
2015 Concurrency: shared objects & mutual exclusion
1

©Magee/Kramer 2nd Edition

Chapter 4

Shared Objects &
Mutual Exclusion

2015 Concurrency: shared objects & mutual exclusion
2

©Magee/Kramer 2nd Edition

Shared Objects & Mutual Exclusion

Concepts: process interference.
 mutual exclusion and locks.

Models: model checking for interference
modelling mutual exclusion

Practice: thread interference in shared Java objects
mutual exclusion in Java
(synchronized objects/methods).

2015 Concurrency: shared objects & mutual exclusion
3

©Magee/Kramer 2nd Edition

A Concert Hall Booking System

A central computer connected to remote terminals via communication links
is used to automate seat reservations for a concert hall.

To book a seat, a client chooses a free seat and the clerk enters the number
of the chosen seat at the terminal and issues a ticket, if it is free.

A system is required which avoids double bookings of the same seat whilst
allowing clients free choice of the available seats.

Construct an abstract model of the system and demonstrate that your model does
not permit double bookings.

2015 Concurrency: shared objects & mutual exclusion
4

©Magee/Kramer 2nd Edition

Concert Hall Booking System

const False = 0
const True = 1
range Bool = False..True

SEAT = SEAT[False],
SEAT[reserved:Bool]
 = (when (!reserved) reserve -> SEAT[True]
 | query[reserved] -> SEAT[reserved]
 | when (reserved) reserve -> ERROR

 //error of reserved twice
).

range Seats = 1..2
||SEATS = (seat[Seats]:SEAT).

Like STOP, ERROR
is a predefined FSP
local process (state),
numbered -1 in the
equivalent LTS.

2015 Concurrency: shared objects & mutual exclusion
5

©Magee/Kramer 2nd Edition

Concert Hall Booking System

TERMINAL = (choose[s:Seats]
 -> seat[s].query[reserved:Bool]
 -> if (!reserved) then
 (seat[s].reserve -> TERMINAL)
 else
 TERMINAL
).

set Terminals = {a,b}

||CONCERT = (Terminals:TERMINAL || Terminals::SEATS).

 Does this system allow double booking of a seat?

2015 Concurrency: shared objects & mutual exclusion
6

©Magee/Kramer 2nd Edition

Concert Hall Booking System – no interference?

LOCK = (acquire -> release -> LOCK).
 //lock for the booking system

TERMINAL = (choose[s:Seats] -> acquire
 -> seat[s].query[reserved:Bool]
 -> if (!reserved) then
 (seat[s].reserve -> release-> TERMINAL)
 else
 (release -> TERMINAL)
).

set Terminals = {a,b}

||CONCERT = (Terminals:TERMINAL || Terminals::SEATS

 || Terminals::LOCK).

 Would locking at the seat level permit more concurrency?

2015 Concurrency: shared objects & mutual exclusion
7

©Magee/Kramer 2nd Edition

4.1 Interference

Garden

West
Turnstile

East
Turnstile

people

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the garden
at any time.

The concurrent program consists of two concurrent threads and a
shared counter object.

Ornamental garden problem:

2015 Concurrency: shared objects & mutual exclusion
8

©Magee/Kramer 2nd Edition

ornamental garden Program - class diagram

The Turnstile thread simulates the periodic arrival of a visitor to
the garden every second by sleeping for a second and then invoking
the increment() method of the counter object.

setvalue()
NumberCanvas

Applet

init()
go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,
counterD

2015 Concurrency: shared objects & mutual exclusion
9

©Magee/Kramer 2nd Edition

ornamental garden program

private void go() {
 counter = new Counter(counterD);
 west = new Turnstile(westD,counter);
 east = new Turnstile(eastD,counter);
 west.start();
 east.start();
}

The Counter object and Turnstile threads are created by the
go() method of the Garden applet:

Note that counterD, westD and eastD are objects of
NumberCanvas used in chapter 2.

2015 Concurrency: shared objects & mutual exclusion
10

©Magee/Kramer 2nd Edition

Turnstile class

class Turnstile extends Thread {
 NumberCanvas display;
 Counter people;

 Turnstile(NumberCanvas n,Counter c)
 { display = n; people = c; }

 public void run() {
 try{
 display.setvalue(0);
 for (int i=1;i<=Garden.MAX;i++){
 Thread.sleep(500); //0.5 second between arrivals
 display.setvalue(i);
 people.increment();
 }
 } catch (InterruptedException e) {}
 }
}

The run()
method exits
and the thread
terminates after
Garden.MAX
visitors have
entered.

