
APC 2005

Operational Semantics of Reversibility in
Process Algebra

Iain Phillips 1

Department of Computing
Imperial College London

England

Irek Ulidowski 2

Department of Computer Science
University of Leicester

England

Abstract

Reversible computation has a growing number of promising application areas such
as the modelling of biochemical systems, program debugging and testing, and even
programming languages for quantum computing. We discuss reversibility in major
process algebras from the point of view of operational semantics. The main difficulty
seems to be with the definitions of forward and reverse computation for the dynamic
operators, and we confine ourselves to these, leaving the static operators for further
work. We consider a solution where predicates in SOS rules play a vital role.

Key words: Reversible computation, process calculi, SOS rules

1 Introduction

Reversible computation has a growing number of promising application areas
such as the modelling of biochemical systems, program debugging and testing,
and even programming languages for quantum computing. We have been
inspired to look at this area by the work of Danos and Krivine on reversible
CCS [3,4,5], and the structural approach of Abramsky [1].

We wish to investigate reversibility for algebraic process calculi in the style
of CCS [7], with Structural Operational Semantics (SOS) [8] rules. Given a
forward labelled transition relation (ltr) → we are interested in obtaining a

1 Email: iccp@doc.ic.ac.uk
2 Email: iu3@mcs.le.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Phillips and Ulidowski

reverse ltr which is the inverse of→. This can always be done, but if we just
reverse a standard process language we end up with too many possibilities,
since processes do not “remember” their past states. Danos and Krivine solve
this problem by storing “memories” of past behaviour which are carried along
with processes. We would like to see whether we can achieve a similar effect
in a more algebraic fashion, by altering the standard rules for operators and
possibly introducing auxiliary operators.

The operators of a language like CCS can be divided into the static oper-
ators, where the operator remains present after a transition, and the dynamic
operators, where the operator is destroyed by the transition. Dynamic opera-
tors are more “forgetful” than static operators. In this note we shall concen-
trate on reversing dynamic operators, such as CCS prefixing and summation
(choice).

We are interested in conditions under which we can make processes con-
structed with such dynamic operators unambiguously reversible, i.e. if P, Q,R

are processes and P
a→ Q

b
 R, then b = a and R = P . We shall see that this

goal is attainable for CCS prefixing and summation, among other operators.

In the case of static operators such as parallel composition, unambigu-
ous reversibility is probably too strong a condition; we should aim for some
confluence property instead.

We shall proceed rather informally, partly because of space constraints,
and partly because this work is still at an early stage.

2 Processes and Predicates

Given a signature Σ we let T (Σ) denote the set of closed terms over Σ. We shall
assume that we have a “standard” process language consisting of terms over
the signature ΣS. We let f range over ΣS. If f is n-ary, its set of arguments is
Nf = {1, . . . , n}. We say that T (ΣS) is the set of standard terms. With T (ΣS)
is associated an ltr →S with labels drawn from a set of actions Act, ranged
over by a, b, . . .. This ltr is defined by means of SOS rules.

We shall need to introduce a further set ΣA of auxiliary operators. We let
ΣSA = ΣS ∪ ΣA. For terms P in T (ΣSA) we define a predicate std(P ), which
holds iff P ∈ T (ΣS) (i.e. P is a standard term).

Our aim is to give a procedure for defining a new forward ltr →, together
with a reverse ltr which is the inverse of →. Standard terms will evolve into
nonstandard terms under →. Moreover, standard terms will have no reverse
transitions.

3 Reversing Choice Operators

We now sketch a method for making dynamic operators reversible. We shall
confine our attention to a very simple class of dynamic operators, which we

2



Phillips and Ulidowski

call choice operators. These are defined by SOS rules which allow for the
selection of arguments, either through the action of one of the arguments (as
in CCS summation), or without such action (as in CCS action prefixing or
CSP internal choice [6]).

