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In this paper we introduce Event Identifier Logic (EIL), which extends Hennessy–Milner

logic by the addition of:

(1) reverse as well as forward modalities; and

(2) identifiers to keep track of events.

We show that this logic corresponds to hereditary history-preserving (HH) bisimulation

equivalence within a particular true-concurrency model, namely, stable configuration

structures. We also show how natural sublogics of EIL correspond to coarser equivalences.

In particular, we provide logical characterisations of weak-history- preserving (WH) and

history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have

been given previously, but none, as far as we are aware, corresponding to WH bisimulation

(when autoconcurrency is allowed). We also present characteristic formulas that characterise

individual structures with respect to history-preserving equivalences.

1. Introduction

In this paper we present a modal logic that can express simple properties of computation

in the true concurrency setting of stable configuration structures. We aim, like Hennessy–

Milner logic (HML) (Hennessy and Milner 1985) in the interleaving setting, to characterise

the main true concurrency equivalences and to develop characteristic formulas for them.

HML has a ‘diamond’ modality 〈a〉φ, which says that an event labelled a can be

performed, taking us to a new state that satisfies φ. The logic also contains negation

(¬), conjunction (∧) and a base formula that always holds (tt). HML is strong enough to

distinguish any two processes that are not bisimilar.

We are interested in making true concurrency distinctions between processes. These

processes will be event structures, where the current state is represented by the set of

† This paper was originally submitted for inclusion in the forthcoming EXPRESS 2011 Special Issue of

Mathematical Structures in Computer Science. It was accepted, and the revised (final) version was sent in

November 2012. Subsequently, in April 2013, in view of the extra time required to handle other articles in the

Special Issue, the Guest Editors very kindly agreed to the article being published separately in the Journal to

avoid further delay in publication.
¶ Irek Ulidowski is grateful for partial support provided by JSPS grants S-09053 and FU-019, and by Nagoya
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events that have already occurred. Such sets are called configurations. Events have labels

(ranged over by a, b, . . .), and different events may have the same label. We shall refer to

example event structures using a CCS-like notation, with:

— a |b denoting an event labelled with a in parallel with another event labelled with b;

— a.b denoting two events labelled a and b where the first causes the second; and

— a+ b denoting two events labelled a and b that conflict.

In the true concurrency setting, bisimulation is referred to as interleaving bisimulation,

or IB for short. The processes a | b and a.b + b.a are interleaving bisimilar, but from the

point of view of true concurrency they should be distinguished, and HML is not powerful

enough to do this.

We therefore look for a more powerful logic, and we base this logic on the addition of

reverse moves. Instead of the single modality 〈a〉φ, we shall now have two:

— forward diamond 〈a〉〉φ, which is just a new notation for the 〈a〉φ of HML; and

— reverse diamond 〈〈a〉φ.

The latter is satisfied if we can reverse some event labelled with a and get to a configuration

where φ holds. Such an event would have to be maximal to enable us to reverse it, that

is, it could not be the cause of some other event that has already occurred.

With this new reverse modality, we can now distinguish a | b and a.b + b.a since a | b
satisfies 〈a〉〉〈b〉〉〈〈a〉tt, while a.b+ b.a does not. The formula expresses the idea that a and

b are concurrent. Alternatively, we can see that a.b+ b.a satisfies 〈a〉〉〈b〉〉¬〈〈a〉tt, while a |b
does not. This latter formula expresses the idea that a causes b.

The new logic corresponds to reverse interleaving bisimulation (Phillips and Ulid-

owski 2012), or RI-IB for short. In the absence of autoconcurrency, Bednarczyk showed

that this is as strong as hereditary history-preserving bisimulation (Bednarczyk 1991), or

HH for short, which is usually regarded as the strongest desirable true concurrency

equivalence. HH was independently proposed in Joyal et al. (1996) under the name of

strong history-preserving bisimulation.

Autoconcurrency is where events can occur concurrently and have the same label. To

allow for this, we need to strengthen the logic. For instance, we want to distinguish a | a
from a.a, which is not possible with the logic as it stands since 〈a〉〉〈a〉〉〈〈a〉tt is satisfied by

both processes. We need some way of distinguishing the two events labelled with a. To

achieve this, we change our modalities so that when we make a forward move we declare

an identifier (ranged over by x, y, . . .) that stands for that event, which allows us to refer

to it again when reversing it. Now we can write 〈x : a〉〉〈y : a〉〉〈〈x〉tt, and this is satisfied

by a | a but not by a.a. Declaration is an identifier-binding operation, so x and y are

both bound in the formula. Baldan and Crafa (2010) also used such declarations in their

forward-only logic.

With this simple change, we now have a logic that is as strong as HH, even with

autoconcurrency.

However, we have to be careful that our logic does not become too strong. For instance,

we want to ensure that processes a and a+ a are indistinguishable. One might think that

a+ a satisfies 〈x : a〉〉〈〈x〉〈y : a〉〉¬〈〈x〉tt, while a does not. To avoid this, we need to ensure

that x is forgotten once it is reversed so that it cannot be used again. One could make a
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syntactic restriction saying that in a formula 〈〈x〉φ, the identifier x is not allowed to occur

(free) in φ. However, this is not actually necessary since our semantics will ensure that all

identifiers must be assigned to events in the current configuration. So, in fact,

〈x : a〉〉〈〈x〉〈y : a〉〉¬〈〈x〉tt

is not satisfied by a + a, since we are not allowed to reverse x as it would take us to a

configuration where x is mentioned in 〈y : a〉〉¬〈〈x〉tt but x is assigned to an event outside

the current configuration. Baldan and Crafa also had to deal with this issue.

Our logic is not quite complete, since we wish to express certain further properties. For

instance, we would like to express a reverse move labelled with a, that is, 〈〈a〉φ. Instead

of adding this directly, we add declarations (x : a)φ. We can now express 〈〈a〉φ using the

formula (x : a)〈〈x〉φ (where x does not occur (free) in φ).

We also wish to express so-called step transitions, which are transitions consisting of

multiple events occurring concurrently. For instance, a forward step 〈a, a〉〉φ of two events

labelled with a can be achieved by

〈x : a〉〉〈y : a〉〉(φ ∧ 〈〈x〉tt)

and a reverse step 〈〈a, a〉φ can be achieved by

(x : a)(y : a)(〈〈x〉〈〈y〉φ ∧ 〈〈y〉tt)

(both formulas with x and y not free in φ). Thus the reverse steps employ declarations. As

well as expressing reverse steps, declarations allow us to obtain a sublogic corresponding

to weak history-preserving bisimulation (WH).

This completes a brief introduction of our logic, which we call Event Identifier Logic,

or EIL for short. Apart from corresponding to HH, EIL has natural sublogics for several

other true concurrency equivalences. Figure 1 shows a hierarchy of equivalences that we

are able to characterise, where arrows denote proper set inclusion. Apart from the HH and

WH already mentioned, history-preserving bisimulation (H) is a widely studied equivalence

that employs history isomorphism. Hereditary weak-history preserving bisimulation (HWH)

is WH with the hereditary property (Bednarczyk 1991) that deals with the reversing of

events. We also consider pomset bisimulation PB (where transitions are pomsets), step

bisimulation SB (where transitions are ‘steps’, that is, sets of concurrent events), and the

combination of WH and PB, namely WHPB. The definitions of these equivalences can

be found in van Glabbeek and Goltz (2001) and Phillips and Ulidowski (2012), and are

outlined in Section 3.2 of the current paper.

It is natural to ask whether, at least for a finite structure, there is a single logical formula

that captures all of its behaviour, up to a certain equivalence. Such formulas are called

characteristic formulas. They have been investigated previously for HML and other logics

(Graf and Sifakis 1986; Steffen and Ingólfsdóttir 1994; Aceto et al. 2009). We shall look

at characteristic formulas with respect to three of the equivalences we consider, namely,

HH, H and WH. As far as we are aware, this is the first time that characteristic formulas

have been investigated in the true concurrency setting.
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Fig. 1. The hierarchy of equivalences considered in this paper.

The main contribution of the paper is a logic EIL. It could be argued that EIL is a

natural and canonical logic for the true concurrency equivalences considered here in the

following sense:

(1) The forward and reverse modalities faithfully capture the information of the forward

and reverse transitions in the definitions of the equivalences, particularly in the case

of the history-preserving equivalences.

(2) Event identifier environments and event declarations give rise naturally to order

isomorphisms for HH, H, HWH and WH.

(3) EIL extends HML and keeps with its spirit of having simple modalities defined

seamlessly over a general computation model.

Other contributions of the paper include what we believe to be the first logics for WH

and HWH (and also WHPB). We also give a full proof of EIL’s characterisation of HH

in the presence of autoconcurrency. Finally, we present what we believe to be the first

characteristic formulas for HH, H and WH.

1.1. Organisation of the paper

We look at related work in Section 2. Then, in Section 3, we recall the definitions of

configuration structures and the bisimulation-based equivalences that we shall need. We

then introduce EIL in Section 4, giving examples of its usage. In Section 5, we look

at how to characterise various equivalences using EIL and its sublogics, and then, in

Section 6, we investigate characteristic formulas. Finally, we present our conclusions and

some suggestions for future work in Section 7.
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Remark 1.1. The current paper extends the preliminary version Phillips and Ulid-

owski (2011) through the inclusion of full proofs of all results, the addition of sublogics

for further equivalences, including pomset bisimulation and step bisimulation (Section 5.3)

and the inclusion of more examples.

2. Related work

Previous work on logics for true concurrency can be categorised loosely according

to the type of semantic structure (model) that the satisfaction relation of the logic

is defined for. There are logics over configurations (sets of consistent events) (Goltz

et al. 1992; Baldan and Crafa 2010) and logics over paths (or computations) (Cherief 1992;

Nielsen and Clausen 1994a; Nielsen and Clausen 1994b; Nielsen and Clausen 1995;

Pinchinat et al. 1994), although the logics in Nielsen and Clausen (1994a), Nielsen and

Clausen (1994b) and Nielsen and Clausen (1995) can also be viewed as logics over

configurations. Other structures such as trees, graphs and Kripke frames are used as

models in, for example, De Nicola and Ferrari (1990), Mukund and Thiagarajan (1992),

Gutierrez (2009) and Gutierrez and Bradfield (2009).

The logic in the current paper uses simple forward and reverse event identifier modalities

that are sufficient to characterise HH. In contrast, Baldan and Crafa (2010; 2011) achieved

an alternative characterisation of HH with a different modal logic that only uses forward-

only event identifier modalities 〈x〉 and (x, ȳ < a z). The formula (x, ȳ < a z)φ holds in a

configuration if in its future there is an a-labelled event e that can be bound to z, and φ

holds. Additionally, e must be:

(1) caused at least by the events already bound to the events in x; and

(2) concurrent with at least the events already bound to the events in y.

Baldan and Crafa (2010) also identified several interesting sublogics characterising H,

pomset bisimulation (Boudol and Castellani 1987; van Glabbeek and Goltz 2001) and

step bisimulation (Pomello 1986; van Glabbeek and Goltz 2001). Baldan and Crafa also

proposed an extension of the logic with recursion in order to be able to describe certain

properties of infinite computations (Baldan and Crafa 2011).

Goltz, Kuiper and Penczek (Goltz et al. 1992) researched configurations of prime event

structures without autoconcurrency. In such a setting, HH coincides with reverse interleav-

ing bisimulation RI-IB (Phillips and Ulidowski 2006; Phillips and Ulidowski 2007; Phillips

and Ulidowski 2012) – this was shown in Bednarczyk (1991). Moreover, H coincides with

WH. Partial Order Logic (POL), which was proposed in Goltz et al. (1992), contains past

modalities, and the authors stated that it characterises RI-IB (and thus HH). It is also

conjectured that if POL is restricted in such a way that no forward modalities can be

nested in a past modality, then such a logic characterises H (and thus WH).

Cherief (1992) defined a pomset bisimulation relation over paths and showed that

it coincides with H (defined over configurations). The author then predicted that an

extension of HML with forward and reverse pomset modalities characterises H. This

idea was then developed further by Pinchinat, Laroussinie and Schnoebelen in Pinchinat

et al. (1994).

http://journals.cambridge.org
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Nielsen and Clausen defined a δ-bisimulation relation (δb) over paths (Nielsen and

Clausen 1994a; Nielsen and Clausen 1995). However, unlike the case for the relation in

Cherief (1992) and Pinchinat et al. (1994), independent maximal events can be reversed

in any order. This seemingly small change has a profound effect on the strength of the

equivalence since δb coincides with HH. It has been shown that an extension of HML

with a reverse modality characterises HH when there is no autoconcurrency (Nielsen and

Clausen 1994a; Nielsen and Clausen 1995). Additionally, Nielsen and Clausen (1994b)

stated (without a proof) that an extension of HML with a reverse event index modality

characterises HH even in the presence of autoconcurrency. The notion of paths used in

Nielsen and Clausen (1994a), Nielsen and Clausen (1994b) and Nielsen and Clausen (1995)

induces a notion of configuration, so their logics could be understood as logics over

configurations, and their reverse index modality could be seen as a form of our reverse

event identifier modality. We would argue, however, that many properties of configurations

related to causality and concurrency between events are expressed more naturally using

reverse identifier modalities.

Past or reverse modalities, which are central to our logic, have already been used in a

number of modal logics and temporal logics (Hennessy and Stirling 1985; De Nicola and

Vaandrager 1990; De Nicola et al. 1990; De Nicola and Ferrari 1990; Goltz et al. 1992;

Laroussinie et al. 1995; Laroussinie and Schnoebelen 1995; Penczek 1995), but only

De Nicola and Ferrari (1990) and Goltz et al. (1992) proposed logical characterisations

of true concurrency equivalences. By contrast, the HML with backward modalities in

De Nicola and Vaandrager (1990) and De Nicola et al. (1990) defined over paths is shown

to characterise branching bisimulation. Finally, Gutierrez introduced a modal logic for

transition systems with independence (Gutierrez 2009; Gutierrez and Bradfield 2009) that

has two diamond modalities: one for causally dependent transitions and the other for

concurrent transitions with respect to a given transition.

3. Configuration structures and equivalences

In this section we shall define our computational model (stable configuration structures)

and the various bisimulation equivalences for which we shall present logical characterisa-

tions.

3.1. Configuration structures

We shall work with stable configuration structures (van Glabbeek and Plotkin 1995; van

Glabbeek and Plotkin 2009; van Glabbeek and Goltz 2001), which are equivalent to

stable event structures (Winskel 1987).

