
2015 Concurrency: model-based design
1

©Magee/Kramer 2nd Edition

Chapter 8

Model-Based Design

2015 Concurrency: model-based design
2

©Magee/Kramer 2nd Edition

Design

Concepts: design process:
requirements to models to implementations

Models: check properties of interest:

 - safety on the appropriate (sub)system
 - progress on the overall system

Practice: model interpretation - to infer actual system behavior
threads and monitors

Aim: rigorous design process.

2015 Concurrency: model-based design
3

©Magee/Kramer 2nd Edition

♦  goals of the system
♦  scenarios (Use Case models)

♦  properties of interest

8.1 from requirements to models

Requirements

Model

♦  identify the main events, actions, and interactions

♦  identify and define the main processes

♦  identify and define the properties of interest

♦  structure the processes into an architecture

♦  check traces of interest

♦  check properties of interest

Any appropriate
design approach

can be used.

2015 Concurrency: model-based design
4

©Magee/Kramer 2nd Edition

a Cruise Control System - requirements

When the car ignition
is switched on and the
on button is pressed,
the current speed is
recorded and the
system is enabled: it
maintains the speed of
the car at the recorded
setting.

Pressing the brake,
accelerator or off
button disables the
system. Pressing
resume or on re-
enables the system.buttons

2015 Concurrency: model-based design
5

©Magee/Kramer 2nd Edition

a Cruise Control System - hardware

Wheel revolution sensor generates interrupts to enable the car speed to be
calculated.

Parallel Interface Adapter (PIA) is polled every 100msec. It records the actions
of the sensors: •  buttons (on, off, resume)

•  brake (pressed)

•  accelerator (pressed)

•  engine (on, off).

buttons

engine

accelerator

brake
PIA

polled

wheel interrupt

CPU

throttleD/A

Output: The cruise control system controls the car speed by setting the
throttle via the digital-to-analogue converter.

2015 Concurrency: model-based design
6

©Magee/Kramer 2nd Edition

model - outline design

♦ outline processes and interactions.

Input Speed monitors
the speed when the
engine is on, and provides
the current speed
readings to speed control.

Sensor Scan monitors
the buttons, brake,
accelerator and engine
events.

Cruise Controller triggers
clear speed and record speed,
and enables or disables the
speed control.

Speed Control clears and
records the speed, and sets
the throttle accordingly when
enabled.

Throttle
sets the
actual
throttle.

Sensors

Prompts Engine

speed
setThrottle

2015 Concurrency: model-based design
7

©Magee/Kramer 2nd Edition

model -design

♦  Main events, actions and interactions.
 on, off, resume, brake, accelerator
 engine on, engine off,
 speed, setThrottle
 clearSpeed,recordSpeed,
 enableControl,disableControl

♦  Identify main processes.

 Sensor Scan, Input Speed,
 Cruise Controller, Speed Control and
 Throttle

♦  Identify main properties.

 safety - disabled when off, brake or accelerator pressed.
♦ Define and structure each process.

Sensors

Prompts

2015 Concurrency: model-based design
8

©Magee/Kramer 2nd Edition

model - structure, actions and interactions

set Sensors = {engineOn,engineOff,on,off,
 resume,brake,accelerator}
set Engine = {engineOn,engineOff}
set Prompts = {clearSpeed,recordSpeed,
 enableControl,disableControl}

SENSOR
SCAN

CRUISE
CONTROLLER

Sensors

INPUT
SPEED SPEED

CONTROL
set

Throttle
speed

Engine Prompts

CONTROL CRUISE
CONTROL
SYSTEM

THROTTLE

The
CONTROL
system is
structured as
two
processes.

The main
actions and
interactions
are as shown.

2015 Concurrency: model-based design
9

©Magee/Kramer 2nd Edition

model elaboration - process definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).
 // monitor speed when engine on

INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED
 |engineOff -> INPUTSPEED
).

 // zoom when throttle set
THROTTLE =(setThrottle -> zoom -> THROTTLE).

 // perform speed control when enabled
SPEEDCONTROL = DISABLED,
DISABLED =({speed,clearSpeed,recordSpeed}->DISABLED
 | enableControl -> ENABLED
),
ENABLED = (speed -> setThrottle -> ENABLED
 |{recordSpeed,enableControl} -> ENABLED
 | disableControl -> DISABLED
).