Definition 3.1 An n-ary operator f is a choice operator if it is either the
inactive constant 0 (with no transition rules), or n ≥ 1 and the SOS rules
defining f satisfy the following:

(i) There is a set Df ⊆ Nf of permissive arguments, and for each d ∈ Df

and each a ∈ Act there is a rule

SPf,d,a
Xd

a→S X ′
d

f(
−→
X )

a→S X ′
d

(ii) All other rules of f are axioms of the form

r
f(
−→
X )

act(r)→ S Xta(r)

where act(r) ∈ Act is the action of r and ta(r) ∈ Nf is the target argument
of r. We call these rules choice axioms.

Let us suppose that all operators in ΣS are choice operators.

We now describe the new reversible rules for a choice operator f . Our aim
is that the rules for the reverse transition relation will simply be symmetric
versions of the rules for the new forward transition relation →. The basic idea
is to transform the existing rules into static rules.

First we deal with the permissive arguments. Each rule SPf,d,a is trans-
formed into a new static forward rule

FPf,d,a

Xd
a→ X ′

d {std(Xi)}i∈Nf\{d}

f(
−→
X )

a→ f(
−→
X ′)

together with a companion reverse rule

RPf,d,a

Xd
a
 X ′

d {std(Xi)}i∈Nf\{d}

f(
−→
X )

a
 f(

−→
X ′)

.

Here X ′
i = Xi for i ∈ Nf \ {d}. Clearly, the reverse rule is exactly the inverse

of the forward rule.

Now we turn to the choice axioms. If we redefined a choice axiom r of f
as

{std(Xi)}i∈Nf

f(
−→
X )

act(r)→ f(
−→
X )

then we would allow extra forward transitions—in fact we would create an
infinite loop. So instead we employ a new auxiliary operator fr ∈ ΣA. We

3



Phillips and Ulidowski

give to f the new forward rule

FAr

{std(Xi)}i∈Nf

f(
−→
X )

act(r)→ fr(
−→
X )

.

We need to ensure that fr propagates the actions of Xta(r), leaving other
arguments unchanged, and so we give fr the following forward rule schema:

FAXr,a

Xta(r)
a→ X ′

ta(r) {std(Xi)}i∈Nf\{ta(r)}

fr(
−→
X )

a→ fr(
−→
X ′)

(all a ∈ Act)

The corresponding reverse rules are

RAr

{std(Xi)}i∈Nf

fr(
−→
X )

act(r)
 f(

−→
X )

and

RAXr,a

Xta(r)
a
 X ′

ta(r) {std(Xi)}i∈Nf\{ta(r)}

fr(
−→
X )

a
 fr(

−→
X ′)

(all a ∈ Act)

Again, the reverse rules are exactly the inverses of the forward rules.

Note that it is only through the new forward rules FAr for choice axioms
r that nonstandard terms are introduced. We suppose that the new auxiliary
operators are all distinct, and that the only operators in ΣA are those already
specified.

As computation proceeds in the new ltr, terms keep essentially the same
structure, except that during each forward transition exactly one operator f
in a term changes to fr, for some choice axiom r of f . This idea of keeping
the structure is present in [2], though that work relates to true concurrency
rather than reversible computation.

If a standard term P performs a →-computation to get to Q, we can re-
trieve the term arrived at in the corresponding →S-computation by “pruning”
the parts of Q that would normally be discarded (cf. the forgetful map of [4]).
The pruning map π : T (ΣSA) → T (ΣS) is defined as follows:

π(0)
df
= 0

π(f(
−→
P ))

df
=


π(Pd) if d ∈ Df ∧ ∀i ∈ Nf . (std(Pi) iff i 6= d)

f(
−→
P ) if ∀i ∈ Nf . std(Pi)

0 otherwise

π(fr(
−→
P ))

df
=

 π(Pta(r)) if ∀i ∈ Nf \ {ta(r)}. std(Pi)

0 otherwise

4



Phillips and Ulidowski

for any choice axiom r with operator f . Clearly, if std(P ) then π(P ) = P .