However, we shall first recall the definition of prime event structures, which are better

known than configuration structures, and which will be useful, along with CCS expressions,

for expressing many of our examples. A prime event structure is a set of events with a

labelling function, together with a causality relation and a conflict relation (between events

that cannot be members of the same configuration). We assume a set of action labels Act,

ranged over by a, b, . . ..

http://journals.cambridge.org
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Definition 3.1 (Nielsen et al. 1981). A (labelled) prime event structure is a 4-tuple E =

(E,<, �, �) where:

— E is a set of events;

— < ⊆ E × E is an irreflexive partial order (the causality relation) such that for any

e ∈ E, the set {e′ ∈ E : e′ < e} is finite;

— � ⊆ E×E is an irreflexive, symmetric relation (the conflict relation) such that if e1 < e2
and e1�e, then e2�e;

— � : E → Act is the labelling function.

Prime event structures as we have defined them have binary conflict, though this can

also be generalised to non-binary conflict (van Glabbeek and Vaandrager 1997).

A configuration of a prime event structure is a finite set of events that is downwards-

closed (left-closed) under the causal ordering < and is conflict-free, that is, no two events

can be related by �. Thus, a configuration represents a possible state of a computation,

being the set of all events that have happened so far.

Example 3.2. Consider a prime event structure with events e1, e2, e3 all labelled with a,

where e1 causes e2 and e1, e2 are concurrent with e3. The corresponding CCS expression is

(a.a) |a. The set of configurations consists of �, {e1}, {e3}, {e1, e2}, {e1, e3} and {e1, e2, e3}.

When drawing diagrams of prime event structures, we shall, as usual, depict the causal

relation with arrows and the conflict relation with dotted lines. We shall also suppress the

actual events and write their labels instead. Thus, if we have two events e1 and e2, both

labelled with a, in diagrams we shall denote them both as a, or sometimes as a1 and a2,

respectively, when we wish to distinguish between them. This is justified because all the

forms of equivalence we shall discuss depend on the labels of the events rather than the

events themselves.

We arrive at configuration structures by treating the configurations of an event structure

as a first-class notion, rather than obtaining them from the causal and conflict relations

on events.

Definition 3.3. A configuration structure (over an alphabet of labels Act) is a pair C = (C, �),

where C is a family of finite sets (configurations) and � :
⋃
X∈C X → Act is a labelling

function.

We use CC , �C to refer to the two components of a configuration structure C and write

EC =
⋃
X∈C X to denote the events of C. We let e, . . . range over events, E, F, . . . range over

sets of events and X,Y , . . . range over configurations. We let a, b, c, . . . range over labels

in Act.

Definition 3.4 (van Glabbeek and Goltz 2001). A configuration structure C = (C, �) is

stable if it is:

— rooted, that is, � ∈ C;

— connected, that is, � 
= X ∈ C implies ∃e ∈ X : X \ {e} ∈ C;

— closed under bounded unions, that is, if X,Y , Z ∈ C , then X ∪ Y ⊆ Z implies

X ∪ Y ∈ C;

http://journals.cambridge.org
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— closed under bounded intersections, that is, if X,Y , Z ∈ C , then X ∪ Y ⊆ Z implies

X ∩ Y ∈ C .

The set of configurations of a prime event structure E forms a stable configuration

structure. To see this, we can check the four conditions of Definition 3.4. It is clear that

the empty set is always a configuration of E . For connectedness, if X is a non-empty

configuration of E and e is any maximal event in X, then X \{e} is also a configuration. If

X and Y are configurations, then X∪Y is not necessarily a configuration. It is left-closed,

but it may contain conflict between events of X and those of Y , so X and Y represent

alternative and incompatible possible states of a computation. However, if X ∪Y ⊆ Z for

some configuration Z , then X ∪ Y is clearly conflict free, and thus a configuration of E .

The most interesting condition is the last one. If X and Y are configurations, then

X ∩Y is a configuration of E since it is left-closed and conflict-free. Thus, for prime event

structures, configurations are closed under arbitrary intersections and not just bounded

intersections. This shows that stable configuration structures are more general than prime

event structures. We require closure under intersections, but only between compatible

configurations (the boundedness condition).

Example 3.5. Let a configuration structure C have the following configurations:

� {e1} {e2} {e1, e3} {e2, e3}

(we omit the labelling since it is not relevant here). It is easy to check that C satisfies

the four conditions of Definition 3.4 and hence is stable. However, C is not the set of

configurations of any prime event structure since it is not closed under (unbounded)

intersections:

{e1, e3} ∩ {e2, e3} = {e3}
but {e3} is not a configuration.

Prime event structures are a proper subclass of stable event structures (which we do

not define here). Any stable configuration structure is the set of configurations of a stable

event structure (van Glabbeek and Goltz 2001, Theorem 5.3).

Definition 3.6. Let C = (C, �) be a stable configuration structure, and let X ∈ C with

d, e ∈ X. Then we have:

— Causality, that is, d �X e if and only if for all Y ∈ C with Y ⊆ X we have e ∈ Y

implies d ∈ Y . Furthermore, d <X e if and only if d �X e and d 
= e.

— Concurrency, that is, d coX e if and only if d 
<X e and e 
<X d.

Example 3.7. Consider the stable configuration structure C of Example 3.5. We have

e1 <{e1 ,e3} e3

e2 <{e2 ,e3} e3.

Thus e3 can be caused by either e1 or e2, but not both. This is an example of exclusive

‘or’ causation, which cannot be modelled (directly) in prime event structures.
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Note that the causal relations are local to configurations, unlike the case with prime

event structures where there is a single global causal ordering. van Glabbeek and Goltz

showed (van Glabbeek and Goltz 2001) that <X is a partial order and that the sub-

configurations of X are precisely those subsets Y that are left-closed with respect to

<X , that is, if d <X e ∈ Y , then d ∈ Y . Furthermore, if X,Y ∈ C with Y ⊆ X, then

<Y = <X� Y .

Definition 3.8. Let C = (C, �) be a stable configuration structure and let a ∈ Act. We let

X
e→C X

′ if and only if X,X ′ ∈ C , X ⊆ X ′ and X ′ \X = {e}. Furthermore, we let X
a→C X

′

if and only if X
e→C X ′ for some e with �(e) = a. We also define reverse transitions:

X
e
�C X

′ if and only if X ′ e→C X, and X
a
�C X

′ if and only if X ′ a→C X. The overloading

of notation whereby transitions can be labelled with events or with event labels should

not cause confusion.

We shall assume in the following that stable configuration structures are image finite

with respect to forward transitions, that is, for any configuration X and any label a, the

set {X ′ : X
a→C X

′} is finite.

3.2. Equivalences

In this section we define the bisimulation-based equivalences we shall need, namely, those

shown in Figure 1, and give examples that demonstrate the differences between them.

Definition 3.9 (van Glabbeek and Goltz 2001). Let C and D be stable configuration

structures. A relation R ⊆ CC × CD is an interleaving bisimulation (IB) between C and D
if R(�,�), and if R(X,Y ), then for a ∈ Act:

— if X
a→C X

′, then ∃Y ′. Y
a→D Y ′ and R(X ′, Y ′);

— if Y
a→D Y ′, then ∃X ′. X

a→C X
′ and R(X ′, Y ′).

We say that C and D are IB equivalent (C ≈ib D) if and only if there is an IB between C
and D.

Example 3.10. Consider a configuration structure C that has events e1 and e2 with labels

a and b, respectively, and the configurations �, {e1}, {e2} and {e1, e2}. The corresponding

CCS expression is a |b. Clearly, we have

�
a→C {e1}

�
b→C {e2}.

Next, consider a configuration structure D that consists of �, {d1} and {d1, d2} where the

events d1 and d2 are labelled a and b, respectively. The corresponding CCS expression is

a.b, and we have �
a→D {d1} but not �

b→D Y for any configuration Y of D. Hence, C
and D are not IB equivalent.

For a set of events E, let �(E) be the multiset of labels of events in E. We shall now

define a step transition relation where concurrent events are executed in a single step.
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Definition 3.11. Let C = (C, �) be a stable configuration structure and let A ∈ NAct (A is

a multiset over Act). We let X
A→C X

′ if and only if X,X ′ ∈ C , X ⊆ X ′ and X ′ \ X = E

with d coX ′ e for all d, e ∈ E and �(E) = A.

Example 3.12. Consider the configuration structure C from Example 3.10. Since e1 and e2

are concurrent, we have �
{a,b}
→ C {e1, e2}.

Definition 3.13 (Pomello 1986; van Glabbeek and Goltz 2001). Let C and D be stable

configuration structures. A relation R ⊆ CC × CD is a step bisimulation (SB) between C
and D if R(�,�), and if R(X,Y ), then for A ∈ NAct:

— if X
A→C X

′, then ∃Y ′. Y
A→D Y ′ and R(X ′, Y ′);

— if Y
A→D Y ′, then ∃X ′. X

A→C X
′ and R(X ′, Y ′).

We say that C and D are SB equivalent (C ≈sb D) if and only if there is an SB between C
and D.

Example 3.14. Consider the two configuration structures from Example 3.10, but now

with all labels being a. The corresponding CCS expressions are a |a and a.a and they are

IB equivalent. However, step bisimulation distinguishes them since

�
{a,a}
→ C {e1, e2}

but not

�
{a,a}
→ D {d1, d2}.

The last transition does not hold since

d1 <{d1 ,d2} d2.

Definition 3.15. Let

X = (X,<X, �X)

Y = (Y ,<Y , �Y )

be partial orders that are labelled over Act. We say that X and Y are isomorphic (X ∼= Y ,

or sometimes just X ∼= Y ) if and only if there is a bijection from X to Y respecting the

ordering and the labelling. The isomorphism class [X ]∼= of a partial order labelled over

Act is called a pomset over Act. We let p, . . . range over pomsets.

Thus a pomset is an abstraction of a labelled partial order where we forget about the

actual events and just consider it as an ordering on a multiset of labels.

Definition 3.16. Let C = (C, �) be a stable configuration structure and p be a pomset over

Act. We let X
p

→C X
′ if and only if X,X ′ ∈ C , X ⊆ X ′ and X ′ \X = H with

p = [(H,<X ′ ∩ (H ×H), �C � H)]∼= .
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Example 3.17. Consider C and D in Example 3.10. Let a < b denote the pomset of a

partial order consisting of two events labelled a and b where the first event causes the

second event. Then

�
{a<b}
→ D {d1, d2}

since

d1 <{d1 ,d2} d2.

However, it is not true that

�
{a<b}
→ C {e1, e2},

since e1 and e2 are concurrent.

Definition 3.18 (Boudol and Castellani 1987; van Glabbeek and Goltz 2001). Let C and D
be stable configuration structures. A relation R ⊆ CC × CD is a pomset bisimulation (PB)

between C and D if R(�,�), and if R(X,Y ), then for any pomset p over Act:

— if X
p

→C X
′, then ∃Y ′. Y

p
→D Y ′ and R(X ′, Y ′);

— if Y
p

→D Y ′, then ∃X ′. X
p

→C X
′ and R(X ′, Y ′).

We say that C and D are PB equivalent (C ≈pb D) if and only if there is a PB between C
and D.

Example 3.19. Consider the configuration structures C and D corresponding to the CCS

expressions (a | a) + a.a and a | a. We have that C can perform the pomset a < a but D
cannot; hence they are not PB equivalent. Note, however, that C and D are SB equivalent.

Definition 3.20 (Degano et al. 1987; van Glabbeek and Goltz 2001). Let C and D be

stable configuration structures. A relation R ⊆ CC × CD is a weak history-preserving

(WH) bisimulation between C and D if R(�,�), and if R(X,Y ) and a ∈ Act, then:

— (X,<X, �C � X) ∼= (Y ,<Y , �D � Y );

— if X
a→C X

′, then ∃Y ′. Y
a→D Y ′ and R(X ′, Y ′);

— if Y
a→D Y ′, then ∃X ′. X

a→C X
′ and R(X ′, Y ′).

We say that C and D are WH equivalent (C ≈wh D) if and only if there is a WH

bisimulation between C and D.

Example 3.21. Consider the configuration structures C and D corresponding to the CCS

expressions a.(b+ c) + (a |b) + a.b and a.(b+ c) + (a |b). They are PB equivalent because

the a of a.b in C is matched by the a of a |b in D and then can be followed by matching

bs. This does not work for WH bisimulation because after the said a and b in C we are

in a configuration where b depends causally on a, and after the matching a and b in D
we reach a configuration where a and b are concurrent. This violates the property of WH

bisimulation that matching configurations are order-isomorphic.

We can define a further equivalence by combining pomset and weak-history preserving

bisimulation as follows.
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Definition 3.22 (van Glabbeek and Goltz 2001). Let C and D be stable configuration

structures. A relation R ⊆ CC × CD is a weak history-preserving pomset bisimulation

(WHPB) between C and D if R(�,�), and if R(X,Y ) and p is a pomset over Act, then:

— (X,<X, �C � X) ∼= (Y ,<Y , �D � Y );

— if X
p

→C X
′, then ∃Y ′. Y

p
→D Y ′ and R(X ′, Y ′);

— if Y
p

→D Y ′, then ∃X ′. X
p

→C X
′ and R(X ′, Y ′).

We say that C and D are WHPB equivalent (C ≈whpb D) if and only if there is a WHPB

between C and D.

Definition 3.23 (Rabinovich and Trakhtenbrot 1988; van Glabbeek and Goltz 2001). Let

C and D be stable configuration structures. A relation

R ⊆ CC × CD × P(EC × ED)

is a history-preserving (H) bisimulation between C and D if and only if R(�,�,�), and

if R(X,Y , f) and a ∈ Act:

— f is an isomorphism between (X,<X, �C � X) and (Y ,<Y , �D � Y );

— if X
a→C X

′, then ∃Y ′, f′. Y
a→D Y ′, R(X ′, Y ′, f′) and f′ � X = f;

— if Y
a→D Y ′, then ∃X ′, f′. X

a→C X
′, R(X ′, Y ′, f′) and f′ � X = f.

We say that C and D are H equivalent (C ≈h D) if and only if there is an H bisimulation

between C and D.

Both H and WH have associated hereditary versions as follows.

Definition 3.24 (Bednarczyk 1991; Joyal et al. 1996; van Glabbeek and Goltz 2001). Let

C and D be stable configuration structures. Then

R ⊆ CC × CD × P(EC × ED)

is a hereditary H (HH) bisimulation if and only if R is an H bisimulation with the

additional hereditary property that if R(X,Y , f), then for any a ∈ Act:

— if X
a
�C X

′, then ∃Y ′, f′. Y
a
�D Y ′, R(X ′, Y ′, f′) and f � X ′ = f′;

— if Y
a
�D Y ′, then ∃X ′, f′. X

a
�C X

′, R(X ′, Y ′, f′) and f � X ′ = f′.

