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Cloning of Qubits?
Is it possible to create a second copy of a general qubit |ψ〉
using a unitary operation U.

|ψ〉 |ψ〉

|0〉 |ψ〉

U

Theorem (No Cloning Theorem)
The exists no unitary transformation U such that

U |ψ〉 |0〉 = |ψ〉 |ψ〉

for all qubits |ψ〉 ∈ C2.
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Argument

Consider two qubits |ψ〉 and |φ〉.Then by linearity:

U(α |ψ〉+ β |φ〉) |0〉 = αU(|ψ〉) |0〉+ βU(|φ〉) |0〉
= α |ψ〉 |ψ〉+ β |φ〉 |φ〉

but also if U is a cloning operator:

U(α |ψ〉+ β |φ〉) |0〉 = (α |ψ〉+ β |φ〉)(α |ψ〉+ β |φ〉)
= α2 |ψ〉 |ψ〉+ β2 |φ〉 |φ〉

+αβ |ψ〉 |φ〉+ αβ |φ〉 |ψ〉

Only for α = 0 or β = 0 we have

α |ψ〉 |ψ〉+ β |φ〉 |φ〉 = α2 |ψ〉 |ψ〉+ β2 |φ〉 |φ〉
+αβ |ψ〉 |φ〉+ αβ |φ〉 |ψ〉
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Approximate Cloning?

Is it not even possible to approximately clone a qubit.

Consider two qubits |ψ〉 and |φ〉 with 0 < 〈ψ|φ〉 < 1 such that

U(|ψ〉 ⊗ |0〉) ≈ |ψ〉 ⊗ |ψ〉 and U(|φ〉 ⊗ |0〉) ≈ |φ〉 ⊗ |φ〉

By unitarity – U preserving inner products – we get

(|ψ〉 |0〉)†(|φ〉 |0〉) = 〈ψ|φ〉 〈0|0〉 = 〈ψ|φ〉 ≈ 〈ψ|φ〉2

Thus 〈ψ|φ〉 ≈ 0 or 〈ψ|φ〉 ≈ 1.
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Communication on Insecure Channels

Alice Bob

Eve

ENC DEC

ENC(T ,KA) = M
DEC(M,KB) = T

DEC(ENC(T ,KA),KB) = T
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One-Time-Pad or Vernam Cipher

Gilbert Sandford Vernam, 1917

Step 0. Alice and Bob share a common, random key K .
Step 1. Alice calculates M = T ⊕ K .
Step 2. Message M is sent along the insecure channel.
Step 3. Bob retrieves plain text T = M ⊕ K .

K = KA = KB

ENC(T ,K ) = DEC(T ,K ) = T ⊕ K .

Caveat: Never ever reuse random key K !
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Example

T 0 1 1 0 1 1
K ⊕ 1 1 1 0 1 0
M 1 0 0 0 0 1

↓ ↓ ↓ ↓ ↓ ↓

M 1 0 0 0 0 1
K ⊕ 1 1 1 0 1 0
T 0 1 1 0 1 1
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Quantum Key Distribution

The problem with One-Time-Pads is Key Distribution.

Quantum Key Distribution aims to exploit quantum features in
order to protect the keys, utilising:

No-Cloning. The message cannot be duplicated.
Measurement. Observing the message changes it.

These quantum techniques aim in addressing two security
aims:

Authentication. Is sender really Alice?
Intrusion Detection. Is Eve eavesdropping?
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BB84
Charles Bennett and Gilles Brassard 1984

The aim is to exchange a key K (e.g. a One-Time-Pad).
Alice and Bob communicate over two insecure channels: a
quantum channel and a classical one.
The protocol is based on the use of two (computational) bases:

= {
∣∣ 〉

, | 〉} = {(1,0)T , (0,1)T}

= {| 〉 , | 〉} = { 1√
2
(−1,1)T ,

1√
2
(1,1)T}

Interpretation of messages in both basis

M
0 | 〉 | 〉
1

∣∣ 〉
| 〉
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Measuring in Wrong Base

As long as Alice and Bob send and receive qubits in the same
basis, Bob will always measure the same qubit Alice has sent.

However, if they don’t agree on the measurement base, Bob will
make the wrong assumption of what Alice has sent.

