
Leader Election in Rings of Ambient

Processes 1

Iain Phillips ∗, Maria Grazia Vigliotti

Department of Computing

Imperial College London

London SW7 2AZ, England

Abstract

Palamidessi has shown that the π-calculus with mixed choice is powerful enough
to solve the leader election problem on a symmetric ring of processes. We show
that this is also possible in the calculus of Mobile Ambients (MA), without us-
ing communication or restriction. Following Palamidessi’s methods, we deduce that
there is no encoding satisfying certain conditions from MA into CCS. We also show
that the calculus of Boxed Ambients is more expressive than its communication-free
fragment.

Key words: Ambient calculi, leader election, electoral system, ring, expressiveness

1 Introduction

The π-calculus [14] is a simple, yet extremely powerful, formalism that models
concurrency and the passing around of resources that can later be used by
other processes. It is based on a very simple and uniform concept of names.
Names are both channels, on which communication takes place, and values,
i.e. the resources passed around. Names sent as values can be used later as
channels for communication. This particular feature seems unique to the π-
calculus, and allows processes to establish connection during computation.

∗ Corresponding author. Tel:+44 (0)20 7594 8265 Fax:+44 (0)20 7581 8024
Email addresses: iccp@doc.ic.ac.uk (Iain Phillips), mgv98@doc.ic.ac.uk

(Maria Grazia Vigliotti).
1 A shorter version of this paper appeared in Express 2004 [18].
2 Email: {iccp,mgv98}@doc.imperial.ac.uk

Preprint submitted to Theoretical Computer Science 14 June 2005

This seems to add extra power that was not previously available in CCS [12]
or other similar calculi such as CSP [8] or ACP [2].

In fact, while CCS (with value-passing) may be regarded as a subcalculus of the
π-calculus, Palamidessi [15] has shown that (under certain conditions) there
exists no encoding from the π-calculus to CCS by exploiting the possibility of
creating new connections in the π-calculus. Palamidessi establishes her result
within the framework of the leader election problem. Leader election problems
arise in the field of distributed systems, where they are widely studied for
practical reasons, and are also used to differentiate models of computation.
The problem is stated as follows: given a symmetric network, a composition of
processes that differ in their free variables only, one process has to be elected
a leader without the help of a centralised server.

CCS and the π-calculus with mixed choice (where input and output can occur
in the choice operator together) can both elect a leader in a fully connected
symmetric network. This differentiates these two calculi from the π-calculus
with separate choice (meaning that inputs and outputs cannot be mixed in the
same choice), where such election is not possible. Moreover, the π-calculus can
also solve the problem of electing a leader in a symmetric ring of processes,
in other words, in a network where each process is connected only to its two
neighbours in the ring. Palamidessi’s algorithm, which works on rings of any
size, has two phases. In phase one the processes pass names around the ring
so that every process becomes directly connected to every other process. Here
there is an essential use of the π-calculus, though without any use of choice.
CCS would not do, since it cannot increase connectivity. In the second phase
the processes elect a leader. Here there is an essential use of mixed choice,
but CCS would suffice, rather than the π-calculus. Building on the work of
Angluin [1] and Bougé [4], Palamidessi proves that CCS cannot perform leader
election on symmetric rings of composite (i.e. non-prime) size, by showing that
there is a maximal computation where symmetry is never broken, so that no
single leader emerges. She deduces that there is no encoding (of a certain kind)
from the π-calculus with mixed choice into CCS.

In the present work we explore how Palamidessi’s techniques apply to rings
in ambient calculi, studying how new connections between processes can be
established. In previous work [17], we have shown that in Mobile Ambients
(MA) [6] without the communication primitives, the open capability and re-
striction, the leader election problem can be solved in a fully-connected sym-
metric network. We might call this fragment of MA the minimal fragment. This
fragment, which is also a sub-calculus of Boxed Ambients (BA) [5], is choice-
free; the solution to electing a leader in symmetric network is achieved through
the pre-emptive power of migration inside ambients [17,20]. The communica-
tion primitives of MA have the same operational semantics as the π-calculus,
except that they are anonymous, in the sense that there are no channels on

2

which communication happens (in the π-calculus one would write a(x).P for
an input on the channel a, while in MA one would write (x).P for an anony-
mous input). Thus, since the communication primitives in ambients are very
similar to those of the π-calculus, it would be not surprising if Palamidessi’s
algorithm for rings could be formulated in MA. However, in this paper we
solve the leader election problem for symmetric rings of any size in pure public
MA, i.e. MA without communication primitives and restriction (Theorem 4.3).
The link-passing in this case has to be simulated, since there is no explicit way
of passing names in the absence of communication. This yields immediately
the result that pure public MA cannot be encoded into CCS under certain
conditions (Theorem 6.4).

The second major result that we present here is that, even if we add commu-
nication and restriction to the minimal fragment of MA to form boxed MA,
i.e. MA without the open capability, the leader election problem cannot be
solved in symmetric rings of composite (i.e. non-prime) size (Theorem 5.3).
This clearly shows that in MA, the open capability (but not communication)
is crucial in order to pass resources around. In connection with our results, we
recall that Zimmer [21] proved that the synchronous choice-free π-calculus can
be encoded into pure Safe Ambients (SA) [9], showing that link-passing can be
simulated in pure SA. The encoding uses the open capability. Thus the open
capability seems quite powerful. This is in contrast with other expressiveness
results based on Turing completeness [10,3], where it was shown that the open
capability is not crucial, since the minimal fragment is still Turing-complete.

We easily adapt our results on MA to the setting of SA: leader election can
be performed on rings of any size in pure public SA (Corollary 4.6), but it is
impossible for rings of composite size in boxed SA (Theorem 5.21).

The situation is different for BA, where the open capability is missing as a de-
sign choice. Communications between parent and child ambients are allowed,
and the synchronous choice-free π-calculus can be encoded, and with that,
clearly, the power of creating new links. Thus we can show (Theorem 4.7) that
in BA the leader election problem in a ring of any size can be solved by con-
verting the ring into a fully-connected network and then using the algorithm
of [17]. However, pure BA (i.e. BA without communication) is a subcalculus
of boxed MA; it is therefore less expressive than full BA, in view of our result
that only with the presence of the open capability can MA elect a leader in
rings of composite size.

In distributed systems, leader election problems are categorised according to
the connectivity of the network, the knowledge of the size of the network and
the methods of election. In this paper we present a solution in MA for a ring of
any size, providing that the processes are given information about the size of
the ring. Palamidessi’s algorithm also uses this information. However, for the

3

Any size Not composite size

pure public MA (Thm. 4.3) boxed MA (Thm. 5.3)

pure public SA (Cor. 4.6) boxed SA (Thm. 5.21)

public BA (Thm. 4.7) pure BA (Thm. 5.3)

pure public PAC (uniform solution) (Thm. 4.2) boxed PAC (Thm. 5.21)

Fig. 1. Summary of leader election results on rings

Push and Pull Ambient Calculus [16], we present a solution for rings of any
size where the processes do not know the size of the ring (Theorem 4.2). Thus
a single uniform solution will work for any size of ring. As far as we know,
this is the first time that such an algorithm has been devised in the setting
of process calculi. It remains for future work to find suitable conditions that
differentiate those calculi that admit a solution to the leader election problem
without having to know the size of the ring from those that do need to know
the size.

We summarise our results on leader election on rings in Figure 1. The left-hand
column lists those calculi where the leader election problem can be solved for
symmetric rings of any size; the right-hand column lists those calculi where
the leader election problem cannot be solved for symmetric rings of composite
size. For our results on encodings, see Figure 2 at the end of Section 6.

The rest of the paper is structured as follows. In Section 2 we describe the
calculi we are considering, and in Section 3 we discuss electoral systems. In
Section 4 we consider calculi which admit symmetric electoral systems of rings
of processes, while in Section 5 we consider calculi that do not admit symmetric
electoral systems for certain rings. In Section 6 we examine the consequences
of our results for expressiveness of ambient calculi. Finally we draw some
conclusions in Section 7.

2 Calculi

In this section we recall Cardelli and Gordon’s Mobile Ambients (MA) and
related calculi, as well as Milner’s CCS with value passing. As in previous
work [17,20], we shall use reduction semantics, as opposed to the more tradi-
tional labelled transition semantics. We prefer this setting, since it is a uniform
way of describing calculi with different primitives. It is also the standard se-
mantics for MA, where it is unclear what labelled transition system should be
preferred.

4

2.1 Mobile Ambients

We follow [6], except for communication, as noted below. Let P,Q, . . . range
over processes and M, . . . over capabilities. We assume a set of names N ,
ranged over by m,n, Processes are defined as follows:

P,Q ::= 0 | P | Q | νn P | ! P | n[P] | M.P | (n).P | 〈n〉

Here 0 is the nil process which is inactive; P | Q is the parallel composition
of processes P and Q; νn P is P with name n restricted; ! P (replication) is
a process which can spin off as many copies of P as are required; n[P] is an
ambient named n containing process P ; M.P performs capability M before
continuing as P ; and (n).P receives input on an anonymous channel, with the
input name replacing free occurrences of name n in P ; and finally 〈n〉 is a
process which outputs name n. Notice that output is asynchronous, that is,
it has no continuation. Restriction and input are name-binding. We let fn(P)
denote the set of free names of P . We omit trailing 0s and write n[] instead
of n[0].

Capabilities are defined as follows:

M ::= in n | out n | open n

Capabilities allow movement of ambients (in n and out n) and dissolution of
ambients (open n).

We confine ourselves in this paper to communication of names, rather than
full communication including capabilities (as in [6]). This serves to streamline
the presentation; the results would also hold for full communication.

Structural congruence ≡ allows rearrangement of processes; it is the least
congruence generated by the following laws:

P | Q ≡ Q | P νn νm P ≡ νm νn P

(P | Q) | R ≡ P | (Q | R) νn (P | Q) ≡ P | νn Q if n /∈ fn(P)

P | 0 ≡ P νn m[P] ≡ m[νn P] if n 6= m

! P ≡ P | ! P νn 0 ≡ 0

!0 ≡ 0

together with α-conversion of bound names.

5

The reduction relation → is generated by the following rules:

(In) n[in m.P | Q] | m[R] → m[n[P | Q] | R]

(Out) m[n[out m.P | Q] | R] → n[P | Q] | m[R]

(Open) open n.P | n[Q] → P | Q

(Comm) 〈m′〉 | (m).P → P{m′/m}

(Amb)
P → P ′

n[P] → n[P ′]
(Par)

P → P ′

P | Q → P ′ | Q

(Res)
P → P ′

νn P → νn P ′
(Str)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Here P{m′/m} denotes P with m′ substituted for every free occurrence of m.
Notice that movement in MA is subjective: ambients move themselves using
the in and out capabilities. We write →→ for the reflexive and transitive closure
of →. The notation P 6→ means that there does not exist a process to which
P can reduce.

The most basic observation we can make of an MA process is the presence
of an unrestricted top-level ambient. A process P exhibits barb n, written as
P ↓ n, iff P ≡ ν ~m(n[Q] | R) with n /∈ ~m. Here ~m represents a tuple of names.
A process P eventually exhibits barb n, written P ⇓ n, iff P →→ Q and Q ↓ n
for some Q.

We shall be interested in various subcalculi: pure MA is MA without commu-
nication; public MA is MA without restriction; and boxed MA is MA without
the open capability.

2.2 Safe Ambients

The calculus of Safe Ambients (SA) [9] is a variant of MA where new co-
capabilities are added to complement the existing in, out and open capabilities.
The syntax of processes is the same as for MA. Capabilities are defined as
follows:

M ::= in n | out n | open n | in n | out n | open n

Structural congruence and the reduction relation → are defined as for MA,
except that rules (In), (Out) and (Open) are replaced by the following:

(CoIn) n[in m.P | Q] | m[in m.R | S] → m[n[P | Q] | R | S]

(CoOut) m[n[out m.P | Q] | out m.R | S] → n[P | Q] | m[R | S]

(CoOpen) open n.P | n[open n.Q | R] → P | Q | R

Barbs are defined slightly differently from MA. A process P exhibits barb n,

6

written as P ↓ n, iff P ≡ ν ~m (n[M.Q | R] | S) with n /∈ ~m and M either in n
or open n.

