
Models of Computation, 2024 1

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert posed the

Entscheidungsproblem, just examples.

Common features of the examples of algorithms:

• finite description of the procedure in terms of elementary

operations;

• deterministic, next step is uniquely determined if there is one;

• procedure may not terminate on some input data, but we can

recognise when it does terminate and what the result is.

Models of Computation, 2024 2

Turing machines, informally

?>=<89:;q

↓

· · · 0 1 0 1 1 · · ·

Models of Computation, 2024 3

Turing machines, informally

?>=<89:;q

↓

· · · 0 1 0 1 1 · · ·

• The machine starts in state s with the tape head pointing to the first

symbol of the finite input string. (Everything to the left and right of the

input string is initially blank.)

• The machine computes in steps, each depending on the current state (q)

and symbol being scanned by tape head (0)

• An action at each step is to: overwrite the current tape cell with a symbol;

move left or right one cell; and change state.

Models of Computation, 2024 4

Turing Machine, formally

A Turing machine is specified by a quadruple M = (Q,Σ, s, δ) where

• Q is a finite set of machine states;

• Σ is a finite set of tape symbols, containing distinguished symbol ,

called blank;

• an initial state s ∈ Q;

• a partial transition function

δ ∈ (Q × Σ)⇀(Q × Σ × {L,R})

Models of Computation, 2024 5

Turing Machine Configuration

A Turing Machine configuration (q, w, u) consists of

• the current state q ∈ Q;

• a finite, possibly-empty string w ∈ Σ∗
of tape symbols to the left of

tape head;

• a finite, possibly empty string u ∈ Σ∗
of tape symbols under and to the

right of tape head. ǫ denotes the empty string.

An initial configuration is (s, ǫ, u), for initial state s and string of

tape symbols u.

The configuration only describes the contents of tape cells that are

part of the input or have been visited by the Turing machine.

Everything else is blank.

Models of Computation, 2024 6

first and last

Define the functions first : Σ∗ → Σ × Σ∗ and

last : Σ∗ → Σ × Σ∗ as follows

first(w) =







(a, v) if w = av

(, ǫ) if w = ǫ

last(w) =







(a, v) if w = va

(, ǫ) if w = ǫ

These functions split off the first and last symbols of a string, splitting

off if the string is empty.

Models of Computation, 2024 7

Turing Machine Computation

Given M = (Q,Σ, s, δ), define (q, w, u) →M (q′, w′, u′)

by

first(u) = (a, u′)

δ(q, a) = (q′

, a
′

, L) last(w) = (b, w′)

(q, w, u) →M (q′

, w
′

, ba
′

u
′)

first(u) = (a, u′) δ(q, a) = (q′

, a
′

, R)

(q, w, u) →M (q′

, wa
′

, u
′)

We say that a configuration (q, w, u) is a normal form if it has no

computation step. This is the case exactly when δ(q, a) is undefined

for first(u) = (a, u′).

Models of Computation, 2024 8

Turing Machine Computation

A computation of a TM M is a (finite or infinite) sequence of

configurations c0, c1, c2, . . . where

• c0 = (s, ǫ, u) is an initial configuration

• ci →M ci+1 holds for each i = 0, 1,

The computation

• does not halt if the sequence is infinite

• halts if the sequence is finite and its last element (q, w, u) is a

normal form.

Models of Computation, 2024 9

Example Turing Machine

Consider the TM M = (Q,Σ, s, δ) where Q = {s, q, q′},

Σ = { , 0, 1} and the transition function

δ ∈ (Q × Σ)⇀(Q × Σ × {L,R}) is given by:

δ 0 1

s (q, , R)

q (q′, 0, L) (q, 1, R) (q, 1, R)

q′ (q′, 1, L)

Models of Computation, 2024 10

Graphical Representation of TMs

Construct a graph representing a TM:

• Nodes: states q ∈ Q,

• Edges: representing the transition function:

For ((q, s), (q′, s′,M)) ∈ δ with q, q′ ∈ Q, s, s′ ∈ Σ

and M ∈ {L,R} there is a link from q to q′ labelled by

s → s′,M , and

• Initial state: s ∈ Q indicated e.g. by an (unlabelled) edge.

Models of Computation, 2024 11

Example TM Diagram

s q q′
→ , R → 0, L

1 → 1, L

0 → 1, R

1 → 1.R

Models of Computation, 2024 12

Example Computation

(s , ǫ , 1n0) →M (q , , 1n0)

→M (q , 1 , 1n−10)

.

