Stable and timed formats for process algebra

lain Phillips
Department of Computing, Imperial College
180 Queen's Gate, London SW7 2BZ
iccp@doc.ic.ac.uk

and

Irek Ulidowski

School of Computing, University of North London
Eden Grove, London N7 8DB
ex13ulidowi@clstr.unl.ac.uk

Abstract

We propose aformat of transition rules (stable format) for processes which extends De
Simone'sin that it admits process operators which recognise stability, that is, the inability to
perform autonomous actions. The format uses negative premises, but differently from
previously proposed formats. We show that refusal testing is the trace congruence generated
by the format. We identify a subformat (timed format) which serves as aformat for discrete-

timed process algebrain the style of Hennessy and Regan's TPL.

1. Introduction

It iswell-known how to use syntax-directed rules to associate |abelled transition systems with
termsin process agebra. Thisis often called structured operational semantics (SOS) [Plo81],
and was pioneered by Milner for CCS [Mil80, Mil89]. The meaning of each operator on
processesis given by transition rules. We can classify operators according to the form these

may take. We say that an operator isin acertain format if its rules belong to that format.

Formats were first studied by De Simone [DeS85]. Further work, including negative
transitions, was carried out in [BIM88], [GrV92], [Gro90], [BoG91], [ABV92], [vaG93].
Formats with silent actions have been studied by Bloom [BI090], Vaandrager [Vaa9l] and the
second author [UIi92], [UIi93], [Uli94].

11/7/97 1

It is customary to measure the power of aformat by identifying the congruence associated
with it. Formats have variously yielded ready bismulation [BIM88], strong bisimulation
[GrV92], testing equivalence [Vaa9l], copy + refusal testing equivalence [U1i92]. Our first
aim in this paper isto propose aformat (stable format) which has the strength of refusal testing
[Phi87]. Information about actions being refused has been incorporated via negative
hypotheses into a number of formats, but they have yielded congruences which are finer than
refusal equivalence. It waswrongly claimed in [Uli93] that the RSOS format was suitable—
we are grateful to Rob van Glabbeek for showing us a counterexample. It therefore seems

clear that we must be more restrictive in our use of negative transitions.

Silent actions, generally denoted by t asin CCS, are often treated as a generalization of

work which has previously been carried out for the case where al actions are visible. In the
present work t plays an essential role. The only negative information we allow is stability, in
other words the inability to perform autonomous actions. An autonomous action is one which
can be completed without the participation of the environment. We shall adopt the usual view,
astypified by CCS, thatt isthe only autonomous action. The upshot isthat we alow negative

transitions, but only if they arelabelled by t.

Having considered stable format, we specialize it to obtain aformat for discrete-timed
processes in the style of Hennessy and Regan [HeR91]. The special action s marksthetick of
agloba clock. All active processes must participatein s for it to happen. We do not know of

any previously proposed format for timed processes.
The plan of the paper isasfollows. After some preliminariesin Section 2, Section 3
considers stable format, and Section 4 considers timed format.

2. Preliminaries

2.1. Transition systems and refusal testing

Let A be some set of actions containing adistinguished element t. A (labelled) transition
system over A isatriple (P,® ,p), where Pisaset of states, the transition relation ® isa

relationon P A" P, and pl Pisadistinguished start state. We refer loosely to (P,® ,p) as p.

11/7/97 2

Supposethat wi A* and g P. We define p q in the obviousway. Let TS be the class of

al transition systemsover A. A transition system p is strongly convergent if it isimpossible to

perform an infinite sequence of t-transitions from any state. It isfinite-branching if for all
states there are only finitely many successor states. It is sort-finiteif thereisafinite set from
which al itstransition labels are drawn, i.e. thereis afinite subset C of A such that if p&g g
thenwi C*.

