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Correctness

Questions: Is a program analysis correct? Are the results
reflecting what is really happening when the program is run?

2/35



Correctness

Questions: Is a program analysis correct? Are the results
reflecting what is really happening when the program is run?

In other words: What is the relation between the (concrete)
semantics of a program, i.e. the transition relation = and/or its
transitive closure =*, and the (solutions to) the program
analysis Analysis, and Analysis,.

2/35



Correctness

Questions: Is a program analysis correct? Are the results
reflecting what is really happening when the program is run?

In other words: What is the relation between the (concrete)
semantics of a program, i.e. the transition relation = and/or its
transitive closure =*, and the (solutions to) the program
analysis Analysis, and Analysis,.

For example: Is a variable LV identifies as ‘live’ indeed useful,

or more importantly, is a ‘non-live’ variable really ‘dead’, i.e. is it
save to eliminate it (at least locally).
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Syntax of WHILE

The labelled syntax of the language WHILE is given by the
following abstract syntax:

a
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Syntax of WHILE

The labelled syntax of the language WHILE is given by the
following abstract syntax:

a = x|n|aiop,a
= frue| false | not b | by op, bo | @1 op, ap
S = [x=4a
| [skip]’
| $1:52

| if [b]’ then S; else S,
| while [b]’ do S
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Sketches of a Formal Semantics

Memory is modelled by an abstract state, i.e. functions of type

State = Var— Z.
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Sketches of a Formal Semantics

Memory is modelled by an abstract state, i.e. functions of type

State = Var — Z.

For boolean and arithmetic expressions we assume that we
know what they “evaluate to” in a state s € State. Then the
semantics for AExp is a fotal function

[.]l4. : AExp — State —Z
and the semantics of boolean expressions is given by

[.-1s5- : BExp — State — {it, ff}
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Evaluating Expressions

Let us look at a program with two variables Var = {x, y}.
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Evaluating Expressions

Let us look at a program with two variables Var = {x, y}.
Two possible states in this case could be for example:

So=[x—0,y—1lands; =[x — 1,y — 1]

We can evaluate an expression like x + y € AExp:

[x+y]laso = 0+1=1
[x+ylast = 1+1=2

or a Boolean expression like x + y < 1 € BExp:

[x+y<ilgsp = 1<1=t
x+y<ilgsy = 2<1=ff
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Execution and Transitions
The configurations describe the current state of the execution.

(S,8) ... Sistobe executed in state s,
s ... aterminal state (i.e. (., s)).
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Execution and Transitions

The configurations describe the current state of the execution.

(S,8) ... Sistobe executed in state s,
s ... aterminal state (i.e. (., s)).

The transition relation = specify the (possible) computational
steps during the execution starting from a certain configuration

(S;s) = (S5
and at the end of the computation

(S,s) = &
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Execution Rules (SOS) [Provided in Exam]

(ass) ([x:=al]’, s) = s[x — [a]4s]
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Execution Rules (SOS) [Provided in Exam]

(ass) ([x:=al]’, s) = s[x — [a]4s]
(skip) ([skip]‘,s) = s
1 (S1,s) = (S, )
(9) 181188 = (5:8:.9)
(S1,8) = s

) 555,55 5 9)

(if7)  (if [b]’ then Sy else Sy, s) = (S, S) if [b]ss = tt
(ifF)  (if [b]’ then S; else Sy, s) = (S5, s) if [b]zs = ff
(whT) (while [b]’ do S, s) = (S; while [b]’ do S, s) if [b]ss = tt
(whf) (while [b]’ do S,s) = s if [b]ss = ff
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A SOS Example

Consider a (perhaps rather vacuous) program like:

S=[z:=x+y]"while [true] do [ skip ]*
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Consider a (perhaps rather vacuous) program like:
S=[z:=x+y]"while [true] do [ skip ]*
So=[x—0,y—1,z—0ands;=[x—0,y—1,z—1]

Then (S, sp) executes as follows:

(S,s5) = (while [true]” do [skip]*’,s1)
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A SOS Example

Consider a (perhaps rather vacuous) program like:

S=[z:=x+y]"while [true] do [ skip ]*
So=[x—0,y—1,z—0ands;=[x—0,y—1,z—1]
Then (S, sp) executes as follows:

while [true]” do [ skip ", s)
[ skip |’; while [true]” do [ skip ], s1)
while [true]’ do [ skip |, sy)
[ skip |*"; while [true]” do [ skip ], s1)

(S,8) =

o~ o~~~

=
=
=
=
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Lemma 1

If (S,s) = s’ then
f/na/( {init(S)}.