Assume that Alice sends 0 encoded as | 〉 in the basis but
Bob uses to measure it: In this case he will measure

∣∣ 〉
or

| 〉 with 50% chance, i.e. concludes with a 50:50 chance that
Alice intended to send 0 or 1 respectively.
This is due to the following obvious facts that:

| 〉 = 1√
2
(
∣∣ 〉
− | 〉)

| 〉 = 1√
2
(
∣∣ 〉

+ | 〉)

∣∣ 〉
= 1√

2
(| 〉+ | 〉)

| 〉 = 1√
2
(| 〉 − | 〉)
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BB84 Protocol
Step 1.a Alice chooses n random bits to send (e.g. to be

used as One-Time-Pad).
Step 1.b Alice randomly chooses n times whether to use

or to encode each bit.
Step 2.a Alice encodes the bits accordingly in the bases

and sends the qubits to Bob.
Step 2.b Bob randomly chooses n times whether to use

or to measure the qubits he got and measures
them.

Step 3. Over the classical channel Alice and Bob compare
which basis they used for each bit. If they agree
they keep it otherwise they drop it.

Step 4.a Bob choose a part (e.g. half) of the transmitted
bits (drops them) and compares them openly with
Alice.

Step 4.b If these test bits do not agree (subject to
transmission errors) Alice and Bob conclude that
Eve was eavesdropping and abandon
transmission.
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Example

KA 0 1 1 0 1 1 1 0 1 0 1 0
BA

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

BB
obs
KB 0 1 1 1 1 0 1 0 1 0 1 0

√ √ √ √ √ √ √ √

K 1 1 1 0 1 0 1 0
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B92
Charles Bennett 1992

The idea is to use a non-orthogonal basis to encode 0 and 1,
e.g.

B = {| 〉 , | 〉} = {(1,0)T ,
1√
2
(1,1)T}

Step 1. Alice chooses n random bits and encodes them,
e.g. 0 ≡ | 〉 and 1 ≡ | 〉 and send these qubits
to Bob.

Step 2. Bob measures these qubits in randomly chosen
base or .

Step 3. Bob tells Alice over an open classical which qubits
he considers ambiguous in order to drop them.

Again – as in BB84 – some bits can be sacrificed to see if an
extensive number of “transmission errors” indicates that Eve
was eavesdropping and abandon transmission.
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Ambiguous Bits

When Bob measures the qubits received from Alice he will
conclude that certain observations are inconclusive.

Using . If Bob observes∣∣ 〉
Bob knows that Alice sent 1 ≡ | 〉.

| 〉 Bob drops this bit.
Using . If Bob observes

| 〉 Bob knows that Alice sent 0 ≡ | 〉.
| 〉 Bob drops this bit.

In the average three quarters of the qubits have to be
discarded.
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Example

KA 0 0 1 0 1 0 1 0 1 1 1 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

BB
obs
KB 0 ? ? 0 1 0 ? ? ? 1 ? ?

√ √ √ √ √

K 0 0 1 0 1
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EPR

Artur Ekert 1991

The idea is to distribute a key K via pairs of entangled states,
for example the Bell states:

1√
2
(|00〉+ |11〉)

The key K is effectively generated only after the distribution of
these states to Alice and Bob. They do this independently but
entanglement guarantees they obtain the same key.

This protocol is inspired by the Einstein-Podolsky-Rosen (EPR,
1935) Gedanken-Experiment.
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EPR Protocol

Step 1. A random sequence of entangled 2-qubit states –
e.g. 1√

2
(|00〉+ |11〉) – is created.

For each such state one of the qubits is given to
Alice and Bob, respectively.

Step 2. Bob and Alice measure each of their qubits in a
randomly chosen base or .

Step 3. Over the classical channel Alice and Bob compare
which basis they used for each bit. If they agree
they keep it otherwise they drop it.

As in BB84 too many “transmission errors” indicate that Eve
was eavesdropping and the transmission is abandoned. Ekert
proposed a more sophisticated eavesdropping detection (Bell’s
theorem).
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Example

BA
obs
KA 0 1 0 1 0 0 1 0 0 0 0 0

BB
obs
KB 0 0 0 0 0 0 1 0 0 0 1 0

√ √ √ √ √ √ √

K 0 0 0 0 0 0 0
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