2.3 The Push and Pull Ambient Calculus

The Push and Pull Ambient Calculus (PAC) [16,20] is a variant of MA where
the subjective moves enabled by the in and out capabilities are replaced by
objective moves whereby ambients can be pulled in or pushed out by other
ambients. The syntax of processes is the same as for MA. Capabilities are
defined as follows:

M ::= pull n | push n | open n

The reduction rules are the same as for MA, except that (In) and (Out) are
replaced by the following:

(Pull) n[pull m.P | Q] | m[R] → n[P | Q | m[R]]

(Push) n[m[P] | push m.Q | R] → n[Q | R] | m[P]

Barbs are defined as for MA.

2.4 Boxed Ambients

The calculus of Boxed Ambients (BA) [5] is derived from MA by removing the
open capability and allowing parent-child communication as well as same-level
communication. Processes are defined as follows:

P,Q ::= 0 | P | Q | νn P | ! P | n[P] | M.P | (~n)η.P | 〈~n〉η.P

Here ~n denotes a tuple of names, and η ranges over locations, defined as follows:

η ::= n | ↑ | ?

The “local” location ? is elided. Notice that output 〈~n〉η.P is synchronous,
unlike in MA. Capabilities M are defined as for MA but without open. The
reduction rules are the same as for boxed MA, except for communication,
where the rule (Comm) is replaced by the following five rules:

(Local) (~m).P | 〈 ~m′〉.Q → P{ ~m′/~m} | Q

(Input n) (~m)n.P | n[〈 ~m′〉.Q | R] → P{ ~m′/~m} | n[Q | R]

(Input ↑) n[(~m)↑.P | Q] | 〈 ~m′〉.R → n[P{ ~m′/~m} | Q] | R

(Output n) n[(~m).P | Q] | 〈 ~m′〉n.R → n[P{ ~m′/~m} | Q] | R

(Output ↑) (~m).P | n[〈 ~m′〉↑.Q | R] → P{ ~m′/~m} | n[Q | R]

7

Clearly, rule (Local) extends rule (Comm), so that communication in BA is
at least as powerful as communication in MA. Note that pure BA (i.e. BA
without communication) is the same as pure boxed MA.

Barbs are defined as for MA.

2.5 CCS

In this paper we shall use the version of CCS presented in [13], with the
addition of value-passing. As well as names n ∈ N , we use co-names n̄ ∈ N ,
a set V of values, ranged over by v, . . ., and a set W of variables, ranged over
by x, The sets N , N , V and W are mutually disjoint. Prefixes are defined
by

π ::= n(x) | n̄〈v〉 | τ

(where τ is the silent action) and summations are defined by

G,H ::=
∑

i∈I

πi.Pi

(where I is a finite set). The empty summation is denoted by 0. Processes are
defined as follows:

P,Q ::= G | P | Q | νn P | A〈a1, . . . , ak〉

Here recursion is handled by process identifiers with parameters; each identifier

A is equipped with a defining equation A(~a)
df
= PA.

CCS is usually presented with a labelled transition system, but in this paper
we use unlabelled transitions (reduction semantics) as a uniform framework.
So we follow the reduction rules given in [13]. Structural congruence has the
same laws as for MA, except that we omit the rule for ambient, we allow
reordering of summations, and we add the law

A〈~b〉 ≡ PA{~b/~a} if A(~a)
df
= PA .

The reduction relation has the rules

τ.P + G → P (n(x).P + G) | (n̄〈v〉.Q + H) → P{v/x} | Q

together with rules (Par), (Res) and (Str) as given for MA.

Barbs are much as for MA. A process P exhibits barb n, written as P ↓ n, iff
P ≡ ν ~m (n̄〈x〉.Q | R) with n /∈ ~m. We only use barbs on outputs; input barbs
are not needed, and we thereby obtain greater uniformity across the calculi
we are considering.

8

3 Electoral Systems and Rings

In this section we present a general definition of network, ring and electoral sys-
tem. As in previous work [17,20], we base everything on reduction semantics,
so that our framework could be applied to any calculus equipped with reduc-
tion semantics. In this respect we differ from Palamidessi [15] and Bougé [4],
who worked in a labelled transition system framework. All the notions of this
section apply equally to MA, SA, PAC, BA and CCS.

Networks are informally compositions of processes; the size of the networks is
the number of processes that can be “regarded as separate units”. This means
that a composition of processes can be seen as one process only in counting
the size of the network. A symmetric network is a network where components
differ only on their names. Components of a network are connected if they
share names, using which they can engage in communication. Rings are net-
works where each process is connected just to its left-hand and right-hand
neighbours. A network elects a leader by exhibiting a special name, and an
electoral system is a network where every possible maximal computation elects
a leader. Notice that some of these definitions were already used in our previ-
ous work [17,18], yet they are still necessary here. The notion of ring in process
calculi is however novel here, and was not present in Palamidessi’s work or in
Bougé’s.

3.1 Networks and Electoral Systems

We briefly recall electoral systems as formulated in [17], building on [15]. We
assume that N includes a set of observables Obs = {ωi : i ∈ N} such that for
all i, j we have ωi 6= ωj if i 6= j. The observables will be used by networks to
communicate with the outside world.

Definition 3.1 Let P be a process. A computation C of P is a (finite or
infinite) sequence P = P0 → P1 → · · · . It is maximal if it cannot be extended,
i.e. either C is infinite, or else it is of the form P0 → · · · → Ph where Ph 6→.

Definition 3.2 Let C be a computation P0 → · · · → Ph → · · · . We define the
observables of C as Obs(C) = {ω ∈ Obs : ∃h Ph ↓ ω}.

Networks are collections of processes running in parallel:

Definition 3.3 (cf. [15]) A network Net of size k is a pair (A, 〈P0, . . . , Pk−1〉),
where A is a finite set of names and P0, . . . , Pk−1 are processes. The process
interpretation Net\ of Net is the process νA (P0 | . . . | Pk−1). We shall always
work up to structural congruence, so that the order in which the restrictions

9

in A are applied is immaterial.

Networks are to be seen as presentations of processes, showing how the global
process is distributed to the k nodes of the network. Trivially, any process P
can be presented as a network of size k for any k: the network (∅, 〈P,0, . . . ,0〉)
has the process interpretation P | 0 | · · · | 0, which is structurally congruent
to P . However, networks become more interesting once we impose conditions
of symmetry.

We shall tend to write networks in their process interpretation (i.e. as re-
stricted parallel compositions), while still making it clear which process be-
longs to each node of the network.

Networks inherit a notion of computation from processes through the process
interpretation: Net → Net′ if Net\ → Net′\. Overloading notation, we shall
let C range over network computations. Also, we define the observables of a
network computation C to be the observables of the corresponding process
computation: Obs(C) = Obs(C\).

During the course of a network computation we do not require the resulting
networks to have the same size as the original. This is in contrast to the
approach taken in [15]. Such variation in size is a natural feature of ambient
languages: the network n[in m] | m[] of size two reduces to m[n[]], which is
a network of size one. Of course if we wish we can pad the derivative out with
0 to retain a network of size two.

Definition 3.4 A permutation is a bijection σ : N → N such that σ pre-
serves the distinction between observable and non-observable names, i.e. n ∈
Obs iff σ(n) ∈ Obs. Any permutation σ gives rise in a standard way to a map-
ping on processes, where σ(P) is the same as P , except that any free name n
of P is changed to σ(n) in σ(P), with bound names being adjusted as necessary
to avoid clashes.

A permutation σ induces a bijection σ̂ : N → N defined as follows: σ̂(i) = j
where σ(ωi) = ωj. Thus for all i ∈ N, σ(ωi) = ωσ̂(i). We use σ̂ to permute the
indices of processes in a network.

Definition 3.5 Let Net = ν~n(P0 | . . . | Pk−1) be a network of size k. An auto-
morphism on Net is a permutation σ such that (1) σ̂ restricted to {0, . . . , k−1}
is a bijection, and (2) σ preserves the distinction between free and bound
names, i.e. n ∈ ~n iff σ(n) ∈ ~n. If σ̂ restricted to {0, . . . , k − 1} is not the
identity we say σ is non-trivial.

Definition 3.6 Let σ be an automorphism on a network of size k. For any

10

i ∈ {0, . . . , k − 1} the orbit Oσ̂(i) generated by σ̂ is defined as follows:

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is least
such that σ̂h(i) = i. If every orbit has the same size then σ is well-balanced.

Definition 3.7 Let Net = ν~n (P0 | . . . | Pk−1) be a network of size k and let
σ be an automorphism on it. We say that Net is symmetric with respect to
σ iff for each i = 0, . . . , k − 1 we have Pσ̂(i) = σ(Pi). We say that Net is
symmetric if it is symmetric with respect to some automorphism with a single
orbit (which must have size k).

Intuitively an electoral system is a network which reports a unique winner, no
matter how the computation proceeds.

Definition 3.8 A network Net of size k is an electoral system if for every
maximal computation C of Net there exists an i < k such that Obs(C) = {ωi}.

3.2 Rings and Independence

In this paper we are interested in the connectivity between processes, and in
rings of processes in particular. Given a network Net = ν~n (P0 | · · · | Pk−1),
we can associate a graph with Net by letting the set of nodes be {0, . . . , k−1}
and letting i, j < k be adjacent iff fn(Pi)∩ fn(Pj) 6= ∅. A network forms a ring
if the processes can be arranged in a cycle, and each node i is adjacent to at
most its two neighbours in the cycle.

Definition 3.9 A ring is a network Net = ν~n (P0 | · · · | Pk−1) which has a
single-orbit automorphism σ such that for all i, j < k, if fn(Pi) ∩ fn(Pj) 6= ∅
then one of i = j, σ̂(i) = j or σ̂(j) = i must hold. A ring is symmetric if it is
symmetric with respect to such an automorphism σ.

Notice that the definition bans links between non-adjacent nodes in the ring,
but does not require the existence of links between adjacent nodes. Thus a
completely disconnected network is a ring.

Recall that an independent set in a graph is a set of nodes such that no two
nodes of the set are adjacent.

Definition 3.10 Two processes P and Q are independent if they do not share
any free names: fn(P) ∩ fn(Q) = ∅.

Definition 3.11 Let σ be an automorphism on a network Net = ν~n (P0 |
· · · | Pk−1). Then Net is independent with respect to σ if every orbit forms an

11

independent set, in the sense that if i, j < k are in the same orbit of σ̂ with
i 6= j, then Pi and Pj are independent.

Bougé [4] and Palamidessi [15] showed the non-existence of electoral systems
in networks equipped with a well-balanced non-trivial automorphism with
independent orbits. We shall require a somewhat stronger condition for our
non-existence results in Section 5.

We first note that rings do not necessarily satisfy the Bougé-Palamidessi con-
dition; neither are networks satisfying the Bougé-Palamidessi condition nec-
essarily rings. A ring of k processes (where k is prime and where at least one
link between adjacent nodes exists) does not have a well-balanced non-trivial
automorphism with independent orbits. This is because any non-trivial auto-
morphism must have an orbit of size > 1. If it is well-balanced then, since
k is prime, there must be a single orbit of size k. But this orbit is not inde-
pendent. Conversely, the network of 6 processes corresponding to the graph
K3,3 (the complete bipartite graph on two sets of 3 nodes) satisfies the Bougé-
Palamidessi condition, but is not a ring.

For our non-existence results we shall restrict to rings of composite (non-
prime) size, where the Bougé-Palamidessi condition does hold, as the next
lemma shows.