S)

)=
If (S,s) = (5, ) then
flnal(S) D) f/nal(S’ )-
(i) 1f(S,s) = (§',§') then
f/ow( )2 flow(S’)
If (S,5) = (S, ') then
blocks( )2 blocks(S’).

(v) If (S,s) = (S, ¢) then
S label consistent implies S’ label consistent.
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Lemma 1 - Proof (i) [Not for Exam]

Proof.
The proof is by induction on the shape of the inference tree.
Consider the only three non-vacuous cases:

(ass): ([x:=a]",s) = s[x > [a]s]

final([x : =a]*) = {¢} = {init([x:=a]%)}.
(skip): ([skip]’,s) = s

final([skip]’) = {¢} = {init([skip]*)}.
(whF): (while [b]¢ do S,s) = s with [b] = false

final(while [b]’ do S) = {¢} = {initf(while [b]’ do S)}.
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Lemma 1 - Proof (ii) [Not for Exam]
Proof (cont).

(seq'): (S1; Sz, 8) = (S}; S, ') because
<S1,S> = <SQ>S/>:

final(Sy; Sp) = final(S,) = final( S} ; Sz).
(seq”): ...
(if"): (if [b]’ then S; else Sp,8) = (Sy,8)
with [b] = true:

final(i £ [b]’ then Sy else Sp) =
final(Sy) U final(Sz) D final( Sy).
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LV Equations: LV~

The Live Variable Analysis is given as the solution to the
following system of equations:
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LV Equations: LV~

The Live Variable Analysis is given as the solution to the
following system of equations:

Wor(s) — 0,if ¢ € final(S,)
)= UlWemnl?) | (2,0) € ow(S.)}, otherwise

LVentry(g) = (I—Vexit(é)\ki”LV([B]e) U genLV([B]é)
where [B]’ € blocks(S,)
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Solutions via Iteration Operator

WVentry(1) = F{(WVentry(1), ..., LVexit(n))
WVentry(n) = Fo(WVentry(1), - .., LVexit(n))
WVexitl(1) = F{(WVentry(1), ..., WVexit(N))
WVexit(n) = Fo(WVenry(1), ..., WVexit(n))

becomes a function on the lattice P(Var)2"
F : P(Var)?" — P(Var)2"

F,’(I—Ventry(‘I ), ceey I—Vexit(n)) = I—Ventry(i)
F?(l—ventry(‘I )7 ey I-Vexit(n)) = I—Vexit(i)
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LV Constraints: LV=

The Live Variable Analysis is equivalently given as the solution
to the following system of constraints:

. 0,if ¢ € final(S)
eil?) 2 { ({1t | (.01 (5. trrvis
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LV Constraints: LV=

The Live Variable Analysis is equivalently given as the solution
to the following system of constraints:

. 0,if ¢ € final(S)
eil?) 2 { ({1t | (.01 (5. trrvis

Wentry(€) 2 (WVexir(0)\Kilhy([B]") U genyy([B]")
where [B]* € blocks(S,)
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LV Solutions to LV~ and LV=

Consider collections live = (liveentry, liveeyit) of functions:

liveentry . Lab* — P(Var*)
liveeyit : Lab, — P(Var,)
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LV Solutions to LV~ and LV=

Consider collections live = (liveentry, liveeyit) of functions:

liveentry . Lab* — P(Var*)
liveeyit : Lab, — P(Var,)

If live solves LV~ for a statement S we write:
live = LV=(S)
If live solves LV~ for a statement S we write:

live = LV=(S)
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Theorem 1

Given a label consistent program S,.

If
> live = LV=(S,)
then

> live = LV=(S,).

That is: The least solution of LV=(S,) coincides with the least
solution to LVS(S,).
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Theorem 1 - Proof [Not for Exam]

Proof.
If live |= LV=(S,) also live = LV<(S,) as “2” includes “=".
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Theorem 1 - Proof [Not for Exam]

Proof.
If live |= LV=(S,) also live = LV<(S,) as “2” includes “=".

To show that LV=(S,) and LV=(S,) have the same least
solution consider the iteration operator F = F, = FLV

live = LV=(S,) iff live 3 F(live)
live = LV=(S,) iff live=F(live)

By Tarski’'s Fixed Point Theorem we have:
Ifo(F) = [ |{live | live 3 F(live)} = |{live| live = F(live)}.

Since Ifo(F) = F(/fo(F)) and Ifo(F) 2 F(/fp(F)) we see that we
get the same least solutions. O]
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Preservation of Solution

During the (actual) execution of any program S, a solution to
the Live Variable analysis LV=(S,) remains a solution.
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Preservation of Solution

During the (actual) execution of any program S, a solution to
the Live Variable analysis LV=(S,) remains a solution.

(S, s1) = <S/,Sq> = ... = <S//7341> - Squ
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Lemma 2

Given a label consistent program S;.

