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Overview

Topics we will cover in this course will include:

1. Basic Quantum Physics
2. Mathematical Structure
3. Quantum Cryptography
4. Quantum Circuit Model
5. [MBQC, TQC, etc.]
6. Quantum Teleportation
7. Gover’s Search Algorithm
8. Shor’s Quantum Factorisation
9. [Quantum Error Correction]
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Practicalities

Two Lecturers

Herbert Wiklicky
h.wiklicky@imperial.ac.uk
Teaching 31

2 weeks until 30 October
Open-book coursework test 30 October

Mahdi Cheraghchi
m.cheraghchi@imperial.ac.uk
Teaching 31

2 weeks from 3 November
Open-book coursework test 24 November

Exam: Week 11, 11-15 December 2017, 2 hours (3 out of 4).

Different classes, different background, different applications.
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Text Books

I Noson S. Yanofsky, Mirco A. Mannucci: Quantum
Computing for Computer Scientists, Cambridge, 2008

I Michael A. Nielsen, Issac L. Chuang: Quantum
Computation and Quantum Information, Cambridge, 2000

I Phillip Kaye, Raymond Laflamme, Michael Mosca: An
Introduction to Quantum Computing, Oxford 2007

I N. David Mermin: Quantum Computer Science,
Cambridge University Press, 2007

I A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi: Classical and
Quantum Computation, AMS, 2002

I Eleanor Rieffel, Wolfgang Polak: Quantum Computing, A
Gentle Introduction. MIT Press, 2014

I Richard J. Lipton, Kenneth W. Regan: Quantum Algorithms
via Linear Algebra. MIT Press, 2014
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Electronic Resources
Introductory Texts

I E.Rieffel, W.Polak: An introduction to quantum computing
for non-physicists. ACM Computing Surveys, 2000
doi:10.1145/367701.367709

I N.S.Yanofsky: An Introduction to Quantum Computing
http://arxiv.org/abs/0708.0261

Preprint Repository http://arxiv.org

Physics Background

I Chris J. Isham: Quantum Theory – Mathematical and
Structural Foundations, Imperial College Press 1995

I Richard P. Feynman, Robert B. Leighton, Matthew Sands:
The Feynman Lectures on Physics, Addison-Wesley 1965
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Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and

I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then

I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.

6 / 28



Quantum Money (Stephen Wiesner 1960s)
Quantum Postulates: (i) It is impossible to clone a quantum
states, (ii) in general, an inspection of a quantum state is
irreversible and destructive.

Bank of Quantum issue bank notes with a unique quantum
code.

Quantum Forger tries to make a copy of quantum money,
however

I she can’t copy/clone a banknote directly, and
I when she inspects it, she destroys the code.

Bank of Quantum can inspect the quantum code on a
banknote

I to confirm it is authentic, and then
I issue a replacement quantum banknote.

Simon Singh: Code Book, Forth Estate, 1999.
6 / 28



Quantum History

Quantum Mechanics was ‘born’ or, better, proposed by M.Plank
on

14 December 1900, 5:15pm (Berlin)

1900 Max Plank: Black Body Radiation
1905 Albert Einstein: Photoelectric Effect
1925 Werner Heisenberg: Matrix Mechanics
1926 Erwin Schrödinger: Wave Mechanics
1932 John von Neumann: Quantum Mechanics

Manjit Kumar: Quantum – Einstein, Bohr and Their Great
Debate about the Nature of Reality, Icon Books 2009
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Photoelectric Effect – Millikan Experiment

Experimental Setup:

ν

Observed: The velocity, and thus kinetic energy, of the emitted
electrons depends not on the intensity of the incoming light but
only on its “colour”, i.e. frequency ν.
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Radiation Law

Observed relationship:

Wk = hν −We

Wk . . . Kinetic Energy of Electron
We . . . Escape Energy of Material
ν . . . Frequency of Light
h . . . Plank’s Constant

h = 6.62559 · 10−34Js

~ =
h

2π
= 1.05449 · 10−34Js

9 / 28



Quantum Physical Problems
Around 1900 there were a number of experiments and
observations which could not be explained using classical
physics/mechanics, among them:

Spectra of Elements
Emission/absorption only at particular “colours”.