Lemma 3.12 Let Net be a symmetric ring of size k, where k is composite.
Then there is a well-balanced non-trivial automorphism σ such that Net is
symmetric and independent with respect to σ.

PROOF. Let k = rs where r, s ≥ 2. Since Net is a symmetric ring, let τ be
an automorphism as in Definition 3.9. Let σ = τ r. Then σ is non-trivial and
Net is symmetric with respect to σ. Also, each orbit of σ has size s, so that σ
is well-balanced. Finally, each orbit of σ is independent. 2

4 Calculi with Electoral Systems for Rings

In this section we show that we can solve leader election on symmetric rings in
ambient calculi. We present solutions for MA, BA and PAC. The solution for
MA can be carried over to SA by a standard encoding. There is a fundamental
difference between the solution for PAC and those for MA and BA: the PAC
solution works for a ring of any size with a single uniform definition of each
component, so that the processes do not need to know the size of the ring.

We will start with PAC, since the symmetric ring for PAC is the simplest to
define. First we introduce some notation which will be helpful in the proofs of

12

Theorems 4.2 and 4.3.

Definition 4.1 Let k ≥ 1. Let i, j ∈ {0, . . . , k − 1}.

• By (i .. j) mod k we mean the set of all numbers between i and j, going
round the numbers in {0, . . . , k− 1} cyclically modulo k in ascending order,
and excluding i and j. More formally:

(i .. j) mod k
df
=











{h : i < h < j} if i < j

{h : i < h ≤ k − 1 or 0 ≤ h < j} if i ≥ j

In particular, (i .. i+1) mod k = ∅ and (i .. i) mod k = {0, . . . , k−1}−{i}.
• Let [i .. j] mod k be the numbers going from i to j cyclically mod k including

i and j. Formally

[i .. j] mod k
df
=











{h : i ≤ h ≤ j} if i ≤ j

{h : i ≤ h ≤ k − 1 or 0 ≤ h ≤ j} if i > j

Note that [i .. i] mod k = {i}.

We shall tend to suppress the mod k and write (i .. j), [i .. j].

4.1 Pure Public PAC

We show that using push and pull we can build a symmetric ring of processes
which can elect a leader. Moreover, the construction is such that individual
processes do not know the size of the ring.

Theorem 4.2 For any k ≥ 1, there is a symmetric ring of size k which is an
electoral system in pure public PAC.

PROOF. Let k ≥ 1. For i = 0, . . . , k − 1, let Pi be defined as follows:

Pi
df
= ni[Qi | pull ni+1 | open ni+1]

where
Qi

df
= ni[ωi[]] | push ωi

We have fn(Pi) = {ni, ni+1, ωi}. Let Net
df
= P0 | · · · | Pk−1. Note that Net

belongs to pure public PAC—there is no use of communication or restriction.
Moreover, the construction of Pi does not depend on k. It is now easy to see
that Net forms a symmetric ring: define an automorphism σ by σ(ni) = ni+1,
σ(ωi) = ωi+1 (with addition modulo k). Then σ has a single orbit and Net is

13

symmetric with respect to σ. Also, if fn(Pi)∩ fn(Pj) 6= ∅ then i = j or j = i+1
or i = j + 1.

We claim that Net forms an electoral system. The idea is that a process Pi

can pull in its right-hand neighbour Pj and open it. The neighbour Pj thereby
loses and drops out of the ring, which now has one fewer process. Process Pi is
now joined to Pj’s right-hand neighbour. Eventually only one process is left.
It will have the form:

(?) ni[
∏

j<k

Qj | pull ni | open ni]

for some i ∈ {0, . . . , k− 1}. This has the capability to open ni[ωi[]] and push
ωi[] to the top level, announcing i as the winner.

We shall now prove that every computation produces a unique winner. In
particular we shall show that every computation must arrive at the form (?),
and that only once it has arrived at (?) can it announce a winner, which must
be unique.

We formulate an invariant: at any stage in the computation, the network is of
the form

∏

i∈I

ni[Ri]

where I ⊆ {0, . . . , k − 1} and Ri is in one of the following two forms:

(1) Ri = Qi |
∏

j∈Ii
Qj | pull nri

| open nri

with ri defined, ri ∈ I, Ii defined, Ii = (i .. ri).
(2) Ri = Qi |

∏

j∈Ii
Qj | open nsi

| nsi
[Rsi

]
with si defined, si ∈ {0, . . . , k − 1} − I, Ii defined, Ii = (i .. si), and Rsi

in form (1) or (2).

(Recall the notation (i .. j) from Definition 4.1.) It is understood that ri, si, Ii

are undefined except where explicitly defined. In particular, for any i at most
one of ri, si is defined.

Furthermore, the sets I, Ii (for i where Ii is defined), {si} (for i where si is
defined) together form a partition of {0, . . . , k − 1}. The intuition is that the
set I consists of the indices of processes which have not (yet) lost; the si are
indices of processes which have lost (by being pulled in), but have not yet
been opened; and the sets Ii consist of those processes which have lost and
been opened.

This completes the formulation of the invariant. Notice that we can deduce
that whenever si is defined then i 6= si. For if i = si then i would be the single
process remaining, and so i ∈ I. But we know that si /∈ I from the invariant.

14

We see that form (?) satisfies the invariant with I = {i}, ri = i. We set up the
invariant initially by defining I = {0, . . . , k−1}, and, for all i ∈ {0, . . . , k−1}:
ri = i + 1, si undefined, Ri = Qi | pull nri

| open nri
. Thus Ii = ∅ and Ri is in

form (1) (all i).

At an arbitrary point in the computation, there are two types of reduction
possible:

(1) A reduction between two top-level processes. For i ∈ I, ri defined, i 6= ri,
we have process i pulling in process ri:

ni[Qi |
∏

j∈Ii
Qj | pull nri

| open nri
] | nri

[Rri
]

→ ni[Qi |
∏

j∈Ii
Qj | open nri

| nri
[Rri

]]

We reestablish the invariant by removing ri from I, letting si := ri, and
making ri undefined. Thus process i changes from form (1) to form (2).
It is straightforward to see that the invariant is reestablished.

(2) A reduction within a single Ri. For i where si is defined we have process
i opening process si:

ni[Qi |
∏

j∈Ii
Qj | open nsi

| nsi
[Rsi

]]

→ ni[Qi |
∏

j∈Ii
Qj | Rsi

]

We reestablish the invariant as follows: Firstly, Ii is augmented with {si}
and Isi

, and then Isi
is made undefined. Secondly, if Rsi

is of form (1),
we let ri := rsi

, and make si, rsi
undefined; if Rsi

is of form (2), we let
si := ssi

, and make ssi
undefined. We omit the check that the invariant

is reestablished.

Suppose that no reduction of either type is enabled. Then there must be a
single top-level process i which is in form (1):

ni[Qi |
∏

j∈Ii

Qj | pull nri
| open nri

]

But then by the partition property of the invariant we have {i} ∪ Ii =
{0, . . . , k − 1}, implying that ri = i, and so we have reached (?) and the
winner i can be announced. Hence every computation is guaranteed to end by
announcing a winner.

Conversely, suppose that a computation announces a winner. This can only
be precipitated by some top-level process i having ri = i or si = i for some
i, allowing open i to occur and thereby allowing process i to release its ωi

ambient. As noted earlier, we can never have si = i. So ri = i. Then by the
invariant, i must be the only process left, and we must have reached (?). This

15

means that the winner can only be announced once all reductions of the two
types described above have been completed, and we have reached (?), from
where there is clearly a unique winner i. 2

We do not see how to express this algorithm using the different movement
capabilities available in MA, or in SA, or in ROAM [7].

4.2 Pure Public MA

We now solve the leader election problem for rings in pure public MA.

Theorem 4.3 For any k ≥ 1 there is a symmetric ring of size k which is an
electoral system in pure public MA.

In the shorter version of this paper [18] we established Theorem 4.3 for the
special case k = 4, which is the smallest interesting case, and is sufficient for
establishing separation results between calculi (Section 6).

Our strategy for proving Theorem 4.3 is to follow Palamidessi’s general scheme
and define an algorithm which works in two phases: distribution followed by
election. In the distribution phase we distribute names around the ring so as
to convert it into a complete graph of processes which can all interact with
each other. Then in the election phase we elect the winner. In both phases the
methods used will be quite different from those of Palamidessi in the π-calculus
setting.

It was shown in [17] that pure public boxed MA can solve leader election on
fully-connected symmetric networks (so that in fact the open capability is
not needed). However it turns out that the electoral system presented there
is not suitable for our present purposes. The general form is n0[Q0] | · · · |
nk−1[Qk−1], and within each Qi we have sequences of capabilities which men-
tion all the nj (j < k). If we are to start from a ring, it would seem that
these capabilities must start off distributed round the ring, from where they
are then formed into sequences during the distribution phase. But it does not
seem possible to do this within pure public MA. This is because in order to
build up a sequence of capabilities involving names acquired from round the
ring we would have to be able to either (1) modify a process P into a process
M.P (where M is an in or out capability), or (2) take a process M.P and mod-
ify P to produce M.P ′. Neither of these options is possible with the reduction
rules (In), (Out) and (Open). (Option (2) is possible with communication, but
we are here considering pure public MA.) We therefore use a different electoral
system for the election phase, which is “flat”, in the sense that we do not have

16

sequences of capabilities which seem to have to come from different processes
in the original ring.

We start by defining and proving correct the new electoral system for the elec-
tion phase (Lemma 4.4). We then prove Theorem 4.3 by defining a symmetric
ring which evolves to this electoral system.

We write n(r)[P] as a shorthand for n[n[. . . n[P] . . .]] (r embedded ambients
named n, with P as the contents of the innermost ambient).

Lemma 4.4 Let k ≥ 1, and let

Ri
df
= ni[ω

(k)
i [out ni] |

∏

j 6=i

Rij]

where

Rij
df
= in nj | open nj.dmj[] | open dmj.(dmj[] | open ai

j) | ai
j[open ωi] .

Then R0 | · · · | Rk−1 is a symmetric electoral system.

Note that the slightly simpler

Rij
df
= in nj | open nj.dmj[] | open dmj.(dmj[] | open ωi)

would also be an electoral system. However it is not suitable, as opendmj.(dmj[] |
open ωi) is not flat (see discussion above).

PROOF of Lemma 4.4. The idea of the electoral system is that process j
loses to process i when ambient nj enters ambient ni. The last ambient left at
the top level is the winner. But of course it needs some mechanism to detect
that it has won. So once an ambient nj has lost it can be opened by its parent
ambient i and replaced by a “dummy” ambient dmj. By opening dmj, process
i can then open its ai

j ambient and thereby open one of the nested ωi ambients.
Once process i has opened dmj for all j 6= i, the nesting of ωi ambients can be
reduced to one, enabling an ωi ambient to leave ni and appear at the top level
to announce i as the winner. We need the dummy ambients, since if process
i opens nj, process i may not be the eventual winner. Thus a third process h
may also need to discover that j has already lost. It does this by opening dmj.

Recall that (i .. i) = {0, . . . , k−1}−{i} (Definition 4.1). We start by defining
an invariant which describes the form of the network at any point in any
computation, up until the state immediately before a winner is declared.

17

Invariant: the network is of the form

∏

i∈TN

ni[Ui]

where for each i ∈ TN ∪
⋃

j<k LNj:

Ui = Vi |
∏

j∈LNi

nj[Uj] |
∏

j∈LDi

(dmj[] | Vj)

and for each i < k:

Vi = ω
(wi)
i [out ni] |

∏

j∈INi
(in nj) |

∏

j∈ONi
open nj.dmj[]

|
∏

j∈ODi
open dmj.(dmj[] | open ai

j)

|
∏

j∈UAi−ODi
(open ai

j) |
∏

j∈UAi
(ai

j[open ωi]) | (open ωj)
wi−1−|UAi|

Here TN is the set of top-level ni ambients, LNi is the set of lower-level nj

ambients with parent ni, and LDi is the set of (lower-level) dmj ambients with
parent ni. We adopt the convention that the sets LNi, LDi are defined for all
i, being set to ∅ if ni has already been opened.