2015 Concurrency: model-based design
10

©Magee/Kramer 2nd Edition

model elaboration - process definitions

set DisableActions = {off,brake,accelerator}
 // enable speed control when cruising, disable when a disable action occurs

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE
 |DisableActions -> INACTIVE),
ACTIVE =(engineOff -> INACTIVE
 |on->recordSpeed->enableControl->CRUISING
 |DisableActions -> ACTIVE),
CRUISING =(engineOff -> INACTIVE
 |DisableActions->disableControl->STANDBY
 |on->recordSpeed->enableControl->CRUISING),
STANDBY =(engineOff -> INACTIVE
 |resume -> enableControl -> CRUISING
 |on->recordSpeed->enableControl->CRUISING
 |DisableActions -> STANDBY
).

2015 Concurrency: model-based design
11

©Magee/Kramer 2nd Edition

model - CONTROL subsystem

||CONTROL =(CRUISECONTROLLER
 ||SPEEDCONTROL
).

- Is control enabled after
the engine is switched on
and the on button is
pressed?
- Is control disabled when
the brake is then pressed?
- Is control re-enabled
when resume is then
pressed?

Animate to check particular
traces:

•  Safety: Is the control
disabled when off, brake
or accelerator is
pressed?
•  Progress: Can every
action eventually be selected?

However, we need analysis to
check exhaustively :

2015 Concurrency: model-based design
12

©Magee/Kramer 2nd Edition

model - Safety properties

Safety properties should be composed with the appropriate
system or subsystem to which the property refers. In order
that the property can check the actions in its alphabet, these
actions must not be hidden in the system.

Safety checks are compositional. If there is no violation at a
subsystem level, then there cannot be a violation when the
subsystem is composed with other subsystems.

This is because, if the ERROR state of a particular safety property
is unreachable in the LTS of the subsystem, it remains unreachable
in any subsequent parallel composition which includes the
subsystem. Hence...

2015 Concurrency: model-based design
13

©Magee/Kramer 2nd Edition

model - Safety properties

Is CRUISESAFETY violated?

||CONTROL =(CRUISECONTROLLER
 ||SPEEDCONTROL
 ||CRUISESAFETY
).

property CRUISESAFETY =
 ({DisableActions,disableControl} -> CRUISESAFETY
 |{on,resume} -> SAFETYCHECK
),
SAFETYCHECK =
 ({on,resume} -> SAFETYCHECK
 |DisableActions -> SAFETYACTION
 |disableControl -> CRUISESAFETY
),
SAFETYACTION =(disableControl->CRUISESAFETY).

LTS?

2015 Concurrency: model-based design
14

©Magee/Kramer 2nd Edition

model - Safety properties

Safety analysis using LTSA produces the following violation:

Trace to property violation in CRUISESAFETY:

 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 off
 off

Strange circumstances!

If the system is enabled by switching
the engine on and pressing the on
button, and then the engine is switched
off, it appears that the control system is
not disabled.

2015 Concurrency: model-based design
15

©Magee/Kramer 2nd Edition

model - Safety properties

 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 engineOn
 speed
 setThrottle
 speed
 setThrottle
 …

The car will accelerate and
zoom off when the engine is
switched on again!

What if the engine is switched on again?
We can investigate further using animation …

… using LTS? Action hiding and
minimization can help to reduce the
size of an LTS diagram and make it
easier to interpret …

2015 Concurrency: model-based design
16

©Magee/Kramer 2nd Edition

Model LTS for CONTROLMINIMIZED

engineOn

off
brake
accelerator
speed

off
brake
acceleratorengineOff

on

speed

off
brake

accelerator

engineOff

on
speed

engineOn

off
brake
accelerator
speed

speed off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3 4 5

minimal
||CONTROLMINIMIZED =
 (CRUISECONTROLLER
 ||SPEEDCONTROL
) @ {Sensors,speed}.

… using progress?

2015 Concurrency: model-based design
17

©Magee/Kramer 2nd Edition

model - Progress properties

Progress violation for actions:
{accelerator, brake, clearSpeed, disableControl,
enableControl, engineOff, engineOn, off, on,
recordSpeed, resume}
Trace to terminal set of states:

 engineOn
 clearSpeed
 on
 recordSpeed
 enableControl
 engineOff
 engineOn

Cycle in terminal set:
 speed
 setThrottle

Actions in terminal set:
 {setThrottle, speed}

Check the model for
progress properties with
no safety property and no
hidden actions.