We say that C and D are HH equivalent (C ≈hh D) if and only if there is an HH

bisimulation between C and D.

Definition 3.25. Let C and D be stable configuration structures. Then

R ⊆ CC × CD × P(EC × ED)

is a hereditary WH (HWH) bisimulation if R(�,�,�), and if R(X,Y , f) and a ∈ Act,

then:

— f is an isomorphism between (X,<X, �C � X) and (Y ,<Y , �D � Y );

— if X
a→C X

′, then ∃Y ′, f′. Y
a→D Y ′ and R(X ′, Y ′, f′);

— if Y
a→D Y ′, then ∃X ′, f′. X

a→C X
′ and R(X ′, Y ′, f′);

— if X
a
�C X

′, then ∃Y ′, f′. Y
a
�D Y ′, R(X ′, Y ′, f′) and f � X ′ = f′;
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Fig. 2. E ≈hwh F , but E 
≈pb F .

— if Y
a
�D Y ′, then ∃X ′, f′. X

a
�C X

′, R(X ′, Y ′, f′) and f � X ′ = f′.

Also, C and D are HWH equivalent (C ≈hwh D) if and only if there is an HWH

bisimulation between C and D.

To see that if C ≈hwh D, then C ≈wh D, we suppose that R(X,Y , f) is an HWH

bisimulation between C and D. We define R′(X,Y ) if and only if ∃f.R(X,Y , f) and can

easily check that R′ is a WH bisimulation between C and D.

The other inclusions in Figure 1 are mostly immediate from the definitions. The

inclusion ≈wh ⊆ ≈sb is non-obvious; it was shown in Fecher (2004), with an alternative

proof given in Phillips and Ulidowski (2012). Furthermore, the inclusions in Figure 1 are

all strict, and no further inclusions hold between the specified equivalences, as we now

show by means of a series of six examples collected together in Example 3.26.

Example 3.26.

(1) Phillips and Ulidowski (2012, Example 3.12):

a |a = a.a

holds for IB but not SB, as explained in Example 3.14.

(2) Phillips and Ulidowski (2012, Example 3.13):

a |a = (a |a) + a.a

holds for SB but not PB (see Example 3.19) or WH (it is clear that (a | a) + a.a

can reach a configuration corresponding to a.a that is not order-isomorphic to any

configuration of a |a).
(3) van Glabbeek and Goltz (2001, Example 9.1) and Phillips and Ulidowski (2012,

Example 3.14):

a.(b+ c) + (a |b) + a.b = a.(b+ c) + (a |b)
holds for PB but not WH, as shown in Example 3.21.

(4) Phillips and Ulidowski (2012, Example 4.7):

The event structures E , F in Figure 2 are HWH-equivalent but not PB-equivalent.

Recall that here, as elsewhere, when we label events as a1, a2, . . ., we mean that there

are distinct events e1, e2, . . . that are labelled with a. We shall first show that E and F
are not PB-equivalent. In E , after any a, we can always perform a pomset transition

a < b, whereas in F , we cannot perform a < b after a3 (though a2 and b3 are possible).

Next, we check that E , F are HWH-equivalent. Note that every configuration of F
has a corresponding configuration in E . The only difference is that configuration

{a2, b2, a3} of E is missing in F . This configuration is matched by {a2, b2, a1} and by
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aa aa aa aa

bb bb bb

E F

Fig. 3. E ≈whpb F , but E 
≈h F and E 
≈hwh F .

{a2, a3, b3} in F . We now define a relation R between the matching configurations of

E and F and check that it is an HWH bisimulation. Crucially, we check that there

are order isomorphisms between {a2, b2, a3} of E and its matching configurations in

F , namely

{(a2, a2), (b2, b2), (a3, a1)}

and

{(a2, a3), (b2, b3), (a3, a2)}.

Finally, we see that reversing any pair of isomorphic events (that can be reversed)

leads to related configurations.

(5) van Glabbeek and Goltz (2001, Example 9.4, page 294) and Phillips and Ulid-

owski (2012, Example 3.16):

The event structures E , F in Figure 3 are WHPB-equivalent, but not H-equivalent

(nor in fact HWH-equivalent, though this is not needed for our current purposes).

We shall first show that E and F are not H-equivalent. Consider the two middle

events a in E , denoted here by a and a′ as read from the left, and configuration Eaa′

consisting of these events. Eaa′ can be extended to Eaa′b by performing the middle b,

and to Eaa′b′ by performing the b on the right, which is denoted here by b′. There are

three configurations in F consisting of two as, and each of these configurations can

be extended by performing a single event b. We write these configurations as Faa′ and

Faa′b. Next we check that Faa′ cannot be related to Eaa′ by an H bisimulation. This

is because after fixing which a, a′ in Eaa′ match which a, a′ in Faa′ , we cannot ensure

that both Eaa′b and Eaa′b′ are order-isomorphic to Faa′b, assuming that we maintain

the matching between the events of Eaa′ and Faa′ .

However, this is not a problem when defining a WH bisimulation because there is no

requirement that the events matched so far must stay matched in future configurations.

Each configuration Faa′b is related to Eaa′b and Eaa′b′ because we are allowed to redefine

which a, a′ in Eaa′ matches which a, a′ in Faa′ . Hence, E , F are WH-equivalent, and

since they also have matching pomsets, they are WHPB-equivalent.

(6) The Absorption Law (Boudol and Castellani 1987; Bednarczyk 1991; van Glabbeek

and Goltz 2001):

(a | (b+ c)) + (a |b) + ((a+ c) |b) = (a | (b+ c)) + ((a+ c) |b)

holds for H, and thus for WH, but not for HWH, which we shall now demonstrate by

showing that HWH bisimulation distinguishes the two sides of the Absorption Law.
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If we perform the event a and then b in the a |b component, these must be matched

by the a and then the b of the ((a + c) | b) summand on the right (matching it with

the a of (a | (b+ c)) is wrong since after this a is performed, no c is possible after a in

a |b). The right-hand side can now reverse a and do a c (still using the same summand

since all other summands are disabled). The left-hand side cannot match this since,

after reversing the a, no c is possible.

4. Event Identifier Logic

We now introduce our logic, which we call Event Identifier Logic (EIL). We assume an

infinite set of identifiers Id ranged over by x, y, z, . . .. The syntax of EIL is as follows:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈x : a〉〉φ | (x : a)φ | 〈〈x〉φ.

We include the usual operators of propositional logic: truth tt, negation ¬φ and con-

junction φ ∧ φ′. We then have forward diamond 〈x : a〉〉φ, which says that it is possible

to perform an event labelled with a and reach a new configuration where φ holds. In

the formula 〈x : a〉〉φ, the modality 〈x : a〉〉 binds all free occurrences of x in φ. Next

we have declaration (x : a)φ, which says that there is some event with label a in the

current configuration that can be bound to x in such a way that φ holds. Here the

declaration (x : a) binds all free occurrences of x in φ. Finally, we have reverse diamond

〈〈x〉φ, which says that it is possible to perform the reverse event bound to identifier

x, and reach a configuration where φ holds. Note that 〈〈x〉 does not bind x. It is

clear that any occurrences of x that get bound by (x : a) must be of the form 〈〈x〉.
We allow alpha-conversion of bound names. We use φ,ψ, . . . to range over formulas of

EIL.

Example 4.1. The formula

〈x : a〉〉〈y : a〉〉〈〈x〉tt

says that there are events with label a, say e1 and e2, that can be bound to x and y such

that, after performing e1 and then e2, we can reverse e1. Obviously, after performing e1
followed by e2, we can always reverse e2. This formula could be interpreted as saying that

an event bound to x is concurrent with (or independent of) an event bound to y. Next,

consider

〈x : a〉〉〈y : a〉〉¬〈〈x〉tt.

This formula expresses the fact that an event bound to x causes an event bound to y

(because if we could reverse x before y, we would reach a configuration containing y and

not x, which contradicts x being a cause of y).
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Definition 4.2. We define fi(φ), the set of free identifiers of φ, by induction on formulas:

fi(tt) = �

fi(¬φ) = fi(φ)

fi(φ1 ∧ φ2) = fi(φ1) ∪ fi(φ2)

fi(〈x : a〉〉φ) = fi(φ) \ {x}
fi((x : a)φ) = fi(φ) \ {x}

fi(〈〈x〉φ) = fi(φ) ∪ {x}.

We say that φ is closed if fi(φ) = �; otherwise φ is open.

As usual, in order to assign meaning to open formulas, we employ environments that

tell us what events the free identifiers are bound to.

Definition 4.3. An environment ρ is a partial mapping from Id to events. We say that ρ is

a permissible environment for φ and X if

fi(φ) ⊆ dom(ρ)

and

rge(ρ � fi(φ)) ⊆ X.

We shall use ρφ as an abbreviation for ρ � fi(φ), so the latter condition can be written as

rge(ρφ) ⊆ X.

We use:

— � to denote the empty environment;

— ρ[x �→ e] to denote the environment ρ′ that agrees with ρ except possibly on x, where

ρ′(x) = e (and ρ(x) may or may not be defined);

— [x �→ e] as an abbreviation for �[x �→ e];

— ρ \ x to denote ρ with the assignment to x deleted (if defined in ρ).

We can now formally define the semantics of EIL.

Definition 4.4. Let C be a stable configuration structure. We define a satisfaction relation

C, X, ρ |= φ, where X is a configuration of C and ρ is a permissible environment for φ

and X, by induction on formulas as follows (we suppress the C where it is clear from the

context):

— X, ρ |= tt always

— X, ρ |= ¬φ if and only if X, ρ 
|= φ

— X, ρ |= φ1 ∧ φ2 if and only if X, ρ |= φ1 and X, ρ |= φ2

— X, ρ |= 〈x : a〉〉φ if and only if ∃X ′, e such that we have X
e→C X

′ with �(e) = a and

X ′, ρ[x �→ e] |= φ

— X, ρ |= (x : a)φ if and only if ∃e ∈ X such that �(e) = a and X, ρ[x �→ e] |= φ

— X, ρ |= 〈〈x〉φ if and only if ∃X ′, e such that X
e
�C X

′ with ρ(x) = e and X ′, ρ |= φ

(and ρ is a permissible environment for φ and X ′).
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For closed φ, we further define C, X |= φ if and only if C, X,� |= φ, and C |= φ if and

only if C,� |= φ.

Note that in the case of 〈〈x〉φ, even though according to the syntax x is allowed to

occur free in φ, if x does occur free in φ, then X, ρ |= 〈〈x〉φ can never hold: if ρ(x) = e

and X
e
�C X

′, then X ′, ρ |= φ cannot hold since ρ is not a permissible environment for φ

and X ′ since ρ assigns a free identifier of φ to an event outside X ′.

Example 4.5. Consider the configuration structure from Example 3.2. Recall that this has

events e1, e2, e3 all labelled with a, where e1 causes e2 and e1, e2 are concurrent with e3.

The corresponding CCS expression is (a.a) |a and the configurations are

� {e1} {e3} {e1, e2} {e1, e3} {e1, e2, e3}.

To see that the empty configuration satisfies 〈x : a〉〉〈y : a〉〉〈〈x〉tt, we have

�,� |= 〈x : a〉〉〈y : a〉〉〈〈x〉tt

since

{e1, e3}, [x �→ e1, y �→ e3] |= 〈〈x〉tt,

which holds because {e1, e3} e1
� {e3} and ρ(x) = e1.

Also,

�,� |= 〈x : a〉〉〈y : a〉〉¬〈〈x〉tt
since

{e1, e2}, [x �→ e1, y �→ e2] |= ¬〈〈x〉tt,
because

{e1, e2} 
 e1� {e2}
since {e2} is not a configuration.

The closed formula (x : a)tt says that there is some event labelled with a in the current

configuration: X |= (x : a)tt if and only if ∃e ∈ X. �(e) = a. In the present example, note

that as well as

{e1, e2}, [x �→ e1, y �→ e2] |= ¬〈〈x〉tt
we also have

{e1, e2}, [x �→ e1, y �→ e2] |= (x : a)〈〈x〉tt.
By the definition of (x : a), the current environment is updated to

[x �→ e2, y �→ e2]

and we obtain

{e1, e2}, [x �→ e2, y �→ e2] |= 〈〈x〉tt.
Correspondingly,

{e1, e2}, [x �→ e1, y �→ e2] |= (x : a)〈〈x〉(y : a)〈〈y〉tt.
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However,

{e1, e2}, [x �→ e1, y �→ e2] 
|= (x : a)〈〈x〉〈〈y〉tt
since

{e1}, [x �→ e2, y �→ e2] 
|= 〈〈y〉tt.

We will now introduce some further operators as derived operators of EIL.

Notation 4.6 (derived operators). Let A = {a1, . . . , an} be a multiset of labels. We define:

ff
df
= ¬tt

[x : a]] φ
df
= ¬〈x : a〉〉¬φ

φ1 ∨ φ2
df
= ¬(¬φ1 ∧ ¬φ2)

〈A〉〉φ df
= 〈x1 : a1〉〉 · · · 〈xn : an〉〉

(
φ ∧

n−1∧
i=1

〈〈xi〉tt
)

(Forward step)

where x1, . . . , xn are fresh and distinct (and, in particular, are not free in φ).

We write 〈a1, . . . , an〉〉φ instead of 〈{a1, . . . , an}〉〉φ.

In the case n = 1, we have

〈a〉〉φ df
= 〈x : a〉〉φ

where x is fresh.

〈〈A〉φ df
= (x1 : a1) · · · (xn : an)

(
〈〈x1〉 · · · 〈〈xn〉φ ∧

n∧
i=2

〈〈xi〉tt
)

(Reverse step)

where x1, . . . , xn are fresh and distinct (and, in particular, are not free in φ).

We write 〈〈a1, . . . , an〉φ instead of 〈〈{a1, . . . , an}〉φ.

In the case n = 1, we have

〈〈a〉φ df
= (x : a)〈〈x〉φ

where x is fresh.

The next example gives formulas that distinguish the six pairs of configuration structures

in Example 3.26.

Example 4.7.

(1) 〈x : a〉〉〈y : a〉〉〈〈x〉tt is satisfied by a |a, but not by a.a.

(2) [x : a]] [y : a]] 〈〈x〉tt is only satisfied by a |a, and not by (a |a) + a.a.