Stern-Gerlach Experiment
Interference in double slit experiment.

Black Body Radiation
Radiation law involves “quantised” energy levels.

Photo-Electric Effect
Einstein’s explanation got him the Nobel prize.

These were the perhaps most exciting years in the history of
theoretical physics, at the same time there were also
breakthroughs in special and general relativity, etc.
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theoretical physics, at the same time there were also
breakthroughs in special and general relativity, etc.
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Einstein’s Explanation
Albert Einstein 1905: Not all energy levels are possible, they
only come in quantised portions. In Bohr’s (incomplete) “model”
of the atom this corresponds to allowing only particular “orbits”.

In this way one can also explain the spectral emissions (and
absorption) of various elements, e.g. to analyse the material
composition of stars (and to make great fireworks).
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Quantum Paradoxes and Myths

There are a number of physical problems which require
quantum mechanical explanations. Unfortunately, QM is not
‘really intuitive’. This leads to various Gedanken experiments
which point to a contradiction with so-called common sense.

I Black Body Radiation
I Double Slit Experiment
I Spectral Emissions
I Schrödinger’s Cat
I Einstein-Podolsky-Rosen
I Quantum Teleportation

7. Whereof one cannot speak, thereof one must be silent.
Ludwig Wittgenstein: Tractatus Logico-Philosophicus, 1921
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From Quantum Physics to Computation

There are a number of disciplines which play an important role
in trying to understand quantum mechanics and in particular
quantum computation.

Philosophy: What is the nature and meaning reality?
Logic: How can one reason about events, objects etc.?

Mathematics: How does the formal model look like?
Physics: Why does it work and what does it imply?

Computation: What can be computed and how?
Engineering: How can it all be implemented?

Each area has its own language which however often applies
only to classical entities – for the quantum world we often have
simply the wrong vocabulary.
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Natural Philosophy

Arguably, physics is ultimately about explaining experiments
and forecasting measurement results.

Observable: Entities which are (actually) measured when an
experiment is conducted on a system.

State: Entities which completely describe (or model) the
system we are interested in.

Measurement brings together/establishes a relation between
states and observables of a given system. Dynamics describes
how observables and/or the state changes over time.

Related Questions: What is our knowledge of what? How do
we obtain this information? What is a description on how the
system changes?
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Harmonic Oscillator or just a “Shadow”
One can observe the same “behaviour” of the shadow of a
rotating object or an object on a spring.

x

y

φ

m

Observable: Shadow m
State: Position (x , y) or: Phase φ

Measurement: m((x , y)) = y , or: m(φ) = sin(φ)

Dynamics: (x , y)(t) = (cos(t), sin(t)) or also: φ(t) = t
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Postulates for Quantum Mechanics [∗]

I Observables and states of a system are represented by
hermitian (i.e. self-adjoint) elements a of a C*-algebra A
and by states w (i.e. normalised linear functionals) over
this algebra.

I Possible results of measurements of an observable a are
given by the spectrum Sp(a) of an observable. Their
probability distribution in a certain state w is given by the
probability measure µ(w) induced by the state w on Sp(a).

Walter Thirring: Quantum Mathematical Physics, Springer 2002

Key Notions: A quantum systems is (may be) in a certain state,
but physicists have to decide which properties they want to
observe before a measurement is made (which instrument?).
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Postulates for Quantum Mechanics (ca. 1950) [∗]
I The quantum state of a (free) particle is described by a

(normalised) complex valued [wave] function:

~ψ ∈ L2 i.e.
∫
|~ψ(x)|2dx = 1

I Two quantum states can be superimposed, i.e.

ψ = α1 ~ψ1 + α2 ~ψ2 with |α1|2 + |α2|2 = 1

I Any observable A is represented by a linear, self-adjoint
operator A on L2.