2015 Concurrency: model-based design
18

©Magee/Kramer 2nd Edition

model - revised cruise controller

Modify CRUISECONTROLLER so that control is disabled when the engine is
switched off:
…
CRUISING =(engineOff -> disableControl -> INACTIVE
 |DisableActions -> disableControl -> STANDBY
 |on->recordSpeed->enableControl->CRUISING
),
…

Modify the safety property:

property IMPROVEDSAFETY =
 {DisableActions,disableControl,engineOff} -> IMPROVEDSAFETY
 |{on,resume} -> SAFETYCHECK
),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK

 |{DisableActions,engineOff} -> SAFETYACTION
 |disableControl -> IMPROVEDSAFETY
),

SAFETYACTION =(disableControl -> IMPROVEDSAFETY). OK now?

2015 Concurrency: model-based design
19

©Magee/Kramer 2nd Edition

revised CONTROLMINIMIZED

engineOn

off
brake
accelerator
speed

off
brake
accelerator

engineOff

on

speed

off
brake

accelerator

engineOff

on
speed

off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3

No deadlocks/errors

2015 Concurrency: model-based design
20

©Magee/Kramer 2nd Edition

model analysis

||CONTROL =
 (CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY
)@ {Sensors,speed,setThrottle}.

||CRUISECONTROLSYSTEM =
 (CONTROL||SENSORSCAN||INPUTSPEED||THROTTLE).

We can now proceed to compose the whole system:

Deadlock?
Safety?

No deadlocks/errors

Progress?

2015 Concurrency: model-based design
21

©Magee/Kramer 2nd Edition

model - Progress properties

Progress checks should be conducted on the complete target
system after satisfactory completion of the safety checks.

Progress checks are not compositional. Even if there is no violation
at a subsystem level, there may still be a violation when the
subsystem is composed with other subsystems.

This is because an action in the subsystem may satisfy progress yet
be unreachable when the subsystem is composed with other
subsystems which constrain its behaviour. Hence...

No progress
violations detected. Progress?

2015 Concurrency: model-based design
22

©Magee/Kramer 2nd Edition

model - system sensitivities

||SPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:
 {accelerator, brake, engineOff, engineOn, off,

on, resume, setThrottle, zoom}
Trace to terminal set of states:

 engineOn
Cycle in terminal set:

 speed
Actions in terminal set:

 speed

The system may be
sensitive to the priority
of the action speed.

What about progress under adverse conditions? Check
for system sensitivities.

2015 Concurrency: model-based design
23

©Magee/Kramer 2nd Edition

model interpretation

Models can be used to indicate system sensitivities.

 If it is possible that erroneous situations detected in the model may
occur in the implemented system, then the model should be revised
to find a design which ensures that those violations are avoided.

However, if it is considered that the real system will not exhibit this
behavior, then no further model revisions are necessary.

Model interpretation and correspondence to the implementation are
important in determining the relevance and adequacy of the model
design and its analysis.

2015 Concurrency: model-based design
24

©Magee/Kramer 2nd Edition

The central role of design architecture

Design
architecture
describes the
gross
organization and
global structure
of the system in
terms of its
constituent
components.

We consider that the models for analysis and the
implementation should be considered as elaborated
views of this basic design structure.

2015 Concurrency: model-based design
25

©Magee/Kramer 2nd Edition

8.2 from models to implementations

Model

Java

♦  identify the main active entities

- to be implemented as threads

♦  identify the main (shared) passive entities

- to be implemented as monitors

♦  identify the interactive display environment

- to be implemented as associated classes

♦  structure the classes as a class diagram

2015 Concurrency: model-based design
26

©Magee/Kramer 2nd Edition

cruise control system - class diagram

SpeedControl
interacts with the
car simulation via
interface
CarSpeed.

enableControl()
disableControl()
recordSpeed()
clearSpeed()

Applet

CruiseControl

Controller

brake()
accelerator()
engineOff()
engineOn()
on()
off()
resume()

SpeedControl

CarSimulator

CarSpeed
setThrottle()
getSpeed()

