
Exercises

Program Analysis (CO70020)

Sheet 5

Exercise 1 Consider the following imperative language with statements of the
form:

S ::= x := a | skip | S1 ; S2 | if b then S1 else S2 | while b do S

| choose S1 | S2 | . . . | Sn | combine S1 | S2 | . . . | Sn

In the choose statement only one of the n ≥ 1 statements Si is actually
selected to be executed. The combine executes all of the n statements Si in
some sequence. In both statements the choices are made non-deterministicly.

Define a Live Variable Analysis LV, similar to the one for the simple while
language, for this extended language. Define an appropriate labelling for state-
ments/blocks and give a definition for the flow flow (together with init and final).

Solution Labelling:

S ::= [x := a]`

| [skip]`

| S1 ; S2

| if [b]` then S1 else S2

| choose S1 | S2 | . . . | Sn
| combine S1 | S2 | . . . | Sn
| while [b]` do S

Initial Labels:
init : Stmt→ P(Lab)

defined as:

init([x := a]`) = {`}
init([skip]`) = {`}
init(S1 ; S2) = init(S1)

init(if [b]` then S1 else S2) = {`}
init(choose S1 | S2 | . . . | Sn) =

⋃n
i=1 init(Si)

init(combine S1 | S2 | . . . | Sn) =
⋃n
i=1 init(Si)

init(while [b]` do S) = {`}

1

Final Labels:
final : Stmt→ P(Lab)

defined as:

final([x := a]`) = {`}
final([skip]`) = {`}
final(S1 ; S2) = final(S2)

final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)
final(choose S1 | S2 | . . . | Sn) =

⋃n
i=1 final(Si)

final(combine S1 | S2 | . . . | Sn) =
⋃n
i=1 final(Si)

final(while [b]` do S) = {`}

Flow:
flow : Stmt→ P(Lab× Lab)

defined as:

flow([x := a]`) = ∅
flow([skip]`) = ∅
flow(S1 ; S2) = flow(S1) ∪ flow(S2)∪

{(`, `′) | ` ∈ final(S1), `′ ∈ init(S2)}
flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2)∪

{(`, `′) | `′ ∈ init(S1)}∪
{(`, `′) | `′ ∈ init(S2)}

flow(choose S1 | S2 | . . . | Sn) =
⋃n
i=1 flow(Si)

flow(combine S1 | S2 | . . . | Sn) =
⋃n
i=1 flow(Si)∪
{(`i, `j) | `i ∈ final(Si), `j ∈ init(Sj),
i = 1, . . . , n ∧ j = 1, . . . , n ∧ i 6= j}

flow(while [b]` do S) = flow(S) ∪ {(`, init(S))}∪
{(`′, `) | `′ ∈ final(S)}

There is no change in the local transfer functions (killLV and genLV) as we have
the same blocks as in the original language.

Exercise 2 Consider the following expression from which labels have been stripped:

(let g = (fn f => (if (f 3) then 10 else 5))
in (g (fn y =>(y > 2))))

Label the expression and give a brief and informal description of its execu-
tion: what does it evaluate to?

Write down the constraints for a 0-CFA and provide the least solution that
satisfies the constraints.

Solution Labelled program:

e = (let g = (fn f => (if (f1 32)3then 104 else 55)5)6

in (g8(fn y =>(y9 > 210)11)12)13)14

2

Let f6 = fn f => e6, f11 = fn y => e11.

{C(7) ⊆ r(g), C(13 ⊆ C(14), {f6} ⊆ C(7),
C(4) ⊆ C(6), C(5) ⊆ C(6), r(f) ⊆ C(1),
{f6} ⊆ C(1)⇒ C(2) ⊆ r(f), {f11} ⊆ C(1)⇒ C(2) ⊆ r(y),
{f6} ⊆ C(1)⇒ C(6) ⊆ C(3), {f11} ⊆ C(1)⇒ C(11) ⊆ C(3),
r(g) ⊆ C(8), {f11} ⊆ C(12), r(y) ⊆ C(9),
{f6} ⊆ C(8)⇒ C(12) ⊆ r(f), {f11} ⊆ C(8)⇒ C(12) ⊆ r(y),
{f6} ⊆ C(8)⇒ C(6) ⊆ C(13), {f11} ⊆ C(8)⇒ C(11) ⊆ C(13)

Solution: C(1) = C(12) = r(f) = {f11}, C(7) = C(8) = r(g) = {f6}. The
rest is the empty set.

Exercise 3 Consider the following extraction function for n ∈ N:

β(n) =

{
min bits to represent n if n < 28

overflow otherwise

which allows for a Bit-Size analysis for “small” integers via Abstract Interpre-
tation.

Describe the (abstract) property lattice and the concrete and abstract do-
main (incl. ordering and least upper bound operation). Furthermore, define the
abstraction, α, and concretisation, γ, functions.

Construct formally the abstraction (in the sense of Abstract Interpretation)
of the doubling and square function, i.e. f# and g# for

f(n) = 2× n and g(n) = n2

Solution Arguably even for 0 we need at least one bit, so with normal order
”≤=v” on N

1 v 2 v . . . v 8 v overflow

or if 0 is represented by ‘nothing’:

0 v 2 v . . . v 8 v overflow

with this β is more formally:

β(n) =

 1 or 0 for n = 0
k for 1 ≤ 2k−1 ≤ n < 2k ∧ n < 28

overflow otherwise

and D = {1, . . . , 8,overflow} (or maybe D = {1, . . . , 8,overflow}). The least
upper bound is essentially the maximum:

k1 t k2 = β(n) =

{
max(k1, k2) for max(k1, k2) ≤ 8
overflow otherwise

Bottom element could be 0, 1 or some undefined ⊥.

3

For abstraction/concretisation we have α : P(N)→ D and γ : D → P(N):

α(N) =

 1 for N ⊆ {0, 1}
k for N ⊆ {2k−1, . . . , 2k − 1}
overflow otherwise

and

γ(k) =

 {0, 1} for k = 1
{2k−1, . . . , 2k − 1} for k = 2, . . . , 8
N otherwise

Construct the abstract versions using induced abstraction (n ∈ D):

f#(n) = α ◦ f ◦ γ(n) =

{
n+ 1 if n < 8
overflow overflow

and

g#(n) = α ◦ g ◦ γ(n) =

{
2× n if n < 4
overflow overflow

Exercise 4 Consider a Sign Analysis for the imperative While language. That
is: We are interested in the sign of variables, i.e. whether we can guarantee
that for a given program point and a variable x (at least) one of the following
properties holds: x = 0, x < 0, x > 0, x ≤ 0 and x ≥ 0.

Define a representation function β for this Sign Analysis. How can one
define the corresponding correctness relation Rβ? State formally what it means
that the transfer functions f` for all labels are fulfilling the correctness condition.

Solution Representation function β : Z→ S

β(x) =

 = 0 if x = 0
< 0 if x < 0
> 0 if x > 0

Note: ⊥, >, ≤ 0 and ≥ not needed for β.
Correctness relation:

v Rβ l iff β(v) v l

Correctness, as

v1 Rβ l1 ∧ p ` v1 ; v2 ⇒ v2 Rβ f`(l1)

or maybe also via Rβ , with l1 � l2 with f`(l1) = l2:

v1 Rβ l1 ∧ p ` v1 ; v2 ∧ p ` l1 � l2 ⇒ v2 Rβ l2

4