We have parametrized the class of transition systems by the set of actions, since there will
be times when we wish to move from one set of actions A to another larger set B. Thereisan

obvious embedding, which transforms a member of TSp into amember of TSg. Let uscall

thishap. Itisnatura to think of the usual equivalences as being on arbitrary transition
systems, rather than depending on the set of actions. So let us call an equivalence ~ on
transition systems generic if it isactualy afamily of equivalences~a on TSa (each set A)
satisfying the following conservation condition:

if Al Bandp, qi TSa then

p~aq iff hag(p) ~B hag(q)
The equivalences we shall consider will aways be generic.

For wi A*, letW denote w with all tsremoved (asin [Mil89]). We shall refer to members

of A* asstrings and to members of (A-{t})* astraces.

DEFINITION 2.1 (trace preorder). Letp, 1 TSa. p £7 qiff foral wi A*,
p&éﬂ impIi&sang

Also pistrace equivalent to g (written p ~r q) iff pEr gand g £7 p.

Refusal testing was introduced in [Phi87]. For smplicity we shall present "may" refusal
testing, which may be seen as a generalization of traces to what have been called failure traces

[vaG90].

DEFINITIONS2.2. Letpl TSa. pisstableiffp(é). Let Ci A-{t}. prefusesC (written
p ref C)iff pisstableand p(s foral a C. For technical convenience we shall abuse notation
and alsowritep(%.

11/7/97 3

A may refusal test isa string consisting of actionsal A-{t} and sets of actions (refusals)
Ci A-{t}, where we ban adjacent sets. For instance a{ b,c} de is allowed, but not af b} { c} de.
With may testing we can combine successive refusals to form sets (with must testing (see
[Phi87]) it matters which isthefirst to be tested). Of course sensible tests would not allow a
set Cto befollowed by al C. Weallow infinite sets. Inwhat follows we refer to may refusal

tests simply astests. Welet t,... range over tests.

A refusal stringisastring of actions drawn from A (thistimeincluding t) and subsets of
A-{t}, where we again ban adjacent sets. In an obvious way we can talk of p&g wherew isa

refusal string. Clearly if wisarefusal string thenw is atest.

DEFINITION 2.3 (may refusal testing preorder). For any pl TSa and test t,
p may tiff $ arefusa stringw. parg & W=t

For any p, gl TSa

pCqiff foralt. pmaytimpliesqmay t

It is natural to ask whether we get as much power by restricting to refusal tests where the
refusal setsarefinite. Say that arefusal test tisfiniteif all itsrefusal sets are finite.

DEFINITION2.4. For any processes p, gl TSa
pPCin q iff for al finitet. pmay timpliesqmay t

Clearly pC qimplies pCyin g. When can we assert the converse? The following

proposition is clearly related to the fact that refusal testing is generic.

PROPOSITION 2.5. Suppose that p, gl TSa are sort-finite. Then
pCfin qiff pC g 0

Clearly if A isfinite then every member of TSp is sort-finite.

PROPOSITION 2.6. Suppose that p, g are finite-branching and strongly convergent. Then

PCtin q iff pC g [

11/7/97 4

EXAMPLE 2.7. Letq=tag+t(tag +t(tap +...)) and p=q +t (using CCS notation). Let
A ={ag, ay, ...}. Thennot qmay A, butif Ci ¢in A, gmay C. However pmay A. So

PLCtin g but not p g.

2.2. Formats and congruences

In this section we shall take afairly abstract view of formats. For our results the important

thing isthat aformat F has an operational meaning in terms of transition systems.

A language definition (usualy called atransition system specification [GrV92]) isaset S of
function symbols of various arities (a signature) together with a set rules(f) for each fl S and a
set A(S) of actions. We shall loosely refer tothisasS. A format F isaway of classifying
language definitions and giving them operational meaning. Extensionally aformat Fisa set of
language definitions such that if S belongsto F then for each fl S thereis amap Of, s(f):
TSas)" ® TSa(s), wheren 2 O isthearity of f. What we have called alanguage definition has
been called atransition system specification [GrV92]. The changein terminology is partly
because our definition is dightly different, but mainly because we are here concentrating on the
operators which are definable in the language, rather than on the global transitions system

associated with it (where the states are the closed terms of the language).