Runnable

CruiseDisplay

car

control

sc

disp

disp

cs

CRUISECONTROLLER SPEEDCONTROL

2015 Concurrency: model-based design
27

©Magee/Kramer 2nd Edition

cruise control system - class Controller

class Controller {
 final static int INACTIVE = 0; // cruise controller states
 final static int ACTIVE = 1;
 final static int CRUISING = 2;
 final static int STANDBY = 3;
 private int controlState = INACTIVE; //initial state
 private SpeedControl sc;

 Controller(CarSpeed cs, CruiseDisplay disp)
 {sc=new SpeedControl(cs,disp);}

 synchronized void brake(){
 if (controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY; }
 }

 synchronized void accelerator(){
 if (controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY; }
 }
 synchronized void engineOff(){
 if(controlState!=INACTIVE) {
 if (controlState==CRUISING) sc.disableControl();
 controlState=INACTIVE;
 }
 }

Controller
is a passive
entity - it
reacts to
events. Hence
we implement
it as a
monitor

2015 Concurrency: model-based design
28

©Magee/Kramer 2nd Edition

cruise control system - class Controller

 synchronized void engineOn(){
 if(controlState==INACTIVE)
 {sc.clearSpeed(); controlState=ACTIVE;}
 }

 synchronized void on(){
 if(controlState!=INACTIVE){
 sc.recordSpeed(); sc.enableControl();
 controlState=CRUISING;
 }
 }

 synchronized void off(){
 if(controlState==CRUISING)
 {sc.disableControl(); controlState=STANDBY;}
 }

 synchronized void resume(){
 if(controlState==STANDBY)
 {sc.enableControl(); controlState=CRUISING;}
 }
}

This is a direct
translation
from the
model.

2015 Concurrency: model-based design
29

©Magee/Kramer 2nd Edition

cruise control system - class SpeedControl
class SpeedControl implements Runnable {
 final static int DISABLED = 0; //speed control states
 final static int ENABLED = 1;
 private int state = DISABLED; //initial state
 private int setSpeed = 0; //target speed
 private Thread speedController;
 private CarSpeed cs; //interface to control speed
 private CruiseDisplay disp;

 SpeedControl(CarSpeed cs, CruiseDisplay disp){
 this.cs=cs; this.disp=disp;
 disp.disable(); disp.record(0);
 }

 synchronized void recordSpeed(){
 setSpeed=cs.getSpeed(); disp.record(setSpeed);
 }

 synchronized void clearSpeed(){
 if (state==DISABLED) {setSpeed=0;disp.record(setSpeed);}
 }

 synchronized void enableControl(){
 if (state==DISABLED) {
 disp.enable(); speedController= new Thread(this);
 speedController.start(); state=ENABLED;
 }
 }

SpeedControl
is an active entity
- when enabled, a
new thread is
created which
periodically
obtains car speed
and sets the
throttle.

2015 Concurrency: model-based design
30

©Magee/Kramer 2nd Edition

cruise control system - class SpeedControl

 synchronized void disableControl(){
 if (state==ENABLED) {disp.disable(); state=DISABLED;}
 }

 public void run() { // the speed controller thread
 try {
 while (state==ENABLED) {

 double error = (float)(setSpeed-cs.getSpeed())/6.0;
 double steady = (double)setSpeed/12.0;
 cs.setThrottle(steady+error);//simplified feed back control
 wait(500);

 }
 } catch (InterruptedException e) {}
 speedController=null;
 }

SpeedControl is an example of a class that
combines both synchronized access methods
(to update local variables) and a thread.

2015 Concurrency: model-based design
31

©Magee/Kramer 2nd Edition

Summary

! Concepts
"  design process:

from requirements to models to implementations
"  design architecture

! Models
"  check properties of interest

safety: compose safety properties at appropriate (sub)system

progress: apply progress check on the final target system model

! Practice
"  model interpretation - to infer actual system behavior
"  threads and monitors

Aim: rigorous design process.

2015 Concurrency: model-based design
32

©Magee/Kramer 2nd Edition

Course Outline

2.  Processes and Threads
3.  Concurrent Execution
4.  Shared Objects & Interference
5.  Monitors & Condition Synchronization
6.  Deadlock
7.  Safety and Liveness Properties
8.  Model-based Design

9.  Dynamic systems

10.  Message Passing

11.  Concurrent Software Architectures

Concepts

Models

Practice

12.  Timed Systems

13.  Program Verification

14.  Logical Properties

The main basic

Advanced topics …