(3) Only the right-hand side of

a.(b+ c) + (a |b) = a.(b+ c) + (a |b) + a.b,
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E F

a1a1 a2a2 a3a3 a4a4

b1b1 b2b2 b3b3 b4b4

Fig. 4. E ≈hwh F and E ≈whpb F but E 
≈h F .

satisfies

〈a〉〉( [c]] ff ∧ 〈b〉〉 [[a] ff).

(4) Only E satisfies

[x : a]] 〈y : a〉〉〈z : b〉〉 [[y] ff,

which says that after every a a pomset a < b can be performed.

(5) Consider

〈x : a〉〉〈y : a〉〉(〈z : b〉〉 [[x] ff ∧ 〈w : b〉〉 [[y] ff).

This is only satisfied by E in Figure 3 where the two middle events a are assigned to

x and y.

(6) Consider

〈x : a〉〉( [w : c]] ff ∧ 〈y : b〉〉〈〈x〉 [z : c]] ff).

This is satisfied by

(a | (b+ c)) + (a |b) + ((a+ c) |b),
but not by

(a | (b+ c)) + ((a+ c) |b).
Strictly speaking, event identifiers are not required to distinguish the two pairs of

configuration structures. The formula

〈a〉〉( [c]] ff ∧ 〈b〉〉〈〈a〉 [c]] ff)

with simple label modalities is sufficient.

Example 4.8. The event structures E and F in Figure 4 (which is taken from Phillips and

Ulidowski (2012, Example 4.8)) are equivalent for HWH and WHPB, but not for H, and

hence not for HH. Now consider

φ ≡ [x : a]] [y : a]] (〈z : b〉〉¬〈〈x〉tt ∧ 〈w : b〉〉¬〈〈y〉tt).

It is easy to check that E satisfies φ and F does not. Also note that E and F can be

distinguished by a logic with pomset modalities (both reverse and forward) defined over

runs (Cherief 1992; Pinchinat et al. 1994).

Example 4.9. Consider E , F and their configuration graphs in Figure 5. To see that E
and F are H equivalent, we define a bisimulation by relating configurations of identically

labelled events (including where a4 is matched with a′
4) and check that it is an H.

The structures are also HWH equivalent. To see this, we define a bisimulation between

order-isomorphic configurations (of which there only five isomorphism classes: �, {a},
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E F a1a1

a1a1

a2a2

a2a2a3

a3a3

a3

a4a4

a4 a4

a5a5

a5a5

a4

a4

Fig. 5. E ≈h F and E ≈hwh F but E 
≈hh F .

{a, a}, {a < a} and {a < a, a}, where events separated by commas are concurrent) and

check that it is an HWH. However, E and F are not HH equivalent, and, since there is

autoconcurrency, event identifiers are indeed required to distinguish them. The formula

〈x : a〉〉〈y : a〉〉(¬〈〈x〉tt ∧ 〈z : a〉〉〈〈y〉〈w : a〉〉¬〈〈z〉tt ∧ 〈z′ : a〉〉〈〈y〉¬〈w′ : a〉〉¬〈〈z′〉tt)

is only satisfied by E . It requires that x causes y and that z and z′ are bound to different

events because 〈z : a〉〉 and 〈z′ : a〉〉 are followed by mutually contradictory behaviours.

This is possible in E (because a1, a4 can be followed by either a3 or a2) but not in F since

none of the pairs of causally dependent events offers two different a-events.

Example 4.10. Our logic can characterise (up to isomorphism) the causality and concur-

rency relationships between events of any configuration. Given any configuration X, we

can write a formula θX that gives that order structure of X. In fact, θX only uses reverse

modalities: see Lemma 5.4.

We conclude this section with a basic lemma, which will be useful in Section 5.

Lemma 4.11. Let X be a configuration of a stable configuration structure C, and let

φ ∈ EIL. Suppose ρ and ρ′ are permissible environments for φ and X that agree on fi(φ).

Then X, ρ |= φ if and only if X, ρ′ |= φ.

Proof. The proof is a standard induction on formulas.

5. Using EIL to characterise equivalences

We wish to show that EIL and its various sublogics characterise the equivalences defined

in Section 3.2. Each sublogic of EIL induces an equivalence on configuration structures

in a standard fashion.
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Definition 5.1. Let L be any sublogic of EIL. Then L induces an equivalence on stable

configuration structures as follows: C ∼L D if and only if for all closed φ ∈ L we have

C |= φ if and only if D |= φ.

In Section 5.1, we shall introduce a simple sublogic that allows us to characterise order

isomorphism. Then in Section 5.2, we shall characterise history-preserving equivalences,

and in Section 5.3 we shall do the same for pomset and step bisimulation.

5.1. Reverse-only logic and order isomorphism

In this section we shall define sublogics of EIL consisting of formulas where only reverse

transitions are allowed.

Definition 5.2. Reverse-only logic EILro is defined by

φ ::= tt | ¬φ | φ ∧ φ′ | (x : a)φ | 〈〈x〉φ.

We then define declaration-free reverse-only logic EILdfro by

φ ::= tt | ¬φ | φ ∧ φ′ | 〈〈x〉φ.

These logics are preserved between isomorphic configurations, and characterise config-

urations up to isomorphism, as we shall now show.

Lemma 5.3. Let C and D be stable configuration structures, and let X and Y be

configurations of C and D, respectively. Suppose f : X ∼= Y . Then for any φ ∈ EILro

and any ρ (a permissible environment for φ and X), we have X, ρ |= φ if and only if

Y , f ◦ ρφ |= φ.

Proof. We use induction on φ. Recall that ρφ is an abbreviation for ρ � fi(φ). Function

composition is in applicative rather than diagrammatic order. Note that if ρ is a permissible

environment for φ andX, then f◦ρφ is a permissible environment for φ and Y . Considering

cases, we have:

— Case tt:

X, ρ |= tt iff Y , f ◦ ρφ |= tt.

— Case ¬φ:

X, ρ |= ¬φ iff X, ρ 
|= φ

iff Y , f ◦ ρφ 
|= φ

iff Y , f ◦ ρ¬φ |= ¬φ.

— Case φ1 ∧ φ2:

X, ρ |= φ1 ∧ φ2 iff X, ρ |= φ1 and X, ρ |= φ2

iff Y , f ◦ ρφ1
|= φ1 and Y , f ◦ ρφ2

|= φ2

iff Y , f ◦ ρφ1∧φ2
|= φ1 and Y , f ◦ ρφ1∧φ2

|= φ2 (using Lemma 4.11)

iff Y , f ◦ ρφ1∧φ2
|= φ1 ∧ φ2.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 31 Mar 2014 IP address: 94.193.189.89

I. C. C. Phillips and I. Ulidowski 22

— Case (x : a)φ:

Suppose X, ρ |= (x : a)φ. Then there is e ∈ X such that �(e) = a and X, ρ[x �→ e] |= φ.

By the induction hypothesis,

Y , f ◦ (ρ[x �→ e])φ |= φ,

so

Y , (f ◦ ρ(x:a)φ)[x �→ f(e)] |= φ

and

�(f(e)) = a.

Hence

Y , f ◦ ρ(x:a)φ |= (x : a)φ.

Conversely, if

Y , f ◦ ρ(x:a)φ |= (x : a)φ,

then

X, ρ |= (x : a)φ.

— Case 〈〈x〉φ:

Suppose X, ρ |= 〈〈x〉φ. Then X
e
�C X

′ with ρ(x) = e and X ′, ρ |= φ.

Let

e′ = f(e)

Y ′ = Y \ {e′}
f′ = f \ {(e, e′)}.

Then Y
e′

�D Y ′ and f′ : X ′ ∼= Y ′. By the induction hypothesis,

Y ′, f′ ◦ ρφ |= φ,

so

Y , f ◦ ρ〈〈x〉φ |= φ

and

Y , f ◦ ρ〈〈x〉φ |= 〈〈x〉φ
as required.

Conversely, if

Y , f ◦ ρ〈〈x〉φ |= 〈〈x〉φ,
then

X, ρ |= 〈〈x〉φ.

Note that Lemma 5.3 does not hold for any larger natural sublogic of EIL. This is

because EILro contains all operators of EIL apart from 〈x : a〉〉φ, and the induction fails

for this case; two isomorphic configurations X and Y will not necessarily have the same

possible forward transitions, since those potentially take us outside X and Y .
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Given any configuration X, we can create a closed formula θX ∈ EILro that gives the

order structure of X. We make this precise in the following lemma.

Lemma 5.4. Let X be a configuration of a stable configuration structure C. There is a

closed formula θX ∈ EILro such that if Y is any configuration of a stable configuration

structure D and |Y | = |X|, then Y ∼= X if and only if Y |= θX .

Proof. Let |X| = n and the events of X be enumerated as {e1, . . . , en} in such a way that

if ei <X ej , then i < j: this is always possible. Let �(ei) = ai (i = 1, . . . , n) and let z1, . . . , zn
be distinct identifiers. Let ρX be the environment mapping zi to ei (i = 1, . . . , n).

The formula θX will use the identifiers zi to express the ordering <X . For each

k = 1, . . . , n, we shall define a formula θkX that will, in effect, state whether ej <X ek
for each j 
= k. The idea is as follows:

— If ej 
<X ek , it is possible to reverse ej without reversing ek . Of course, we might have

to reverse other events that are caused by ej first. These events must have subscripts

greater than j. So to reverse all events that do not cause ek , we should start by

reversing events with the highest subscript and work downwards.

— On the other hand, if ej <X ek , it is impossible to reverse ej without first reversing ek ,

even if we have first reversed all events not causing ek .

So we let θkX be the formula obtained by:

(1) reversing zn, . . . , zk+1;

(2) not reversing zk;

(3) reversing as many as possible of zk−1, . . . , z1, starting with zk−1 and working down to

z1 – call these zi1 , . . . , zirk ; and finally

(4) stating that it is impossible to reverse the remaining members of zk−1, . . . , z1 – these

are precisely those j such that ej <X ek , as discussed above.

Thus

θkX
df
= 〈〈zn〉 · · · 〈〈zk+1〉〈〈zi1〉 · · · 〈〈zirk 〉

∧
ej<Xek

¬〈〈zj〉tt

and

θ0
X

df
= 〈〈zn〉〈〈zn−1〉 · · · 〈〈z1〉tt.

Now let

θ′
X

df
=

n∧
k=0

θkX.

It is clear that θ′
X ∈ EILdfro and X, ρX |= θ′

X . Finally, let

θX
df
= (z1 : a1) · · · (zn : an)θ

′
X.

Again it is clear that θX ∈ EILro and X |= θX . Note that if n = 0, then θX = tt.

Now suppose |Y | = |X| and Y |= θX . Then there is ρ such that Y , ρ |= θ′
X . We know

that ρ assigns the n identifiers of θ′
X to different events of Y (since Y , ρ |= θ0

X), so ρ is

onto Y . Let e′
i = ρ(zi) (i = 1, . . . , n). Then �(e′

i) = ai = �(ei).

Take any k � n. We have Y , ρ |= θkX . We claim that for all j, we have e′
j <Y e′

k if and

only if ej <X ek . If ej 
<X ek , then Y , ρ |= θkX tells us that e′
j can be reversed without
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reversing e′
k . So e′

j 
<Y e
′
k . Conversely, suppose ej <X ek . By Y , ρ |= θkX , we can reverse all

e′
j ′ such that ej ′ 
<X ek without reversing e′

k . This takes us to the configuration

Yk
df
= {e′

i : ei �X ek}

with e′
j ∈ Yk . Now Y , ρ |= θkX further tells us that it is impossible to reverse any e′

j ′ such

that ej ′ <X ek without first reversing e′
k . So any sub-configuration of Yk that contains e′

k

must include the whole of Yk , and thus, in particular, e′
j . This means that e′

j <Yk e
′
k , which

implies e′
j <Y e′

k as required. This completes the proof of the claim. It follows from the

claim that Y ∼= X via the isomorphism f(ei) = e′
i.

Conversely, suppose that Y ∼= X via the isomorphism f : X → Y . Since X |= θX , we

now have Y |= θX by Lemma 5.3.

Example 5.5. Consider an event structure with events e1, e2, e3 and e4 all labelled a. Assume

that there is no conflict, e1 < e3 and e2 < {e3, e4}, and that we are in the configuration

X where all events have executed (from now on we will omit X from all formulas). The

formulas θk implied by Lemma 5.4 are as follows:

θ0 ≡ 〈〈z4〉〈〈z3〉〈〈z2〉〈〈z1〉tt
θ1 ≡ 〈〈z4〉〈〈z3〉〈〈z2〉tt
θ2 ≡ 〈〈z4〉〈〈z3〉〈〈z1〉tt
θ3 ≡ 〈〈z4〉(¬〈〈z2〉tt ∧ ¬〈〈z1〉tt)
θ4 ≡ 〈〈z3〉〈〈z1〉(¬〈〈z2〉tt).

Then θ′ ≡
∧4
k=0 θ

k and the formula θ that characterises precisely the causal structure of

X is

(z1 : a)(z2 : a)(z3 : a)(z4 : a)θ′.

Remark 5.6. We can remove the condition |Y | = |X| in Lemma 5.4 if we have a formula

ζ that holds precisely in empty configurations. We can then amend θX by redefining θ0
X

to be

〈〈zn〉〈〈zn−1〉 · · · 〈〈z1〉ζ.
If the set Act of labels is finite, we can set

ζ
df
=

∧
a∈Act

¬(x : a)tt.

The next lemma follows fairly immediately from the proof of Lemma 5.4 together with

Lemma 5.3.

Lemma 5.7. Let X be a configuration of a stable configuration structure C. Let {ze : e ∈ X}
be distinct identifiers. Let the environment ρX be defined by ρX(ze) = e (e ∈ X). There

is a formula θ′
X ∈ EILdfro with fi(θ′) = {ze : e ∈ X} such that X, ρX |= θ′

X and if Y is

any configuration of a stable configuration structure D and |Y | = |X|, then Y ∼= X if and

only if ∃ρ. Y , ρ |= θ′
X .

Proof. The proof is really already contained in the proof of Lemma 5.4.
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Let |X| = n, and let θ′
X , ρX be defined as in the proof of Lemma 5.4, except that we

change zi to zei (i = 1, . . . , n). Then X, ρX |= θ′
X . Also, if we take any Y with |Y | = |X|,

and suppose Y , ρ |= θ′
X , then we can deduce that Y ∼= X.

Conversely, suppose Y ∼= X via the isomorphism f : X → Y . Since X, ρX |= θ′
X , we

have Y , ρ |= θ′
X for some ρ by Lemma 5.3.