If
> live = LV=(Sy) and
> flow(Sy) D flow(S,) and
» blocks(S1) 2 blocks(S,)
then
> live = LVE(Sy)
with S, being label consistent.

19/35



Lemma 2

Given a label consistent program S;.

If
> live = LV=(Sy) and
> flow(Sy) D flow(S,) and
» blocks(S1) 2 blocks(S,)
then
> live = LVE(Sy)
with S, being label consistent.

Proof [Not for Exam].

If Sy is label consistent and blocks(Sy) 2 blocks(S,) then S, is
also label consistent.

If live = LV=(Sy) then live also satisfy each constraint in
LV=(S,) and hence live = LV=(Sy). O
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Lemma 3

Given a label consistent program S.

If
> live = LV=(S) and
> (S,s) = (S, ¢)
then

> live = LV=(S)).
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Lemma 3

Given a label consistent program S.

If
> live = LV=(S) and
> (S,s) = (S, ¢)
then

> live = LV=(S)).

Proof [Not for Exam].
Follows directly from Lemma 1 and Lemma 2. O
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Lemma 4

Given a label consistent program S.

I
> live = LVS(S)

then for all (¢,¢') € flow(S) we have:

> livesi(l) 2 /iveentry(gl)
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Lemma 4

Given a label consistent program S.

If
> live = LV&(S)

then for all (¢,¢') € flow(S) we have:
> /Iveex,t(ﬁ) :_) liveentry(gl)

Proof [Not for Exam].
Follows immediately from the construction of LV=(S). O
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Correctness Relation

Assume that V is a set of live variables.

Define the correctness relation via

Sy ~y S iff Vx € V:s(x) = sp(x).
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Correctness Relation

Assume that V is a set of live variables.

Define the correctness relation via
Sy ~y S iff Vx € V:s(x) = sp(x).
In other word:
Two states are equivalent iff for all live variables —i.e. all

“practical purposes” — the states s; and s, agree on the
variables in V.
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Example

Consider [x := y + z]* and V4 = {y,z} and Vo = {x}.
St ~v, S2 means sq(y) = s2(y) A s1(2) = s2(2).

S1 ~y, S2 means sq(x) = Sa(x).
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Example

Consider [x := y + z]* and V4 = {y,z} and Vo = {x}.
St ~v, S2 means sq(y) = s2(y) A s1(2) = s2(2).

S1 ~y, S2 means sq(x) = Sa(x).

Assume ([x :=y + 2], s1) = S}, ([x := y + 2], s2) = s}, then

St ~y, Sp ensures sy ~y, Sp.

If Vo = LVeyir(¢) thus is the set of live variables after

[x := y + z]* then Vi = WVentry(¢) is the set of live variables
before [x := y + z]*.
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Correctness of LV Analysis

<S, S1> = <S/,Sq> = ce = <S”,Sq,> = Squ
1 A
g ~vr ~y ~X(6)
Y Y !
<S, 32> = <S/, S/2> = e = <S//’ Sg> = Sg/
V = N(init(S)) V' = N(init(S")) V" = N(init(S")) ¢ € final(S)

Short-hand notation: N(¢) = liVeentry(¢) and X(¢) = liveei(¢).
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Lemma 5

Given a label consistent program S.

If
> live = LV=(S)
then

> Sy ™ [iVEeayi(£) So |mp||eS Sq Nliveemry(é’) s, for all
(,0) € flow(S).

25/35



Lemma 5

Given a label consistent program S.

If
> live = LVQ(S)
then

> Sy ™ [iVEeayi(£) So |mp||eS Sq Nliveemry(é’) s, for all
(,0) € flow(S).

Proof [Not for Exam].
Follows directly from Lemma 4 and the definition of ~y. Ol
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Theorem 2

Given a label consistent program S.

If
> live = LV=(S)
then
(i) 1f(S,s1) = (S, 8}) and s ™ iV (iNit(S)) S2 then
there exists s, such that
(S,82) = (8, 8,) and &} ™ iV (iNit(S") Sh.
(i) 1f (S,s1) = s} and sq ™ [iVeanry (iNit(S)) 52 then
there exists s, such that
(S,82) = sy and s ™ lives(init(s)) S5
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Theorem 2 - Proof [Not for Exam]

Proof.

The proof is by induction on the shape of the inference tree.
(ass): ...
(skip): ...

(seq’
(seq
(
(i

(wh'): ...
(whfy: ...

)
)i ...
...
|T):...
)
)
)

). ...
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Theorem 2 - Proof (ass) [Not for Exam]

Proof (cont).
The proof is by induction on the shape of the inference tree.