We use INi for the set of all j such that process i can still perform in nj; ONi

for the set of all j such that process i can still perform open nj; ODi for the
set of all j such that process i can still perform open dmj; and UAi for the set
of all j such that process i still has an unopened ai

j ambient.

We require these conditions as part of the invariant:

(1) Basic well-formedness:

INi ⊆ (i .. i) ONi ⊆ (i .. i) UAi ⊆ (i .. i) ODi ⊆ UAi wi ≥ 1+|UAi|

(2) The sets TN and LNi, LDi (all i < k) partition {0, . . . , k − 1}. This
expresses the fact that for every j < k the ambient nj (or its dummy
replacement dmj) occurs exactly once in the network, either at the top
level (not yet having lost), or at a lower level inside another nj.

(3) There must always be at least one process left at the top level: TN 6= ∅.
(4) For any i, j < k such that i 6= j, if i, j ∈ TN then j ∈ INi (and i ∈ INj).

This says that any top-level ni can enter any other top-level nj.
(5) For any i < k:

TN ∪
⋃

j<k

LNj ⊆ ONi ∪ {i}

This says that any process i always has the capability open nj for any
unopened nj (j 6= i).

(6) For any i < k:
(i .. i) − ODi ⊆

⋃

j<k

LDj

18

This says that if process i has performed open dmj then nj must have
already been opened and replaced by dmj.

This completes the description of the invariant.

Initially TN = {0, . . . , k − 1}, and for all i < k: wi = k, LNi = LDi = ∅ and
INi = ONi = ODi = UAi = (i .. i). It is straightforward to check that this
establishes the invariant.

Immediately before i is announced as the winner, we shall see that the network
will be of the following form:

(?)
ni[Vi |

∏

j 6=i(dmj[] | Vj)]

where Vi = ωi[out ni] |
∏

j∈INi
(in nj) |

∏

j∈ONi
open nj.dmj[]

with Vj satisfying the conditions of the invariant for j 6= i. Thus TN = {i},
LNi = ODi = UAi = ∅, LDi = (i .. i), wi = 1, and LNj = LDj = ∅ for all
j 6= i.

To complete the proof we show four things:

• The invariant is maintained when performing any reduction, apart from an
out ni reduction.

• A computation can always make progress if it has not reached form (?). Since
clearly all computations are finite, this will show that every computation
reaches (?), from where a winner can be announced in one step. Hence every
computation announces a winner.

• A computation can only produce a winner by reaching form (?). In particu-
lar, if an outni reduction occurs, then the network is of form (?) immediately
before the reduction occurs.

• Once a winner is announced, no further computation can produce a second
winner. Thus no computation can announce more than one winner.

We start by checking that the invariant is maintained by all reductions apart
from out ni. There are five possible types of reduction:

(in nj) Suppose that ambient ni enters ambient nj. We must have j ∈ INi or
j ∈ INh for some h ∈ LDi. In the first case the reduction entails INi :=
INi − {j}, while in the second case INh := INh − {j}. Furthermore, either
i, j ∈ TN or i, j ∈ LNh′ for some h′. In the first case we have TN :=
TN − {i} and in the second case LNh′ := LNh′ − {i}. In all cases we set
LNj := LNj ∪ {i}.

(open nj) Suppose that nj is opened inside ni. Then j ∈ LNi. The reduction

19

causes the following changes:

LNi := (LNi − {j}) ∪ LNj LNj := ∅

LDi := LDi ∪ {j} ∪ LDj LDj := ∅

(open dmj) Suppose that dmj is opened inside ni. Then j ∈ LDi. Either j ∈
ODi or j ∈ ODh for some h ∈ LDi (both could be true). After the reduction
LDi is unchanged and one of either ODi := ODi−{j} or ODh := ODh−{j}.

(open ai
j) Suppose that ai

j is opened. Then j ∈ UAi−ODi. After the reduction
we set UAi := UAi − {j}.

(open ωi) Suppose that ωi is opened. Then wi > 1+|UAi|. After the reduction
we set wi := wi − 1.

We omit the straightforward checks that for all five types of reduction the
invariant is maintained.

Next we show that a computation can always make progress towards form (?).

• First suppose that |TN | ≥ 2. Then one top-level ambient can enter an-
other by condition (4). Hence we can assume that |TN | ≤ 1, and so by
condition (3) we have TN = {i} for some i < k.

• Next suppose that LNi 6= ∅. Take j ∈ LNi. Then j 6= i by condition (2). So
j ∈ ONi by condition (5). Hence an open nj reduction can take place. We
can therefore assume that LNi = ∅. Hence LDi = (i .. i).

• Next suppose that ODi 6= ∅. Take j ∈ ODi. Then j 6= i by condition (1). So
j ∈ LDi and we can perform an open dmj reduction. Hence we may assume
that ODi = ∅.

• If UAi 6= ∅ then we can perform an open ai
j reduction. So we can assume

that UAi = ∅.
• Finally, if wi > 1 then we can perform an open ωi reduction. So we can

assume that wi = 1.

Putting all this together shows that we have reached form (?) as required.

Next we show that for a winner to be announced, form (?) must have been
reached. For i to win, an ωi ambient must leave ni and arrive at the top
level. This implies that ni still exists and is at the top level, so that i ∈ TN .
Also wi = 1, and so UAi = ∅ by condition (1). Hence ODi = ∅, also by
condition (1). But then

⋃

j<k LDj = (i .. i) by condition (6). This implies that
⋃

j<k LNj = ∅ and TN = {i} by condition (2). So all nj, j 6= i, have been
opened, and we must have LDi = (i .. i). Hence immediately before the ωi

ambient leaves ni the network must be of form (?).

Finally we show that once i has won, for j 6= i, process j cannot subsequently
be announced as a winner. Since we know that stage (?) has been reached, we

20

know that ambient nj has already been opened. So an outnj reduction cannot
take place, and so ambient ωj cannot emerge at the top level, and there is no
way in which j can win. 2

We now give the proof of Theorem 4.3, which we restate for convenience.

Theorem 4.3. For any k ≥ 1 there is a symmetric ring of size k which is an
electoral system in pure public MA.

PROOF. For k = 1, 2, 3, any network of size k is trivially a ring. So we can
use the electoral system of Lemma 4.4 directly. Therefore we can assume that
k ≥ 4.

Our aim is to define a symmetric ring of processes P0 | · · · | Pk−1 which is
guaranteed to reduce to the electoral system R0 | · · · | Rk−1 of Lemma 4.4.
Clearly P0 | · · · | Pk−1 will then satisfy the conditions of the theorem. The
reduction from P0 | · · · | Pk−1 to R0 | · · · | Rk−1 is what we earlier called the
distribution phase.

The idea is that for each j < k we have Pj =
∏

i<k P i
j . The subprocess P i

j is
designed to convey a process Qi

j round the ring from process j to process i.
Once all the Qi

j (j 6= i) arrive at process i to join Qi
i, interaction between the

Qi
j produces Ri as in Lemma 4.4 (roughly speaking).

We shall adopt the convention that names which are proper to the original
process Pi are subscripted with i. We also allow Pi to use names subscripted
with i + 1, allowing Pi to interact with Pi+1 and Pi−1. This helps to clarify
matters, and is a convenient way to ensure that P0 | · · · | Pk−1 forms a ring.
As far as possible we adopt a similar convention with processes, such as P i

j

(which is part of Pj and not Pi).

Recall the notation (i .. j), [i .. j] from Definition 4.1. We start by defining
processes Qij

h for j 6= i, h ∈ [j .. i], such that Rij (as in the statement of
Lemma 4.4) is got from

∏

h∈[j .. i] Q
ij
h . For j 6= i:

Qij
j

df
= in nj | open nj.dmj[] | open dmj.(dmj[] | open ai

j)

| ai
j[open bij

j+1.ack
ij
j+1[out ai

j]] | bij
j+1[open aij

j+1.in ai
j]

Qij
h

df
= aij

h [open bij
h+1.in bij

h] | bij
h+1[open aij

h+1.in aij
h] | open ack

ij
h .ackij

h+1[]

for h ∈ (j .. i)

Qij
i

df
= aij

i [in bij
i | open ωi]

21

We claim that for j 6= i:

∏

h∈[j .. i]

Qij
h →→ Rij | ack

ij
i []

The sequence of reductions is deterministic. Note that Qij
i must be present

before any reduction can start. The ack
ij
i acknowledgement ambient is used to

signal that the reductions have been completed. The idea is that the open ωi

capability (which must originate in Pi) is progressively moved (using sub-
scripts in descending order) from the aij

i ambient to the ai
j ambient where it is

required to reside for Rij. Once this is achieved the acknowledgement ack
ij
j+1

is progressively converted into ack
ij
i (using subscripts in ascending order), in

which form it is usable by process i.

For h 6= i let

Qi
h

df
=

∏

j∈[i+1 .. h]

Qij
h .

Also let

Qi
i

df
=

∏

j 6=i

Qij
i .

As stated above, the idea is that Qi
h is originally part of Ph, and for h 6= i we

pass Qi
h around the ring to process i.

Now

∏

h≤k

Qi
h = (

∏

h 6=i

∏

j∈[i+1 .. h]

Qij
h) |

∏

j 6=i

Qij
i =

∏

j 6=i

∏

h∈[j .. i]

Qij
h .

Hence

∏

h≤k

Qi
h →→

∏

j 6=i

(Rij | ack
ij
i []) .

There are k − 1 (one for each j 6= i) separate deterministic sequences of
reductions which are interleaved.

We now define the ring of processes Pi:

Pi
df
=

∏

j<k

P j
i

22

where P i
h is defined for each h < k as follows:

P i
i+1

df
= di

i+2[in ci
i+2 | ei

i+2[Q
i
i+1]]

P i
h

df
= ci

h[open di
h.in di

h+1.in ei
h+1]

| di
h+1[open f i

h.in ci
h+1 | ei

h+1[Q
i
h | open ci

h.open ei
h.f

i
h[out ei

h+1]]]

for h ∈ (i + 1 .. i − 1)

P i
i−1

df
= ci

i−1[open di
i−1.in di

i.in ei
i]

| di
i[open f i

i−1.in ri.in ni | ei
i[Q

i
i−1 | open ci

i−1.open ei
h.f

i
i−1[out ei

i]]]

P i
i

df
= ri[ni[ω

(k)
i [out ni] | Qi

i

| open di
i.open ei

i.open ack
i,i+1
iopen ack

i,i−1
i .si[out ni.out ri]]]

| open si.open ri

(Recall that we are assuming k ≥ 4, so that there is no clash between the
definitions of P i

i+1 and P i
i−1.) The idea is that Qi

i+1 is conveyed round the ring
from i + 1 to i, accumulating with it the processes Qi

i+2, . . . , Q
i
i−1 on its way.

Each Pi only uses names with subscripts i or i+1. Hence P0 | · · · | Pk−1 forms
a symmetric ring of size k.

Let Si
df
=

∏

h<k P i
h. Then

∏

i<k

Si =
∏

i<k

Pi

so that the Si just represent a rearrangement of the Pi. We claim that Si

evolves into Ri, which can then carry out the election. First

Si →→ di
i[in ri.in ni | ei

i[
∏

h 6=i Q
i
h]] | P i

i

→→ ri[ni[ω
(k)
i [out ni] |

∏

h≤k Qi
h

| open ack
i,i+1
iopen ack

i,i−1
i .si[out ni.out ri]]] (∗)

| open si.open ri

→→ ri[ni[ω
(k)
i [out ni] |

∏

j 6=i(Rij | ack
ij
i [])

| open ack
i,i+1
iopen ack

i,i−1
i .si[out ni.out ri]]] (†)

| open si.open ri

→→ ri[ni[ω
(k)
i [out ni] |

∏

j 6=i(Rij) | si[out ni.out ri]]] | open si.open ri (‡)

→→ ni[ω
(k)
i [out ni] |

∏

j 6=i Rij] = Ri

The sequence of reductions is deterministic up to stage (∗). From (∗) until
(‡) there are various possible interleavings as each Rij | ack

ij
i [] is formed

23

separately for j 6= i. Thus (†) just illustrates one possible intermediate stage.
We have that Si is guaranteed to evolve into Ri.