5.2. Logics for history-preserving bisimulations

We start by showing that EIL characterises HH-bisimulation (Theorem 5.9). We then

present sublogics of EIL corresponding to H-bisimulation, WH-bisimulation and HWH-

bisimulation.

However, we shall begin with the following lemma before giving Theorem 5.9.

Lemma 5.8. Let X be a configuration of a stable configuration structure C, and let

φ ∈ EIL. Suppose σ maps fi(φ) (not necessarily injectively) to a set of fresh identifiers (in

particular, ones not occurring either free or bound in φ), ρ is an environment for φ and

X, ρ′ is an environment for σ(φ) and X, and for any x ∈ fi(φ), we have ρ(x) = ρ′(σ(x)).

Here σ(φ) is obtained by replacing each occurrence of a free identifier x in φ by σ(x).

Then X, ρ |= φ if and only if X, ρ′ |= σ(φ).

Proof. Note that we allow σ, ρ, ρ′ to be non-injective, and that we effectively define σ(φ)

by induction on φ during the course of the proof.

By induction on φ, we have:

— Case tt:

X, ρ |= tt iff X, ρ′ |= σ(tt) = tt.

— Case ¬φ:

X, ρ |= ¬φ iff X, ρ 
|= φ

iff X, ρ′ 
|= σ(φ)

iff X, ρ′ |= ¬σ(φ) = σ(¬φ).

— Case φ1 ∧ φ2:

X, ρ |= φ1 ∧ φ2 iff X, ρ |= φ1 and X, ρ |= φ2

iff X, ρ′ |= σ1(φ1) and X, ρ′ |= σ2(φ2)

iff X, ρ′ |= σ1(φ1) ∧ σ2(φ2) = σ(φ1 ∧ φ2)

where σi = σ � fi(φi) (i = 1, 2).

— Case 〈x : a〉〉φ:

X, ρ |= 〈x : a〉〉φ iff ∃X ′, e. X
e→ X ′, �(e) = a,X ′, ρ[x �→ e] |= φ

iff ∃X ′, e. X
e→ X ′, �(e) = a,X ′, ρ′[x �→ e] |= σ′(φ)

iff X, ρ′ |= 〈x : a〉〉σ′(φ) = σ(〈x : a〉〉φ)

where σ′ = σ if x /∈ fi(φ), and σ′ = σ[x �→ x] if x ∈ fi(φ).
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— Case (x : a)φ:

X, ρ |= (x : a)φ iff ∃e ∈ X. �(e) = a and X, ρ[x �→ e] |= φ

iff ∃e ∈ X. �(e) = a and X, ρ′[x �→ e] |= σ′(φ)

iff X, ρ′ |= (x : a)σ′(φ) = σ((x : a)φ)

where, again, σ′ = σ if x /∈ fi(φ), and σ′ = σ[x �→ x] if x ∈ fi(φ).

— Case 〈〈x〉φ:

X, ρ |= 〈〈x〉φ iff ∃X ′, e. X
e
� X ′, ρ(x) = e and X ′, ρ |= φ

iff ∃X ′, e. X
e
� X ′, ρ′(σ(x)) = e and X ′, ρ′ |= σ′(φ)

iff X, ρ′ |= 〈〈σ(x)〉σ′(φ) = σ(〈〈x〉φ)

where σ′ = σ \ x if x /∈ fi(φ), and σ′ = σ if x ∈ fi(φ).

The next result is related to the result of Nielsen and Clausen (1994b) stating that a

logic with reverse event index modality (discussed in Section 2 above) characterises HH.

Theorem 5.9. Let C and D be stable configuration structures. Then, C ≈hh D if and only

if C ∼EIL D.

Proof.

(⇒) Let R be an HH bisimulation between C and D. We shall show by induction on

φ that for all X,Y , f, if R(X,Y , f), then for all φ ∈ EIL and all ρ (a permissible

environment for φ and X), we have X, ρ |= φ if and only if Y , f ◦ ρφ |= φ. Recall

that ρφ is an abbreviation for ρ � fi(φ) and that if ρ is a permissible environment for

φ and X, then f ◦ ρφ is a permissible environment for φ and Y .

By considering initial (empty) configurations, our induction hypothesis implies that

C ∼EIL D.

So, supposing R(X,Y , f), we have:

— Case tt:

It is clear that

X, ρ |= tt iff Y , f ◦ ρtt |= tt.

— Case ¬φ:

X, ρ |= ¬φ iff X, ρ 
|= φ

iff Y , f ◦ ρφ 
|= φ (using the induction hypothesis)

iff Y , f ◦ ρ¬φ 
|= φ

iff Y , f ◦ ρ¬φ |= ¬φ.
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— Case φ1 ∧ φ2:

X, ρ |= φ1 ∧ φ2 iff X, ρ |= φ1 and X, ρ |= φ2

iff Y , f ◦ ρφ1
|= φ1 and Y , f ◦ ρφ2

|= φ2

(using the induction hypothesis)

iff Y , f ◦ ρφ1∧φ2
|= φ1 and Y , f ◦ ρφ1∧φ2

|= φ2

(using Lemma 4.11)

iff Y , f ◦ ρφ1∧φ2
|= φ1 ∧ φ2.

— Case 〈x : a〉〉φ:

Suppose X, ρ |= 〈x : a〉〉φ.

Then X
e→C X

′ for some X ′, e such that �(e) = a and X ′, ρ[x �→ e] |= φ.

Since R(X,Y , f), there are Y ′, e′, f′ such that

�(e′) = a

Y
e′

→D Y ′

R(X ′, Y ′, f′)

f′ = f ∪ {(e, e′)}.

By the induction hypothesis,

Y ′, f′ ◦ (ρ[x �→ e])φ |= φ.

Hence

Y ′, (f ◦ ρ〈x:a〉〉φ)[x �→ e′] |= φ.

So

Y , f ◦ ρ〈x:a〉〉φ |= 〈x : a〉〉φ
as required.

The converse is similar.

— Case (x : a):

Suppose X, ρ |= (x : a)φ.

Then there is e ∈ X such that �(e) = a and X, ρ[x �→ e] |= φ. By the induction

hypothesis,

Y , f ◦ (ρ[x �→ e])φ |= φ.

So

Y , (f ◦ ρ(x:a)φ)[x �→ f(e)] |= φ.

It is clear that �(f(e)) = a, so

Y , f ◦ ρ(x:a)φ |= (x : a)φ.

The converse is similar.

— Case 〈〈x〉φ:

Suppose X, ρ |= 〈〈x〉φ and let e = ρ(x) and X ′ = X \ {e}.
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Then X
e
�C X

′ and X ′, ρ |= φ.

Since R(X,Y , f), we get Y ′, e′, f′ such that

Y
e′

�D Y ′

R(X ′, Y ′, f′)

f′ = f \ {(e, e′)}.

By the induction hypothesis,

Y ′, f′ ◦ ρφ |= φ.

So

Y ′, f ◦ ρ〈〈x〉φ |= φ.

Hence

Y , f ◦ ρ〈〈x〉φ |= 〈〈x〉φ
as required.

The converse is similar.

(⇐) Suppose C ∼EIL D. Define R(X,Y , f) if and only if:

— f is an order isomorphism between X and Y ;

— for any φ ∈ EIL and ρ (a permissible environment for φ and X) with rge(ρ) ⊆ X,

we have X, ρ |= φ if and only if Y , f ◦ ρ |= φ.

(Note that by considering negated formulas, X, ρ |= φ if and only if Y , f ◦ ρ |= φ

is equivalent to X, ρ |= φ implies Y , f ◦ ρ |= φ.)

We shall now show that R is an HH bisimulation. It is clear that R(�,�,�) since

C ∼EIL D, so assuming R(X,Y , f), we have:

(1) Suppose X
e→C X ′ with �(e) = a, and for all e′, Y ′ such that Y

e′

→D Y ′ with

�(e′) = a, we have ¬R(X ′, Y ′, f′), where f′ = f ∪ {(e, e′)}. There are only finitely

many such e′ due to the image-finiteness of our configuration structures. Let all

such e′, Y ′, f′ be ei, Yi, fi for i ∈ I . For each i, since ¬R(X ′, Yi, fi), at least one of

the following holds:

(a) there are φi, ρi with rge(ρi) ⊆ X ′ such that X ′, ρi |= φi and Yi, fi ◦ ρi 
|= φi;

(b) fi is not an order isomorphism between X ′ and Yi.

Let {ze′ : e′ ∈ X ′} be a set of fresh distinct identifiers. Let the environment ρX ′

be defined by ρX ′ (ze′ ) = e′ (all e′ ∈ X ′). We are going to standardise all formulas

to use this environment so that we can conjoin them. Similarly, let ρX = ρX ′ \ ze.
In each of the cases (a) and (b), we shall obtain ψi such that X ′, ρX ′ |= ψi and

Yi, fi ◦ ρX ′ 
|= ψi:

(a) We have X ′, ρi |= φi and Yi, fi ◦ρi 
|= φi. Let σi be defined by σi(x) = zρi(x) for

x ∈ fi(φi). Let ψi = σi(φi), which is obtained by replacing each free identifier

x in φi by σi(x). It is clear that

ρi(x) = ρX ′ (σi(x))
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for each x ∈ fi(φi). Then X ′, ρX ′ |= ψi by Lemma 5.8. Similarly,

fi ◦ ρi(x) = fi ◦ ρX ′ (σi(x))

for each x ∈ fi(φi), so

Yi, fi ◦ ρX ′ 
|= ψi,

again by Lemma 5.8.

(b) Let ψi
df
= θ′

X ′ as in Lemma 5.7. Then X ′, ρX ′ |= ψi, by Lemma 5.7. Also,

Yi, fi ◦ ρX ′ 
|= ψi, again by Lemma 5.7, noting that |Yi| = |X ′|.
Let Ψ be

∧
i∈I ψi. It is clear that X ′, ρX ′ |= Ψ, that is,

X ′, ρX[ze �→ e] |= Ψ,

so

X, ρX |= 〈ze : a〉〉Ψ.
Also, for each i ∈ I , we have

Yi, fi ◦ ρX ′ 
|= Ψ,

that is,

Yi, (f ◦ ρX)[ze �→ ei] 
|= Ψ.

Hence,

Y , f ◦ ρX 
|= 〈ze : a〉〉Ψ,
which contradicts R(X,Y , f).

(2) The case where Y
e→D Y ′ is similar to the previous case.

(3) Suppose X
e
�C X

′. We must show that

Y
f(e)
�D Y ′ = Y \ {f(e)}

and R(X ′, Y ′, f′), where f′ = f � X ′. It is clear that f′ is an order isomorphism

between X ′ and Y ′. To establish Y
f(e)
�D Y ′, note that

X, [z �→ e] |= 〈〈z〉tt.

Hence

Y , f ◦ [z �→ e] |= 〈〈z〉tt.
Suppose there are φ, ρ such that X ′, ρ |= φ but Y ′, f′ ◦ ρ 
|= φ. Let z be fresh.

Then

X, ρ[z �→ e] |= 〈〈z〉φ
but

Y , f ◦ (ρ[z �→ e]) 
|= 〈〈z〉φ,
since

f ◦ (ρ[z �→ e]) = (f′ ◦ ρ)[z �→ f(e)]),

which contradicts R(X,Y , f).
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(4) The case where Y
e
�D Y ′ is similar to the previous case.

Remark 5.10. The proof of Theorem 5.9 would still work with the logic restricted by not

using declarations (x : a)φ, since they are not used in the (⇐) direction. However, we

include declarations in EIL because they are useful in defining sublogics for WH, among

other things.

We now define a sublogic of EIL that characterises history-preserving bisimulation.

Definition 5.11. EILh is given as follows, where φr is a formula of EILro:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈x : a〉〉φ | (x : a)φ | φr.

EILh is just EIL with 〈〈x : a〉φ replaced by φr ∈ EILro. Thus we are not allowed to

go forward after going in reverse. This concept of disallowing forward moves embedded

inside reverse moves appears in Goltz et al. (1992).

Theorem 5.12. Let C and D be stable configuration structures. Then, C ≈h D if and only

if C ∼EILh
D.

Proof. We adapt the proof of Theorem 5.9 as follows:

(⇒) Let R be an H bisimulation between C and D. We show by induction on φ that for

all X,Y , f, if R(X,Y , f), then for all φ ∈ EILh and all ρ (environment for φ and X),

we have X, ρ |= φ if and only if Y , f ◦ ρ |= φ.

The cases for tt, negation, conjunction, 〈x : a〉〉φ and (x : a)φ are as in the proof of

Theorem 5.9. This only leaves the case of φr ∈ EILro. For this case, instead of using

the main induction hypothesis, we use Lemma 5.3.

(⇐) Suppose C ∼EILh
D. Define R(X,Y , f) if and only if f : X ∼= Y and for any φ ∈ EILh

and any ρ (an environment for φ and X) we have X, ρ |= φ if and only if Y , f◦ρ |= φ.

We shall show that R is an H bisimulation.

The proof is the same as the part for forward transitions in the proof of Theorem 5.9.

We just need to note that each ψi as well as Ψ and 〈ze : a〉〉Ψ are formulas of EILh.

Remark 5.13. Just as for Theorem 5.9, Theorem 5.12 would still hold if we disallowed

declarations (x : a)φ. This gives the following more minimal logic, where φr ∈ EILdfro:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈x : a〉〉φ | φr.

We next define a sublogic EILwh of EILh that characterises weak history-preserving

bisimulation. We get from EILh to EILwh by simply requiring that all formulas of EILwh

are closed.

Definition 5.14. EILwh is given as follows, where φrc is a closed formula of EILro

(Definition 5.2):

φ ::= tt | ¬φ | φ ∧ φ′ | 〈a〉〉φ | φrc.
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In the above definition, we write 〈a〉〉φ rather than 〈x : a〉〉φ since φ is closed and, in

particular, x does not occur free in φ (Notation 4.6). Also, we omit declarations (x : a)φ

since they have no effect when φ is closed. Of course, declarations can occur in φrc.

Theorem 5.15. Let C and D be stable configuration structures. Then C ≈wh D if and only

if C ∼EILwh
D.

Proof. We can take all environments to be empty since we are dealing with closed

formulas. Apart from the use of Lemmas 5.3 and 5.4 to handle formulas of EILro, the

proof is much as for standard Hennessy–Milner logic (Hennessy and Milner 1985):

(⇒) Let R be a WH bisimulation between C and D. We show by induction on φ that for

all X,Y , if R(X,Y ), then X |= φ if and only if Y |= φ.

