Exercises

Program Analysis (CO70020)

Sheet 3

Exercise 1 Consider the following while program:

[y :

2]

if[z > 1]?

else [x := -

ly :

then [x := 1]3
5

4.
)

x * x|%;

Perform a Constant Propagation Analysis CP for this program.

Solution We represent the state at a label as

c=lz—o(x),y—=oly),z—o(2)] =

The transfer functions are given as

I (
CP (
2
CcP <
3
o (
5

b4 y z
a(z) | o(y) | o(2)
X y z
a(z) | o(y) | o(2)
X y z
o(z) | a(y) | o(2)
X y z
o(z) | aly) | o(2)
X y z
o(z) | aly) | o(2)

N N N~ N~

The analysis is then based on the following equations:

CPentry
C Pentry
CPentry
CPentry
CPem‘,ry

(1)

(2)

B) =
(4) =
()

Ax. T
CPe:m't (1)
CPewit (2)
CPexit (2)
CPemit (3) (i CPemit (4)

and

CPemzt - flc CP@"”’U
CPeaﬁ'Lt = f§ Cpentn/

|
N

(@)

o

4]

8

S

~+
NN SN S
QU W N =
NSNS NN

e
T U U U U
~ o~~~ —~

(@)

O

Q

S

S

b

<
NN N TN N
U W N =
NN NS NN
Na s N

The solutions are given by:

crunt) - [EE]2
CPeniry(2) = Tyt
Pty - [EIR2
Pty - EIRT2
o) - ED32
and
bty - [F1I12
CPei(2) = 5T
CPerit(3) = }1{ g i
CPesit(4) = _X1 g ?
CPerit(5) = —T— —BF —T—

Exercise 2 Consider the following simple imperative language with statements:
S u= skip|z:=a| Sy ; S |if bthen S else S, | while bdo S

Define an instance of the monotone framework (similar to the Constant
Propagation Analysis CP) which performs a usage analysis Use of expressions.

For each program point, the Use Analysis will determine the min-
imum and maximum number of program points the value of an
arithmetic expression will be used when leaving this program point
and before any variables in the expressions get redefined.

Assume that labelling, flow (flow) and reverse flow (low™), as well as initial
and final labels are defined as usual. Let AExp, be the set of arithmetic sub-
expressions in a program S. The lattice of abstract states is given by:

State = (AExp, — N x Noo)

with Noo = {0,1,2,...} Uoo. These record (at every label) the number of times
an expression might be used and the number of times it is guaranteed to be used.
Define a least upper bound operator LI and T on State and identify the 1L and
T elements. Use State to define a Use Analysis like a monotone framework
istance, i.e. specify the flow F, the extreme labels E, their initialization ¢ and
the transfer functions. Derive the data-flow equations for the following program
(after labelling it)

y := ax*b

while (z <axb) do (
X = atb;
y i= a*b);

Is this a may or a must analysis? How is it related to the VB analysis?

Discuss whether State fulfills the Ascending/Descending Chain Conditions, and
whether the Use Analysis is computable, or how it can be made computable.

Solution Describe the property “usage of an expression” by a pair, the first
component is the minimal usage number, second component is maximum usage
number. Denote the projections of first and second element in a pair by

(z,y)i =2 and (z,y)2 =y.

Bottom:

1 = Xe.(00,0) with e € AExp,
Top:

T = Xe.(0,00) with e € AExp,
Order:

o1 C og iff o1(e)|1 > oa(e)|1 and o1(e)|2 < o2(e)|2 Ve € AExp,
Least Upper Bound:
(01 Uos)(e) = (min(oq(e)|1,02(e)|1), max(oi(e)|2, 02(€e)|2)) with e € AExp,

This is a backward analysis, i.e. F = flow".
The extremal labels E are therefore final(S), and the initialization is ¢(¢) =
Xe.(0,0). Use the following notation: (x,y)+ 1= (z+ 1,y + 1) for pairs.

Transfer functions:

(e)+1 ifee AExp(a) and z & FV (e)
0,0) if x € FV(e)

fe(o)(e) =o(e) otherwise

¢ _f filo)(e)=0(e)+1 ifeec AExp(d)
[b]" : fe(o) = { fﬁ(g)(e) = o(e) otherwise
These are similar to the VB analysis.
Labelling;:
[y := a*b]!
while [(z < a*b)]? do (
[x := a+b]?;
[y := a+b]*);
[x := a*b]®;
Useentry(l) = fi(Useezit(1))
Useeniry(2) = fa(Usecrit(2))
Useentry(3) = f3(Usecqit(3))
Useentry(4) = fa(Usecqit(4))
Useentry(f)) fs(Useem't(5))
or more explicitely
Usecntry(1) = Useczit(1)[(a*b) — Usecyit(1)(a* b) + 1]
Useentry(2) = Useezit(2)[(a*b) — Useezit(2)(a*b) + 1]
Usecntry(3) = Useczit(3)[(a + b) = Usecqit(3)(a + b) + 1]
Useeniry(4) = Useerir(4)[(a + b) — Usepis(4)(a+b) + 1]
Usecntry(5) = Useczit(4)[(a *b) — Usecyit(5)(a * b) + 1]