We must establish that each reduction sequence Si →→ Ri is independent of
the others. Let S ′

i be any state reached from Si up to immediately before Ri is
reached. Looking at the definition of Si, we see that all names are indexed with
i, apart from nj and dmj (used in the subsequent election phase) occurring in
Qij

j , which is part of Qi
h for various h. As long as these names are kept below

the top level, and in the case of in nj at least two levels down, then there
can be no interaction between any Q′

i and Q′
j. Now we made the definition of

the P i
h such that at each stage of the transmission of Qij

j round the ring from
j to i it is enclosed in at least two ambients. This continues to be the case
once Qij

j enters process i, until the very final reduction to reach Ri, when the
shell ambient ri is stripped off to expose ni. So within S ′

i, the names nj and
dmj (for j 6= i) are always at least two levels down, giving us the required
independence.

It is not strictly true that
∏

i<k Pi =
∏

i<k Si is guaranteed to evolve into
∏

i<k Ri. This is because the various Si will evolve into Ri at different rates
for different i < k. Thus the processes enter the election phase at different
times. This does not cause a problem, as Si is guaranteed to reach Ri and
the intermediate S ′

i states cannot take part in the election phase. The latter
follows from the fact that within the election phase the top-level ambients are
all nj for various j < k. These nj ambients cannot interact with any S ′

i, since
S ′

i keeps its in nj capabilities at least two levels down, and its ni ambient one
level down, until Ri is reached. 2

Remark 4.5 There is a standard encoding of MA into SA, as follows:

[[n[P]]]
df
= n[! in n | ! out n | open n | [[P]]]

(with [[−]] homomorphic on the remaining operators) [9].

Corollary 4.6 For any k ≥ 1 there is a symmetric ring of size k which is an
electoral system in pure public SA.

PROOF. With Pi (i < k) as in the proof of Theorem 4.3, we have that
[[P0]] | · · · | [[Pk−1]] (using the encoding of Remark 4.5) also forms a symmetric
ring which is an electoral system in pure public SA.

This could be derived from the general theory of Section 6, which defines
conditions on encodings under which rings which are electoral systems in the
source language are mapped into rings which are electoral systems in the target
language. 2

24

4.3 Boxed Ambients

We now consider Boxed Ambients. The solutions for MA and PAC depend on
open to pass capabilities around. In the case of BA where the open capability is
missing by design choice, one might wonder whether leader election is possible
in rings. However, perhaps surprisingly, it turns out that the parent-child
communication of BA enables the construction of symmetric rings forming
electoral systems.

Theorem 4.7 For any k ≥ 1, there is a symmetric ring of size k which is an
electoral system in public BA.

PROOF. We define a symmetric ring P0 | · · · | Pk−1 which is an electoral
system. As in the proof of Theorem 4.3, we follow Palamidessi’s method of
first distributing names round the ring to create a complete graph and then
running the election on it. Palamidessi shows how to distribute the names in
the (choice-free) asynchronous π-calculus [15, Proposition 5.1]. Her argument
is only stated for k = 4, but it generalises to arbitrary k. We shall give a vari-
ant of her construction, using the public choice-free synchronous π-calculus.
Suppose that process Pi has a channel ni initially known only to itself, and
can send messages to Pi−1 along channel xi. Then the names ni are passed
around the ring so that all processes share them and can use them in the
election phase. As Palamidessi points out, we have to be careful that for each
Pi the outputs occur in the same order as the inputs, so that names do not get
confused. We therefore allocate to each Pi a “synchroniser” name yi which en-
sures that each successive output is completed before the next one is enabled.
We elide the dummy names passed along yi.

For 0 ≤ i ≤ k, we let Pi
df
= P 0

i 〈xi, xi+1, yi, ni〉, where for 0 ≤ j ≤ k − 2 we let

P j
i (xi, xi+1, yi, ni, . . . , ni+j)

df
= x̄i〈ni+j〉.ȳi | xi+1(ni+j+1).yi.P

j+1
i 〈xi, xi+1, yi, ni, . . . , ni+j+1〉

and P k−1
i (xi, xi+1, yi, ni, . . . , ni−1)

df
= Qi〈ni, . . . , ni−1〉. Here Qi is a process

which has acquired all the ni and is ready to carry out the election phase.
Once Qi is reached, the names xi, xi+1 and yi are no longer required.

Since BA can encode choice-free synchronous π-calculus [5], we can carry out
the distribution phase in BA. We use the following translation of the π-calculus

25

input and synchronous output:

[[x(y).P]]
df
= (y, z)x.(z[] | [[P]])

[[x̄〈y〉.P]]
df
= x[〈y, z〉] | ()z.[[P]]

where z is fresh. This translation is adapted from [5], which used restriction.
Note that we do not need restriction, since in our particular setting there is
no harm in introducing fresh public names. Note also that only the (Input
n) rule of BA is needed to simulate π-calculus communication, and not the
remaining four communication rules of BA.

The algorithm for the election phase (i.e. the definition of the Qi for i < k) is
the same as the one presented in [17,20] for pure public boxed MA, which is of
course pure public BA. We recall the definition: for i < k, let Sk

i = {nj : j ∈
(i .. i)}, and let T k

i be the set of all strings of length k − 1 using the members
of Sk

i exactly once each. Given an element s of T k
i we denote by s− the string

which is s in reverse order. By in (s) we mean the sequence of innj capabilities
for each successive nj ∈ s (similarly for out). We set:

Qi
df
= ni[

∏

j∈(i .. i)

in nj |
∏

s∈T k

i

ωi[in (s).out (s−).out ni]]

2

5 Calculi without Electoral Systems for Rings

In this section, we show that the open capability is crucial for electing a
leader in symmetric rings. If fact, if the open capability is dropped, then
election in symmetric rings is not possible. We present below the proof for
MA (Theorem 5.3). The same techniques also establish a similar result for
PAC and SA (Theorem 5.21).

We start this section by restating Palamidessi’s result on the non-existence of
electoral systems for CCS.

Theorem 5.1 If Net is a CCS network which is symmetric and independent
with respect to a non-trivial well-balanced automorphism σ, then Net is not an
electoral system.

PROOF. This is essentially Theorem 6.1 of [15], recast in the present setting
of unlabelled rather than labelled transitions. 2

26

Remark 5.2 Theorem 6.1 of [15] is stated for π-calculus with internal mo-
bility (πI) [19], as well as CCS. This part of the result also carries over to the
present reduction semantics setting.

Recall that by boxed MA we mean MA without the open capability.

Theorem 5.3 For any composite k > 1, boxed MA does not have a symmetric
ring of size k which is an electoral system.

Since the proof is quite elaborate, we start by giving an overview of the
method.

Suppose that we have a symmetric ring of composite size k. Then by Lemma 3.12
there is a non-trivial, well-balanced automorphism σ with independent orbits
of size s ≥ 2. The overall idea is that whatever reduction Net makes, we can re-
tain symmetry and independence with respect to σ by propagating that move
round the orbit(s) concerned to complete a round of s reductions. If a process
ever declares itself a winner, then by symmetry all processes in the same orbit
can declare themselves winners on the same round. With orbits of size s ≥ 2
this means that there is a computation of Net which does not declare a unique
winner, so that Net is not an electoral system. The significance of Net being
independent with respect to σ is that if a reduction involves two processes
interacting then they must come from different orbits. This means that when
the reduction is propagated round the two orbits concerned we have restored
symmetry with respect to σ.

So far, the method we have outlined essentially follows Palamidessi’s proof for
CCS. However there are two key differences in the case of boxed MA, both of
which threaten the independence of the ring with respect to σ.

(1) As a result of ambients entering other ambients, processes can acquire
new names, and processes which were independent may no longer be
independent. For example, let

P1
df
= n1[in n2] P2

df
= n2[in n3] P3

df
= n3[in n4]

Then P1 and P3 are independent. However, after ambient n2 enters n3 we
have the following:

P1 = n1[in n2] P ′
2 = 0 P ′

3 = n3[in n4 | n2[]]

So P ′
3 has acquired the name n2, and P1 and P ′

3 are no longer independent.
Notice however that although n2 ∈ fn(P ′

3), P ′
3 does not really have access

to the ambient n2 or its possible contents. P ′
3 has not really acquired any

new capabilities.
The situation would be different if we allowed the open capability. As

a simple example, if P
df
= m[inn.openn′] and Q

df
= n[openm], then when

27

ambient m enters ambient n and is opened, we get Q′ = n[open n′].
Thus Q has acquired a new capability. We exploited this in the proof of
Theorem 4.3.

Our solution to this problem is to maintain a weaker form of indepen-
dence by labelling ambients and their contents. Initially all of process i
will be labelled with i (each i). By preserving these labels during the com-
putation we keep track of which ambients truly belong to a process, and
which ambients have entered from another process. “Foreign” ambients
can move around, but they can never transfer their capabilities to the
host process, since the open capability is not available. We will then be
able to show that processes from the same orbit cannot interact (though
they may share names).

(2) Since communication is anonymous, processes can interact even if they
do not share any names. As a result of the interaction they can come to

share names. For instance, let P
df
= 〈m〉 | m[] and Q

df
= (n).n[]. Then

fn(P) ∩ fn(Q) = ∅. However P | Q → P ′ | Q′, where P ′ = Q′ = m[], so
that P ′ and Q′ now share name m.

To get round this problem we exploit the fact that we have a ring,
which has a single-orbit automorphism τ . If a communication is possible,
then by symmetry all processes can participate both in input and output,
and so we can choose that they communicate with themselves, which
maintains symmetry and independence.

Thus item (2) is the reason that we use a stronger condition than Palamidessi.
We do not know whether Theorem 5.3 still holds if we follow Palamidessi in
assuming the existence of a non-trivial automorphism with independent orbits.
However, consider the following example:

P0
df
= (x0).x0[in y1] P1

df
= 〈y1〉

P2
df
= (x2).x2[in y3] P3

df
= 〈y3〉

Net
df
= P0 | P1 | P2 | P3

Then Net forms a ring which is symmetric with respect to the automorphism
which maps Pi to Pi+2 modulo k (all i). Also the orbits are independent.
However Net is clearly not a symmetric ring.

Suppose that P0 communicates with P3, producing P ′
0 = y3[in y1]. The next

reduction must be a communication between P1 and P2, producing P ′
2 =

y1[in y3]. The next move will be between P ′
0 and P ′

2 (which are no longer
independent), and will break symmetry. By slightly elaborating the example
we could then declare a unique winner. So if we want to preserve symmetry
we cannot allow P0 to communicate with P3 initially. However, in the basic
strategy of Palamidessi outlined above, any reduction involving processes in
different orbits can be chosen initially.

28

If, on the other hand, we start by allowing P0 and P1 to communicate, then we
get a computation which does not break symmetry. So Net is not an electoral
system, and therefore not a counterexample to Theorem 5.3 holding when we
assume a non-trivial automorphism with independent orbits.

Before proceeding to the proof of Theorem 5.3, we develop the theory of
labelled processes alluded to in item (1).

Definition 5.4 A labelled boxed MA process R is a boxed MA process P , with
each occurrence of a name in P (whether free or bound) given a label from
N, subject to the condition that if n is bound in P then it gets the same label
wherever it occurs in R.