I Possible measurement results are (only) the eigen-values
λi of A corresponding to eigen-vectors/states ~φi ∈ L2 with

A~φi = λi ~φi

I Probability to measure (the possible eigenvalue) λn if the
system is in the state ~ψ =

∑
i ψi ~φi is

Pr(A = λn | ~ψ) = |ψn|2
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Mathematical Framework

Quantum mechanics has a well-established and precise
mathematical formulation (though its ‘common sense’
interpretation might be non-intuitive, probabilistic, etc.).

The (standard) mathematical model of quantum system uses:
I Complex Numbers C,
I Vector Spaces, e.g. Cn,
I Hilbert Spaces, i.e. inner products 〈.|.〉,
I Unitary and Self-Adjoint Matrices/Operators,
I Tensor Products C2 ⊗ C2 ⊗ . . .⊗ C2.

There are additional mathematical details in order to deal with
“real” quantum physics, e.g. systems an infinite degree of
freedom; for quantum computation it is however enough to
study finite-dimensional Hilbert spaces.
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Quantum Postulates I – States and Observables

The standard mathematical model of (closed) quantum
systems is relatively simple and just requires some basic
notions in (complex) linear algebra.

I The information describing the state of an (isolated)
quantum mechanical system is represented
mathematically by a (normalised) vector in a complex
Hilbert space H.

I An observable is represented mathematically by a self-
adjoint matrix (operator) A acting on the Hilbert space H.

Two states can be combined to form a new state α |x〉+ β |y〉
as long as |α|2 + |β|2 = 1, by superposition.

Consequence: We can compute with many inputs in parallel.
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Quantum States and Notation
The state of a quantum mechanical system is usually denoted
by |x〉 ∈ H (rather than maybe ~x ∈ H).

This notation is
‘inherited’ from the inner product 〈x |y〉 of vectors x and y in a
Hilbert space – which can be seen as describing the “geometric
angle” between the two vectors in H.

P.A.M. Dirac “invented” the bra-ket notation (most likely
inspired by the limitations of old mechanical type-writers);
Simply “take the inner product apart” to denote vectors in H:

inner product 〈x |y〉 = product 〈x | · |y〉

For indexed sets of vectors {xi} (maybe because typographic
“typing” was problematic) different notations are used:

xi = ~xi = xi = |i〉
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Quantum States and Vectors

Finite quantum states can be described by vectors in Cn, e.g.

~ψ = |ψ〉 =

(
1/
√

2
1/
√

2

)
=

1√
2

(
1
1

)
or 〈φ| =

(
1 0

)

Observables are defined by matrices A inM(Cn) = Cn×n.

A =

(
1 0
0 2

)
with eigenvalues λ0 = 1, λ1 = 2

Note: There are sometimes two types of indices

I for enumerating, for example, all eigenvectors of an

operator like A with |0〉 =

(
0
1

)
and |1〉 =

(
1
0

)
I to enumerate coordinates of one vector, e.g. ~ψ1 = 1/

√
2,

or better perhaps: |0〉1 = 0.
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Quantum Postulates II – Measurement

I The expected result (average) when measuring observable
A of a system in state |x〉 ∈ H is given by:

〈A〉x = 〈x |A |x〉 = 〈x | |Ax〉

I The only possible results are eigen-values λi of A.
I The probability of measuring λn in state |x〉 is

Pr(A = λn|x) = 〈x |Pn |x〉

with Pn the orthogonal projection onto the n-th eigen-
space of A generated by eigen-vector |λn〉

Pn = |λn〉 〈λn|

then we have: A =
∑

i λiPi (Spectral Theorem).
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Heisenberg’s Uncertainty Relation

Theorem
For two observables A1 and A2 we have:

(∆|x〉A1)(∆|x〉A2) ≥ 1
2
|(〈x | [A1,A2] |x〉)|

where the uncertainty (classically: variance) is defined by

(∆|x〉A)2 = 〈x | A2 |x〉 − 〈x | A |x〉2

and the commutator is defined as:

[A1,A2] = A1A2 − A2A1

see e.g. Isham: Quantum Theory, ICP 1995, Section 7.3.3.
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Classical vs Quantum Mechanics
The usual interpretation of Heisenberg’s uncertainty relation is
this:

When one tries to measures two observables A1 and A2
then – if the commutator [A1,A2] is non-zero – a small ∆|x〉A1
implies a large ∆|x〉A2, and vice versa.