Let S be alanguage definition. S-terms are formed from variables and function symbols
fromS. Welet X,... range over variables and u,... range over S-terms. We may display the
variables by writing u(Xz,...,Xn), and unless stated otherwise thiswill imply that u uses
some, but not necessarily all, of the variables X1,...,Xn. Lét py,...,pn be members of TSa(s).
By u(p1,...,pn) we mean the interpretation of u(Xy,...,Xn) in TSa(s) where each function
symbol f occurring in uisinterpreted by Of s(f) and X isinterpreted by pj, i = 1,...,n. When
we cometo internalize refusal testing we shall also need to extend the definition of u(ps,...,pn)
by alowing py,...,pn to be members of TSa, where A | A(S). It then means

utha as)(PD---.ha As)(Pn))-

DEFINITION 2.8. Let F beaformat and let ~ be a generic congruence on transition systems.

Then ~ is an F-congruence if the following holdsfor al ST F, A | A(S), p,ql TSa,

11/7/97 5

u(X1,...,Xn) aS-term (any n), and ra,...,rol TSa(s):
if p~a gthenu(p,ra,...,rn) ~as) u(d,r2,...,)
The ~-congruence generated by F (notation ~F) is defined to be the largest F-congruence
contained in ~. In astandard way we may characterize ~F asfollows. For p, qin TSa,
p ~F qiff for al language definitions S (with action set A(S)EA) in F-format, and all S-terms

U(Xy,...,Xp)andalra,...,rnin TSy(s),

u(p,ra,...,rn) ~u(q,ra,...,r)

Werefer to ~TF as the trace congruence generated by F.

In the above we can replace the equivaence ~ by apreorder £, and change congruence to

precongruence.

3. Stable format

In this section we define aformat which we call stable format (SF). We start by reviewing De
Simone's format [DeS85, Definition 1.9], which we refer to as DeS. The allowable language
definitionsare asfollows. Let S beasignature, and let a,... range over A(S) while a,... range
over A(S)-{t}. Eachfl S isdefined by a(possibly empty) set of rules of the form
Xi®xiin
FOO)B ux)
Here X isan abbreviation for X1,...,Xnand i {1,...,n}. Note that each X; occurs at most
oncein the premises. X;'isdefined to be X; for il |. uisa S-term built from the variables
Xi'. Weimpose the condition on u that each X;' must occur at most once. De Simone calls
this“linearity”.
The map Opes s(f): TSA(S)” ® TSp(g) isdefined in astraightforward way. Let py,...,pn
be members of TSy (s). Introduce new constantsinto S for the states of py,...,pn to get S' and

introduce axioms for the transitions (cf [Pin93]). The states of the new TS are the terms over

S', and the transitions are those deducible from the rules of S together with the new axioms.

Theinitia stateis of course f(py,...,pn).

11/7/97 6

Weareinterested in treating t as a silent and autonomous action. To reflect thefact that itis
silent, we shall not alow it in the premises, so that we get
Xi®Xxiyin g
fX)B uex)
We shall refer to rules of thisform as DeSrules. Notethat t is still allowed in the conclusion.
To reflect the fact that it is autonomous we must alow the subprocesses to performt freely and

without being detected by outer levels. We nominate a set active(f)i {1,...n} of active

arguments and stipulate that rules(f) must contain the ruletj for each il active(f), wheret; is

Xié Xi'
FX)®F(X)

We insist that active(f) must contain every i such that thereisaDeS rule with Xj in the

premises.

We refer to the revised format as DeS; . The ideas of thet rules and active arguments have

been used by Bloom [Bl090] and Vaandrager [Vaa9l].

PROPOSITION 3.1 (asin [Vaa9l, Theorem 4.7]). Trace equivalence ~ is a congruence for

DeS . Soitisthetrace congruence generated by DeS; .

