398878)) at {426} in copy a_398876
45 in(fun_398892, (a_398867,mem_string(DJSON_stringify(obj_add(a_398866,
obj_prop(str_4,mem_string(k_398878))))))) at {405} in copy a_398865,
a_398868
46 new var_s_253 creating var_s_398891 at {407} in copy a_398865, a_398868
47 insert heap(var_s_398891,mem_string(DJSON_stringify(obj_add(a_398866,
obj_prop(str_4,mem_string(k_398878)))))) at {408} in copy a_398865,
a_398868
48 get heap(var___398897 ,mem_function(function(fun_398880))) at {409} in
copy a_398865, a_398868
49 get heap(var_s_398891,mem_string(DJSON_stringify(obj_add(a_398866,
obj_prop(str_4,mem_string(k_398878)))))) at {410} in copy a_398865,
a_398868
50 new ret_257 creating ret_398881 at {412} in copy a_398865, a_398868
51 out (fun_398880, (ret_398881,DJSON_stringify(obj_add(a_398866,0bj_prop(
str_4,mem_string(k_398878)))))) at {413} in copy a_398865, a_398868
received at {67} in copy a_398865, a_398869

4

—

Defensive JavaScript

52 new var_s creating var_s_398889 at {68} in copy a_398865, a_398869

53 insert heap(var_s_398889,mem_string(DJSON_stringify(obj_add(a_398866,
obj_prop(str_4,mem_string(k_398878)))))) at {69} in copy a_398865,
a_398869

54 new var_o creating var_o_398888 at {70} in copy a_398865, a_398869

55 get heap(var_s_398889,mem_string (DJSON_stringify(obj_add(a_398866,
obj_prop(str_4,mem_string(k_398878)))))) at {71} in copy a_398865,
a_398869

56 insert heap(var_o_398888,mem_object (DJSON_parse (DJSON_stringify(obj_add(
a_398866,0bj_prop(str_4,mem_string(k_398878)))),obj_add(obj_add(
obj_empty,obj_prop(str_4,mem_string(string_empty))),obj_prop(str_5,
mem_string(string_empty)))))) at {72} in copy a_398865, a_398869

57 new var_h creating var_h_398887 at {73} in copy a_398865, a_398869

58 get heap(var_o_398888,mem_object (obj_add(a_398866,0bj_prop(str_4,
mem_string(k_398878))))) at {74} in copy a_398865, a_398869

59 insert heap(var_h_398887,mem_string(k_398878)) at {78} in copy a_398865,
a_398869

60 get heap(var_mac_key_398884,mem_string(k_398878)) at {79} in copy
a_398865, a_398869

61 insert heap(var_oops,mem_string(k_398878)) at {80} in copy a_398865,
a_398869

62 get heap(var_o_398888,mem_object (obj_add(a_398866,0bj_prop(str_4,
mem_string(k_398878))))) at {81} in copy a_398865, a_398869

63 get heap(var_guess_398890,mem_function(function(fun_398879))) at {82} in
copy a_398865, a_398869

64 get heap(var_h_398887,mem_string(k_398878)) at {83} in copy a_398865,
a_398869

65 new ret_b2 creating ret_398882 at {85} in copy a_398865, a_398869

66 out (fun_398879, (ret_398882,k_398878)) at {86} in copy a_398865, a_398869
received at {47} in copy a_398865, a_398870

67 new var_k creating var_k_398885 at {48} in copy a_398865, a_398870

68 insert heap(var_k_398885,mem_string(k_398878)) at {49} in copy a_398865,
a_398870

69 new var_res_33 creating var_res_398883 at {50} in copy a_398865, a_398870

70 get heap(var_k_398885,mem_string(k_398878)) at {51} in copy a_398865,
a_398870

71 get heap(var_mac_key_398884,mem_string(k_398878)) at {52} in copy
a_398865, a_398870

72 insert heap(var_res_398883,mem_boolean(equal (mem_string(k_398878),
mem_string(k_398878)))) at {53} in copy a_398865, a_398870

73 get heap(var_k_398885,mem_string(k_398878)) at {54} in copy a_398865,

a_398870

74 get heap(var_res_398883,mem_boolean(bool_true)) at {55} in copy a_398865,
a_398870

75 event (Leaked (k_398878,bool_true)) at {56} in copy a_398865, a_398870

76 (*

77 The event Leaked(k_398878,bool_true) is executed.

78 A trace has been found.

79 RESULT not event(Leaked(x_338058,bool_true)) is false.
80 *)

123

	Defensive JavaScript
Building and Verifying Secure Web Components

	1
Introduction
	1.1
Encrypted Cloud Storage Websites
	1.2
Password Manager Bookmarklets and Browser Extensions
	1.3
Single Sign-On and Social Sharing Buttons
	1.4
Towards Verifiably Secure Web Components

	2
Secure Messaging in an Untrusted Environment
	2.1
Secure Delivery of the Secret Key
	2.2
Calling External Functions
	2.3
Implicit Calls to External Functions
	2.4
Defensive Programming Idioms

	3
Defensive JavaScript
	3.1
Syntax
	3.2
Typing

	4
Writing Defensive Cryptographic Applications
	4.1
Encoding and Decoding Strings
	4.2
DJCL: Defensive JavaScript Crypto Library
	4.3
JSON Serialization
	4.4
Applications
	4.5
Verifying Applications with ProVerif

	5
Conclusions
	References
	A
Defensive HMAC-SHA-256 Code
	B
Verification Example