So we suppose R(X,Y ). Then, considering cases:

— Cases tt, negation and conjunction:

These are all straightforward.

— Case X |= 〈a〉〉φ:

Then for some X ′, we have X
a→ X ′, and X ′ |= φ. So there is some Y ′ such that

Y
a→ Y ′ and R(X ′, Y ′). By the induction hypothesis, Y ′ |= φ. Hence Y |= 〈a〉〉φ

as required.

The converse where Y |= 〈a〉〉φ is similar.

— Case φrc ∈ EILro:

This follows from Lemma 5.3, noting that X ∼= Y .

(⇐) Suppose C ∼EILwh
D. Define R(X,Y ) if and only if both X ∼= Y and for any

φ ∈ EILwh we have X |= φ if and only if Y |= φ. We shall show that R is a WH

bisimulation.

We proceed in a similar manner to the (⇐) direction in the proof of Theorem 5.9,

though the details are different.

It is clear that R(�,�), since C ∼EILwh
D, so we assume R(X,Y ).

Suppose X
a→C X ′, and that for all Y ′ such that Y

a→D Y ′, we have ¬R(X ′, Y ′).

There are only finitely many such Y ′. Let all such Y ′ be Yi for i ∈ I . For each i, since

¬R(X ′, Yi), one of the following holds:

(1) X ′ 
∼= Yi.

(2) There is ψi such that X ′ |= ψi and Yi 
|= ψi.

In case (1), let ψi be θX ′ as in Lemma 5.4. It is clear that X ′ |= ψi. Since |Yi| = |X ′|
(both obtained by adding one event to isomorphic configurations Y ,X), it must be

that Yi 
|= ψi.

Thus, for each of cases (1) and (2) we have a formula ψi of EILwh such that X ′ |= ψi
and Yi 
|= ψi.

Let Ψ be
∧
i∈I ψi. It is clear that X ′ |= Ψ, so X |= 〈a〉〉Ψ. Also, for each i ∈ I , we have

Yi 
|= Ψ. Hence, Y 
|= 〈a〉〉Ψ, which contradicts R(X,Y ).

The case where Y
a→D Y ′ is similar to that for X

a→C X
′.
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We believe that EILwh is the first logic proposed for weak history-preserving bisimulation

with autoconcurrency allowed. Goltz et al. (1992) described a logic for weak history-

preserving bisimulation with no autoconcurrency allowed, but in that case, weak history-

preserving bisimulation is as strong as history-preserving bisimulation (van Glabbeek and

Goltz 2001).

Just as we weakened EILh to get EILwh, we can weaken EIL by requiring that forward

transitions 〈x : a〉〉φ are only allowed if φ is closed. Again, instead of 〈x : a〉〉φ, we write

〈a〉〉φ. This gives us EILhwh.

Definition 5.16. EILhwh is given below, where φc ranges over closed formulas of EILhwh:

φ ::= tt | ¬φ | φ ∧ φ′ | 〈a〉〉φc | (x : a)φ | 〈〈x〉φ.

EILwh is clearly a sublogic of EILhwh as well as of EILh.

Theorem 5.17. Let C and D be stable configuration structures. Then, C ≈hwh D if and

only if C ∼EILhwh
D.

Proof.

(⇒) Let R be an HWH bisimulation between C and D. We show by induction on φ

that for all X,Y , f, if R(X,Y , f), then for all φ ∈ EILhwh and all ρ (a permissible

environment for φ and X), we have X, ρ |= φ if and only if Y , f ◦ρφ |= φ. Recall that

ρφ is an abbreviation for ρ � fi(φ).

All cases apart from 〈a〉〉φc are the same as in the proof of Theorem 5.9, and the

〈a〉〉φc case is the same as in the proof of Theorem 5.15.

(⇐) Suppose C ∼EILhwh
D and define R(X,Y , f) if and only if:

— f is an order isomorphism between X and Y;

— for any φ ∈ EILhwh and ρ (a permissible environment for both φ and X) with

rge(ρ) ⊆ X, we have X, ρ |= φ if and only if Y , f ◦ ρ |= φ.

(Note that by considering negated formulas, X, ρ |= φ if and only if Y , f ◦ ρ |= φ

is equivalent to X, ρ |= φ implies Y , f ◦ ρ |= φ.)

We show that R is an HWH bisimulation. It is clear that R(�,�,�) since we have

C ∼EILhwh
D, so we assume R(X,Y , f):

(1) Suppose X
e→C X

′ with �(e) = a. We must show that there are e′, Y ′, f′ such that

Y
e′

→D Y ′ with �(e′) = a, and R(X ′, Y ′, f′).

We now suppose, in order to show a contradiction, that there are no such e′, Y ′, f′.

Let all e′, Y ′, f′ such that Y
e′

→D Y ′, �(e′) = a and f′ : X ′ ∼= Y ′ be enumerated

as ei, Yi, fi for i ∈ I . There are only finitely many such e′, Y ′, f′. Note that for a

given e′ there is only one Y ′ = Y ∪ {ei}, but there may be more than one possible

isomorphism f′ : X ′ ∼= Y ′.

For each i ∈ I , since ¬R(Xi, Yi, fi), there are φi, ρi with rge(ρi) ⊆ X ′ such that

X ′, ρi |= φi and Yi, fi ◦ ρi 
|= φi.
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Let {ze′ : e′ ∈ X ′} be a set of fresh distinct identifiers. Let the environment ρX ′

be defined by ρX ′ (ze′ ) = e′ (all e′ ∈ X ′). We are going to standardise all formulas

to use this environment so that we can conjoin them. Similarly, let ρX = ρX ′ \ ze.
We shall obtain ψi such that X ′, ρX ′ |= ψi and Yi, fi ◦ ρX ′ 
|= ψi.

Let σi be defined by σi(x) = zρi(x) for x ∈ fi(φi). Let ψi = σi(φi), which is obtained

by replacing each free identifier x in φi by σi(x). It is clear that

ρi(x) = ρX ′ (σi(x))

for each x ∈ fi(φi). Then X ′, ρX ′ |= ψi by Lemma 5.8. Similarly,

fi ◦ ρi(x) = fi ◦ ρX ′ (σi(x))

for each x ∈ fi(φi), so Yi, fi ◦ ρX ′ 
|= ψi, again by Lemma 5.8.

Let θ′
X ′ be as in Lemma 5.7. The environment ρX ′ we use here is taken to be

the same as the one in the statement of Lemma 5.7. Thus X ′, ρX ′ |= θ′
X ′ by

Lemma 5.7.

Let Ψ′ df
= θ′

X ′ ∧
∧
i∈I ψi. It is clear that X ′, ρX ′ |= Ψ′.

We now close Φ′ by declaring all identifiers ze′ (e′ ∈ X ′). Let

Ψ
df
= (ze′ : �(e′))e′∈X ′Ψ′,

using an obvious notation. We now have X ′ |= Ψ, and thus X |= 〈a〉〉Ψ, with

〈a〉〉Ψ ∈ EILhwh.

Since R(X,Y , f), we must have Y |= 〈a〉〉Ψ. So there are e′ and Y ′ such that

Y
e′

→D Y ′, �(e′) = a and Y ′ |= Ψ. There is an environment ρ′ with

dom(ρ′) = {ze : e ∈ X ′},

such that Y ′, ρ′ |= Ψ′. In particular, Y ′, ρ′ |= θ′
X ′ . Since |Y ′| = |X ′|, we have

f′ : X ′ ∼= Y ′ where f(e) = ρ′(ze) (by Lemma 5.7 and the proof of Lemma 5.4).

But then e′, Y ′, f′ must be ei, Yi, fi for some i ∈ I . So

Y ′, f′ ◦ ρX ′ 
|= ψi.

But for each e ∈ X ′, we have

f′ ◦ ρX ′ (xe) = f′(e) = ρ′(ze).

So Y ′, ρ′ 
|= ψi, which contradicts Y ′, ρ′ |= Ψ′.

(2) The case where Y
e→D Y ′ is similar to the previous case.

(3) The case where X
e
�C X

′ is similar to the corresponding case in the proof of

Theorem 5.9.

(4) The case where Y
e
�D Y ′ is similar to the previous case.

With no (equidepth) autoconcurrency, we know that ≈hwh is as strong as ≈hh (Bednar-

czyk 1991; Phillips and Ulidowski 2012), so EILhwh is as strong as EIL in this case.
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5.3. Logics for pomset and step bisimulation

We conclude our investigation of the sublogics of EIL characterising various equivalences

by looking at the four remaining equivalences from Figure 1, namely PB, WHPB, SB and

IB. Logics for PB and SB have already been presented by Baldan and Crafa, and our

logics for these have similarities with theirs.

Baldan and Crafa’s logic for PB uses the idea that we are not allowed to apply ¬ or ∧
to open formulas. This means that we cannot branch using ∧ into two different futures

and use causal information from the past. We can adapt this idea to our own setting.

Definition 5.18. Let EILpb be given by

φ ::= tt | ¬φc | φc ∧ φ′
c | φr ∧ φc | φc ∧ φr | 〈x : a〉〉φ | φr

where φr ∈ EILdfro (without declarations (x : a)φ), and φc ranges over closed formulas of

EILpb.

It can be seen that EILpb is obtained from forward moves 〈x : a〉〉φ, reverse-only moves

φr , and taking conjunctions of reverse-only and closed formulas, and negations and

conjunctions of closed formulas. This logic is strong enough to encode pomset transitions.

Proposition 5.19. Let p be any pomset. There is a formula scheme 〈p〉〉φ such that for any

closed formula φ ∈ EILpb:

— 〈p〉〉φ ∈ EILpb;

— for any configuration X of a stable configuration structure C, we have X |= 〈p〉〉φ if

and only if there is X ′ such that X
p

→C X
′ and X ′ |= φ.

Proof (sketch). Let (X,<, �) be a representative of p, with X = {e1, . . . , en} and �(ei) = ai
for each i, and with events ordered in such a way that if ei < ej , then i < j. Recall the

open formula θ′
X ∈ EILdfro from the proof of Lemma 5.4. There it was defined only for X

a configuration, but it can be defined in the same way for any labelled poset. We define

〈p〉〉φ df
= 〈z1 : a1〉〉 · · · 〈zn : an〉〉(θ′

X ∧ φ).

Suppose Y is any configuration of a stable configuration structure D. If Y |= 〈p〉〉φ, then

there are events {e′
1, . . . , e

′
n} such that �(e′

i) = ai for each i, and Y1, . . . , Yn such that

Y
e′
1→D Y1 · · ·

e′
n→D Yn,

with

Yn, ρ
′ |= θ′

X ∧ φ.
Here ρ′ assigns zi to e′

i for each i. Yn, ρ
′ |= θ′

X tells us that {e′
1, . . . , e

′
n} (with the ordering

induced from Yn) is isomorphic to X, so

Y
p

→D Yn |= φ

as required.

Conversely, if

Y
p

→D Yn |= φ,
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we list the members of Yn \ Y as {e′
1, . . . , e

′
n} in such a way that e′

i corresponds to ei for

each i. Then it is not hard to see that

Y |= 〈z1 : a1〉〉 · · · 〈zn : an〉〉(θ′
X ∧ φ),

where we assign each zi to e′
i. Hence Y |= 〈p〉〉φ as required.

In order to prove that EILpb characterises PB, we will need some lemmas.

Lemma 5.20. Any formula of EILpb is of one of the following two forms:

(1) φr ∧ φc.
(2) 〈x : a〉〉φ where 〈x : a〉〉φ is open.

Here we identify formulas up to commutativity and associativity of conjunction, and

identify tt ∧ φ with φ.

Proof. The result is trivial.

The following lemma is similar to Lemma 5.3, but stated for EILdfro rather than for

EILro (just take X = Y = � to recover Lemma 5.3 for EILdfro).

Lemma 5.21. Let C and D be stable configuration structures. Let X,X ′ be configurations

of C with X ⊆ X ′, and let Y , Y ′ be configurations of D with Y ⊆ Y ′. Suppose

f : X ′ \X ∼= Y ′ \ Y .

Then for any φ ∈ EILdfro, and any ρ (a permissible environment for φ and X) such that

rge(ρφ) ⊆ X ′ \X, we have X ′, ρ |= φ if and only if Y ′, f ◦ ρφ |= φ.

Proof. The proof is by induction on φ. The cases for tt, negation and conjunction are

as in the proof of Lemma 5.3, which just leaves the case for 〈〈x〉φ.

Suppose X ′, ρ |= 〈〈x〉φ with

rge(ρ〈〈x〉φ) ⊆ X ′ \X.

Then X ′ e
�C X

′′ for some X ′′ and X ′′, ρ |= φ. Now

rge(ρφ) ⊆ rge(ρ〈〈x〉φ).

We also have

rge(ρφ) ⊆ X ′′,

since X ′′, ρ |= φ. Combining these, we get

rge(ρφ) ⊆ X ′′ \X.

We now let

e′ = f(e)

Y ′′ = Y ′ \ {e′}
f′ = f \ {(e, e′)}.

Then Y ′ e′

�D Y ′′ and

f′ : X ′′ \X ∼= Y ′′ \ Y .
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By the induction hypothesis,

Y ′′, f′ ◦ ρφ |= φ.

Since

f′ ◦ ρφ = f ◦ ρφ,
we have

Y ′′, f ◦ ρφ |= φ,

so

Y ′, f ◦ ρφ |= 〈〈x〉φ
as required.

Conversely, if Y ′, f ◦ ρ |= 〈〈x〉φ, then X ′, ρ |= 〈〈x〉φ.

Note that the induction in the proof of Lemma 5.21 would fail for declarations (x : a)φ

since x might be assigned to an event outside X ′ \X. This is why we stated Lemma 5.21

for EILdfro rather than EILro.

Theorem 5.22. Let C and D be stable configuration structures. Then C ≈pb D if and only

if C ∼EILpb
D.

Proof.

(⇒) Let R be a PB between C and D. We shall show by induction on closed formulas that

if R(X,Y ), then X |= φ if and only if Y |= φ:

— Cases φ = tt, φ = ¬φc and φ = φc ∧ φ′
c:

These cases are trivial.

— Case φ = 〈x1 : a1〉〉φ1:

For this case we shall use Lemma 5.20 repeatedly, starting with φ1. Let n be such

that

φ1 = 〈x2 : a2〉〉φ2, . . . , φn−1 = 〈xn : an〉〉φn
with φ1, . . . , φn−1 open and φn = φnr ∧ φnc . Here n could of course be 1.