2015 Concurrency: shared objects & mutual exclusion
11

©Magee/Kramer 2nd Edition

Counter class

class Counter {
 int value=0;
 NumberCanvas display;

 Counter(NumberCanvas n) {
 display=n;
 display.setvalue(value);
 }

 void increment() {
 int temp = value; //read value
 Simulate.HWinterrupt();
 value=temp+1; //write value
 display.setvalue(value);
 }
}

Hardware interrupts can occur
at arbitrary times.

The counter simulates a
hardware interrupt during an
increment(), between
reading and writing to the
shared counter value.
Interrupt randomly calls
Thread.sleep() to force
a thread switch.

2015 Concurrency: shared objects & mutual exclusion
12

©Magee/Kramer 2nd Edition

ornamental garden program - display

After the East and West turnstile threads have each incremented
its counter 20 times, the garden people counter is not the sum
of the counts displayed. Counter increments have been lost.
Why?

2015 Concurrency: shared objects & mutual exclusion
13

©Magee/Kramer 2nd Edition

concurrent method activation

Java method activations are not atomic - thread objects east
and west may be executing the code for the increment method
at the same time.

eastwest

increment:

 read value

 write value + 1

program
counter program

counter

PC PC
shared code

2015 Concurrency: shared objects & mutual exclusion
14

©Magee/Kramer 2nd Edition

ornamental garden Model

Process VAR models read and write access to the shared counter
value.

Increment is modeled inside TURNSTILE since Java method
activations are not atomic i.e. thread objects east and west may
interleave their read and write actions.

value:VAR
display

write

GARDEN

west:
TURNSTILE

value
end
go

arrive

east:
TURNSTILE

value
end
go

arrive

go
end

read

2015 Concurrency: shared objects & mutual exclusion
15

©Magee/Kramer 2nd Edition

ornamental garden model

const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]
 |write[v:T]->VAR[v]).

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.read[x:T]
 -> value.write[x+1]->RUN
)+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE
 || { east,west,display}::value:VAR)
 /{ go /{ east,west} .go,
 end/{ east,west} .end} .

The alphabet of shared
process VAR is declared
explicitly as a set
constant, VarAlpha.

The TURNSTILE
alphabet is extended
with VarAlpha to
ensure no unintended
free (autonomous)
actions in VAR such as
value.write[0].

All actions in the
shared VAR must be
controlled (shared) by
a TURNSTILE. 2015 Concurrency: shared objects & mutual exclusion

16
©Magee/Kramer 2nd Edition

checking for errors - animation

Scenario checking -
use animation to
produce a trace.

Is this trace
correct?

2015 Concurrency: shared objects & mutual exclusion
17

©Magee/Kramer 2nd Edition

checking for errors - exhaustive analysis

TEST = TEST[0],
TEST[v:T] =
 (when (v<N){east.arrive,west.arrive}->TEST[v+1]
 |end->CHECK[v]
),
CHECK[v:T] =
 (display.value.read[u:T] ->
 (when (u==v) right -> TEST[v]
 |when (u!=v) wrong -> ERROR
)
)+{display.VarAlpha}.

Exhaustive checking - compose the model with a TEST process which
sums the arrivals and checks against the display value:

Like STOP, ERROR
is a predefined FSP
local process (state),
numbered -1 in the
equivalent LTS.

2015 Concurrency: shared objects & mutual exclusion
18

©Magee/Kramer 2nd Edition

ornamental garden model - checking for errors

 ||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:
 go
 east.arrive
 east.value.read.0
 west.arrive
 west.value.read.0
 east.value.write.1
 west.value.write.1
 end
 display.value.read.1

 wrong

LTSA produces the
shortest path to
reach ERROR.

2015 Concurrency: shared objects & mutual exclusion
19

©Magee/Kramer 2nd Edition

Interference and Mutual Exclusion (mutex)

Destructive update, caused by the arbitrary interleaving of
read and write actions, is termed interference.

Interference bugs are extremely difficult to locate. The
general solution is to give methods mutually exclusive
access to shared objects. Mutual exclusion (often referred
to as “mutex”)can be modeled as atomic actions.