In the remainder of this section, we let R,S, . . . range over labelled pro-
cesses, while P,Q, . . . range over standard processes. We write the labels as

superscripts. Thus a possible labelling of P
df
= n[] | νm (m[] | in m.n[]) is

R
df
= ni[] | νmj (mj[] | inmj.nk[]); the two occurrences of n can have different

labels, but the three occurrences of m must have the same label.

Alpha-conversion of bound names is allowed as usual, provided that there is
no capture of free names and provided that the new name has the same label
as the old name. Labelled processes inherit the usual notions of structural
congruence and reduction from standard processes. We give the key rules for
reduction:

(In) ni[in mj.R | R′] | mk[S] → mk[ni[R | R′] | S]

(Out) mk[ni[out mj.R | R′] | S] → ni[R | R′] | mk[S]

(Comm) 〈ni〉 | (mj).R → R{ni/m}

In rule (In), notice that the capability in mj can have a different label from
the ambient mk it is used to enter. This is so that labelling processes does
not inhibit any reduction available to the the underlying processes. A similar
remark applies to (Out). In (Comm), ni is substituted for all occurrences of
m; these must all have the label j by Definition 5.4. It can be checked that
the property in Definition 5.4 that all bound names have the same label is
preserved under structural congruence and reduction.

Given a labelled process R we can obtain a standard process by just omitting
all the labels. Call this process R†. The next lemma shows that labelled and
unlabelled processes have essentially the same reduction sequences.

Lemma 5.5 • Let R,S be labelled processes. If R → S then R† → S†.
• Let R be a labelled process and Q a process. If R† → Q then there is a

labelled process S such that R → S and S† ≡ Q. If R† →→ Q then there is
a labelled process S such that R →→ S and S† ≡ Q.

29

PROOF. Straightforward and omitted. The point of interest is that in the
unlabelled world we may be able to fold a process into a replication to get Q,
while in the labelled world we may not be able to, because of different labels.

As an example, let R
df
= ! mi[] | 〈mj〉 | (nl).nl[]. Then R† → Q = ! m[]. Also

R → S = ml[] | ! mi[], and S† ≡ Q. 2

Just as no new free names can be created during a computation, no new free
labelled names can be created:

Lemma 5.6 Let R,S be labelled processes. Suppose R → S and ni occurs free
in S. Then there is a free occurrence of ni in R.

PROOF. Straightforward and omitted. 2

We are interested in what we shall call coherent labelled processes. This means
roughly that:

(1) all occurrences of names (other than ambient names) at the top level
within an ambient have the same label as that ambient

(2) each top-level thread has a single label (a thread is a process which is an
output, or which starts with a capability or an input)

We give some examples. Suppose that i 6= j. Then the process in mi.in nj is
incoherent. So is ni[〈mj〉 | (ai).R], since within an ambient labelled with i all
names must be labelled with i unless they are contained in a subambient of
the main ambient. On the other hand, 〈mj〉 | (ni).ni[] is coherent, since we
allow the parallel composition of threads with different labels at the top level.

We shall show that coherence is preserved by all reductions, apart from top-
level communications where the labels are different on input and output. (Here
“top-level” means not inside an ambient.)

Before defining coherence we need an auxiliary predicate. We say that an
occurrence of a name in a process is ambient-unguarded if it does not occur
inside any ambient, or as the name of any ambient. The predicate ug(R, i)
says that all ambient-unguarded names in R are labelled with i.

Definition 5.7 The predicate ug(R, i) is defined by structural induction on

30

labelled processes:

ug(0, i) always ug(R | S, i) ⇔ ug(R, i) ∧ ug(S, i)

ug(νnj R, i) ⇔ ug(R, i) ug(in nj.R, i) ⇔ i = j ∧ ug(R, i)

ug(! R, i) ⇔ ug(R, i) ug(out nj.R, i) ⇔ i = j ∧ ug(R, i)

ug(nj[R], i) always ug((nj).R, i) ⇔ i = j ∧ ug(R, i)

ug(〈nj〉, i) ⇔ i = j

The interesting cases are ambient and restriction. An ambient serves as a base
case for the predicate, meaning that we do not look inside it. In the case
of restriction, since the scope of a restriction can be altered using structural
congruence, we do not insist that the binder νnj is labelled with i. However,
all other ambient-unguarded occurrences of a bound name will be labelled
with i.

Definition 5.8 We say that R is coherent if the predicate ch(R) holds. This
predicate is defined by structural induction on labelled processes:

ch(0) always ch(R | S) ⇔ ch(R) ∧ ch(S)

ch(νni R) ⇔ ch(R) ch(in ni.R) ⇔ ch(R) ∧ ug(R, i)

ch(! R) ⇔ ch(R) ch(out ni.R) ⇔ ch(R) ∧ ug(R, i)

ch(ni[R]) ⇔ ch(R) ∧ ug(R, i) ch((ni).R) ⇔ ch(R) ∧ ug(R, i)

ch(〈ni〉) always

Coherence is preserved by structural congruence:

Lemma 5.9 Let R,S be labelled processes with R ≡ S.

• For any label i, if ug(R, i) then ug(S, i).
• If ch(R) then ch(S).

PROOF. Straightforward and omitted. 2

Definition 5.10 Let the reduction relation →iosc on labelled processes be de-
fined by the usual rules for boxed MA (Section 2), but where the rule (Comm)
is replaced by the following rule:

(SameComm) 〈ni〉 | (mi).R → R{ni/mi}

31

This means that communication is only allowed when the input and output
labels match. (“iosc” abbreviates “in, out, same-label communication”.)

By a same-label substitution we mean a substitution on labelled names where a
labelled name is replaced by a labelled name with the same label. For example
σ = {mi/pk} is not a same-label substitution if i 6= k, whereas σ = {mk/pk}
is a same label substitution. Same-label substitutions preserve coherence:

Lemma 5.11 For all labelled processes S and same-label substitutions σ:

(1) for all i, if ug(S, i) then ug(σ(S), i).
(2) If ch(S) then ch(σ(S)).

PROOF. Both cases are proved by induction on S. 2

Coherence is preserved by →iosc reductions:

Lemma 5.12 Suppose R →iosc S.

(1) For any label i, if ug(R, i) then ug(S, i).
(2) If ch(R) then ch(S).

PROOF.

(1) By induction on →iosc.
(In) Suppose that

mj[in nk.R | R′] | nh[R′′] →iosc S

where S = nh[mj[R | R′] | R′′]. Then ug(S, i) follows straight from
Definition 5.7 (there is no need to assume that ug(mj[in nk.R | R′] |
nh[R′′], i) holds).

(Out) Assume that

nh[mj[out nk.R | R′] | R′′] →iosc S

and ug(nh[mj[out nk.R | R′] | R′′], i). Then

S = mj[R | R′] | nh[R′′]

and, observing that by Definition 5.7 ug(mj[R | R′], i) and ug(nh[R′′], i),
we conclude ug(S, i).

(SameComm) Assume that ug(〈nj〉 | (mj).R, i). Then ug(R, i) by Def-
inition 5.7 (also i = j, but we do not need this information). Then
ug(R{nj/mj}, i) follows from Lemma 5.11.

32

(Par) Assume that ug(R | S, i) and R | S →iosc R′ | S. By Definition 5.7,
ug(R, i) and ug(S, i). By induction ug(R′, i), and we conclude ug(R′ |
S, i).

(Res) The proof is similar to the previous case.
(Amb) Trivial, by Definition 5.7.
(Str) Assume that R →iosc S where R ≡ R′ →iosc S ′ ≡ S. Suppose

ug(R, i). By Lemma 5.9 we have ug(R′, i) and by induction, ug(S ′, i).
Again by Lemma 5.9 we have ug(S, i), as required.

(2) By induction on →iosc.
(In) Assume that

mi[in ni.R | R′] | nh[R′′] →iosc S.

and that ch(mi[in ni.R | R′] | nh[R′′]) holds. Thus:

ch(mi[in ni.R | R′]) | nh[R′′] iff ch(mi[in ni.R | R′]) ∧ ch(nh[R′′])

iff ch(in ni.R) ∧ ch(R′)

∧ ug(in ni.R, i) ∧ ug(R′, i)

∧ ch(R′′) ∧ ug(R′′, h)

By the reduction, S = nh[mi[R | R′] | R′′]. Now we are going to
show that S is coherent. Since ch(in ni.R), we have ch(R) by Defini-
tion 5.8. Since ug(inni.R, i), we have ug(R, i) by Definition 5.7. We de-
duce ch(mi[R | R′]) and ug(mi[R | R′], h). Since ch(R′′) and ug(R′′, h)
hold, we conclude ch(mi[R | R′] | R′′) and ug(mi[R | R′] | R′′, h), from
which we conclude by Definition 5.8 that ch(S).

(Out) Assume that nh[mi[out ni.R | R′] | R′′] is coherent and

nh[mi[out ni.R | R′] | R′′] →iosc S .

Thus:

ch(nh[mi[out ni.R | R′] | R′′]) iff ch(mi[out ni.R | R′] | R′′)

∧ ug(mi[out ni.R | R′] | R′′, h)

iff ch(out ni.R) ∧ ch(R′)

∧ ug(out ni.R, i) ∧ ug(R′, i)

∧ ch(R′′) ∧ ug(R′′, h)

Now S = mi[R | R′] | nh[R′′]. Since ch(out ni.R), we have ch(R)
by Definition 5.8. Similarly, since ug(out ni.R,), we have ug(R, i) by
Definition 5.7. Therefore ch(R | R′) and ug(R | R′, i), from which we
deduce that ch(mi[R | R′]). Moreover, it is easy to see from above that
ch(nh[R′′]); thus from Definition 5.8 we conclude ch(S).

33

(SameComm) Assume that 〈ni〉 | (yi).R is coherent and 〈ni〉 | (yi).R →iosc

S. We show that S is coherent.

ch(〈ni〉 | (yi).R) iff ch(〈ni〉) ∧ ch((yi).R)

iff ch(R) ∧ ug(R, i)

But since S = R{ni/yi} and {ni/yi} is a same-label substitution, by
Lemma 5.11(2) we conclude ch(S).

(Par) Assume that ch(S | T) and S | T →iosc S ′ | T where S →iosc S ′.
Then by Definition 5.8 ch(S) and ch(T) and by induction ch(S ′). By
Definition 5.8 we deduce ch(S ′ | T).

(Res) Assume that ch(νni S) holds and νni S →iosc νni S ′ where S →iosc

S ′. Then by Definition 5.8 we have ch(S). By induction ch(S ′) holds,
and by Definition 5.7 we have ch(νni S ′).

(Amb) Assume that ch(ni[R]) and ni[R] →iosc ni[R′] with R →iosc R′.
By Definition 5.8 we deduce ch(R) and ug(R, i). By induction ch(R′)
and from part (1) of this lemma we deduce ug(R′, i), implying that
ch(ni[R′]).

(Str) This follows from induction and Lemma 5.9.

2

We define three further reduction relations:

Definition 5.13 • For both standard processes and labelled processes, the re-
duction relation →tc is defined by the rules (Comm), (Par), (Res) and (Str)
(Section 2). We refer to these reductions as top-level communications. No-
tice that we omit rule (Amb). (“tc” abbreviates “top-level communication”.)

• For labelled processes only, the reduction relation →stc is defined by the
rules (SameComm), (Par), (Res) and (Str). (“stc” abbreviates “same-label
top-level communication”.)

• For both standard processes and labelled processes, the reduction relation
→iolc is defined by the usual rules for boxed MA, but where any uses of
(Comm) must be lower-level, i.e. must be combined with a use of (Amb).
(“iolc” abbreviates “in, out, lower-level communication”.)

Clearly, if P → Q then at least one of P →tc Q or P →iolc Q, and similarly
for labelled processes.

Coherence is preserved by →stc and →iolc-reductions:

Lemma 5.14 Let R, S be labelled processes and let ch(R). Suppose R →stc S
or R →iolc S. Then R →iosc S, so that by Lemma 5.12 we have ch(S).