We state without proof some properties of the new forward and reverse
ltrs:

• the forward and reverse ltrs are mutually inverse: for any P, Q ∈ T (ΣSA)

and a ∈ Act, P
a→ Q iff Q

a
 P ;

• the new forward ltr is conservative over the standard ltr: for any P, Q ∈
T (ΣSA) and a ∈ Act, if P

a→ Q then π(P )
a→S π(Q), and if π(P )

a→S Q then
there is R ∈ T (ΣSA) such that P

a→ R and π(R) = Q;

• the new forward ltr is unambiguously reversible: for any P, Q, R ∈ T (ΣSA)

and a, b ∈ Act, if P
a
 Q and P

b
 R then a = b and Q = R.

4 Examples

We give some examples of choice operators and their new reversible rules.

CCS summation has the following rule schemas:

X
a→S X ′

X + Y
a→S X ′

Y
a→S Y ′

X + Y
a→S Y ′

(all a ∈ Act)

Both arguments are permissive and there are no choice axioms. We can apply
our procedure to turn the standard rules into reversible ones. This gives the
following forward and reverse schemas:

X
a→ X ′ std(Y )

X + Y
a→ X ′ + Y

Y
a→ Y ′ std(X)

X + Y
a→ X + Y ′

(all a ∈ Act)

X
a
 X ′ std(Y )

X + Y
a
 X ′ + Y

Y
a
 Y ′ std(X)

X + Y
a
 X + Y ′

(all a ∈ Act)

We can also handle CCS prefixing:

a.X
a→S X

Here each operator a.X is equipped with a single choice axiom. For each
a ∈ Act we introduce the auxiliary operator a, giving the following new forward
and reverse rules:

std(X)

a.X
a→ a.X

X
b→ X ′

a.X
b→ a.X ′

std(X)

a.X
a
 a.X

X
b
 X ′

a.X
b
 a.X ′

(all b ∈ Act)

A CCS computation such as a.b.0 + c.d.0
a→S b.0

b→S 0 becomes a.b.0 +

c.d.0
a→ a.b.0 + c.d.0

b→ a.b.0 + c.d.0. The new computation can be reversed

unambiguously to get a.b.0 + c.d.0
b
 

a
 a.b.0 + c.d.0.

5



Phillips and Ulidowski

The internal choice operator of CSP may be defined by two choice axioms
using τ ∈ Act:

X u Y
τ→S X X u Y

τ→S Y
Neither argument is permissive. We require two auxiliary operators u1 and u2.
We give the converted rules and the reverse rules for only the first argument X:

std(X) std(Y )

X u Y
τ→ X u1 Y

X
a→ X ′ std(Y )

X u1 Y
a→ X ′ u1 Y

(all a ∈ Act)

std(X) std(Y )

X u1 Y
τ
 X u Y

X
a
 X ′ std(Y )

X u1 Y
a
 X ′ u1 Y

(all a ∈ Act)

5 Conclusions

We have sketched a procedure by which certain dynamic process operators can
be made reversible. In further work, we shall extend this to integrate static
operators into the picture.

References

[1] Abramsky, S., A structural approach to reversible computation, Theoretical
Computer Science 347 (2005), pp. 441–464.

[2] Boudol, G. and I. Castellani, Flow models of distributed computations: three
equivalent semantics for CCS, Information and Computation 114 (1994),
pp. 247–314.

[3] Danos, V. and J. Krivine, Formal molecular biology done in CCS-R, in:
Proceedings of Bioconcur 2003, Marseille, 2003.

[4] Danos, V. and J. Krivine, Reversible communicating systems, in: Proceedings
of the 15th International Conference on Concurrency Theory (Concur 2004),
Lecture Notes in Computer Science 3170 (2004), pp. 292–307.

[5] Danos, V. and J. Krivine, Transactions in RCCS, in: Proceedings of the 16th
International Conference on Concurrency Theory (Concur 2005), Lecture Notes
in Computer Science 3653 (2005), pp. 398–412.

[6] Hoare, C., “Communicating Sequential Processes,” Prentice-Hall, 1985.

[7] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[8] Plotkin, G., A structural approach to operational semantics, Journal of Logic and
Algebraic Programming 60-61 (2004), pp. 17–139.

6


	Introduction
	Processes and Predicates
	Reversing Choice Operators
	Examples
	Conclusions
	References