2015 Concurrency: shared objects & mutual exclusion
20

©Magee/Kramer 2nd Edition

4.2 Mutual exclusion in Java

class SynchronizedCounter extends Counter {

 SynchronizedCounter(NumberCanvas n)
 {super(n);}

 synchronized void increment() {
 super.increment();
 }
}

We correct COUNTER class by deriving a class from it and
making the increment method synchronized:

Concurrent activations of a method in Java can be made
mutually exclusive by prefixing the method with the keyword
synchronized, which uses a lock on the object.

acquire
lock

release
lock

2015 Concurrency: shared objects & mutual exclusion
21

©Magee/Kramer 2nd Edition

mutual exclusion - the ornamental garden

Java associates a lock with every object. The Java compiler inserts
code to acquire the lock before executing the body of the
synchronized method and code to release the lock before the
method returns. Concurrent threads are blocked until the lock is
released.

2015 Concurrency: shared objects & mutual exclusion
22

©Magee/Kramer 2nd Edition

Java synchronized statement

Access to an object may also be made mutually exclusive by using the
synchronized statement:

 synchronized (object) { statements }

A less elegant way to correct the example would be to modify the
Turnstile.run() method:

 synchronized(people) {people.increment();}

Why is this �less elegant�?

To ensure mutually exclusive access to an object,
all object methods should be synchronized.

2015 Concurrency: shared objects & mutual exclusion
23

©Magee/Kramer 2nd Edition

To add locking to our model, define a LOCK, compose it with the
shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
 acquire, release}}

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
 |end -> TURNSTILE),
INCREMENT = (value.acquire
 -> value.read[x:T]->value.write[x+1]
 -> value.release->RUN
)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:

2015 Concurrency: shared objects & mutual exclusion
24

©Magee/Kramer 2nd Edition

Revised ornamental garden model - checking for errors

Use TEST and LTSA to perform an exhaustive check.
Is TEST satisfied?

 go
 east.arrive
 east.value.acquire
 east.value.read.0
 east.value.write.1
 east.value.release
 west.arrive
 west.value.acquire
 west.value.read.1
 west.value.write.2
 west.value.release
 end
 display.value.read.2
 right

A sample animation
execution trace

2015 Concurrency: shared objects & mutual exclusion
25

©Magee/Kramer 2nd Edition

COUNTER: Abstraction using action hiding

To model shared objects directly
in terms of their synchronized
methods, we can abstract the
details by hiding.

For SynchronizedCounter
we hide read, write,
acquire, release actions.

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]
 | write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
 -> (when (x<N) write[x+1]
 ->release->increment->INCREMENT
)
)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

2015 Concurrency: shared objects & mutual exclusion
26

©Magee/Kramer 2nd Edition

COUNTER: Abstraction using action hiding

Minimized
LTS:

We can give a more abstract, simpler description of a COUNTER
which generates the same LTS:

This therefore exhibits �equivalent� behavior i.e. has the same
observable behavior.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

increment increment increment increment

0 1 2 3 4

2015 Concurrency: shared objects & mutual exclusion
27

©Magee/Kramer 2nd Edition

4.4 Java Concurrency Utilities Package

Java SE 5 intriduced a package of advanced concurrency utilities in
java.util.concurrent, later extended in JSE8.

This includes many additional, explicit mechanisms such as atomic
variables, a task scheduling framework (for thread and thread pool
instantiation and control), and synchronizers such as semaphores
(later), mutexes, barriers and explicit locks with timeout.

synchronized: implicit lock associated with each object,
 block structured and recursive (reentrant)
 (Java mutex and POSIX pthread mutexes are not reentrant)

Lock interface: explicit lock objects, with methods
 lock(), unlock(), tryLock() with optional timeout.

ReentrantLock: implements Lock (optionally fair), reentrant with methods
 lock(), unlock(), tryLock() with optional timeout, …

2015 Concurrency: shared objects & mutual exclusion
28

©Magee/Kramer 2nd Edition

Counter – with an explicit lock

class LockedCounter extends Counter {

 final ReentrantLock inclock = new ReentrantLock();

 LockedCounter(NumberCanvas n)
 {super(n);}

 public void increment()throws InterruptedException {
 inclock.lock();
 try {

 super.increment();
 } finally {inclock.unlock();}
 }
}

Explicit locks are more dangerous and less efficient than synchronized. Use only if
required for non-block structured situations requiring flexibility (such as chain
locking: acquire lock on A, then on B, then release A and acquire C, …) or for other
advanced features such as timed or polled lock acquisition. (At the memory level, volatile
can be used to force reads/writes on a shared variable to main memory rather than cached thread-locally).

2015 Concurrency: shared objects & mutual exclusion
29

©Magee/Kramer 2nd Edition

Summary

! Concepts

"  process interference
"  mutual exclusion and locks

! Models

"  model checking for interference
"  modelling mutual exclusion

! Practice
"  thread interference in shared Java objects

"  mutual exclusion in Java (synchronized objects/methods).