A standard example of so-called incomensurable observables
are position A1 = x and momentum A2 = p (on an infinite-
dimensional Hilbert Space H) for which [x ,p] = i~ and thus:

∆x∆p ≥ ~/2.

In classical physics observables always commute, are
comensurable, i.e. [A1,A2] = 0. In quantum physics for most
observables [A1,A2] 6= 0, i.e. the observable algebra is typically
non-commutative or non-abelian (cf. multiplication of (complex)
numbers vs multiplication of matrices).
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Quantum Dynamics
I The dynamics of a (closed) system is described by the

Schrödinger Equation:

i~
d |x〉

dt
= H |x〉

for the (self-adjoint) Hamiltonian operator H (energy).

I The solution is a unitary operator Ut (e.g. Isham 6.4)

Ut = exp(− i
~

tH)

Theorem
For any self-adjoint operator A the operator

exp(iA) = eiA =
∞∑

n=0

(iA)n

n!

is a unitary operator.
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Irreversible vs Reversible
There are a number of immediate consequence of the
postulates.

1. The state develops reversibly, i.e. |xt〉 = Ut |x0〉 for some
unitary matrix (operator).
Consequence: No cloning theorem, i.e. no duplication of
information.

2. Measurement is partial (Heisenberg Uncertainty Relation).
Consequence: The full state of a quantum computer is not
observable.

3. Measurement is irreversible.
Consequence: The state of a quantum system is
irrevocably destroyed if we inspect it.

The mathematical structure has also consequences for any
Quantum Logic, e.g. De Morgan fails, ‘Tertium non datur’ is
not guaranteed, etc.
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Quantum Physics vs Quantum Computation

Quantum Physics
Given a quantum system (device).
What is its dynamics?

I Heisenberg Picture:

A 7→ At = A(t) = eitHAe−itH

I Schrödinger Picture:

|x〉 7→ |x〉t = |x(t)〉 = e−itH |x〉

Quantum Computation
Given a desired computation (dynamics).
What quantum device (e.g. circuit) is needed to obtain this?

27 / 28



Quantum Physics vs Quantum Computation

Quantum Physics
Given a quantum system (device).
What is its dynamics?

I Heisenberg Picture:

A 7→ At = A(t) = eitHAe−itH

I Schrödinger Picture:

|x〉 7→ |x〉t = |x(t)〉 = e−itH |x〉

Quantum Computation
Given a desired computation (dynamics).
What quantum device (e.g. circuit) is needed to obtain this?

27 / 28



Quantum Physics vs Quantum Computation

Quantum Physics
Given a quantum system (device).
What is its dynamics?

I Heisenberg Picture:

A 7→ At = A(t) = eitHAe−itH

I Schrödinger Picture:

|x〉 7→ |x〉t = |x(t)〉 = e−itH |x〉

Quantum Computation
Given a desired computation (dynamics).
What quantum device (e.g. circuit) is needed to obtain this?

27 / 28



Quantum Physics vs Quantum Computation

Quantum Physics
Given a quantum system (device).
What is its dynamics?

I Heisenberg Picture:

A 7→ At = A(t) = eitHAe−itH

I Schrödinger Picture:

|x〉 7→ |x〉t = |x(t)〉 = e−itH |x〉

Quantum Computation
Given a desired computation (dynamics).
What quantum device (e.g. circuit) is needed to obtain this?

27 / 28



Quantum Computation
Quantum computation tries to utilise quantum systems/devices
in order to perform computational tasks or to implement
(secure) quantum communication protocols.

1973 C. Bennett: Reversible Computation
1980 P.A. Benioff: Quantum Turing Machine
1982 R. Feynman: Quantum Simulation
1985 D. Deutsch: Universal QTM
1994 P. Shor: Factorisations
1996 L. Grover: Database Search
2008 Harrow, Hassidim, Lloyd: Linear Equations

When will (cheap) quantum computers be available? What will
be a killer application for quantum computation? When will we
reach quantum supremacy?
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