(ass): We have ([x:=4]’, s1) = s1[x — [a]s;] and from
the specification of the constraints:

liveentry(£) = (liveexit(£)\{x}) U FV(a)
and therefore
S1 ™ fivguny (¢ S2 iMplies [a](s1) = [a](s2)

because the value of a depends only on variables
in it.

Thus with s, = s3[x — [a] 452] we have
s} (x) = s,(x) and thus s ™~ V(o) Sh.
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Theorem 2 - Proof (skip) [Not for Exam]

Proof (cont).

(skip): We have ([skip]’, s1) = s; and from the
specification of the constraints we get:

liveentry(£) = (liveexit(£)\0) U 0 = liveeit(€)

Thus taking s to be s, we get s} ~jjyg ) Sz as
required.
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Theorem 2 - Proof (seq') [Not for Exam]

Proof (cont).

(seq'): We have (S;; Sz, s1) = (S}; Sz, s}) because of
(S1,81) = (5], 8)).

By construction we have flow(Sy; Sp) 2 flow(S;)
and also blocks(Sy; Sp) 2 blocks(Sy), thus by

Lemma 2 live = LV=(Sy) and by the induction
hypothesis there exists a s;, such that

(S1,82) = (57, s5) and s ™ iV sy (INTH(S])) Sh

and the result follows.
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Theorem 2 - Proof (seq’) [Not for Exam]
Proof (cont).

(seq’): We have (Si; S, s1) = (Sg, ;) because of
(S1,81) = 8}. Again by Lemma 2, live is a solution
to LV=(Sy) and thus by induction hypothesis there
exists a s}, such that

(S1,82) = s and s ~lives (iNit(Sy)) S
Now we have:
{(¢,init(S2)) | ¢ € final(Sy)} C flow(Sy; So)

and by Lemma 1, final(Sy) = {init(S1)}. Thus by
Lemma 5

S{I Nliveentry(init(s2)) 8/2
and the result follows.
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Theorem 2 - Proof (if") & (if”) [Not for Exam]
Proof (cont).
(if"): We have (i f [b]’ then Sy else So,51) = (S, 51)
with [b](s1) = true.
Since sy ~ IV 0y (£) 52 and liveentry(¢) 2 FV(b) we
also have [b](sz) = true (the value of b is only

dependent on the variables occurring in it) and
thus

<if [b]g then Sy else S, 82) = (Sy, S2)

From the constraints we get liveentry(£) 2 liveexit(£)
and hence s1 ~jjyg () S2-

Since (¢, init(Sy)) € flow(S) Lemma 5 gives

1™ iVeqy (init(s;)) S2 35 required.

(ifF): similar to case (if").
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Theorem 2 - Proof (wh') [Not for Exam]

Proof (cont).

(Wh'): (while [b]’ do S, s1) = (S; while [b]’ do S, s1)
with [b](s1) = true.
Since sy ~ IV 0y (£) 52 and liveentry(¢) 2 FV(b) we
also have [b](sz) = true and thus

(while [b]’ do S, sp) = (S; while [b]’ do S, sp)

Again since liveentry(£) 2 liveeit(¢) we have

S1 ™~ ive,q(t) 52 and then

S1 ™ liVegny (init(S)) S2

from Lemma 5 as
(¢,init(S)) € flow(while [b]f do S).
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Theorem 2 - Proof (wh”) [Not for Exam]

Proof (cont).

(whf): We have (while [b]’ do S, s¢) = sy with
[b](s1) = false.

Since sy ~ IV oy (0) S2 and livegniry(¢) 2 FV(b) and
we also have [b](sz) = false and thus:

(while [b]’ do S, sp) = sp.

From the specification of LV~ we have
L]
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Corollary 1

Given a label consistent program S.

If
> live = LV&(S)
then
(i) 1f(S,s1) =* (5, 8]) and s; ™ iV (iNit(S)) S2 then
there exists s, such that
(S,82) =" (8, s,) and s ™ [1Veanry (iNit(S") Sh.
(ii) 1f(S,s1) =~ Sq and s “iVEeny (INit(S)) s then
there exists s, such that
(S,82) =" sp and sy ~ e ) S for some
( € final(S).
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Corollary 1

Given a label consistent program S.

If
> live = LV&(S)
then
(i) 1f(S,s1) =* (5, 8]) and s; ™ iV (iNit(S)) S2 then
there exists s, such that
(S,82) =" (8, s,) and s ™ [1Veanry (iNit(S") Sh.
(ii) 1f(S,s1) =~ Sq and s “iVEeny (INit(S)) s then
there exists s, such that
(S,82) =" sp and sy ~ e ) S for some
( € final(S).

Proof [Not for Exam].

The proof is by induction on the length of the derivation
sequences and uses Theorem 2. O
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