The format is rich enough to define languages such as CSP [Hoa85]. It allows all the
operators of CCS except for summation, which does not have the necessary t rules. Usualy
trace equivalenceis regarded astoo abstract in that it neglects deadlock and liveness, so that
testing equivalence [DNH84] or failures equivalence [BHR84] are used instead. These are also
congruences for De$ [Vaa9l].

We now augment the format with the following rules:

t
Xi@ Xy f)@
fx)E u(x")

The conditionson |, u(X") are exactly asfor DeSrules. We shall refer to these new rules as

srules. They arein addition to DeS and t-rules. Notice that the conclusion must have a

visible action. We call the new format stable format (SF). The s-rulesinvolve anegative

11/7/97 7

premise, but they are structured in such away that this does not cause problemsin deciding

their operational meaning.

DEFINITION 3.2. A language definition S isin finitely overlapping SF-format (FOSF) if itisin
SF-format and for every fl Sandal A(S), there are only finitely many rules with conclusion

1008 ...

Thefinite overlapping format excludes renaming functions with infinite pre-images and hiding

of infinite sets of actions. Thisis perhaps not too much of aloss. More serioudly, it also

excludes CCS parald composition | (with infinite action set), in view of the following rule:
x@x y&v:

XIY® X[v"

However we could replace | by afamily of finite-sorted operators |g, where Bi inA. Therules

would be:

x& x Y&y QB X& x QA

X[Y® X'[gY" XlgY® X'|gY

together with arule smilar to the right-hand onefor Y and t-rules.

THEOREM 3.3. (i) Refusal testing preorder C is an SF-precongruence.

(ii) Cfin isan FOSF-precongruence.

We omit the proof for lack of space, but make afew brief remarks. The essentia reason why
refusal testing is a congruence is because positive information (atransition) is deduced in SF
from positive and negative information (the latter being stability and refusals), but negative
information comes entirely from negative information. To make this explicit we can transform

the format into one with rules of the following form:

X1ref C1 ... Xnpref Cy
f(X) ref C

A singlerule of SFwill in genera trandate into many rules of the above kind. Given aterm

u(X) and arefusal test t we can find refusal tests such that if p may pass these tests then

u(p) may t.

We now show how to internalize refusal testing in the format.

11/7/97 8

PROPOSITION 3.4. Let A beaset of actions. There are language definitionsS in SFand S' in
FOSF such that for any p, g in TS,

() p C qiff for al S-terms u(X), u(p) £71 u(q)
(i) p Csin qiff for al S'-terms u(X), u(p) £1 u(q)

Proof. We define S asfollows: It has function symbolsrc(X) (each Ci A), and aparalle

composition T|X, which isto model tests being applied to processes. Thiswill be reminiscent
of CCS|, though not identical. The action set A(S) will be AE{s,w}. We aso use action

prefixinga.T and aconstant O, if these are not already included. Therulesare:

. . . t
T8 T X& X i A T®T TX&
TX® T'|X" TIX® T'[X
TE T Qe
TIX& 0 re(MS0 re(MST

(plust-rules). Using a CCS-like notation, re(T) isin effect S4 ¢ a.0 + s.T. Noticethat if we
allow C to beinfinite then rc(T) isnot finite branching. Alsoif A isinfinitethen |isnot finitely
overlapping.

Now that we have defined S, we trandate our testst into S-termst' asin the following

inductive definition:
el =w.0
(a)f = atf
(CT =re(th
Here eisthe empty test. We need something like w to recognize that the test has been

completed. Itisnot hard to seethat for any pin TSa, and any test t,
pmayt iff tﬂp&g for some string w containing w.
Together with the previous theorem this is enough to establish (i).

Thedefinition of S'isasfor S except that we only alow finite refusal sets C when

forming rc(X), and we replace | by afamily of operators |g for each Bl finA (thisis much as

11/7/97 9

earlier, when wereplaced CCS| by |g's, and isto ensure that S’ isin finitely overlapping

format). The new rules are:
181 X8 X iB
TEX® T'[gX" TX® T'|gX TEXx® 0

t
T®T TpX®& & T

(plust-rules). Takeany finitetestt. Let B belarge enough to include al actions mentioned in

t (only finitely many). Thenforany TSp
pmayt iff (tT|g p)&rg for some string w containing w.
Again thisis enough to establish (ii). [

COROLLARY 3.5. (i) pC qiff p £75F q.