.

.

→M (q , 1n , 0)

→M (q , 1n+1 , ε)

→M (q′ , 1n , 10)

→M (q′ , 1n−1 , 110)

.

.

.

→M (q′ , , 1n+10)

Models of Computation, 2024 13

Theorem. The computation of a Turing machine M can be

implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M ’s states, tape symbols, tape

contents and configurations.

Step 2: implement M ’s transition function (finite table) using RM

instructions on codes.

Step 3: implement a RM program to repeatedly carry out →M .

Models of Computation, 2024 14

Step 1

• Identify states and tape symbols with numbers:

Q = {0, 1, . . . , n} Σ = {0, 1, . . . ,m}

where s = 0 and = 0

• Code configurations c = (q, w, u) with three numbers:

• q, the state number

• p[ai, . . . , a1]q where w = a1 · · · ai

• p[b1, . . . , bj]q where u = b1 · · · bj .

[The reversal of w makes it easier to use our RM programs for list

manipulation.]

• Identify directions with numbers: L = 0, R = 1

Models of Computation, 2024 15

Step 2

Turn the finite table of (argument,result)-pairs specifying δ into a RM

gadget
(I, A,D) ::= δ(I, A)

defined

undefined

which has the behaviour:

If q, a and d are the initial values of registers I , A and D

• updates the registers to I = q′, A = a′, D = d′ and

takes the defined exit if δ(q, a) = (q′, a′, d′)

• leaves the registers intact and takes the undefined exit if

δ(q, a) is undefined

Models of Computation, 2024 16

Step 3

The next slide gives a RM which implements the computation of TM

M . It uses registers

I = current state

W = code of tape symbols left of tape head (reading right-to-left)

U = code of tape symbols at and right of tape head (reading left-to-right)

Starting with U containing the code of the input string (and all other

registers zeroed), the RM program halts if and only if M halts; and in

that case I , W and U hold the code of the final configuration.

Models of Computation, 2024 17

pop U to A

START

(I, A,D) ::= δ(I, A)

push A to U HALT

D−push A to W push A to U

pop W to A

done

empty

undefined

defined

done

empty

Models of Computation, 2024 18

Tape encoding of lists of numbers

Definition. A tape over Σ = { , 0, 1} codes a list of numbers if

precisely two cells contain 0 and the only cells containing 1 occur

between these.

Such tapes look like:

· · ·
︸ ︷︷ ︸

all ′s

0 1 · · · 1
︸ ︷︷ ︸

n1

1 · · · 1
︸ ︷︷ ︸

n2 · · ·

· · · 1 · · · 1
︸ ︷︷ ︸

nk

0 · · ·
︸ ︷︷ ︸

all ′s

which corresponds to the list [n1, n2, . . . , nk].

Note the blank spaces: ’!

Models of Computation, 2024 19

Turing computable function

Definition. f ∈ N
n
⇀N is Turing computable if and only if there is

a Turing machine M with the following property:

Starting M from its initial state with tape head on the leftmost

0 of a tape coding [x1, . . . , xn], M halts if and only if

f(x1, . . . , xn)↓, and in that case the final tape codes a

list (of length ≥ 1) whose first element is y where

f(x1, . . . , xn) = y.

Models of Computation, 2024 20

Theorem. A partial function is Turing computable if and only if it is

register machine computable.

Proof (sketch). We’ve seen how to implement any TM by a RM. Hence

f TM computable implies f RM computable.

For the converse, one has to implement the computation of a RM in terms of a

TM operating on a tape coding RM configurations. To do this, one has to

show how to carry out the action of each type of RM instruction on the tape. It

should be reasonably clear that this is possible in principle, even if the details

are omitted (because they are tedious).

Models of Computation, 2024 21

Notions of computability

• Church (1936): λ-calculus

• Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the

same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense] can be

realized as a Turing machine.

Models of Computation, 2024 22

Models of computability

Church-Turing Thesis. Every algorithm can be realized as a Turing

machine. Further evidence:

• Gödel and Kleene (1936): partial recursive functions

• Church (1936): λ-calculus

• Post (1943) and Markov (1951): canonical systems for generating

the theorems of a formal system

• Lambek (1961) and Minsky (1961): register machines

• Variations on all of the above (e.g. multiple tapes,

non-determinism, parallel execution. . .)

All determine the same collection of computable functions.