Suppose X |= φ. There are events e1, . . . , en, configurations X1, . . . , Xn and envir-

onments ρ1, . . . , ρn such that

X
e1→C X1 · · · en→C Xn,

where �(ei) = ai and Xi, ρi |= φi for i = 1, . . . , n. Here ρi assigns x1, . . . , xi to

e1, . . . , ei respectively.

Now let p be the pomset associated with the labelled partial order

({e1, . . . , en}, <X� {e1, . . . , en}, � � {e1, . . . , en}).

We have X
p

→C Xn. Hence there is Yn such that Y
p

→D Yn and R(Xn, Yn). Let

Yn \ Y = {e′
1, . . . , e

′
n}
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with f(ei) = e′
i for i = 1, . . . , n being an order isomorphism between {e1, . . . , en}

and {e′
1, . . . , e

′
n}. Then

Y
e′
1→D Y1 · · ·

e′
n→D Yn

and �(ei) = ai for i = 1, . . . , n.

Now Xn, ρn |= φnr . By Lemma 5.21, we have Yn, f◦ρn |= φnr . Furthermore, Xn |= φnc .

Hence, Yn |= φnc (using the induction hypothesis) so Y |= φ as required.

The converse is similar.

(⇐) Suppose C ∼EILpb
D. We define R by R(X,Y ) if for all closed formulas φ ∈ EILpb,

X |= φ if and only if Y |= φ. We shall show that R is a pomset bisimulation.

It is clear that R(�,�) since C ∼EILpb
D.

So we suppose R(X,Y ), and further suppose that X
p

→C X
′. Then X |= 〈p〉〉tt, where

〈p〉〉 is as in Proposition 5.19. So Y |= 〈p〉〉tt. Hence there is Y ′ such that Y
p

→D Y ′.

Let all such Y ′ be enumerated as Yi (i ∈ I). We want to show that R(X ′, Yi) for some i.

In order to show a contradiction, we now suppose that for each i there is a closed

formula φi ∈ EILpb such that X ′ |= φi but Yi 
|= φi. Then X |= 〈p〉〉
(∧

i∈I φi
)
, but

Y 
|= 〈p〉〉
(∧

i∈I φi
)
, which gives a contradiction. Hence R(X ′, Yi) for some i.

Conversely, if Y
p

→D Y ′, then X
p

→C X
′ for some X ′.

If we allow reverse-only formulas in EILpb to contain declarations, we get a strictly

stronger logic.

Definition 5.23. Let EILwhpb be

φ ::= tt | ¬φc | φc ∧ φ′
c | φr ∧ φc | φc ∧ φr | 〈x : a〉〉φ | φr

where φr ∈ EILro with declarations (x : a)φ and φc ranges over closed formulas of EILwhpb.

Thus EILwhpb is obtained by adding declarations to reverse-only formulas in EILpb.

This logic is easily seen to include both EILwh and EILpb.

Theorem 5.24. Let C and D be stable configuration structures. Then C ≈whpb D if and

only if C ∼EILwhpb
D.

Proof.

(⇒) Let R be a WHPB between C and D. We shall show by induction on closed formulas

of EILwhpb that if R(X,Y ), then X |= φ if and only if Y |= φ:

— Cases φ = tt, φ = ¬φc and φ = φc ∧ φ′
c:

These cases are trivial.

— Case φ = 〈x1 : a1〉〉φ1:

This case is much the same as the corresponding case in the proof of Theorem 5.22,

noting that Lemma 5.20 would also hold for EILwhpb. The only difference is that

we use Lemma 5.4 instead of Lemma 5.21 to deduce that

Xn, ρn |= φnr
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implies

Yn, f ◦ ρn |= φnr

(we know that Xn
∼= Yn since R is a WHPB).

— Case φ = φr ∈ EILro:

This case follows from Lemma 5.3 since X ∼= Y .

(⇐) Suppose C ∼EILwhpb
D. We define R by R(X,Y ) if for all closed formulas φ ∈ EILwhpb,

X |= φ if and only if Y |= φ. The closed formulas of EILwhpb include all of EILwh and

the closed formulas of EILpb. Therefore, by the proofs of Theorems 5.15 and 5.22, R
is both a weak history-preserving and a pomset bisimulation. Hence R is a WHPB

and C ≈whpb D.

We conclude by noting that logics for SB and IB can be defined straightforwardly. Let

the logic EILsb be given by

φ ::= tt | ¬φ | φ ∧ φ′ | 〈A〉〉φ

(all multisets A). Note that all formulas are closed. It is easy to see that it is a sublogic

of EILpb. The logic EILsb is very similar to the corresponding logic for step bisimulation

given by Baldan and Crafa (2010, Theorem 2). It is straightforward to show that C ≈sb D
if and only if C ∼EILsb

D – see the proof given in Baldan and Crafa (2011, Theorem 2).

Remark 5.25. The logics we have found generally mirror the inclusions in Figure 1 in

that whenever an inclusion holds, the corresponding logics are included in each other (in

the opposite direction). However, there is one exception: ≈wh � ≈sb but EILsb is not a

sublogic of EILwh (as a simple example, 〈a, b〉〉tt is a formula of EILsb but not of EILwh).

This is not all that surprising since the inclusion ≈wh � ≈sb is non-obvious. It would

be of interest to find alternative logics for SB and WH such that the logic for ≈sb is a

sublogic of the one for ≈wh. Of course, we could trivially solve this by taking the union

of EILsb and EILwh as a logic for ≈wh, but we would like a more interesting and elegant

solution.

Finally, let EILib be given by

φ ::= tt | ¬φ | φ ∧ φ′ | 〈a〉〉φ.

It is easy to see that this is a sublogic of EILsb. Alternatively, EILib can be obtained by

taking full EIL (with declarations) and omitting all reverse moves. In this case, of course,

the identifiers and declarations no longer add any power. We have C ≈ib D if and only if

C ∼EILib
D, which is, of course, simply the classical result for standard Hennessy–Milner

logic.

6. Characteristic formulas

In this section we shall investigate characteristic formulas for three of the equivalences we

have considered, namely, HH, H and WH. The idea is that we reduce checking whether

C and D satisfy the same formulas in a logic such as EIL to the question of whether D
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satisfies a particular formula χC , the characteristic formula of C, which completely expresses

the behaviour of C, at least as far as the particular logic is concerned. As pointed out

in Aceto et al. (2009), this means that checking whether two structures are equivalent is

changed from the problem of potentially having to check infinitely many formulas into a

single model-checking problem D |= χC .

Characteristic formulas for models of concurrent systems were first investigated in Graf

and Sifakis (1986), and subsequently in Steffen and Ingólfsdóttir (1994) and other papers –

see Aceto et al. (2009) for further references. As far as we are aware, characteristic formulas

have not previously been investigated for any true concurrency logic, although we should

mention that Aceto et al. (2009) did study characteristic formulas for a logic with both

forward and reverse modalities, which is related to the back and forth simulation of

De Nicola et al. (1990).

We shall confine ourselves to finite stable configuration structures in this section. Even

with this assumption, it is not obvious that an equivalence such as HH, which employs

both forward and reverse transitions, can be captured by a single finite-depth formula. To

show that forward and reverse transitions need not alternate for ever, we first relate HH

to a simple game.

Definition 6.1. Let C and D be finite stable configuration structures. The game G(C,D)

has two players: Attacker and Defender. The set of game states is

S(C,D)
df
= {(X,Y , f) : X ∈ CC , Y ∈ CD , f : X ∼= Y }.

The start state is (�,�,�). At each state of the game, Attacker chooses a forward

(respectively, reverse) move e of either C or D. Then D must reply with a corresponding

forward (respectively, reverse) move e′ by the other structure. Going forwards, we extend

f to f′, and going in reverse, we restrict f to f′, as in the definition of HH. The two

moves produce a new game state (X ′, Y ′, f′). Defender wins if we get to a previously

visited state, and Attacker wins if Defender cannot find a move (Defender also wins if

Attacker cannot find a move, but that can only happen if both C and D only have the

empty configuration).

It is reasonable for Defender to win if a state is repeated since if Attacker then chooses

a different and better move at the repeated state, Attacker could have chosen that one on

the previous occasion.

Definition 6.2. Given finite stable configuration structures C and D, let

s(C,D)
df
= |S(C,D)|

c(C)
df
= max{|X| : X ∈ CC}

c(C,D)
df
= min{c(C), c(D)}.

It is clear that any play of the game G(C,D) finishes after no more than s(C,D) moves.

We can place an upper bound on s(C,D) as follows.
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Proposition 6.3. Let C and D be finite stable configuration structures. Then

s(C,D) � |CC |.|CD|.c(C,D)!.

Note that if there is no autoconcurrency, any isomorphism f : X ∼= Y is unique, so we

can improve the upper bound on the number of states to

s(C,D) � |CC |.|CD|.

Proposition 6.4. Let C and D be finite stable configuration structures. Then C ≈hh D if

and only if Defender has a winning strategy for the game G(C,D).

Proof (sketch).

(⇒) Suppose R is an HH bisimulation between C and D. Note that R(�,�,�), so that

the initial state of G(C,D) is in R. Hence Defender has a winning strategy as follows.

Always choose a move that produces a new state (X ′, Y ′, f′) so that R(X ′, Y ′, f′).

This is clearly possible by the properties of R. Since Defender is always able to make

a move, a state will be repeated eventually since there are only finitely many possible

states (X,Y , f). In fact, there can be no more than s(C,D) moves before Defender

wins, as already observed.

(⇐) Suppose Defender has a winning strategy for G(C,D). We define R(X,Y , f) if and

only if (X,Y , f) is reachable in some play of G(C,D) (where we assume that Defender

always plays their winning strategy). It is clear that R(�,�,�). Also, if R(X,Y , f),

then any transition of C or D can be matched (since Defender has a winning strategy),

so we can get to a new reachable state (X ′, Y ′, f′), and thus R(X ′, Y ′, f′) as required.

The only exception is if we have reached a winning (for Defender) state (X,Y , f), but

in that case this same state was reached earlier in the play, so we can use the earlier

occurrence instead.

Remark 6.5. Game characterisations of HH equivalence have been used many times

before – see, for example, Fröschle (1999), Fröschle (2005), Fröschle and Lasota (2005),

Jurdzinski et al. (2003) and Gutierrez (2009). However, Defender is usually said to win if

the play continues for ever, whereas we say that Defender wins if a state is repeated. This

is because we are working with finite configuration structures, rather than, say, Petri nets.

Definition 6.6. Let φ ∈ EIL. The modal depth md(φ) of φ is defined as follows:

md(tt)
df
= 0

md(¬φ)
df
= md(φ)

md(φ ∧ φ′)
df
= max(md(φ),md(φ′))

md(〈x : a〉〉φ)
df
= 1 + md(φ)

md((x : a)φ)
df
= md(φ)

md(〈〈x : a〉φ)
df
= 1 + md(φ).
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We can use the game characterisation of HH to bound the modal depth of the EIL

formulas needed to check whether finite structures are HH equivalent.

Theorem 6.7. Let C and D be finite stable configuration structures. Then C ≈hh D if and

only if C and D satisfy the same EIL formulas of modal depth no more than

s(C,D) + c(C,D).

Proof.

(⇒) This direction follows immediately from Theorem 5.9.

(⇐) Let s = s(C,D) and c = c(C,D). Let EILk be those formulas of EIL with modal

depth � k. Suppose C and D satisfy the same EILs+c formulas. We aim to show that

Defender has a winning strategy for G(C,D).

The game starts in stage 0 and goes through stages 1 up to no more than s. We shall

show by induction on k that Defender has a winning strategy where at stage k, in

state (X,Y , f) with f : X ∼= Y , it is the case that for any φ ∈ EILs+c−k and any ρ

(a permissible environment for φ and X) with rge(ρ) ⊆ X, we have X, ρ |= φ if and

only if Y , f ◦ ρ |= φ:

— Base case k = 0:

This follows immediately from the assumption that C and D satisfy the same

EILs+c formulas.

— Induction step:

Suppose that at stage k (where k � s − 1) we are in state (X,Y , f), and suppose

that for any φ ∈ EILs+c−k and any ρ (a permissible environment for φ and X)

with rge(ρ) ⊆ X we have X, ρ |= φ if and only if Y , f ◦ ρ |= φ.

We must now show that whatever move Attacker makes, Defender can respond

in such a way as to get to a new state (X ′, Y ′, f′) where f′ : X ′ ∼= Y ′ and for

any φ ∈ EILs+c−k−1 and any ρ′ (a permissible environment for φ and X ′) with

rge(ρ′) ⊆ X ′, we have X ′, ρ′ |= φ if and only if Y ′, f′ ◦ ρ′ |= φ. We consider cases:

– Attacker plays X
e→C X

′:

Then Defender must respond with Y
e′

→D Y ′ such that f′ : X ′ ∼= Y ′ where

f′ = f ∪ {(e, e′)} and for any φ ∈ EILs+c−k−1 and any ρ′ (a permissible

environment for φ and X ′) with rge(ρ′) ⊆ X ′, we have

X ′, ρ′ |= φ

if and only if

Y ′, f′ ◦ ρ′ |= φ.

To see that Defender does have such a move, we follow the corresponding

case in the proof of Theorem 5.9. Note that

md(θ′
X ′ ) � |X ′| � c

and that the φi are bounded in modal depth by s + c − k − 1. Hence, the

ψi are bounded in modal depth by s + c − k − 1 since k � s − 1, so c �

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 31 Mar 2014 IP address: 94.193.189.89

I. C. C. Phillips and I. Ulidowski 42

s + c − k − 1. Therefore, 〈ze : a〉〉Ψ ∈ EILs+c−k , allowing us to obtain the

contradiction required.

– Attacker plays Y
e′

→D Y ′:

This is similar to the previous case.

– Attacker plays X
e
�C X

′:

Then Defender must respond with Y
f(e)
�D Y ′ such that f′ : X ′ ∼= Y ′ where

f′ = f � X ′ and for any φ ∈ EILs+c−k−1 and any ρ′ (a permissible environment

for φ and X ′) with rge(ρ′) ⊆ X ′, we have

X ′, ρ′ |= φ

if and only if

Y ′, f′ ◦ ρ′ |= φ.

To see that Defender does have such a move, we follow the corresponding

case in the proof of Theorem 5.9. Note that

φ ∈ EILs+c−k−1,

so

〈〈z〉φ ∈ EILs+c−k,

allowing us to obtain the contradiction required.

– Attacker plays Y
e′

�D Y ′:

This is similar to the previous case.