34

PROOF. Any →stc reduction is an →iosc-reduction by definition. Any →iolc

reduction on a coherent process is an →iosc-reduction, since coherence ensures
that any lower-level (Comm) redex must have the same labels in both input
and output. 2

Lemma 5.15 Suppose that P 6→tc and P → Q. Then Q 6→tc. Similarly for
labelled processes, if R 6→tc and R → S then S 6→tc.

The idea of the lemma is that (In) or (Out) reductions and lower-level com-
munications can never create (Comm) redexes at the top level. Reductions
inside an ambient cannot produce anything new at the top level. A top-level
(In) reduction removes an ambient from the top-level, while a top-level (Out)
reduction out can produce only a new ambient at the top level, which cannot
be part of a top-level (Comm) redex. Notice that the lemma would not hold
if (Open) reductions were allowed.

When attempting to prove Lemma 5.15 by induction on the derivation of
Q →tc, we come up against a problem with the rule (Par), since it is not in
general the case that P1 | P2 →tc implies P1 →tc or P2 →tc. Being able to
perform a →tc-reduction entails having both input and output present. Our
strategy for proving Lemma 5.15 is to prove versions for input and output
separately (Lemma 5.17 below).

We define predicates which express whether a process has a top-level un-
guarded input or output. By “unguarded” we here mean unguarded by a
capability or an input.

Definition 5.16 (Top-level unguarded input and output) Let predicates P ↓(),
P ↓〈 〉 be defined by induction on boxed MA processes P to be the least relations
satisfying:

• (n).P ↓(); if P ↓() then νn P ↓() and ! P ↓(); and if P ↓() or Q ↓() then
(P | Q) ↓().

• 〈n〉 ↓〈 〉; if P ↓〈 〉 then νn P ↓〈 〉 and ! P ↓〈 〉; and if P ↓〈 〉 or Q ↓〈 〉 then
(P | Q) ↓〈 〉.

Similarly for labelled processes.

Lemma 5.17 (1) If P ≡ Q then P ↓() iff Q ↓().
(2) If P ≡ Q then P ↓〈 〉 iff Q ↓〈 〉.
(3) If P → Q and Q ↓() then P ↓().
(4) If P → Q and Q ↓〈 〉 then P ↓〈 〉.

Similarly for labelled processes.

35

PROOF. Straightforward and omitted. 2

Lemma 5.18 (1) P ↓() iff P ≡ ν ~m ((n).P ′ | P ′′) for some ~m, n, P ′, P ′′

(2) P ↓〈 〉 iff P ≡ ν ~m (〈n〉 | P ′) for some ~m, n, P ′

Similarly for labelled processes.

PROOF. Straightforward and omitted. 2

Lemma 5.19 Let P be a process. Then P →tc iff both P ↓() and P ↓〈 〉.

Similarly for labelled processes.

PROOF. (⇒) By induction on the derivation of P →tc.

(⇐) By structural induction on P . The only non-trivial case is parallel com-
position. Suppose that (P | Q) ↓() and (P | Q) ↓〈 〉. Then P ↓() or Q ↓().
Also P ↓〈 〉 or Q ↓〈 〉. If P ↓() and P ↓〈 〉 then we use the induction hypothe-
sis. Similarly if Q ↓() and Q ↓〈 〉. So suppose that P ↓() and Q ↓〈 〉. Then by
Lemma 5.18 we have P ≡ ν ~m ((m).P ′ | P ′′) and Q ≡ ν~n (〈n〉 | Q′). It follows
that P | Q →tc. Similarly if P ↓〈 〉 and Q ↓().

Similarly for labelled processes. 2

We now have enough to prove Lemma 5.15:

PROOF of Lemma 5.15. We give the proof for standard processes. The
proof for labelled processes is similar.

Suppose that P 6→tc and P → Q. Suppose for a contradiction that Q →tc.
Then Q ↓() and Q ↓〈 〉 by Lemma 5.19. So P ↓() and P ↓〈 〉 by Lemma 5.17.
Hence P →tc, again by Lemma 5.19. Contradiction. 2

Now we can give the proof of Theorem 5.3.

PROOF of Theorem 5.3. Let k = rs, with r, s ≥ 2. Suppose that Net′
df
=

νA (P0 | · · · | Pk−1) is a symmetric ring in boxed MA. We must show that Net′

is not an electoral system. First we observe that we can eliminate the globally-

bound names A. Let Net
df
= P0 | · · · | Pk−1. Then Net is also a symmetric ring

36

of size k. If Net′ is an electoral system then so is Net. Hence it is enough to
show that Net is not an electoral system.

By Definition 3.9, there is a single-orbit automorphism τ such that Net is
symmetric with respect to τ , and such that for all i, j < k, if fn(Pi)∩fn(Pj) 6= ∅

then one of i = j, τ̂(i) = j or τ̂(j) = i must hold. Let σ
df
= τ r. Then, as in

the proof of Lemma 3.12, σ is non-trivial, well-balanced and has independent
orbits (of size s). Also Net is symmetric with respect to σ.

We start by labelling every name (whether free or bound) occurring in Pi with
i, to create the coherent labelled process Ri. Our aim is to build a maximal

computation of R
df
= R0 | · · · | Rk−1 which preserves symmetry with respect to

σ. When the labels are removed (Lemma 5.5) this yields a maximal compu-
tation of Net which preserves symmetry with respect to σ. This computation
cannot declare a unique winner, and so Net is not an electoral system.

An arbitrary state of the labelled network during the computation will be of

the form R′ = ν ~nl (R′
0 | · · ·R

′
k−1), where restrictions are brought to the outside

as much as possible. We ensure that R′ is coherent by only ever using →iosc-
reductions (Lemma 5.12). The labelling tells us which portions of R′ belong
to which R′

i: any top-level threads or ambients whose names are labelled with
i are assigned to Ri. This is well-defined by coherence of R′.

The first phase is to exhaust all possible →tc-reductions. During this phase
R′ remains symmetric with respect to the single-orbit automorphism τ . Sup-
pose that R′ →tc. Then some R′

i must have a top-level input, and some R′
j

must have a top-level output. By symmetry all R′
is must have top-level in-

puts and outputs. But then R′
i must be of the form 〈ni〉 | (mi).Si | · · · ,

and R′
i →stc Si{n

i/m} | · · · . By symmetry, we cause each R′
i to perform a

same-label communication within itself. These k reductions preserve coher-
ence (Lemma 5.14) and symmetry with respect to τ (and also σ).

We continue this process until R′ cannot perform any more →tc-reductions.
(Of course, the process may carry on for ever, but this gives us the desired
symmetric maximal computation.) By Lemma 5.15, any further reductions
must be →iolc-reductions, which preserve coherence by Lemma 5.14.

Note that using the more refined τ -symmetry in the first phase allowed us
to keep all top-level communications internal to individual R′

is. We now need
to use σ-symmetry to deal with (In) reductions, which do not preserve τ -
symmetry. Any further communications will be lower-level, and therefore within
a single process.

In the second phase, we preserve symmetry with respect to σ, by propagating
each reduction around the orbit(s) of the processes concerned.

37

We consider each type of →iolc-reduction: If it comes from a lower-level com-
munication, then it only involves one R′

i: R′
i →iolc R′′

i . We restore symmetry
by performing σ(R′

i) →iolc σ(R′′
i), . . . round the σ-orbit of i.

If the reduction comes from the (In) rule, then either a single R′
i is involved, in

which case we proceed as in the first case, or else R′
i interacts with R′

j (i 6= j).
In this case R′

i is of the form ni[in mi.S | S ′] | S ′′, and R′
j is of the form

mj[S ′′′] | S ′′′′. After the reduction we have R′′
i = S ′′ and R′′

j = mj[ni[S | S ′] |
S ′′′] | S ′′′′. We claim that i and j are in different orbits. This is because mi and
mj must both be free in R′ (if they were bound then they would have the same
label), and so must both occur free in the original R (Lemma 5.6). But this
means that m ∈ fn(Pi) ∩ fn(Pj), and so i and j are indeed in different orbits
by the independence of Net with respect to σ. We now restore σ-symmetry by
performing σ(R′

i | R′
j) →iolc σ(R′′

i | R′′
j), . . . round the σ-orbits of i and j.

If the reduction comes from a lower-level application of the (Out) rule, then a
single R′

i is involved and we proceed as in the first case. If the reduction comes
from a top-level application of the (Out) rule, then a new top-level ambient
emerges from a single R′

i:

R′
i = mi[nj[out mj.S | S ′] | S ′′] | S ′′′ →iolc mi[S ′′] | S ′′′ | nj[S | S ′]

If i = j then we set R′′
i = mi[S ′′] | S ′′′ | nj[S | S ′]. As in the first case we

restore symmetry by performing σ(R′
i) →iolc σ(R′′

i), . . . round the σ-orbit of i.
If i 6= j then, as in the (In) case, i and j are in different orbits. The new top-
level ambient will become part of the new jth process: R′′

i = mi[S ′′] | S ′′′ and
R′′

j = R′
j | nj[S | S ′]. We restore symmetry by performing σ(R′

i | R′
j) →iolc

σ(R′′
i | R′′

j), . . . round the σ-orbits of i and j.

2

Remark 5.20 All three capabilities (in, out and open) are essential to solving
the leader election problem in symmetric rings of MA processes. The necessity
for the open capability comes from Theorem 5.3 above. The need for the in
capability has been shown elsewhere [17,20]: leader election cannot be solved
on arbitrary symmetric networks of size ≥ 2 in MA without the in capability.
A similar result in fact holds for the out capability.

As stated at the start of this section, Theorem 5.3 also holds for PAC and SA.
Let boxed PAC (resp. SA) denote PAC (resp. SA) without the open capability.

Theorem 5.21 For any composite k > 1, boxed PAC does not have a sym-
metric ring of size k which is an electoral system. Similarly for boxed SA.

PROOF. The proof is similar to that of Theorem 5.3. We omit the details.

38

Note that the result for boxed SA is in fact a strengthening of Theorem 5.3,
since there is an encoding from boxed MA into boxed SA—see Remark 6.6
below. 2

Remark 5.22 An alternative form of the (CoOut) rule of SA has been con-
sidered in [11]:

m[n[out m.P | P ′] | Q] | out m.Q′ → n[P | P ′] | m[Q] | Q′

If we adopted this formulation then the analogue of Lemma 5.15 would no
longer hold, since the continuation Q′ might give a new top-level (Comm)
redex.

6 Separation Results

We use the results of Sections 4 and 5 to show that certain languages cannot
be encoded in others.

We recall the following from [17] (building on [15]):

Definition 6.1 Let L, L′ be process languages. An encoding [[−]] : L → L′ is

(1) distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P]] | [[Q]];
(2) permutation-preserving if for any permutation of names σ in L there

exists a permutation θ in L′ such that [[σ(P)]] = θ([[P]]) and the per-
mutations are compatible on observables, in that for all i ∈ N we have
σ(ωi) = θ(ωi);

(3) observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal com-

putation C′ of [[P]] such that Obs(C) = Obs(C′)
(b) for every maximal computation C of [[P]] there exists a maximal com-

putation C′ of P such that Obs(C) = Obs(C′)

An encoding which preserves distribution and permutation is uniform.

Unlike in [17], we are considering encodings which map rings to rings. We
therefore need a further property:

Definition 6.2 An encoding is independence-preserving if for any processes
P , Q, if P and Q are independent then [[P]] and [[Q]] are also independent.

Palamidessi says that such an encoding “does not increase the level of connec-
tivity of the network”. Not all encodings preserve independence. For instance,
Zimmer’s [21] encoding of the synchronous π-calculus without choice into pure

39

Safe Ambients [9] introduces a new global ambient whose name is shared by
all processes.