= Usecpiry (2
Usecntry(3) U Usecntry (5)

(1))
(2))
Useezit(3) = Usecniry(4)
(4))
(5) (

Useent'ry 2
= [(a*xb)+— (0,0),(a+b)— (0,0)]

This a monotone framework instance so may/must does not really makes
sense. However, one can see it as a combination of a must and a may analysis.

If the minimal number of usages is zero then we can conclude that an ex-
pression is not very busy at the exit from a program point, otherwise it is very
busy.

The lattice State does not fulfill the ACC/DCC but we only need

State = (AExp, — |Lab,| x |Lab,])

if we keep also information about which labels are already recorded and avoid
counting them twice. This results in a finite lattice and thus fulfills the ACC/DCC,
therefore the MFP solutions can then always be computed.

Exercise 3 Consider the following program:
[x:=1]1; [x:=x—1]2; [x:=2]3

Clearly x is dead at the exits from 2 and 3. But x is live at the exit of 1 even

though its only use is to calculate a new value for a variable that turns out to
be dead.

We shall say that a variable is a faint variable if it is dead or if it is
only used to calculate new values for faint variables; otherwise it is
strongly live.

In the example x is faint at the exits from 1, 2 and 3.
Define a Data Flow Analysis that detects Strongly Live variables.

Solution (Sketch) Two alternative approaches:

1. Base the analysis on the Live Variables Analysis. The function gen;,, must
be changed to take an additional input — a set of strongly live variables:

genyy : (Blocks, x P(Var,)) — P(Var,)

FV if X
genyy([z = a]", X) = { 0) :)tiefwise
genyy ([skiplt, X) = 0
gemyy ([B]°, X) = FV(b)

and also LV ¢y

LV cntry (£) = (LV eie (€)\ killpy (B)) U genyy (B, LV ozt (€))

2. As a monotone framework with transfer functions:

f x = { X\{gHhUFV(e) ifzeX
e X otherwise
f[skip]lX = X

fpe X — XUFV(b)

Exercise 4 Consider the following Fun program:

(let f=(fn z=>1) in
(fnz =>z z)(fn y =>y)) [))
Label the program and give a brief and informal description of its execution:

what’s the result? Evaluate the expression formally using the eval function (from
the lecture). For every step specify the environment p.

Solution
(let (f =fn z=>1%! in
(£n 2 => (22 2% (£n y => y)7)® f2)10)12
It evaluates to fn z => 1.
Shorthand notation:

fz = (fnz=>1%!
fr = (fnz=> (2 23)*)°
fy = (fny=>y°)"
(((fn 2 => (2 2°)")°(fn y => y°)7)® f°)'°
(let (f =fn z=>1%'in

((fn 2 => (2% %)) (fn y = y*)")" £2)1)"

Use po=[f— L,o— Liy— Lz~ 1]

Use p1 = [f — [fz,p0o),z— Liy— L,z — 1].

Use py = [f’_> [fz,po},x'—> [fy7p1}7y'_>J-7Z’_>J-]'

Use p3 = [f = [fz,pol,x = [y, p1],y = [fy, p2], 2 = L].
Use py = [f'_> [fzvpo]va [fyapl]vy'_} [fzvp3]’z'_>J-]'
Compute:

eval(po, p) = eval(po[f = 1], ((fz fy)* f°)'%) = eval(pr, ((fz fy)® f9)'°)
as v1 = eval(po, f2) = [f2, pol-

To compute eval(p1, ((fz fy)® f2)1° we need eval(p1, (fx fy)®) and eval(p, 7).
On the one hand:

eVal(thg) = p1(f) = [fz, po]
on the other hand:
eval(py, (fz fy)®) = eval(ps, (2 2*)*)

as eval(pla f.’L') = [f%ﬂl] = [fn T => (-TQ $3)47P1} and eval(phfy) = [fy7 QID
Then we have:

eval(pa, (22 2°)*) = eval(ps, fy) = [fy, p2]

as eval(pz, %) = eval(pz, 2°) = [fy, p1] = [fn y=>y, p1]).
Therefore:

eva’l(plv ((f.’E fy)g f9)10) = eval(p;;, (fy f9)10) = eval(p4, yG)
and with eval(ps, fy) = [fy, p1]) and eval(ps, f) = [fz, po] we get finally

eval(ps, %) = pa(y) = fz = (fn z => 1°)1.