We now define a family of characteristic formulas χhh
X,n for HH equivalence parametrised

on modal depth n and defined by mutual recursion on the configurations X of a

configuration structure C. The formula χhh
X,n+1 will be the conjunction of:

— a formula giving the order isomorphism class of X (which is possible by Lemma 5.7);

— a formula stating that for any forward transition X
e→C X

′, it is possible to perform

an event labelled with �(e) and reach a state where χhh
X ′ ,n holds (note that the depth

parameter decreases, so this is a well-defined recursion);

— a formula stating that for any label a, performing any event labelled with a takes us

to a state where χhh
X ′ ,n holds for some some X ′ such that X

a→C X
′;

— a formula stating that for any reverse transition X
e
�C X

′, it is possible to perform an

event labelled with �(e) and reach a state where χhh
X ′ ,n holds.

Thus the various conjuncts correspond to the definition of HH bisimulation.
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Definition 6.8. Suppose Act is finite. Let C be a finite stable configuration structure. We

define formulas χhh
X,n (X a configuration of C) by induction on n as follows:

χhh
X,0

df
= θ′

X

χhh
X,n+1

df
= θ′

X ∧

⎛
⎝ ∧
X

e→CX ′

〈ze : �(e)〉〉χhh
X ′ ,n

⎞
⎠

∧

⎛
⎝ ∧
a∈Act

[x : a]]
∨

X
e→CX ′ ,�(e)=a

χhh
X ′ ,n[x/ze]

⎞
⎠ ∧

⎛
⎝ ∧
X

e
�CX ′

〈〈ze〉χhh
X ′ ,n

⎞
⎠

Here θ′
X ∈ EILdfro is as in Lemma 5.7 and

fi(χhh
X,n) = {ze : e ∈ X}.

We further let

χhh
C,n

df
= χhh

�,n.

Note that

χhh
X,n ∈ EIL

and

md(χhh
X,n) � n+ c(C).

Theorem 6.9. Suppose Act is finite. Let C and D be finite stable configuration structures.

Let s
df
= s(C,D). Then C ≈hh D if and only if D |= χhh

C,s .

Proof.

(⇒) It is easy to see by induction on n that C |= χhh
C,n for any n. Now suppose C ≈hh D.

Then C |= χhh
C,s, so D |= χhh

C,s by Theorem 5.9.

(⇐) We show that Defender has a strategy to win the game G(C,D).

Let ρX be defined by ρX(e) = ze for each e ∈ X. Defender must ensure that at each

stage k � s in state (X,Y , f), we have

Y , f ◦ ρX |= χhh
X,s−k.

This is true initially at k = 0 in state (�,�,�) since D |= χhh
C,s.

At each stage k < s, Defender must choose a response that ensures that

Y ′, f′ ◦ ρX ′ |= χhh
X ′ ,s−k−1,

where (X ′, Y ′, f′) is the new state.
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Considering cases:

— Attacker plays X
e→ X ′:

We know

Y , f ◦ ρX |= 〈ze : �(e)〉〉χhh
X ′ ,s−k−1,

so Y
e′

→D Y ′ where

Y ′, (f ◦ ρX)[ze �→ e′] |= χhh
X ′ ,s−k−1.

Let f′ = f ∪ {(e, e′)}. Then

Y ′, f′ ◦ ρX ′ |= χhh
X ′ ,s−k−1.

In particular,

Y ′, f′ ◦ ρX ′ |= θ′
X ′ .

Hence f′ : X ′ ∼= Y ′ by Lemma 5.7 (or the proof of Lemma 5.4). So Defender has

found a valid move and maintained the induction hypothesis.

— Attacker plays Y
e′

→D Y ′:

Let �(e′) = a. We know

Y , f ◦ ρX |= [x : a]]
∨

X
e→CX ′ ,�(e)=a

χhh
X ′ ,s−k−1[x/ze],

so

Y ′, (f ◦ ρX)[x �→ e′] |=
∨

X
e→CX ′ ,�(e)=a

χhh
X ′ ,s−k−1[x/ze].

This disjunction cannot be empty since otherwise

Y ′, (f ◦ ρX)[x �→ e′] |= ff,

which is impossible. So there is e such that X
e→C X

′, �(e) = a and

Y ′, (f ◦ ρX)[x �→ e′] |= χhh
X ′ ,s−k−1[x/ze].

So Defender plays X
e→C X

′. Let f′ = f ∪ {(e, e′)}. Then

Y ′, f′ ◦ ρX ′ |= χhh
X ′ ,s−k−1.

Hence f′ : X ′ ∼= Y ′ just as in the previous case and Defender has again found a

valid move and maintained the induction hypothesis.

— Attacker plays X
e
�C X

′:

Then Defender plays Y
f(e)
→D Y ′. Let f′ = f � X ′. We know

Y , f ◦ ρX |= 〈〈ze〉χhh
X ′ ,s−k−1,

so

Y ′, f′ ◦ ρX ′ |= χhh
X ′ ,s−k−1.

Hence f′ : X ′ ∼= Y ′ just as in the previous cases and Defender has again found a

valid move and maintained the induction hypothesis.
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— Attacker plays Y
e′

�D Y ′:

Let e = f−1(e′). Then Defender plays X
e
�C X

′. Let f′ = f � X ′. We again know

Y , f ◦ ρX |= 〈〈ze〉χhh
X ′ ,s−k−1,

so again

Y ′, f′ ◦ ρX ′ |= χhh
X ′ ,s−k−1.

Hence f′ : X ′ ∼= Y ′ just as in the previous cases and Defender has again found a

valid move and maintained the induction hypothesis.

Theorem 6.9 does not give us a single characteristic formula for C, but it does allow

us to deal uniformly with all Ds up to a certain size. This is almost as good as having

a single characteristic formula for C since we can generate a formula of the appropriate

size once we have settled on D, so we have still reduced equivalence checking to checking

a single formula. Single characteristic formulas are certainly possible for some Cs (see

Example 6.10 below), but whether there is a single formula χhh
C for all finite C that works

for all D remains an open question.

Example 6.10. Consider the configuration structure represented by the CCS process a,

which we denote by Ca. This has configurations � and {e} with �(e) = a. The single

formula

φa
df
= 〈x : a〉〉tt ∧

(
[x : a]]

∧
b∈Act

[y : b]] ff

)
∧

∧
b∈Act,b
=a

[y : b]] ff

characterises Ca for HH equivalence, as we shall now show. It is clear that Ca satisfies

φa. We claim that for any structure C, if C satisfies φa, then C ≈hh Ca. So we suppose C
satisfies φa. It is clear that any single-event configuration of C must be labelled with a.

If C had a configuration Y with two elements, we would have �
a→C X

b→C Y for some

single-event X and some b. But this is not possible by the second conjunct of φa. So any

configuration of C is either the empty set or of the form {e′} for some e′ with �(e′) = a. It

is now easy to define an HH bisimulation between Ca and C.

We can generalise this example in two ways:

(1) Consider the configuration structure Cs represented by a summation s = a1 + · · · + an
(where the ai are not necessarily distinct). Let

A = {ai : i = 1, . . . , n}

(as a set rather than a multiset). The formula

φs
df
=

n∧
i=1

(
〈x : ai〉〉tt ∧ [x : ai]]

∧
b∈Act

[y : b]] ff

)
∧

∧
b∈Act\A

[y : b]] ff

is satisfied by Cs. Also, if any C satisfies φs, then, much as above, any configuration is

either empty or a single event with a label in A. Also, for a ∈ A, by the first conjunct,

C must have a configuration {e} with �(e) = a. It is now again straightforward to

define an HH bisimulation between Cs and C.
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(2) A second generalisation is to the configuration structure represented by a sequential

chain a1.a2 . . . an (where again the ai are not necessarily distinct). A single formula

that characterises this structure with respect to HH equivalence is φ0 where

φi
df
= 〈xi+1 : ai+1〉〉tt ∧ ( [xi+1 : ai+1]] φi+1) ∧

⎛
⎝ ∧
b∈Act,b
=ai+1

[y : b]] ff

⎞
⎠ ∧

i−1∧
j=1

[[xj] ff

for i = 0, . . . , n− 1, and

φn
df
=

( ∧
b∈Act

[y : b]] ff

)
∧
n−1∧
j=1

[[xj] ff.

We shall omit the checks, which are a generalisation of those for the n = 1 case

already covered.

Matters are simpler for H and WH equivalences since then only forward transitions

are employed.

Definition 6.11. Suppose Act is finite and let C be a finite stable configuration structure.

We define formulas χh
X (X a configuration of C) as follows:

χh
X

df
= θ′

X ∧

⎛
⎝ ∧
X

e→CX ′

〈ze : �(e)〉〉χh
X ′

⎞
⎠ ∧

⎛
⎝ ∧
a∈Act

[x : a]]
∨

X
e→CX ′ ,�(e)=a

χh
X ′ [x/ze]

⎞
⎠.

Here θ′
X ∈ EILdfro is as in Lemma 5.7. We further let χh

C
df
= χh

�.

Note that χh
C ∈ EILh, and χh

C is well defined since maximal configurations form the base

cases of the recursion. Also md(χh
X) � 2.c(C).

Proposition 6.12. Suppose Act is finite and let C and D be finite stable configuration

structures. Then D ≈h C if and only if D |= χh
C .

Proof (sketch).

(⇒) We shall first show that C |= χh
C . Let ρX be defined by ρX(e) = ze (each e ∈ X). We

shall show that X, ρX |= χh
X for each configuration X of C. The proof is by induction

on the maximum number of transitions from the current configuration to a maximal

configuration:

d(X)
df
=

{
0 if X is maximal

max{d(X ′) + 1 : X
e→ X ′} otherwise.

We shall omit the straightforward details.

Now suppose C ≈h D. Then C |= χh
C , so D |= χh

C by Theorem 5.12.

(⇐) Suppose D |= χh
C . Let R(X,Y , f) if and only if f : X ∼= Y and Y , f ◦ ρX |= χh

X . We

shall show that R is an H-bisimulation between C and D.

It is clear that Y , f◦ρX |= χh
X holds if X = Y = �, since D |= χh

C . Hence R(�,�,�).
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So we suppose R(X,Y ) and consider cases:

— Case X
e→C X

′:

We know

Y , f ◦ ρX |= 〈ze : �(e)〉〉χh
X ′ ,

so Y
e′

→D Y ′ where

Y ′, (f ◦ ρX)[ze �→ e′] |= χh
X ′ .

Let f′ = f ∪ {(e, e′)}. Then

Y ′, f′ ◦ ρX ′ |= χh
X ′ .

In particular,

Y ′, f′ ◦ ρX ′ |= θ′
X ′ .

Hence f′ : X ′ ∼= Y ′ by Lemma 5.7 (or the proof of Lemma 5.4), and R(X ′, Y ′) as

required.

— Case Y
e′

→C Y
′:

Let �(e′) = a. We know

Y , f ◦ ρX |= [x : a]]
∨

X
e→CX ′ ,�(e)=a

χh
X ′ [x/ze],

so

Y ′, (f ◦ ρX)[x �→ e′] |=
∨

X
e→CX ′ ,�(e)=a

χh
X ′ [x/ze].

This disjunction cannot be empty since otherwise

Y ′, (f ◦ ρX)[x �→ e′] |= ff,

which is impossible. So there is e such that

X
e→C X

′

�(e) = a

Y ′, (f ◦ ρX)[x �→ e′] |= χh
X ′ [x/ze].

Let

f′ = f ∪ {(e, e′)}.

Then

Y ′, f′ ◦ ρX ′ |= χh
X ′ .

Hence f′ : X ′ ∼= Y ′ just as in the previous case, and R(X ′, Y ′) as required.

WH is even easier since formulas are closed.
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Definition 6.13. Suppose Act is finite. Let C be a finite stable configuration structure. We

define formulas χwh
X (X a configuration of C) by

χwh
X

df
= θX ∧

⎛
⎝ ∧
X

a→CX ′

〈a〉〉χwh
X ′

⎞
⎠ ∧

⎛
⎝ ∧
a∈Act

[a]]
∨

X
a→CX ′

χwh
X ′

⎞
⎠.

Here θX ∈ EILro is as in Lemma 5.4. We further let χwh
C

df
= χwh

� .

Note that χwh
C ∈ EILwh and md(χwh

X ) � 2.c(C).

Proposition 6.14. Suppose Act is finite. Let C and D be finite stable configuration structures.

Then D ≈wh C if and only if D |= χwh
C .

Proof. The proof is similar to the proof of Proposition 6.12, except that it uses

Theorem 5.15 instead of Theorem 5.12.

Example 6.15. Recall from Example 3.26 that

a |a = (a |a) + a.a

holds for SB but not WH. Proposition 6.14 gives an alternative method for proving this:

we define the WH characteristic formula χ for a | a and argue that (a | a) + a.a does not

satisfy χ. The formula χ is defined in terms of subformulas χX , with one for each of the

four configurations X of a |a, as in Definition 6.13. Since the two configurations consisting

of a single event labelled a produce equivalent characteristic formulas, we have χ ≡ χ�

where

χ� ≡ 〈a〉〉χa ∧ [a]] χa
χa ≡ (x : a)〈〈x〉tt ∧ 〈a〉〉χa,a ∧ [a]] χa,a
χa,a ≡ (x : a)(y : a)(〈〈x〉〈〈y〉tt ∧ 〈〈x〉tt ∧ 〈〈y〉tt).

The configuration structure (a |a) + a.a does not satisfy χ because, unlike a |a, not all of

its configurations with two events a satisfy χa,a (the two events a are independent).

7. Conclusions and future work

We have introduced a logic that uses event identifiers to track events in both forward and

reverse directions. As we have seen, this enables it to express causality and concurrency

between events. The logic is strong enough to characterise hereditary history-preserving

(HH) bisimulation equivalence. We are also able to characterise the most well-known

bisimulation-based weaker equivalences using sublogics. In particular, we can characterise

weak history-preserving bisimulation, which has not been done previously as far as we are

aware. We have also investigated characteristic formulas for our logic with respect to HH

and other equivalences. Again, we are not aware of any previous work on characteristic

formulas for logics for true concurrency.

In future work we would like to:

(1) investigate general laws that hold for the logic;

http://journals.cambridge.org
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(2) look at sublogics characterising other true concurrency equivalences, including equi-

valences involving reverse transitions from Bednarczyk (1991) and Phillips and

Ulidowski (2012);

(3) consider the logic extended with recursion, and how more complex properties can be

expressed using it; and

(4) answer the open question raised in Section 6 as to whether there is a single

characteristic formula for a finite structure with respect to HH equivalence.
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