Lemma 6.3 Suppose [[−]] : L → L′ is a uniform, observation-respecting and
independence-preserving encoding. Suppose that Net is a symmetric ring of
size k ≥ 1 with no globally-bound names which is an electoral system. Then
[[Net]] is also a symmetric ring of size k with no globally-bound names which
is an electoral system.

PROOF. Assume that the network Net = P0 | P1 | . . . | Pk−1 of size k is
a symmetric ring and an electoral system in L and that [[−]] : L → L′ is
a uniform observation-respecting and independence-preserving encoding. We
are going to show that [[P0 | P1 | . . . | Pk−1]] is a symmetric ring and electoral
system, i.e. every maximal computation yields one winner only. Since [[−]] is
distribution-preserving (Definition 6.1(1)), it preserves the size of the network:

[[P0 | P1 | . . . | Pk−1]] = [[P0]] | [[P1]] | . . . | [[Pk−1]]

Let Net be symmetric with respect to σ with one orbit only, satisfying the ring
property (Definition 3.9) that for all i, j < k, if fn(Pi)∩ fn(Pj) 6= ∅ then one of
i = j, σ̂(i) = j or σ̂(j) = i must hold. By symmetry for all i (0 ≤ i ≤ k−1) we
have σ(Pi) = Pσ̂(i) and since [[−]] is permutation-preserving (Definition 6.1(2)),

there exists a θ such that θ([[Pi]]) = [[σ(Pi)]] and θ̂(i) = σ̂(i) for all i ∈ N.

θ([[Pi]]) = [[σ(Pi)]]

= [[Pσ̂(i)]] by symmetry

= [[Pθ̂(i)]] since θ̂(i) = σ̂(i)

Hence [[Net]] is symmetric with respect to θ (with one orbit only).

Now we shall see that [[Net]] is a ring. Assume that i, j < k are such that
fn([[Pi]]) ∩ fn([[Pj]]) 6= ∅. Then since the encoding is independence-preserving
(Definition 6.2) we have fn(Pi) ∩ fn(Pj) 6= ∅. Then we have one of i = j,

σ̂(i) = j or σ̂(j) = i. But then one of i = j, θ̂(i) = j or θ̂(j) = i must hold,
showing that [[Net]] is a ring.

It remains to show that [[Net]] is an electoral system. Consider a maximal
computation C′ of [[Net]]. By condition 3(3b) of Definition 6.1 there must exist
a computation C of Net such that Obs(C) = Obs(C′). Now since Net is an
electoral system, every maximal computation exhibits one winner only. Hence
Obs(C) = {ωj} for some j such that 0 ≤ j ≤ k − 1, which implies that
Obs(C′) = {ωj}. Since this is true for every maximal computation C′ of [[Net]],
the lemma is proven. 2

40

Theorem 6.4 There is no uniform, observation-respecting and independence-
preserving encoding from pure public MA into CCS (with value passing).

PROOF. Suppose that such an encoding exists. Then by Theorem 4.3 and
Lemma 6.3, for any k ≥ 1 we would have a symmetric ring of size k in CCS
which is an electoral system. But by Lemma 3.12 and Theorem 5.1, for any
composite k, CCS does not have a symmetric ring of k processes which is an
electoral system. 2

Theorem 6.5 (1) There is no uniform, observation-respecting and independence-
preserving encoding from pure public MA into boxed MA.

(2) There is no uniform, observation-respecting and independence-preserving
encoding from pure public PAC into boxed PAC.

PROOF. The existence of symmetric rings of all sizes which are electoral
systems in pure public MA and pure public PAC was shown in Theorems 4.3
and 4.2. The non-existence of symmetric rings of composite size which are
electoral systems in boxed MA and boxed PAC was shown in Theorems 5.3
and 5.21. Hence the results follow from Lemma 6.3. 2

It follows from Theorem 6.5 that the open capability of MA does indeed add
expressive power not present in the other operators of MA.

Remark 6.6 In fact part (1) of Theorem 6.5 can be strengthened to state
that there is no uniform, observation-respecting and independence-preserving
encoding from pure public MA into boxed SA. This is using Theorem 5.21 for
boxed SA. We say “strengthened”, because there is an encoding from boxed MA
into boxed SA, namely

[[n[P]]]
df
= n[! in n | ! out n | [[P]]]

(with [[−]] homomorphic on the remaining operators) (cf. Remark 4.5). This
encoding is uniform, observation-respecting and independence-preserving. Also
the uniform, observation-respecting and independence-preserving conditions
are preserved by composition of encodings.

Theorem 6.7 There is no uniform, observation-respecting and independence-
preserving encoding from BA into boxed MA (and therefore into pure BA).

PROOF. From Theorem 4.7, Theorem 5.3 and Lemma 6.3. 2

41

pure public SA
Corollary 4.6

Remark 4.5

pure public MA
Theorem 4.3

pure public PAC
Theorem 4.2

public BA
Theorem 4.7

πm

[15, Prop. 5.1]

boxed SA
Theorem 5.21

Remark 6.6

boxed MA
Theorem 5.3

boxed PAC
Theorem 5.21

CCS
[15, Prop. 6.1],
Theorem 5.1

πI

[15, Prop. 6.1],
Remark 5.2

Fig. 2. Summary of results on leader election and encodings

It follows from Theorem 6.7 that the parent-child communication in BA does
indeed add expressive power (without it, BA would be essentially boxed MA).
Just like for part (1) of Theorem 6.5, we can strengthen Theorem 6.7 by
replacing boxed MA by boxed SA.

In Proposition 5.1 of [15] Palamidessi showed how π-calculus with mixed
choice, denoted πm, can carry out an election on a ring of size four (which
clearly generalises to larger rings). It is straightforward to adapt this to our
reduction semantics setting. As we saw in the proof of Theorem 4.7 for BA,
there are two phases. The first phase (passing names round the ring) can be
carried out without choice. We adapted this for BA. The subsequent election
phase makes essential use of mixed choice; in fact it can be carried out in
CCS. Together with the negative result for π-calculus with internal mobility
πI (Remark 5.2) this yielded the result that πI is somehow weaker than πm.
This also carries over to the present setting. Furthermore:

Theorem 6.8 There is no uniform, observation-respecting and independence-
preserving encoding from πm into boxed MA.

We summarise our results in a diagram (Figure 2). All calculi above the line
have symmetric rings of every size which are electoral systems. Those calculi
below the line do not have symmetric rings of composite size which are elec-
toral systems. The arrows represent encodings which are uniform, observation-
respecting and independence-preserving. By Lemma 6.3 there is no arrow go-
ing from any calculus above the line to any calculus below the line, which
yields the separation results in this section, together with a number of other
results.

42

7 Conclusions

In this paper we have shown how to elect a leader in a symmetric ring of
processes in MA and its variants. We have seen that it can be done in pure
public MA for a ring of any size, so that communication is unnecessary. On
the other hand, the open capability is essential, since the election cannot be
carried out in boxed MA (in fact the in and out capabilities are also essential—
cf. [17]). Thus, simulating link-passing requires the open capability, but does
not require the (anonymous) communication of MA. This shows that pure
MA cannot be encoded either into CCS or into pure BA. In the case of BA,
however, (parent-child) communication is necessary in order to elect a leader
in rings, since the open capability is not present.

While our results shed light on the expressive power provided by the open

capability, in the presence of the latter, leader election problems in both rings
and fully connected graphs do not give any separation results between MA
with communication primitives and pure MA. In this framework one could
regard them as equal, since, when it comes to passing names around, pure
MA can do just as well as the full calculus.

It is worth spending a few words on Theorem 5.3, which says that MA without
the open capability (boxed MA) cannot solve the election problem on rings
with a composite number of processes. If the number of processes is prime, then
any well-balanced automorphism different from the identity has one orbit only,
and our proof methods would not apply. This would be true for Palamidessi’s
work as well. Thus it is an open question as to whether election is impossible
in rings of any prime size greater than three.

We also saw that boxed SA cannot solve the election problem on rings with
a composite number of processes (Theorem 5.21). In connection with this,
and recalling that Zimmer has encoded the synchronous choice-free π-calculus
into pure SA, we conjecture that for boxed SA such an encoding would not be
possible, even in the presence of communication. For if it were possible, then
it would seem that boxed SA could perform election on rings, much as shown
for BA (Theorem 4.7).

A challenge for the future is to find suitable conditions that differentiate those
calculi that admit a solution to the leader election problem without having to
know the size of the ring (such as PAC) from those that do need to know the
size.

43

Acknowledgements

We wish to thank Catuscia Palamidessi for helpful discussions and the anony-
mous journal and Express 2004 referees for their helpful suggestions for im-
provement. M.G. Vigliotti was supported by the EPSRC grant PROFORMA
GR/545140.

References

[1] D. Angluin, Local and global properties in networks of processors, in:
Proceedings of the 12th Annual ACM Symposium on Theory of Computing,
1980, pp. 82–93.

[2] J. Bergstra, J. Klop, Process algebra for synchronous communication,
Information and Control 60 (1-3) (1984) 109–137.

[3] I. Boneva, J.-M. Talbot, When ambients cannot be opened, Theoretical
Computer Science 333 (1-2) (2005) 127–169.

[4] L. Bougé, On the existence of symmetric algorithms to find leaders in networks
of communicating sequential processes, Acta Informatica 25 (1988) 179–201.

[5] M. Bugliesi, G. Castagna, S. Crafa, Access control for mobile agents: the
calculus of Boxed Ambients, ACM Transactions on Programming Languages
and Systems 26 (1) (2004) 57–124.

[6] L. Cardelli, A. Gordon, Mobile ambients, Theoretical Computer Science 240 (1)
(2000) 177–213.

[7] X. Guan, Y. Yang, J. You, Making ambients more robust, in: Proceedings of
International Conference on Software: Theory and Practice, Beijing, China,
August 2000, 2000, pp. 377–384.

[8] C. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[9] F. Levi, D. Sangiorgi, Mobile safe ambients, ACM Transactions on
Programming Languages and Systems 25 (1) (2003) 1–69.

[10] S. Maffeis, I. Phillips, On the computational strength of pure ambient calculi,
Theoretical Computer Science 330 (3) (2005) 501–551.

[11] M. Merro, M. Hennessy, A bisimulation-based semantic theory of Safe
Ambients, ACM Transactions on Programming Languages and Systems, in
press 2005.

[12] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[13] R. Milner, Communicating and Mobile Systems: the π-calculus, Cambridge
University Press, 1999.

44

[14] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Information
and Computation 100 (1992) 1–77.

[15] C. Palamidessi, Comparing the expressive power of the synchronous and
asynchronous π-calculus, Mathematical Structures in Computer Science 13 (5)
(2003) 685–719.

[16] I. Phillips, M. Vigliotti, On reduction semantics for the push and pull ambient
calculus, in: Proceedings of IFIP International Conference on Theoretical
Computer Science (TCS 2002), IFIP 17th World Computer Congress, August
2002, Montreal, Kluwer, 2002, pp. 550–562.

[17] I. Phillips, M. Vigliotti, Electoral systems in ambient calculi, in: Proceedings
of 7th International Conference on Foundations of Software Science and
Computation Structures, FoSSaCS 2004, Vol. 2987 of Lecture Notes in
Computer Science, Springer-Verlag, 2004, pp. 408–422.

[18] I. Phillips, M. Vigliotti, Leader election in rings of ambient processes, in:
Proceedings of Express: Workshop on Expressiveness in Concurrency, London,
August 2004, Vol. 128.2 of Electronic Notes in Theoretical Computer Science,
Elsevier, 2005, pp. 185–199.

[19] D. Sangiorgi, Pi-calculus, internal mobility and agent-passing calculi,
Theoretical Computer Science 167 (1-2) (1996) 235–274.

[20] M. Vigliotti, Reduction semantics for ambient calculi, Ph.D. thesis, Imperial
College, University of London (2004).

[21] P. Zimmer, On the expressiveness of pure safe ambients, Mathematical
Structures in Computer Science 13 (5) (2003) 721–770.

45