(i) pCrin qiff p £77FOSFq. [

4. A format for timed process algebra

We present aformat for process algebrawith discretetime. The action set has a specia action
s which represents the passage of time (the tick of the global clock). Following many authors
we requiret actionsto be “urgent”, so that time cannot pass until the system isstable. Thisis
often called the maximal progress assumption. Our format isinspired by TPL [HeR91], which
was in turn influenced by [Phi89]. It isasubformat of SF, where we make arestriction on the
srules. Apart from TPL, other timed process agebras have been proposed in [ReR88],
[BaB91], [NRSV9I0Q], [MoT90], [Wan90] among others.

DEFINITION4.1 (Timed format). Let alanguage definition S have action set A containing
gpecia actionst, s. Then Sisintimed format (TF) if itisin SF and satisfies the following

further conditions:

(1) s may not appear in either the premises or conclusion of aDeSrule.
(2) Each operator f has no s-rules apart from the single s-rule as follows, which is

compulsory:

{Xi® Xi'} it active(f) f(X)Cthu

fX)® u

11/7/97 10

Thes-rules have the effect of saying that the passage of time will be marked by all processes

when the system is stable.

DEFINITION4.2. An operator f in alanguage definition S in TF is said to be untimed if its

s-ruleis

{Xi® Xi'} it active(f) f(X)C'%’J

FXO)B®F(X')
EXAMPLES 4.3. Thefollowing operatorsarein TF. We omit the t-rules for active arguments.

(1) A delay operator

d(X)® X
(2) A “timeout” operator (cf [NiS91], [HeR91])
x&x: X® X' X>Y @
X|>Y<|;-5l X' XI>Y@ Y

This can be varied to give a“watchdog” operator (again cf [NiS91])

t
X&x: X® X' Xi>Y @
X|>Y(|;5l X'>Y XI>Y@ Y

In both cases X isactiveand Y isnot. Inthes- rulesthe X' isthrown away.

(3) Languages like CCS (except for +) or CSP can be straightforwardly put into TF by adding

the necessary s-rulesto make their operators untimed. For instance, action prefixing has the

“idling” rule
— att
a.X@ axX

just asin TPL (the X isinactive).

TPL isnot actually in TF because it uses CCS-style choice. However it can be put into TF

with afew adjustments.

We can place arestriction on transition systems to get those which model timed processes:

11/7/97 11

DEFINITION4.4. Lets,t T A. Then (P,® ,p)l TSa isatimed TSif for dl g P
(2) if q@ r, q@ r' thenr =r'.
(2) ether q@ or q(é , but not both.

Denote the set of such timed TSsby TTSa. (1) has been called time determinism [NiS91].
The next result says that using operatorsin TF keeps us within timed TSs:

PROPOSITION 4.5. Let p = py,..,pnl TTSa andlet S bein TFwith A(S)EA. Then for any
S-term u(X), u(p)l TTSa(g). O

DEFINITION4.6. A s-testisarefusa test where every refusal isimmediately followed by as.

pCs qiff for every s-test t, p may t impliesq may t.

REMARK 4.7. Hennessy and Regan [HeR91] characterise testing equivalence over TPL by
means of an ordering based on “barbs’. It isnot hard to show that (at least for strongly

convergent processes) their definition coincideswith Cs.

PROPOSITION 4.8. (i) Cs isa TF-precongruence.

(ii)pCs qiffp £77F q.

Conclusions

We have defined aformat for discrete-timed process algebra. We have seen how arestricted
form of refusal testing is a congruence for the format. The format isaspecial case of amore
general format which admits operators that detect stability. Throughout the work silent actions
have been considered in an essential way. Further work might include defining atimed format

for non-discrete time.

Acknowledgements

We thank Rob van Glabbeek for a helpful conversation and pointing out an error in our
previous work. We have a so benefited from discussion with Sophie Pinchinat. Thefirst

author was supported by SERC grant GR/F72475.

11/7/97 12

References

[ABVOZ]

[BaB91]

[BHRS4]

[BIMSS]

[Bl090]

[BoGO91]

[DeS85)]

[DNH84]

[Gro90]

[GrV92]

[HeR91]

[Hoas5]

[Mil80]

[Mil8g]
[MOT90]

11/7/97

L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.
LICS, 1992.

J.C.M. Baeten and JA. Bergstra. Real time process algebra. Formal Aspects of
Computing 3 (142-188), 1991.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating
Sequential Processes. JACM 31 (560-599), 1984.

B. Bloom, S. Idtrail, and A.R. Meyer. Bisimulation can't be traced: Preliminary
report. POPL, 1988. Accepted by JACM.

B. Bloom. Strong process equivalence in the presence of hidden moves.
Preliminary report, 1990.

R.N. Bol and JF. Groote. The meaning of negative premisesin transition systems
specifications (extended abstract). ICALP. LNCS510 (481-494). Springer,
1991.

R. de Simone. Higher-level synchronising devicesin MEIJE-SCCS. Theoretical
Computer Science 37 (245-267), 1985.

De Nicola, R. and M.C.B. Hennessy. Testing Equivalences for Processes.
Theoretical Computer Science 34 (83-134), 1984.

J.F. Groote. Transition systems specifications with negative premises (extended
abstract). CONCUR 90. LNCS 458 (332-341). Springer, 1990.

J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation 100 (202-260), 1992.
M. Hennessy and T. Regan. A process algebrafor timed systems. Dept. of
Computer Science, University of Sussex, Tech. Report 5/91. 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

R. Milner. A Calculus of Communicating Systems. LNCS92. Springer, 1980.
R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

F. Moller and C. Tofts. A temporal calculus of communicating systems.

CONCUR'90. LNCS 458 (401-415). Springer, 1990.

13

[NiS91]

[NRSO0]

[Phig7]

[Phigg]
[Pin93]

[Plo81]

[ReRS8]

[Uli92]

[UIi93]

[Uli94]

[Vaa91]

[vaG90]

[vaG93]

[Wan90]

11/7/97

X. Nicollinand J. Sifakis. An overview and synthesis on timed process algebras.
CAV'91. LNCS575 (376-398). Springer, 1991.

X. Nicallin, J.-L. Richier, J. Sifakisand J. Voiron. ATP: an algebrafor timed
processes. Proc. IFIP TC 2 Working conference on programming concepts and
methods. 1990.

|.C.C. Phillips. Refusal testing. Theoretical Computer Science 50 (241-284),
1987.

I.C.C. Phillips. CCS with broadcast stability. Manuscript, 1989.

S. Pinchinat. Des bisimulations pour la sémantique des systémes réactifs. Thesis,
Grenoble, 1993.

G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

G.M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science 58 (249-261), 1988.

I. Ulidowski. Equivalences on observable processes. LICS, 1992.

I. Ulidowski. Congruences for t-respecting formats of rules. Theory and Formal
Methods 1993, ed. G. Burn, S. Gay and M. Ryan. Workshops in Computing.
Springer, 1993.

I. Ulidowski. Local testing and implementable concurrent processes. PhD Thesis,
Imperial College, London. Forthcoming.

F.W. Vaandrager. On the relationship between process algebra and input/output
automata (extended abstract). LICS, 1991.

R. van Glabbeek. The linear time — branching time spectrum. CONCUR "90.
LNCS 458 (278-297). Springer, 1990.

R. van Glabbeek. Full abstraction in Structural Operational Semantics (extended
abstract). 1993.

Wang Yi. Real-time behaviour of asynchronous agents. CONCUR '90. LNCS
458 (502-520). Springer, 1990.

14

